linux/fs/xfs/xfs_inode_item.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_trace.h"
  17#include "xfs_trans_priv.h"
  18#include "xfs_buf_item.h"
  19#include "xfs_log.h"
  20#include "xfs_error.h"
  21
  22#include <linux/iversion.h>
  23
  24kmem_zone_t     *xfs_ili_zone;          /* inode log item zone */
  25
  26static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
  27{
  28        return container_of(lip, struct xfs_inode_log_item, ili_item);
  29}
  30
  31/*
  32 * The logged size of an inode fork is always the current size of the inode
  33 * fork. This means that when an inode fork is relogged, the size of the logged
  34 * region is determined by the current state, not the combination of the
  35 * previously logged state + the current state. This is different relogging
  36 * behaviour to most other log items which will retain the size of the
  37 * previously logged changes when smaller regions are relogged.
  38 *
  39 * Hence operations that remove data from the inode fork (e.g. shortform
  40 * dir/attr remove, extent form extent removal, etc), the size of the relogged
  41 * inode gets -smaller- rather than stays the same size as the previously logged
  42 * size and this can result in the committing transaction reducing the amount of
  43 * space being consumed by the CIL.
  44 */
  45STATIC void
  46xfs_inode_item_data_fork_size(
  47        struct xfs_inode_log_item *iip,
  48        int                     *nvecs,
  49        int                     *nbytes)
  50{
  51        struct xfs_inode        *ip = iip->ili_inode;
  52
  53        switch (ip->i_df.if_format) {
  54        case XFS_DINODE_FMT_EXTENTS:
  55                if ((iip->ili_fields & XFS_ILOG_DEXT) &&
  56                    ip->i_df.if_nextents > 0 &&
  57                    ip->i_df.if_bytes > 0) {
  58                        /* worst case, doesn't subtract delalloc extents */
  59                        *nbytes += XFS_IFORK_DSIZE(ip);
  60                        *nvecs += 1;
  61                }
  62                break;
  63        case XFS_DINODE_FMT_BTREE:
  64                if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
  65                    ip->i_df.if_broot_bytes > 0) {
  66                        *nbytes += ip->i_df.if_broot_bytes;
  67                        *nvecs += 1;
  68                }
  69                break;
  70        case XFS_DINODE_FMT_LOCAL:
  71                if ((iip->ili_fields & XFS_ILOG_DDATA) &&
  72                    ip->i_df.if_bytes > 0) {
  73                        *nbytes += roundup(ip->i_df.if_bytes, 4);
  74                        *nvecs += 1;
  75                }
  76                break;
  77
  78        case XFS_DINODE_FMT_DEV:
  79                break;
  80        default:
  81                ASSERT(0);
  82                break;
  83        }
  84}
  85
  86STATIC void
  87xfs_inode_item_attr_fork_size(
  88        struct xfs_inode_log_item *iip,
  89        int                     *nvecs,
  90        int                     *nbytes)
  91{
  92        struct xfs_inode        *ip = iip->ili_inode;
  93
  94        switch (ip->i_afp->if_format) {
  95        case XFS_DINODE_FMT_EXTENTS:
  96                if ((iip->ili_fields & XFS_ILOG_AEXT) &&
  97                    ip->i_afp->if_nextents > 0 &&
  98                    ip->i_afp->if_bytes > 0) {
  99                        /* worst case, doesn't subtract unused space */
 100                        *nbytes += XFS_IFORK_ASIZE(ip);
 101                        *nvecs += 1;
 102                }
 103                break;
 104        case XFS_DINODE_FMT_BTREE:
 105                if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 106                    ip->i_afp->if_broot_bytes > 0) {
 107                        *nbytes += ip->i_afp->if_broot_bytes;
 108                        *nvecs += 1;
 109                }
 110                break;
 111        case XFS_DINODE_FMT_LOCAL:
 112                if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 113                    ip->i_afp->if_bytes > 0) {
 114                        *nbytes += roundup(ip->i_afp->if_bytes, 4);
 115                        *nvecs += 1;
 116                }
 117                break;
 118        default:
 119                ASSERT(0);
 120                break;
 121        }
 122}
 123
 124/*
 125 * This returns the number of iovecs needed to log the given inode item.
 126 *
 127 * We need one iovec for the inode log format structure, one for the
 128 * inode core, and possibly one for the inode data/extents/b-tree root
 129 * and one for the inode attribute data/extents/b-tree root.
 130 */
 131STATIC void
 132xfs_inode_item_size(
 133        struct xfs_log_item     *lip,
 134        int                     *nvecs,
 135        int                     *nbytes)
 136{
 137        struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 138        struct xfs_inode        *ip = iip->ili_inode;
 139
 140        *nvecs += 2;
 141        *nbytes += sizeof(struct xfs_inode_log_format) +
 142                   xfs_log_dinode_size(ip->i_mount);
 143
 144        xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
 145        if (XFS_IFORK_Q(ip))
 146                xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
 147}
 148
 149STATIC void
 150xfs_inode_item_format_data_fork(
 151        struct xfs_inode_log_item *iip,
 152        struct xfs_inode_log_format *ilf,
 153        struct xfs_log_vec      *lv,
 154        struct xfs_log_iovec    **vecp)
 155{
 156        struct xfs_inode        *ip = iip->ili_inode;
 157        size_t                  data_bytes;
 158
 159        switch (ip->i_df.if_format) {
 160        case XFS_DINODE_FMT_EXTENTS:
 161                iip->ili_fields &=
 162                        ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 163
 164                if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 165                    ip->i_df.if_nextents > 0 &&
 166                    ip->i_df.if_bytes > 0) {
 167                        struct xfs_bmbt_rec *p;
 168
 169                        ASSERT(xfs_iext_count(&ip->i_df) > 0);
 170
 171                        p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
 172                        data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
 173                        xlog_finish_iovec(lv, *vecp, data_bytes);
 174
 175                        ASSERT(data_bytes <= ip->i_df.if_bytes);
 176
 177                        ilf->ilf_dsize = data_bytes;
 178                        ilf->ilf_size++;
 179                } else {
 180                        iip->ili_fields &= ~XFS_ILOG_DEXT;
 181                }
 182                break;
 183        case XFS_DINODE_FMT_BTREE:
 184                iip->ili_fields &=
 185                        ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
 186
 187                if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 188                    ip->i_df.if_broot_bytes > 0) {
 189                        ASSERT(ip->i_df.if_broot != NULL);
 190                        xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
 191                                        ip->i_df.if_broot,
 192                                        ip->i_df.if_broot_bytes);
 193                        ilf->ilf_dsize = ip->i_df.if_broot_bytes;
 194                        ilf->ilf_size++;
 195                } else {
 196                        ASSERT(!(iip->ili_fields &
 197                                 XFS_ILOG_DBROOT));
 198                        iip->ili_fields &= ~XFS_ILOG_DBROOT;
 199                }
 200                break;
 201        case XFS_DINODE_FMT_LOCAL:
 202                iip->ili_fields &=
 203                        ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 204                if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 205                    ip->i_df.if_bytes > 0) {
 206                        /*
 207                         * Round i_bytes up to a word boundary.
 208                         * The underlying memory is guaranteed
 209                         * to be there by xfs_idata_realloc().
 210                         */
 211                        data_bytes = roundup(ip->i_df.if_bytes, 4);
 212                        ASSERT(ip->i_df.if_u1.if_data != NULL);
 213                        ASSERT(ip->i_disk_size > 0);
 214                        xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
 215                                        ip->i_df.if_u1.if_data, data_bytes);
 216                        ilf->ilf_dsize = (unsigned)data_bytes;
 217                        ilf->ilf_size++;
 218                } else {
 219                        iip->ili_fields &= ~XFS_ILOG_DDATA;
 220                }
 221                break;
 222        case XFS_DINODE_FMT_DEV:
 223                iip->ili_fields &=
 224                        ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
 225                if (iip->ili_fields & XFS_ILOG_DEV)
 226                        ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
 227                break;
 228        default:
 229                ASSERT(0);
 230                break;
 231        }
 232}
 233
 234STATIC void
 235xfs_inode_item_format_attr_fork(
 236        struct xfs_inode_log_item *iip,
 237        struct xfs_inode_log_format *ilf,
 238        struct xfs_log_vec      *lv,
 239        struct xfs_log_iovec    **vecp)
 240{
 241        struct xfs_inode        *ip = iip->ili_inode;
 242        size_t                  data_bytes;
 243
 244        switch (ip->i_afp->if_format) {
 245        case XFS_DINODE_FMT_EXTENTS:
 246                iip->ili_fields &=
 247                        ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
 248
 249                if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 250                    ip->i_afp->if_nextents > 0 &&
 251                    ip->i_afp->if_bytes > 0) {
 252                        struct xfs_bmbt_rec *p;
 253
 254                        ASSERT(xfs_iext_count(ip->i_afp) ==
 255                                ip->i_afp->if_nextents);
 256
 257                        p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
 258                        data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
 259                        xlog_finish_iovec(lv, *vecp, data_bytes);
 260
 261                        ilf->ilf_asize = data_bytes;
 262                        ilf->ilf_size++;
 263                } else {
 264                        iip->ili_fields &= ~XFS_ILOG_AEXT;
 265                }
 266                break;
 267        case XFS_DINODE_FMT_BTREE:
 268                iip->ili_fields &=
 269                        ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
 270
 271                if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 272                    ip->i_afp->if_broot_bytes > 0) {
 273                        ASSERT(ip->i_afp->if_broot != NULL);
 274
 275                        xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
 276                                        ip->i_afp->if_broot,
 277                                        ip->i_afp->if_broot_bytes);
 278                        ilf->ilf_asize = ip->i_afp->if_broot_bytes;
 279                        ilf->ilf_size++;
 280                } else {
 281                        iip->ili_fields &= ~XFS_ILOG_ABROOT;
 282                }
 283                break;
 284        case XFS_DINODE_FMT_LOCAL:
 285                iip->ili_fields &=
 286                        ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
 287
 288                if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 289                    ip->i_afp->if_bytes > 0) {
 290                        /*
 291                         * Round i_bytes up to a word boundary.
 292                         * The underlying memory is guaranteed
 293                         * to be there by xfs_idata_realloc().
 294                         */
 295                        data_bytes = roundup(ip->i_afp->if_bytes, 4);
 296                        ASSERT(ip->i_afp->if_u1.if_data != NULL);
 297                        xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
 298                                        ip->i_afp->if_u1.if_data,
 299                                        data_bytes);
 300                        ilf->ilf_asize = (unsigned)data_bytes;
 301                        ilf->ilf_size++;
 302                } else {
 303                        iip->ili_fields &= ~XFS_ILOG_ADATA;
 304                }
 305                break;
 306        default:
 307                ASSERT(0);
 308                break;
 309        }
 310}
 311
 312/*
 313 * Convert an incore timestamp to a log timestamp.  Note that the log format
 314 * specifies host endian format!
 315 */
 316static inline xfs_log_timestamp_t
 317xfs_inode_to_log_dinode_ts(
 318        struct xfs_inode                *ip,
 319        const struct timespec64         tv)
 320{
 321        struct xfs_log_legacy_timestamp *lits;
 322        xfs_log_timestamp_t             its;
 323
 324        if (xfs_inode_has_bigtime(ip))
 325                return xfs_inode_encode_bigtime(tv);
 326
 327        lits = (struct xfs_log_legacy_timestamp *)&its;
 328        lits->t_sec = tv.tv_sec;
 329        lits->t_nsec = tv.tv_nsec;
 330
 331        return its;
 332}
 333
 334/*
 335 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
 336 * but not in the in-memory one.  But we are guaranteed to have an inode buffer
 337 * in memory when logging an inode, so we can just copy it from the on-disk
 338 * inode to the in-log inode here so that recovery of file system with these
 339 * fields set to non-zero values doesn't lose them.  For all other cases we zero
 340 * the fields.
 341 */
 342static void
 343xfs_copy_dm_fields_to_log_dinode(
 344        struct xfs_inode        *ip,
 345        struct xfs_log_dinode   *to)
 346{
 347        struct xfs_dinode       *dip;
 348
 349        dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
 350                             ip->i_imap.im_boffset);
 351
 352        if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
 353                to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
 354                to->di_dmstate = be16_to_cpu(dip->di_dmstate);
 355        } else {
 356                to->di_dmevmask = 0;
 357                to->di_dmstate = 0;
 358        }
 359}
 360
 361static void
 362xfs_inode_to_log_dinode(
 363        struct xfs_inode        *ip,
 364        struct xfs_log_dinode   *to,
 365        xfs_lsn_t               lsn)
 366{
 367        struct inode            *inode = VFS_I(ip);
 368
 369        to->di_magic = XFS_DINODE_MAGIC;
 370        to->di_format = xfs_ifork_format(&ip->i_df);
 371        to->di_uid = i_uid_read(inode);
 372        to->di_gid = i_gid_read(inode);
 373        to->di_projid_lo = ip->i_projid & 0xffff;
 374        to->di_projid_hi = ip->i_projid >> 16;
 375
 376        memset(to->di_pad, 0, sizeof(to->di_pad));
 377        memset(to->di_pad3, 0, sizeof(to->di_pad3));
 378        to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
 379        to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
 380        to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
 381        to->di_nlink = inode->i_nlink;
 382        to->di_gen = inode->i_generation;
 383        to->di_mode = inode->i_mode;
 384
 385        to->di_size = ip->i_disk_size;
 386        to->di_nblocks = ip->i_nblocks;
 387        to->di_extsize = ip->i_extsize;
 388        to->di_nextents = xfs_ifork_nextents(&ip->i_df);
 389        to->di_anextents = xfs_ifork_nextents(ip->i_afp);
 390        to->di_forkoff = ip->i_forkoff;
 391        to->di_aformat = xfs_ifork_format(ip->i_afp);
 392        to->di_flags = ip->i_diflags;
 393
 394        xfs_copy_dm_fields_to_log_dinode(ip, to);
 395
 396        /* log a dummy value to ensure log structure is fully initialised */
 397        to->di_next_unlinked = NULLAGINO;
 398
 399        if (xfs_has_v3inodes(ip->i_mount)) {
 400                to->di_version = 3;
 401                to->di_changecount = inode_peek_iversion(inode);
 402                to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
 403                to->di_flags2 = ip->i_diflags2;
 404                to->di_cowextsize = ip->i_cowextsize;
 405                to->di_ino = ip->i_ino;
 406                to->di_lsn = lsn;
 407                memset(to->di_pad2, 0, sizeof(to->di_pad2));
 408                uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
 409                to->di_flushiter = 0;
 410        } else {
 411                to->di_version = 2;
 412                to->di_flushiter = ip->i_flushiter;
 413        }
 414}
 415
 416/*
 417 * Format the inode core. Current timestamp data is only in the VFS inode
 418 * fields, so we need to grab them from there. Hence rather than just copying
 419 * the XFS inode core structure, format the fields directly into the iovec.
 420 */
 421static void
 422xfs_inode_item_format_core(
 423        struct xfs_inode        *ip,
 424        struct xfs_log_vec      *lv,
 425        struct xfs_log_iovec    **vecp)
 426{
 427        struct xfs_log_dinode   *dic;
 428
 429        dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
 430        xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
 431        xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
 432}
 433
 434/*
 435 * This is called to fill in the vector of log iovecs for the given inode
 436 * log item.  It fills the first item with an inode log format structure,
 437 * the second with the on-disk inode structure, and a possible third and/or
 438 * fourth with the inode data/extents/b-tree root and inode attributes
 439 * data/extents/b-tree root.
 440 *
 441 * Note: Always use the 64 bit inode log format structure so we don't
 442 * leave an uninitialised hole in the format item on 64 bit systems. Log
 443 * recovery on 32 bit systems handles this just fine, so there's no reason
 444 * for not using an initialising the properly padded structure all the time.
 445 */
 446STATIC void
 447xfs_inode_item_format(
 448        struct xfs_log_item     *lip,
 449        struct xfs_log_vec      *lv)
 450{
 451        struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 452        struct xfs_inode        *ip = iip->ili_inode;
 453        struct xfs_log_iovec    *vecp = NULL;
 454        struct xfs_inode_log_format *ilf;
 455
 456        ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
 457        ilf->ilf_type = XFS_LI_INODE;
 458        ilf->ilf_ino = ip->i_ino;
 459        ilf->ilf_blkno = ip->i_imap.im_blkno;
 460        ilf->ilf_len = ip->i_imap.im_len;
 461        ilf->ilf_boffset = ip->i_imap.im_boffset;
 462        ilf->ilf_fields = XFS_ILOG_CORE;
 463        ilf->ilf_size = 2; /* format + core */
 464
 465        /*
 466         * make sure we don't leak uninitialised data into the log in the case
 467         * when we don't log every field in the inode.
 468         */
 469        ilf->ilf_dsize = 0;
 470        ilf->ilf_asize = 0;
 471        ilf->ilf_pad = 0;
 472        memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
 473
 474        xlog_finish_iovec(lv, vecp, sizeof(*ilf));
 475
 476        xfs_inode_item_format_core(ip, lv, &vecp);
 477        xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
 478        if (XFS_IFORK_Q(ip)) {
 479                xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
 480        } else {
 481                iip->ili_fields &=
 482                        ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
 483        }
 484
 485        /* update the format with the exact fields we actually logged */
 486        ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
 487}
 488
 489/*
 490 * This is called to pin the inode associated with the inode log
 491 * item in memory so it cannot be written out.
 492 */
 493STATIC void
 494xfs_inode_item_pin(
 495        struct xfs_log_item     *lip)
 496{
 497        struct xfs_inode        *ip = INODE_ITEM(lip)->ili_inode;
 498
 499        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 500        ASSERT(lip->li_buf);
 501
 502        trace_xfs_inode_pin(ip, _RET_IP_);
 503        atomic_inc(&ip->i_pincount);
 504}
 505
 506
 507/*
 508 * This is called to unpin the inode associated with the inode log
 509 * item which was previously pinned with a call to xfs_inode_item_pin().
 510 *
 511 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 512 *
 513 * Note that unpin can race with inode cluster buffer freeing marking the buffer
 514 * stale. In that case, flush completions are run from the buffer unpin call,
 515 * which may happen before the inode is unpinned. If we lose the race, there
 516 * will be no buffer attached to the log item, but the inode will be marked
 517 * XFS_ISTALE.
 518 */
 519STATIC void
 520xfs_inode_item_unpin(
 521        struct xfs_log_item     *lip,
 522        int                     remove)
 523{
 524        struct xfs_inode        *ip = INODE_ITEM(lip)->ili_inode;
 525
 526        trace_xfs_inode_unpin(ip, _RET_IP_);
 527        ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
 528        ASSERT(atomic_read(&ip->i_pincount) > 0);
 529        if (atomic_dec_and_test(&ip->i_pincount))
 530                wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
 531}
 532
 533STATIC uint
 534xfs_inode_item_push(
 535        struct xfs_log_item     *lip,
 536        struct list_head        *buffer_list)
 537                __releases(&lip->li_ailp->ail_lock)
 538                __acquires(&lip->li_ailp->ail_lock)
 539{
 540        struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 541        struct xfs_inode        *ip = iip->ili_inode;
 542        struct xfs_buf          *bp = lip->li_buf;
 543        uint                    rval = XFS_ITEM_SUCCESS;
 544        int                     error;
 545
 546        ASSERT(iip->ili_item.li_buf);
 547
 548        if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) ||
 549            (ip->i_flags & XFS_ISTALE))
 550                return XFS_ITEM_PINNED;
 551
 552        if (xfs_iflags_test(ip, XFS_IFLUSHING))
 553                return XFS_ITEM_FLUSHING;
 554
 555        if (!xfs_buf_trylock(bp))
 556                return XFS_ITEM_LOCKED;
 557
 558        spin_unlock(&lip->li_ailp->ail_lock);
 559
 560        /*
 561         * We need to hold a reference for flushing the cluster buffer as it may
 562         * fail the buffer without IO submission. In which case, we better get a
 563         * reference for that completion because otherwise we don't get a
 564         * reference for IO until we queue the buffer for delwri submission.
 565         */
 566        xfs_buf_hold(bp);
 567        error = xfs_iflush_cluster(bp);
 568        if (!error) {
 569                if (!xfs_buf_delwri_queue(bp, buffer_list))
 570                        rval = XFS_ITEM_FLUSHING;
 571                xfs_buf_relse(bp);
 572        } else {
 573                /*
 574                 * Release the buffer if we were unable to flush anything. On
 575                 * any other error, the buffer has already been released.
 576                 */
 577                if (error == -EAGAIN)
 578                        xfs_buf_relse(bp);
 579                rval = XFS_ITEM_LOCKED;
 580        }
 581
 582        spin_lock(&lip->li_ailp->ail_lock);
 583        return rval;
 584}
 585
 586/*
 587 * Unlock the inode associated with the inode log item.
 588 */
 589STATIC void
 590xfs_inode_item_release(
 591        struct xfs_log_item     *lip)
 592{
 593        struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 594        struct xfs_inode        *ip = iip->ili_inode;
 595        unsigned short          lock_flags;
 596
 597        ASSERT(ip->i_itemp != NULL);
 598        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 599
 600        lock_flags = iip->ili_lock_flags;
 601        iip->ili_lock_flags = 0;
 602        if (lock_flags)
 603                xfs_iunlock(ip, lock_flags);
 604}
 605
 606/*
 607 * This is called to find out where the oldest active copy of the inode log
 608 * item in the on disk log resides now that the last log write of it completed
 609 * at the given lsn.  Since we always re-log all dirty data in an inode, the
 610 * latest copy in the on disk log is the only one that matters.  Therefore,
 611 * simply return the given lsn.
 612 *
 613 * If the inode has been marked stale because the cluster is being freed, we
 614 * don't want to (re-)insert this inode into the AIL. There is a race condition
 615 * where the cluster buffer may be unpinned before the inode is inserted into
 616 * the AIL during transaction committed processing. If the buffer is unpinned
 617 * before the inode item has been committed and inserted, then it is possible
 618 * for the buffer to be written and IO completes before the inode is inserted
 619 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
 620 * AIL which will never get removed. It will, however, get reclaimed which
 621 * triggers an assert in xfs_inode_free() complaining about freein an inode
 622 * still in the AIL.
 623 *
 624 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
 625 * transaction committed code knows that it does not need to do any further
 626 * processing on the item.
 627 */
 628STATIC xfs_lsn_t
 629xfs_inode_item_committed(
 630        struct xfs_log_item     *lip,
 631        xfs_lsn_t               lsn)
 632{
 633        struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 634        struct xfs_inode        *ip = iip->ili_inode;
 635
 636        if (xfs_iflags_test(ip, XFS_ISTALE)) {
 637                xfs_inode_item_unpin(lip, 0);
 638                return -1;
 639        }
 640        return lsn;
 641}
 642
 643STATIC void
 644xfs_inode_item_committing(
 645        struct xfs_log_item     *lip,
 646        xfs_csn_t               seq)
 647{
 648        INODE_ITEM(lip)->ili_commit_seq = seq;
 649        return xfs_inode_item_release(lip);
 650}
 651
 652static const struct xfs_item_ops xfs_inode_item_ops = {
 653        .iop_size       = xfs_inode_item_size,
 654        .iop_format     = xfs_inode_item_format,
 655        .iop_pin        = xfs_inode_item_pin,
 656        .iop_unpin      = xfs_inode_item_unpin,
 657        .iop_release    = xfs_inode_item_release,
 658        .iop_committed  = xfs_inode_item_committed,
 659        .iop_push       = xfs_inode_item_push,
 660        .iop_committing = xfs_inode_item_committing,
 661};
 662
 663
 664/*
 665 * Initialize the inode log item for a newly allocated (in-core) inode.
 666 */
 667void
 668xfs_inode_item_init(
 669        struct xfs_inode        *ip,
 670        struct xfs_mount        *mp)
 671{
 672        struct xfs_inode_log_item *iip;
 673
 674        ASSERT(ip->i_itemp == NULL);
 675        iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_zone,
 676                                              GFP_KERNEL | __GFP_NOFAIL);
 677
 678        iip->ili_inode = ip;
 679        spin_lock_init(&iip->ili_lock);
 680        xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
 681                                                &xfs_inode_item_ops);
 682}
 683
 684/*
 685 * Free the inode log item and any memory hanging off of it.
 686 */
 687void
 688xfs_inode_item_destroy(
 689        struct xfs_inode        *ip)
 690{
 691        struct xfs_inode_log_item *iip = ip->i_itemp;
 692
 693        ASSERT(iip->ili_item.li_buf == NULL);
 694
 695        ip->i_itemp = NULL;
 696        kmem_free(iip->ili_item.li_lv_shadow);
 697        kmem_cache_free(xfs_ili_zone, iip);
 698}
 699
 700
 701/*
 702 * We only want to pull the item from the AIL if it is actually there
 703 * and its location in the log has not changed since we started the
 704 * flush.  Thus, we only bother if the inode's lsn has not changed.
 705 */
 706static void
 707xfs_iflush_ail_updates(
 708        struct xfs_ail          *ailp,
 709        struct list_head        *list)
 710{
 711        struct xfs_log_item     *lip;
 712        xfs_lsn_t               tail_lsn = 0;
 713
 714        /* this is an opencoded batch version of xfs_trans_ail_delete */
 715        spin_lock(&ailp->ail_lock);
 716        list_for_each_entry(lip, list, li_bio_list) {
 717                xfs_lsn_t       lsn;
 718
 719                clear_bit(XFS_LI_FAILED, &lip->li_flags);
 720                if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
 721                        continue;
 722
 723                lsn = xfs_ail_delete_one(ailp, lip);
 724                if (!tail_lsn && lsn)
 725                        tail_lsn = lsn;
 726        }
 727        xfs_ail_update_finish(ailp, tail_lsn);
 728}
 729
 730/*
 731 * Walk the list of inodes that have completed their IOs. If they are clean
 732 * remove them from the list and dissociate them from the buffer. Buffers that
 733 * are still dirty remain linked to the buffer and on the list. Caller must
 734 * handle them appropriately.
 735 */
 736static void
 737xfs_iflush_finish(
 738        struct xfs_buf          *bp,
 739        struct list_head        *list)
 740{
 741        struct xfs_log_item     *lip, *n;
 742
 743        list_for_each_entry_safe(lip, n, list, li_bio_list) {
 744                struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 745                bool    drop_buffer = false;
 746
 747                spin_lock(&iip->ili_lock);
 748
 749                /*
 750                 * Remove the reference to the cluster buffer if the inode is
 751                 * clean in memory and drop the buffer reference once we've
 752                 * dropped the locks we hold.
 753                 */
 754                ASSERT(iip->ili_item.li_buf == bp);
 755                if (!iip->ili_fields) {
 756                        iip->ili_item.li_buf = NULL;
 757                        list_del_init(&lip->li_bio_list);
 758                        drop_buffer = true;
 759                }
 760                iip->ili_last_fields = 0;
 761                iip->ili_flush_lsn = 0;
 762                spin_unlock(&iip->ili_lock);
 763                xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
 764                if (drop_buffer)
 765                        xfs_buf_rele(bp);
 766        }
 767}
 768
 769/*
 770 * Inode buffer IO completion routine.  It is responsible for removing inodes
 771 * attached to the buffer from the AIL if they have not been re-logged and
 772 * completing the inode flush.
 773 */
 774void
 775xfs_buf_inode_iodone(
 776        struct xfs_buf          *bp)
 777{
 778        struct xfs_log_item     *lip, *n;
 779        LIST_HEAD(flushed_inodes);
 780        LIST_HEAD(ail_updates);
 781
 782        /*
 783         * Pull the attached inodes from the buffer one at a time and take the
 784         * appropriate action on them.
 785         */
 786        list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
 787                struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 788
 789                if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
 790                        xfs_iflush_abort(iip->ili_inode);
 791                        continue;
 792                }
 793                if (!iip->ili_last_fields)
 794                        continue;
 795
 796                /* Do an unlocked check for needing the AIL lock. */
 797                if (iip->ili_flush_lsn == lip->li_lsn ||
 798                    test_bit(XFS_LI_FAILED, &lip->li_flags))
 799                        list_move_tail(&lip->li_bio_list, &ail_updates);
 800                else
 801                        list_move_tail(&lip->li_bio_list, &flushed_inodes);
 802        }
 803
 804        if (!list_empty(&ail_updates)) {
 805                xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
 806                list_splice_tail(&ail_updates, &flushed_inodes);
 807        }
 808
 809        xfs_iflush_finish(bp, &flushed_inodes);
 810        if (!list_empty(&flushed_inodes))
 811                list_splice_tail(&flushed_inodes, &bp->b_li_list);
 812}
 813
 814void
 815xfs_buf_inode_io_fail(
 816        struct xfs_buf          *bp)
 817{
 818        struct xfs_log_item     *lip;
 819
 820        list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
 821                set_bit(XFS_LI_FAILED, &lip->li_flags);
 822}
 823
 824/*
 825 * This is the inode flushing abort routine.  It is called when
 826 * the filesystem is shutting down to clean up the inode state.  It is
 827 * responsible for removing the inode item from the AIL if it has not been
 828 * re-logged and clearing the inode's flush state.
 829 */
 830void
 831xfs_iflush_abort(
 832        struct xfs_inode        *ip)
 833{
 834        struct xfs_inode_log_item *iip = ip->i_itemp;
 835        struct xfs_buf          *bp = NULL;
 836
 837        if (iip) {
 838                /*
 839                 * Clear the failed bit before removing the item from the AIL so
 840                 * xfs_trans_ail_delete() doesn't try to clear and release the
 841                 * buffer attached to the log item before we are done with it.
 842                 */
 843                clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
 844                xfs_trans_ail_delete(&iip->ili_item, 0);
 845
 846                /*
 847                 * Clear the inode logging fields so no more flushes are
 848                 * attempted.
 849                 */
 850                spin_lock(&iip->ili_lock);
 851                iip->ili_last_fields = 0;
 852                iip->ili_fields = 0;
 853                iip->ili_fsync_fields = 0;
 854                iip->ili_flush_lsn = 0;
 855                bp = iip->ili_item.li_buf;
 856                iip->ili_item.li_buf = NULL;
 857                list_del_init(&iip->ili_item.li_bio_list);
 858                spin_unlock(&iip->ili_lock);
 859        }
 860        xfs_iflags_clear(ip, XFS_IFLUSHING);
 861        if (bp)
 862                xfs_buf_rele(bp);
 863}
 864
 865/*
 866 * convert an xfs_inode_log_format struct from the old 32 bit version
 867 * (which can have different field alignments) to the native 64 bit version
 868 */
 869int
 870xfs_inode_item_format_convert(
 871        struct xfs_log_iovec            *buf,
 872        struct xfs_inode_log_format     *in_f)
 873{
 874        struct xfs_inode_log_format_32  *in_f32 = buf->i_addr;
 875
 876        if (buf->i_len != sizeof(*in_f32)) {
 877                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
 878                return -EFSCORRUPTED;
 879        }
 880
 881        in_f->ilf_type = in_f32->ilf_type;
 882        in_f->ilf_size = in_f32->ilf_size;
 883        in_f->ilf_fields = in_f32->ilf_fields;
 884        in_f->ilf_asize = in_f32->ilf_asize;
 885        in_f->ilf_dsize = in_f32->ilf_dsize;
 886        in_f->ilf_ino = in_f32->ilf_ino;
 887        memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
 888        in_f->ilf_blkno = in_f32->ilf_blkno;
 889        in_f->ilf_len = in_f32->ilf_len;
 890        in_f->ilf_boffset = in_f32->ilf_boffset;
 891        return 0;
 892}
 893