linux/fs/xfs/xfs_trans_buf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_trans.h"
  14#include "xfs_buf_item.h"
  15#include "xfs_trans_priv.h"
  16#include "xfs_trace.h"
  17
  18/*
  19 * Check to see if a buffer matching the given parameters is already
  20 * a part of the given transaction.
  21 */
  22STATIC struct xfs_buf *
  23xfs_trans_buf_item_match(
  24        struct xfs_trans        *tp,
  25        struct xfs_buftarg      *target,
  26        struct xfs_buf_map      *map,
  27        int                     nmaps)
  28{
  29        struct xfs_log_item     *lip;
  30        struct xfs_buf_log_item *blip;
  31        int                     len = 0;
  32        int                     i;
  33
  34        for (i = 0; i < nmaps; i++)
  35                len += map[i].bm_len;
  36
  37        list_for_each_entry(lip, &tp->t_items, li_trans) {
  38                blip = (struct xfs_buf_log_item *)lip;
  39                if (blip->bli_item.li_type == XFS_LI_BUF &&
  40                    blip->bli_buf->b_target == target &&
  41                    xfs_buf_daddr(blip->bli_buf) == map[0].bm_bn &&
  42                    blip->bli_buf->b_length == len) {
  43                        ASSERT(blip->bli_buf->b_map_count == nmaps);
  44                        return blip->bli_buf;
  45                }
  46        }
  47
  48        return NULL;
  49}
  50
  51/*
  52 * Add the locked buffer to the transaction.
  53 *
  54 * The buffer must be locked, and it cannot be associated with any
  55 * transaction.
  56 *
  57 * If the buffer does not yet have a buf log item associated with it,
  58 * then allocate one for it.  Then add the buf item to the transaction.
  59 */
  60STATIC void
  61_xfs_trans_bjoin(
  62        struct xfs_trans        *tp,
  63        struct xfs_buf          *bp,
  64        int                     reset_recur)
  65{
  66        struct xfs_buf_log_item *bip;
  67
  68        ASSERT(bp->b_transp == NULL);
  69
  70        /*
  71         * The xfs_buf_log_item pointer is stored in b_log_item.  If
  72         * it doesn't have one yet, then allocate one and initialize it.
  73         * The checks to see if one is there are in xfs_buf_item_init().
  74         */
  75        xfs_buf_item_init(bp, tp->t_mountp);
  76        bip = bp->b_log_item;
  77        ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  78        ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
  79        ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
  80        if (reset_recur)
  81                bip->bli_recur = 0;
  82
  83        /*
  84         * Take a reference for this transaction on the buf item.
  85         */
  86        atomic_inc(&bip->bli_refcount);
  87
  88        /*
  89         * Attach the item to the transaction so we can find it in
  90         * xfs_trans_get_buf() and friends.
  91         */
  92        xfs_trans_add_item(tp, &bip->bli_item);
  93        bp->b_transp = tp;
  94
  95}
  96
  97void
  98xfs_trans_bjoin(
  99        struct xfs_trans        *tp,
 100        struct xfs_buf          *bp)
 101{
 102        _xfs_trans_bjoin(tp, bp, 0);
 103        trace_xfs_trans_bjoin(bp->b_log_item);
 104}
 105
 106/*
 107 * Get and lock the buffer for the caller if it is not already
 108 * locked within the given transaction.  If it is already locked
 109 * within the transaction, just increment its lock recursion count
 110 * and return a pointer to it.
 111 *
 112 * If the transaction pointer is NULL, make this just a normal
 113 * get_buf() call.
 114 */
 115int
 116xfs_trans_get_buf_map(
 117        struct xfs_trans        *tp,
 118        struct xfs_buftarg      *target,
 119        struct xfs_buf_map      *map,
 120        int                     nmaps,
 121        xfs_buf_flags_t         flags,
 122        struct xfs_buf          **bpp)
 123{
 124        struct xfs_buf          *bp;
 125        struct xfs_buf_log_item *bip;
 126        int                     error;
 127
 128        *bpp = NULL;
 129        if (!tp)
 130                return xfs_buf_get_map(target, map, nmaps, flags, bpp);
 131
 132        /*
 133         * If we find the buffer in the cache with this transaction
 134         * pointer in its b_fsprivate2 field, then we know we already
 135         * have it locked.  In this case we just increment the lock
 136         * recursion count and return the buffer to the caller.
 137         */
 138        bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
 139        if (bp != NULL) {
 140                ASSERT(xfs_buf_islocked(bp));
 141                if (xfs_is_shutdown(tp->t_mountp)) {
 142                        xfs_buf_stale(bp);
 143                        bp->b_flags |= XBF_DONE;
 144                }
 145
 146                ASSERT(bp->b_transp == tp);
 147                bip = bp->b_log_item;
 148                ASSERT(bip != NULL);
 149                ASSERT(atomic_read(&bip->bli_refcount) > 0);
 150                bip->bli_recur++;
 151                trace_xfs_trans_get_buf_recur(bip);
 152                *bpp = bp;
 153                return 0;
 154        }
 155
 156        error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
 157        if (error)
 158                return error;
 159
 160        ASSERT(!bp->b_error);
 161
 162        _xfs_trans_bjoin(tp, bp, 1);
 163        trace_xfs_trans_get_buf(bp->b_log_item);
 164        *bpp = bp;
 165        return 0;
 166}
 167
 168/*
 169 * Get and lock the superblock buffer for the given transaction.
 170 */
 171struct xfs_buf *
 172xfs_trans_getsb(
 173        struct xfs_trans        *tp)
 174{
 175        struct xfs_buf          *bp = tp->t_mountp->m_sb_bp;
 176
 177        /*
 178         * Just increment the lock recursion count if the buffer is already
 179         * attached to this transaction.
 180         */
 181        if (bp->b_transp == tp) {
 182                struct xfs_buf_log_item *bip = bp->b_log_item;
 183
 184                ASSERT(bip != NULL);
 185                ASSERT(atomic_read(&bip->bli_refcount) > 0);
 186                bip->bli_recur++;
 187
 188                trace_xfs_trans_getsb_recur(bip);
 189        } else {
 190                xfs_buf_lock(bp);
 191                xfs_buf_hold(bp);
 192                _xfs_trans_bjoin(tp, bp, 1);
 193
 194                trace_xfs_trans_getsb(bp->b_log_item);
 195        }
 196
 197        return bp;
 198}
 199
 200/*
 201 * Get and lock the buffer for the caller if it is not already
 202 * locked within the given transaction.  If it has not yet been
 203 * read in, read it from disk. If it is already locked
 204 * within the transaction and already read in, just increment its
 205 * lock recursion count and return a pointer to it.
 206 *
 207 * If the transaction pointer is NULL, make this just a normal
 208 * read_buf() call.
 209 */
 210int
 211xfs_trans_read_buf_map(
 212        struct xfs_mount        *mp,
 213        struct xfs_trans        *tp,
 214        struct xfs_buftarg      *target,
 215        struct xfs_buf_map      *map,
 216        int                     nmaps,
 217        xfs_buf_flags_t         flags,
 218        struct xfs_buf          **bpp,
 219        const struct xfs_buf_ops *ops)
 220{
 221        struct xfs_buf          *bp = NULL;
 222        struct xfs_buf_log_item *bip;
 223        int                     error;
 224
 225        *bpp = NULL;
 226        /*
 227         * If we find the buffer in the cache with this transaction
 228         * pointer in its b_fsprivate2 field, then we know we already
 229         * have it locked.  If it is already read in we just increment
 230         * the lock recursion count and return the buffer to the caller.
 231         * If the buffer is not yet read in, then we read it in, increment
 232         * the lock recursion count, and return it to the caller.
 233         */
 234        if (tp)
 235                bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
 236        if (bp) {
 237                ASSERT(xfs_buf_islocked(bp));
 238                ASSERT(bp->b_transp == tp);
 239                ASSERT(bp->b_log_item != NULL);
 240                ASSERT(!bp->b_error);
 241                ASSERT(bp->b_flags & XBF_DONE);
 242
 243                /*
 244                 * We never locked this buf ourselves, so we shouldn't
 245                 * brelse it either. Just get out.
 246                 */
 247                if (xfs_is_shutdown(mp)) {
 248                        trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
 249                        return -EIO;
 250                }
 251
 252                /*
 253                 * Check if the caller is trying to read a buffer that is
 254                 * already attached to the transaction yet has no buffer ops
 255                 * assigned.  Ops are usually attached when the buffer is
 256                 * attached to the transaction, or by the read caller if
 257                 * special circumstances.  That didn't happen, which is not
 258                 * how this is supposed to go.
 259                 *
 260                 * If the buffer passes verification we'll let this go, but if
 261                 * not we have to shut down.  Let the transaction cleanup code
 262                 * release this buffer when it kills the tranaction.
 263                 */
 264                ASSERT(bp->b_ops != NULL);
 265                error = xfs_buf_reverify(bp, ops);
 266                if (error) {
 267                        xfs_buf_ioerror_alert(bp, __return_address);
 268
 269                        if (tp->t_flags & XFS_TRANS_DIRTY)
 270                                xfs_force_shutdown(tp->t_mountp,
 271                                                SHUTDOWN_META_IO_ERROR);
 272
 273                        /* bad CRC means corrupted metadata */
 274                        if (error == -EFSBADCRC)
 275                                error = -EFSCORRUPTED;
 276                        return error;
 277                }
 278
 279                bip = bp->b_log_item;
 280                bip->bli_recur++;
 281
 282                ASSERT(atomic_read(&bip->bli_refcount) > 0);
 283                trace_xfs_trans_read_buf_recur(bip);
 284                ASSERT(bp->b_ops != NULL || ops == NULL);
 285                *bpp = bp;
 286                return 0;
 287        }
 288
 289        error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops,
 290                        __return_address);
 291        switch (error) {
 292        case 0:
 293                break;
 294        default:
 295                if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
 296                        xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
 297                fallthrough;
 298        case -ENOMEM:
 299        case -EAGAIN:
 300                return error;
 301        }
 302
 303        if (xfs_is_shutdown(mp)) {
 304                xfs_buf_relse(bp);
 305                trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
 306                return -EIO;
 307        }
 308
 309        if (tp) {
 310                _xfs_trans_bjoin(tp, bp, 1);
 311                trace_xfs_trans_read_buf(bp->b_log_item);
 312        }
 313        ASSERT(bp->b_ops != NULL || ops == NULL);
 314        *bpp = bp;
 315        return 0;
 316
 317}
 318
 319/* Has this buffer been dirtied by anyone? */
 320bool
 321xfs_trans_buf_is_dirty(
 322        struct xfs_buf          *bp)
 323{
 324        struct xfs_buf_log_item *bip = bp->b_log_item;
 325
 326        if (!bip)
 327                return false;
 328        ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
 329        return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
 330}
 331
 332/*
 333 * Release a buffer previously joined to the transaction. If the buffer is
 334 * modified within this transaction, decrement the recursion count but do not
 335 * release the buffer even if the count goes to 0. If the buffer is not modified
 336 * within the transaction, decrement the recursion count and release the buffer
 337 * if the recursion count goes to 0.
 338 *
 339 * If the buffer is to be released and it was not already dirty before this
 340 * transaction began, then also free the buf_log_item associated with it.
 341 *
 342 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
 343 */
 344void
 345xfs_trans_brelse(
 346        struct xfs_trans        *tp,
 347        struct xfs_buf          *bp)
 348{
 349        struct xfs_buf_log_item *bip = bp->b_log_item;
 350
 351        ASSERT(bp->b_transp == tp);
 352
 353        if (!tp) {
 354                xfs_buf_relse(bp);
 355                return;
 356        }
 357
 358        trace_xfs_trans_brelse(bip);
 359        ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
 360        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 361
 362        /*
 363         * If the release is for a recursive lookup, then decrement the count
 364         * and return.
 365         */
 366        if (bip->bli_recur > 0) {
 367                bip->bli_recur--;
 368                return;
 369        }
 370
 371        /*
 372         * If the buffer is invalidated or dirty in this transaction, we can't
 373         * release it until we commit.
 374         */
 375        if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
 376                return;
 377        if (bip->bli_flags & XFS_BLI_STALE)
 378                return;
 379
 380        /*
 381         * Unlink the log item from the transaction and clear the hold flag, if
 382         * set. We wouldn't want the next user of the buffer to get confused.
 383         */
 384        ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
 385        xfs_trans_del_item(&bip->bli_item);
 386        bip->bli_flags &= ~XFS_BLI_HOLD;
 387
 388        /* drop the reference to the bli */
 389        xfs_buf_item_put(bip);
 390
 391        bp->b_transp = NULL;
 392        xfs_buf_relse(bp);
 393}
 394
 395/*
 396 * Mark the buffer as not needing to be unlocked when the buf item's
 397 * iop_committing() routine is called.  The buffer must already be locked
 398 * and associated with the given transaction.
 399 */
 400/* ARGSUSED */
 401void
 402xfs_trans_bhold(
 403        xfs_trans_t             *tp,
 404        struct xfs_buf          *bp)
 405{
 406        struct xfs_buf_log_item *bip = bp->b_log_item;
 407
 408        ASSERT(bp->b_transp == tp);
 409        ASSERT(bip != NULL);
 410        ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 411        ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 412        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 413
 414        bip->bli_flags |= XFS_BLI_HOLD;
 415        trace_xfs_trans_bhold(bip);
 416}
 417
 418/*
 419 * Cancel the previous buffer hold request made on this buffer
 420 * for this transaction.
 421 */
 422void
 423xfs_trans_bhold_release(
 424        xfs_trans_t             *tp,
 425        struct xfs_buf          *bp)
 426{
 427        struct xfs_buf_log_item *bip = bp->b_log_item;
 428
 429        ASSERT(bp->b_transp == tp);
 430        ASSERT(bip != NULL);
 431        ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 432        ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 433        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 434        ASSERT(bip->bli_flags & XFS_BLI_HOLD);
 435
 436        bip->bli_flags &= ~XFS_BLI_HOLD;
 437        trace_xfs_trans_bhold_release(bip);
 438}
 439
 440/*
 441 * Mark a buffer dirty in the transaction.
 442 */
 443void
 444xfs_trans_dirty_buf(
 445        struct xfs_trans        *tp,
 446        struct xfs_buf          *bp)
 447{
 448        struct xfs_buf_log_item *bip = bp->b_log_item;
 449
 450        ASSERT(bp->b_transp == tp);
 451        ASSERT(bip != NULL);
 452
 453        /*
 454         * Mark the buffer as needing to be written out eventually,
 455         * and set its iodone function to remove the buffer's buf log
 456         * item from the AIL and free it when the buffer is flushed
 457         * to disk.
 458         */
 459        bp->b_flags |= XBF_DONE;
 460
 461        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 462
 463        /*
 464         * If we invalidated the buffer within this transaction, then
 465         * cancel the invalidation now that we're dirtying the buffer
 466         * again.  There are no races with the code in xfs_buf_item_unpin(),
 467         * because we have a reference to the buffer this entire time.
 468         */
 469        if (bip->bli_flags & XFS_BLI_STALE) {
 470                bip->bli_flags &= ~XFS_BLI_STALE;
 471                ASSERT(bp->b_flags & XBF_STALE);
 472                bp->b_flags &= ~XBF_STALE;
 473                bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
 474        }
 475        bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
 476
 477        tp->t_flags |= XFS_TRANS_DIRTY;
 478        set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
 479}
 480
 481/*
 482 * This is called to mark bytes first through last inclusive of the given
 483 * buffer as needing to be logged when the transaction is committed.
 484 * The buffer must already be associated with the given transaction.
 485 *
 486 * First and last are numbers relative to the beginning of this buffer,
 487 * so the first byte in the buffer is numbered 0 regardless of the
 488 * value of b_blkno.
 489 */
 490void
 491xfs_trans_log_buf(
 492        struct xfs_trans        *tp,
 493        struct xfs_buf          *bp,
 494        uint                    first,
 495        uint                    last)
 496{
 497        struct xfs_buf_log_item *bip = bp->b_log_item;
 498
 499        ASSERT(first <= last && last < BBTOB(bp->b_length));
 500        ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
 501
 502        xfs_trans_dirty_buf(tp, bp);
 503
 504        trace_xfs_trans_log_buf(bip);
 505        xfs_buf_item_log(bip, first, last);
 506}
 507
 508
 509/*
 510 * Invalidate a buffer that is being used within a transaction.
 511 *
 512 * Typically this is because the blocks in the buffer are being freed, so we
 513 * need to prevent it from being written out when we're done.  Allowing it
 514 * to be written again might overwrite data in the free blocks if they are
 515 * reallocated to a file.
 516 *
 517 * We prevent the buffer from being written out by marking it stale.  We can't
 518 * get rid of the buf log item at this point because the buffer may still be
 519 * pinned by another transaction.  If that is the case, then we'll wait until
 520 * the buffer is committed to disk for the last time (we can tell by the ref
 521 * count) and free it in xfs_buf_item_unpin().  Until that happens we will
 522 * keep the buffer locked so that the buffer and buf log item are not reused.
 523 *
 524 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
 525 * the buf item.  This will be used at recovery time to determine that copies
 526 * of the buffer in the log before this should not be replayed.
 527 *
 528 * We mark the item descriptor and the transaction dirty so that we'll hold
 529 * the buffer until after the commit.
 530 *
 531 * Since we're invalidating the buffer, we also clear the state about which
 532 * parts of the buffer have been logged.  We also clear the flag indicating
 533 * that this is an inode buffer since the data in the buffer will no longer
 534 * be valid.
 535 *
 536 * We set the stale bit in the buffer as well since we're getting rid of it.
 537 */
 538void
 539xfs_trans_binval(
 540        xfs_trans_t             *tp,
 541        struct xfs_buf          *bp)
 542{
 543        struct xfs_buf_log_item *bip = bp->b_log_item;
 544        int                     i;
 545
 546        ASSERT(bp->b_transp == tp);
 547        ASSERT(bip != NULL);
 548        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 549
 550        trace_xfs_trans_binval(bip);
 551
 552        if (bip->bli_flags & XFS_BLI_STALE) {
 553                /*
 554                 * If the buffer is already invalidated, then
 555                 * just return.
 556                 */
 557                ASSERT(bp->b_flags & XBF_STALE);
 558                ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
 559                ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
 560                ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
 561                ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 562                ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
 563                ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
 564                return;
 565        }
 566
 567        xfs_buf_stale(bp);
 568
 569        bip->bli_flags |= XFS_BLI_STALE;
 570        bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
 571        bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
 572        bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
 573        bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
 574        for (i = 0; i < bip->bli_format_count; i++) {
 575                memset(bip->bli_formats[i].blf_data_map, 0,
 576                       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
 577        }
 578        set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
 579        tp->t_flags |= XFS_TRANS_DIRTY;
 580}
 581
 582/*
 583 * This call is used to indicate that the buffer contains on-disk inodes which
 584 * must be handled specially during recovery.  They require special handling
 585 * because only the di_next_unlinked from the inodes in the buffer should be
 586 * recovered.  The rest of the data in the buffer is logged via the inodes
 587 * themselves.
 588 *
 589 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
 590 * transferred to the buffer's log format structure so that we'll know what to
 591 * do at recovery time.
 592 */
 593void
 594xfs_trans_inode_buf(
 595        xfs_trans_t             *tp,
 596        struct xfs_buf          *bp)
 597{
 598        struct xfs_buf_log_item *bip = bp->b_log_item;
 599
 600        ASSERT(bp->b_transp == tp);
 601        ASSERT(bip != NULL);
 602        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 603
 604        bip->bli_flags |= XFS_BLI_INODE_BUF;
 605        bp->b_flags |= _XBF_INODES;
 606        xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
 607}
 608
 609/*
 610 * This call is used to indicate that the buffer is going to
 611 * be staled and was an inode buffer. This means it gets
 612 * special processing during unpin - where any inodes
 613 * associated with the buffer should be removed from ail.
 614 * There is also special processing during recovery,
 615 * any replay of the inodes in the buffer needs to be
 616 * prevented as the buffer may have been reused.
 617 */
 618void
 619xfs_trans_stale_inode_buf(
 620        xfs_trans_t             *tp,
 621        struct xfs_buf          *bp)
 622{
 623        struct xfs_buf_log_item *bip = bp->b_log_item;
 624
 625        ASSERT(bp->b_transp == tp);
 626        ASSERT(bip != NULL);
 627        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 628
 629        bip->bli_flags |= XFS_BLI_STALE_INODE;
 630        bp->b_flags |= _XBF_INODES;
 631        xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
 632}
 633
 634/*
 635 * Mark the buffer as being one which contains newly allocated
 636 * inodes.  We need to make sure that even if this buffer is
 637 * relogged as an 'inode buf' we still recover all of the inode
 638 * images in the face of a crash.  This works in coordination with
 639 * xfs_buf_item_committed() to ensure that the buffer remains in the
 640 * AIL at its original location even after it has been relogged.
 641 */
 642/* ARGSUSED */
 643void
 644xfs_trans_inode_alloc_buf(
 645        xfs_trans_t             *tp,
 646        struct xfs_buf          *bp)
 647{
 648        struct xfs_buf_log_item *bip = bp->b_log_item;
 649
 650        ASSERT(bp->b_transp == tp);
 651        ASSERT(bip != NULL);
 652        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 653
 654        bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
 655        bp->b_flags |= _XBF_INODES;
 656        xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
 657}
 658
 659/*
 660 * Mark the buffer as ordered for this transaction. This means that the contents
 661 * of the buffer are not recorded in the transaction but it is tracked in the
 662 * AIL as though it was. This allows us to record logical changes in
 663 * transactions rather than the physical changes we make to the buffer without
 664 * changing writeback ordering constraints of metadata buffers.
 665 */
 666bool
 667xfs_trans_ordered_buf(
 668        struct xfs_trans        *tp,
 669        struct xfs_buf          *bp)
 670{
 671        struct xfs_buf_log_item *bip = bp->b_log_item;
 672
 673        ASSERT(bp->b_transp == tp);
 674        ASSERT(bip != NULL);
 675        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 676
 677        if (xfs_buf_item_dirty_format(bip))
 678                return false;
 679
 680        bip->bli_flags |= XFS_BLI_ORDERED;
 681        trace_xfs_buf_item_ordered(bip);
 682
 683        /*
 684         * We don't log a dirty range of an ordered buffer but it still needs
 685         * to be marked dirty and that it has been logged.
 686         */
 687        xfs_trans_dirty_buf(tp, bp);
 688        return true;
 689}
 690
 691/*
 692 * Set the type of the buffer for log recovery so that it can correctly identify
 693 * and hence attach the correct buffer ops to the buffer after replay.
 694 */
 695void
 696xfs_trans_buf_set_type(
 697        struct xfs_trans        *tp,
 698        struct xfs_buf          *bp,
 699        enum xfs_blft           type)
 700{
 701        struct xfs_buf_log_item *bip = bp->b_log_item;
 702
 703        if (!tp)
 704                return;
 705
 706        ASSERT(bp->b_transp == tp);
 707        ASSERT(bip != NULL);
 708        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 709
 710        xfs_blft_to_flags(&bip->__bli_format, type);
 711}
 712
 713void
 714xfs_trans_buf_copy_type(
 715        struct xfs_buf          *dst_bp,
 716        struct xfs_buf          *src_bp)
 717{
 718        struct xfs_buf_log_item *sbip = src_bp->b_log_item;
 719        struct xfs_buf_log_item *dbip = dst_bp->b_log_item;
 720        enum xfs_blft           type;
 721
 722        type = xfs_blft_from_flags(&sbip->__bli_format);
 723        xfs_blft_to_flags(&dbip->__bli_format, type);
 724}
 725
 726/*
 727 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
 728 * dquots. However, unlike in inode buffer recovery, dquot buffers get
 729 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
 730 * The only thing that makes dquot buffers different from regular
 731 * buffers is that we must not replay dquot bufs when recovering
 732 * if a _corresponding_ quotaoff has happened. We also have to distinguish
 733 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
 734 * can be turned off independently.
 735 */
 736/* ARGSUSED */
 737void
 738xfs_trans_dquot_buf(
 739        xfs_trans_t             *tp,
 740        struct xfs_buf          *bp,
 741        uint                    type)
 742{
 743        struct xfs_buf_log_item *bip = bp->b_log_item;
 744
 745        ASSERT(type == XFS_BLF_UDQUOT_BUF ||
 746               type == XFS_BLF_PDQUOT_BUF ||
 747               type == XFS_BLF_GDQUOT_BUF);
 748
 749        bip->__bli_format.blf_flags |= type;
 750
 751        switch (type) {
 752        case XFS_BLF_UDQUOT_BUF:
 753                type = XFS_BLFT_UDQUOT_BUF;
 754                break;
 755        case XFS_BLF_PDQUOT_BUF:
 756                type = XFS_BLFT_PDQUOT_BUF;
 757                break;
 758        case XFS_BLF_GDQUOT_BUF:
 759                type = XFS_BLFT_GDQUOT_BUF;
 760                break;
 761        default:
 762                type = XFS_BLFT_UNKNOWN_BUF;
 763                break;
 764        }
 765
 766        bp->b_flags |= _XBF_DQUOTS;
 767        xfs_trans_buf_set_type(tp, bp, type);
 768}
 769