linux/include/asm-generic/div64.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_GENERIC_DIV64_H
   3#define _ASM_GENERIC_DIV64_H
   4/*
   5 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
   6 * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
   7 *
   8 * Optimization for constant divisors on 32-bit machines:
   9 * Copyright (C) 2006-2015 Nicolas Pitre
  10 *
  11 * The semantics of do_div() is, in C++ notation, observing that the name
  12 * is a function-like macro and the n parameter has the semantics of a C++
  13 * reference:
  14 *
  15 * uint32_t do_div(uint64_t &n, uint32_t base)
  16 * {
  17 *      uint32_t remainder = n % base;
  18 *      n = n / base;
  19 *      return remainder;
  20 * }
  21 *
  22 * NOTE: macro parameter n is evaluated multiple times,
  23 *       beware of side effects!
  24 */
  25
  26#include <linux/types.h>
  27#include <linux/compiler.h>
  28
  29#if BITS_PER_LONG == 64
  30
  31/**
  32 * do_div - returns 2 values: calculate remainder and update new dividend
  33 * @n: uint64_t dividend (will be updated)
  34 * @base: uint32_t divisor
  35 *
  36 * Summary:
  37 * ``uint32_t remainder = n % base;``
  38 * ``n = n / base;``
  39 *
  40 * Return: (uint32_t)remainder
  41 *
  42 * NOTE: macro parameter @n is evaluated multiple times,
  43 * beware of side effects!
  44 */
  45# define do_div(n,base) ({                                      \
  46        uint32_t __base = (base);                               \
  47        uint32_t __rem;                                         \
  48        __rem = ((uint64_t)(n)) % __base;                       \
  49        (n) = ((uint64_t)(n)) / __base;                         \
  50        __rem;                                                  \
  51 })
  52
  53#elif BITS_PER_LONG == 32
  54
  55#include <linux/log2.h>
  56
  57/*
  58 * If the divisor happens to be constant, we determine the appropriate
  59 * inverse at compile time to turn the division into a few inline
  60 * multiplications which ought to be much faster.
  61 *
  62 * (It is unfortunate that gcc doesn't perform all this internally.)
  63 */
  64
  65#define __div64_const32(n, ___b)                                        \
  66({                                                                      \
  67        /*                                                              \
  68         * Multiplication by reciprocal of b: n / b = n * (p / b) / p   \
  69         *                                                              \
  70         * We rely on the fact that most of this code gets optimized    \
  71         * away at compile time due to constant propagation and only    \
  72         * a few multiplication instructions should remain.             \
  73         * Hence this monstrous macro (static inline doesn't always     \
  74         * do the trick here).                                          \
  75         */                                                             \
  76        uint64_t ___res, ___x, ___t, ___m, ___n = (n);                  \
  77        uint32_t ___p, ___bias;                                         \
  78                                                                        \
  79        /* determine MSB of b */                                        \
  80        ___p = 1 << ilog2(___b);                                        \
  81                                                                        \
  82        /* compute m = ((p << 64) + b - 1) / b */                       \
  83        ___m = (~0ULL / ___b) * ___p;                                   \
  84        ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;        \
  85                                                                        \
  86        /* one less than the dividend with highest result */            \
  87        ___x = ~0ULL / ___b * ___b - 1;                                 \
  88                                                                        \
  89        /* test our ___m with res = m * x / (p << 64) */                \
  90        ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;     \
  91        ___t = ___res += (___m & 0xffffffff) * (___x >> 32);            \
  92        ___res += (___x & 0xffffffff) * (___m >> 32);                   \
  93        ___t = (___res < ___t) ? (1ULL << 32) : 0;                      \
  94        ___res = (___res >> 32) + ___t;                                 \
  95        ___res += (___m >> 32) * (___x >> 32);                          \
  96        ___res /= ___p;                                                 \
  97                                                                        \
  98        /* Now sanitize and optimize what we've got. */                 \
  99        if (~0ULL % (___b / (___b & -___b)) == 0) {                     \
 100                /* special case, can be simplified to ... */            \
 101                ___n /= (___b & -___b);                                 \
 102                ___m = ~0ULL / (___b / (___b & -___b));                 \
 103                ___p = 1;                                               \
 104                ___bias = 1;                                            \
 105        } else if (___res != ___x / ___b) {                             \
 106                /*                                                      \
 107                 * We can't get away without a bias to compensate       \
 108                 * for bit truncation errors.  To avoid it we'd need an \
 109                 * additional bit to represent m which would overflow   \
 110                 * a 64-bit variable.                                   \
 111                 *                                                      \
 112                 * Instead we do m = p / b and n / b = (n * m + m) / p. \
 113                 */                                                     \
 114                ___bias = 1;                                            \
 115                /* Compute m = (p << 64) / b */                         \
 116                ___m = (~0ULL / ___b) * ___p;                           \
 117                ___m += ((~0ULL % ___b + 1) * ___p) / ___b;             \
 118        } else {                                                        \
 119                /*                                                      \
 120                 * Reduce m / p, and try to clear bit 31 of m when      \
 121                 * possible, otherwise that'll need extra overflow      \
 122                 * handling later.                                      \
 123                 */                                                     \
 124                uint32_t ___bits = -(___m & -___m);                     \
 125                ___bits |= ___m >> 32;                                  \
 126                ___bits = (~___bits) << 1;                              \
 127                /*                                                      \
 128                 * If ___bits == 0 then setting bit 31 is  unavoidable. \
 129                 * Simply apply the maximum possible reduction in that  \
 130                 * case. Otherwise the MSB of ___bits indicates the     \
 131                 * best reduction we should apply.                      \
 132                 */                                                     \
 133                if (!___bits) {                                         \
 134                        ___p /= (___m & -___m);                         \
 135                        ___m /= (___m & -___m);                         \
 136                } else {                                                \
 137                        ___p >>= ilog2(___bits);                        \
 138                        ___m >>= ilog2(___bits);                        \
 139                }                                                       \
 140                /* No bias needed. */                                   \
 141                ___bias = 0;                                            \
 142        }                                                               \
 143                                                                        \
 144        /*                                                              \
 145         * Now we have a combination of 2 conditions:                   \
 146         *                                                              \
 147         * 1) whether or not we need to apply a bias, and               \
 148         *                                                              \
 149         * 2) whether or not there might be an overflow in the cross    \
 150         *    product determined by (___m & ((1 << 63) | (1 << 31))).   \
 151         *                                                              \
 152         * Select the best way to do (m_bias + m * n) / (1 << 64).      \
 153         * From now on there will be actual runtime code generated.     \
 154         */                                                             \
 155        ___res = __arch_xprod_64(___m, ___n, ___bias);                  \
 156                                                                        \
 157        ___res /= ___p;                                                 \
 158})
 159
 160#ifndef __arch_xprod_64
 161/*
 162 * Default C implementation for __arch_xprod_64()
 163 *
 164 * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
 165 * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64
 166 *
 167 * The product is a 128-bit value, scaled down to 64 bits.
 168 * Assuming constant propagation to optimize away unused conditional code.
 169 * Architectures may provide their own optimized assembly implementation.
 170 */
 171static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
 172{
 173        uint32_t m_lo = m;
 174        uint32_t m_hi = m >> 32;
 175        uint32_t n_lo = n;
 176        uint32_t n_hi = n >> 32;
 177        uint64_t res;
 178        uint32_t res_lo, res_hi, tmp;
 179
 180        if (!bias) {
 181                res = ((uint64_t)m_lo * n_lo) >> 32;
 182        } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
 183                /* there can't be any overflow here */
 184                res = (m + (uint64_t)m_lo * n_lo) >> 32;
 185        } else {
 186                res = m + (uint64_t)m_lo * n_lo;
 187                res_lo = res >> 32;
 188                res_hi = (res_lo < m_hi);
 189                res = res_lo | ((uint64_t)res_hi << 32);
 190        }
 191
 192        if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
 193                /* there can't be any overflow here */
 194                res += (uint64_t)m_lo * n_hi;
 195                res += (uint64_t)m_hi * n_lo;
 196                res >>= 32;
 197        } else {
 198                res += (uint64_t)m_lo * n_hi;
 199                tmp = res >> 32;
 200                res += (uint64_t)m_hi * n_lo;
 201                res_lo = res >> 32;
 202                res_hi = (res_lo < tmp);
 203                res = res_lo | ((uint64_t)res_hi << 32);
 204        }
 205
 206        res += (uint64_t)m_hi * n_hi;
 207
 208        return res;
 209}
 210#endif
 211
 212#ifndef __div64_32
 213extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
 214#endif
 215
 216/* The unnecessary pointer compare is there
 217 * to check for type safety (n must be 64bit)
 218 */
 219# define do_div(n,base) ({                              \
 220        uint32_t __base = (base);                       \
 221        uint32_t __rem;                                 \
 222        (void)(((typeof((n)) *)0) == ((uint64_t *)0));  \
 223        if (__builtin_constant_p(__base) &&             \
 224            is_power_of_2(__base)) {                    \
 225                __rem = (n) & (__base - 1);             \
 226                (n) >>= ilog2(__base);                  \
 227        } else if (__builtin_constant_p(__base) &&      \
 228                   __base != 0) {                       \
 229                uint32_t __res_lo, __n_lo = (n);        \
 230                (n) = __div64_const32(n, __base);       \
 231                /* the remainder can be computed with 32-bit regs */ \
 232                __res_lo = (n);                         \
 233                __rem = __n_lo - __res_lo * __base;     \
 234        } else if (likely(((n) >> 32) == 0)) {          \
 235                __rem = (uint32_t)(n) % __base;         \
 236                (n) = (uint32_t)(n) / __base;           \
 237        } else {                                        \
 238                __rem = __div64_32(&(n), __base);       \
 239        }                                               \
 240        __rem;                                          \
 241 })
 242
 243#else /* BITS_PER_LONG == ?? */
 244
 245# error do_div() does not yet support the C64
 246
 247#endif /* BITS_PER_LONG */
 248
 249#endif /* _ASM_GENERIC_DIV64_H */
 250