linux/include/linux/bpf_verifier.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 */
   4#ifndef _LINUX_BPF_VERIFIER_H
   5#define _LINUX_BPF_VERIFIER_H 1
   6
   7#include <linux/bpf.h> /* for enum bpf_reg_type */
   8#include <linux/btf.h> /* for struct btf and btf_id() */
   9#include <linux/filter.h> /* for MAX_BPF_STACK */
  10#include <linux/tnum.h>
  11
  12/* Maximum variable offset umax_value permitted when resolving memory accesses.
  13 * In practice this is far bigger than any realistic pointer offset; this limit
  14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
  15 */
  16#define BPF_MAX_VAR_OFF (1 << 29)
  17/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
  18 * that converting umax_value to int cannot overflow.
  19 */
  20#define BPF_MAX_VAR_SIZ (1 << 29)
  21
  22/* Liveness marks, used for registers and spilled-regs (in stack slots).
  23 * Read marks propagate upwards until they find a write mark; they record that
  24 * "one of this state's descendants read this reg" (and therefore the reg is
  25 * relevant for states_equal() checks).
  26 * Write marks collect downwards and do not propagate; they record that "the
  27 * straight-line code that reached this state (from its parent) wrote this reg"
  28 * (and therefore that reads propagated from this state or its descendants
  29 * should not propagate to its parent).
  30 * A state with a write mark can receive read marks; it just won't propagate
  31 * them to its parent, since the write mark is a property, not of the state,
  32 * but of the link between it and its parent.  See mark_reg_read() and
  33 * mark_stack_slot_read() in kernel/bpf/verifier.c.
  34 */
  35enum bpf_reg_liveness {
  36        REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
  37        REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
  38        REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
  39        REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
  40        REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
  41        REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
  42};
  43
  44struct bpf_reg_state {
  45        /* Ordering of fields matters.  See states_equal() */
  46        enum bpf_reg_type type;
  47        /* Fixed part of pointer offset, pointer types only */
  48        s32 off;
  49        union {
  50                /* valid when type == PTR_TO_PACKET */
  51                int range;
  52
  53                /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
  54                 *   PTR_TO_MAP_VALUE_OR_NULL
  55                 */
  56                struct {
  57                        struct bpf_map *map_ptr;
  58                        /* To distinguish map lookups from outer map
  59                         * the map_uid is non-zero for registers
  60                         * pointing to inner maps.
  61                         */
  62                        u32 map_uid;
  63                };
  64
  65                /* for PTR_TO_BTF_ID */
  66                struct {
  67                        struct btf *btf;
  68                        u32 btf_id;
  69                };
  70
  71                u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
  72
  73                /* Max size from any of the above. */
  74                struct {
  75                        unsigned long raw1;
  76                        unsigned long raw2;
  77                } raw;
  78
  79                u32 subprogno; /* for PTR_TO_FUNC */
  80        };
  81        /* For PTR_TO_PACKET, used to find other pointers with the same variable
  82         * offset, so they can share range knowledge.
  83         * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
  84         * came from, when one is tested for != NULL.
  85         * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
  86         * for the purpose of tracking that it's freed.
  87         * For PTR_TO_SOCKET this is used to share which pointers retain the
  88         * same reference to the socket, to determine proper reference freeing.
  89         */
  90        u32 id;
  91        /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
  92         * from a pointer-cast helper, bpf_sk_fullsock() and
  93         * bpf_tcp_sock().
  94         *
  95         * Consider the following where "sk" is a reference counted
  96         * pointer returned from "sk = bpf_sk_lookup_tcp();":
  97         *
  98         * 1: sk = bpf_sk_lookup_tcp();
  99         * 2: if (!sk) { return 0; }
 100         * 3: fullsock = bpf_sk_fullsock(sk);
 101         * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
 102         * 5: tp = bpf_tcp_sock(fullsock);
 103         * 6: if (!tp) { bpf_sk_release(sk); return 0; }
 104         * 7: bpf_sk_release(sk);
 105         * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
 106         *
 107         * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
 108         * "tp" ptr should be invalidated also.  In order to do that,
 109         * the reg holding "fullsock" and "sk" need to remember
 110         * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
 111         * such that the verifier can reset all regs which have
 112         * ref_obj_id matching the sk_reg->id.
 113         *
 114         * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
 115         * sk_reg->id will stay as NULL-marking purpose only.
 116         * After NULL-marking is done, sk_reg->id can be reset to 0.
 117         *
 118         * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
 119         * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
 120         *
 121         * After "tp = bpf_tcp_sock(fullsock);" at line 5,
 122         * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
 123         * which is the same as sk_reg->ref_obj_id.
 124         *
 125         * From the verifier perspective, if sk, fullsock and tp
 126         * are not NULL, they are the same ptr with different
 127         * reg->type.  In particular, bpf_sk_release(tp) is also
 128         * allowed and has the same effect as bpf_sk_release(sk).
 129         */
 130        u32 ref_obj_id;
 131        /* For scalar types (SCALAR_VALUE), this represents our knowledge of
 132         * the actual value.
 133         * For pointer types, this represents the variable part of the offset
 134         * from the pointed-to object, and is shared with all bpf_reg_states
 135         * with the same id as us.
 136         */
 137        struct tnum var_off;
 138        /* Used to determine if any memory access using this register will
 139         * result in a bad access.
 140         * These refer to the same value as var_off, not necessarily the actual
 141         * contents of the register.
 142         */
 143        s64 smin_value; /* minimum possible (s64)value */
 144        s64 smax_value; /* maximum possible (s64)value */
 145        u64 umin_value; /* minimum possible (u64)value */
 146        u64 umax_value; /* maximum possible (u64)value */
 147        s32 s32_min_value; /* minimum possible (s32)value */
 148        s32 s32_max_value; /* maximum possible (s32)value */
 149        u32 u32_min_value; /* minimum possible (u32)value */
 150        u32 u32_max_value; /* maximum possible (u32)value */
 151        /* parentage chain for liveness checking */
 152        struct bpf_reg_state *parent;
 153        /* Inside the callee two registers can be both PTR_TO_STACK like
 154         * R1=fp-8 and R2=fp-8, but one of them points to this function stack
 155         * while another to the caller's stack. To differentiate them 'frameno'
 156         * is used which is an index in bpf_verifier_state->frame[] array
 157         * pointing to bpf_func_state.
 158         */
 159        u32 frameno;
 160        /* Tracks subreg definition. The stored value is the insn_idx of the
 161         * writing insn. This is safe because subreg_def is used before any insn
 162         * patching which only happens after main verification finished.
 163         */
 164        s32 subreg_def;
 165        enum bpf_reg_liveness live;
 166        /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
 167        bool precise;
 168};
 169
 170enum bpf_stack_slot_type {
 171        STACK_INVALID,    /* nothing was stored in this stack slot */
 172        STACK_SPILL,      /* register spilled into stack */
 173        STACK_MISC,       /* BPF program wrote some data into this slot */
 174        STACK_ZERO,       /* BPF program wrote constant zero */
 175};
 176
 177#define BPF_REG_SIZE 8  /* size of eBPF register in bytes */
 178
 179struct bpf_stack_state {
 180        struct bpf_reg_state spilled_ptr;
 181        u8 slot_type[BPF_REG_SIZE];
 182};
 183
 184struct bpf_reference_state {
 185        /* Track each reference created with a unique id, even if the same
 186         * instruction creates the reference multiple times (eg, via CALL).
 187         */
 188        int id;
 189        /* Instruction where the allocation of this reference occurred. This
 190         * is used purely to inform the user of a reference leak.
 191         */
 192        int insn_idx;
 193};
 194
 195/* state of the program:
 196 * type of all registers and stack info
 197 */
 198struct bpf_func_state {
 199        struct bpf_reg_state regs[MAX_BPF_REG];
 200        /* index of call instruction that called into this func */
 201        int callsite;
 202        /* stack frame number of this function state from pov of
 203         * enclosing bpf_verifier_state.
 204         * 0 = main function, 1 = first callee.
 205         */
 206        u32 frameno;
 207        /* subprog number == index within subprog_info
 208         * zero == main subprog
 209         */
 210        u32 subprogno;
 211        /* Every bpf_timer_start will increment async_entry_cnt.
 212         * It's used to distinguish:
 213         * void foo(void) { for(;;); }
 214         * void foo(void) { bpf_timer_set_callback(,foo); }
 215         */
 216        u32 async_entry_cnt;
 217        bool in_callback_fn;
 218        bool in_async_callback_fn;
 219
 220        /* The following fields should be last. See copy_func_state() */
 221        int acquired_refs;
 222        struct bpf_reference_state *refs;
 223        int allocated_stack;
 224        struct bpf_stack_state *stack;
 225};
 226
 227struct bpf_idx_pair {
 228        u32 prev_idx;
 229        u32 idx;
 230};
 231
 232struct bpf_id_pair {
 233        u32 old;
 234        u32 cur;
 235};
 236
 237/* Maximum number of register states that can exist at once */
 238#define BPF_ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
 239#define MAX_CALL_FRAMES 8
 240struct bpf_verifier_state {
 241        /* call stack tracking */
 242        struct bpf_func_state *frame[MAX_CALL_FRAMES];
 243        struct bpf_verifier_state *parent;
 244        /*
 245         * 'branches' field is the number of branches left to explore:
 246         * 0 - all possible paths from this state reached bpf_exit or
 247         * were safely pruned
 248         * 1 - at least one path is being explored.
 249         * This state hasn't reached bpf_exit
 250         * 2 - at least two paths are being explored.
 251         * This state is an immediate parent of two children.
 252         * One is fallthrough branch with branches==1 and another
 253         * state is pushed into stack (to be explored later) also with
 254         * branches==1. The parent of this state has branches==1.
 255         * The verifier state tree connected via 'parent' pointer looks like:
 256         * 1
 257         * 1
 258         * 2 -> 1 (first 'if' pushed into stack)
 259         * 1
 260         * 2 -> 1 (second 'if' pushed into stack)
 261         * 1
 262         * 1
 263         * 1 bpf_exit.
 264         *
 265         * Once do_check() reaches bpf_exit, it calls update_branch_counts()
 266         * and the verifier state tree will look:
 267         * 1
 268         * 1
 269         * 2 -> 1 (first 'if' pushed into stack)
 270         * 1
 271         * 1 -> 1 (second 'if' pushed into stack)
 272         * 0
 273         * 0
 274         * 0 bpf_exit.
 275         * After pop_stack() the do_check() will resume at second 'if'.
 276         *
 277         * If is_state_visited() sees a state with branches > 0 it means
 278         * there is a loop. If such state is exactly equal to the current state
 279         * it's an infinite loop. Note states_equal() checks for states
 280         * equvalency, so two states being 'states_equal' does not mean
 281         * infinite loop. The exact comparison is provided by
 282         * states_maybe_looping() function. It's a stronger pre-check and
 283         * much faster than states_equal().
 284         *
 285         * This algorithm may not find all possible infinite loops or
 286         * loop iteration count may be too high.
 287         * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
 288         */
 289        u32 branches;
 290        u32 insn_idx;
 291        u32 curframe;
 292        u32 active_spin_lock;
 293        bool speculative;
 294
 295        /* first and last insn idx of this verifier state */
 296        u32 first_insn_idx;
 297        u32 last_insn_idx;
 298        /* jmp history recorded from first to last.
 299         * backtracking is using it to go from last to first.
 300         * For most states jmp_history_cnt is [0-3].
 301         * For loops can go up to ~40.
 302         */
 303        struct bpf_idx_pair *jmp_history;
 304        u32 jmp_history_cnt;
 305};
 306
 307#define bpf_get_spilled_reg(slot, frame)                                \
 308        (((slot < frame->allocated_stack / BPF_REG_SIZE) &&             \
 309          (frame->stack[slot].slot_type[0] == STACK_SPILL))             \
 310         ? &frame->stack[slot].spilled_ptr : NULL)
 311
 312/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
 313#define bpf_for_each_spilled_reg(iter, frame, reg)                      \
 314        for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);          \
 315             iter < frame->allocated_stack / BPF_REG_SIZE;              \
 316             iter++, reg = bpf_get_spilled_reg(iter, frame))
 317
 318/* linked list of verifier states used to prune search */
 319struct bpf_verifier_state_list {
 320        struct bpf_verifier_state state;
 321        struct bpf_verifier_state_list *next;
 322        int miss_cnt, hit_cnt;
 323};
 324
 325/* Possible states for alu_state member. */
 326#define BPF_ALU_SANITIZE_SRC            (1U << 0)
 327#define BPF_ALU_SANITIZE_DST            (1U << 1)
 328#define BPF_ALU_NEG_VALUE               (1U << 2)
 329#define BPF_ALU_NON_POINTER             (1U << 3)
 330#define BPF_ALU_IMMEDIATE               (1U << 4)
 331#define BPF_ALU_SANITIZE                (BPF_ALU_SANITIZE_SRC | \
 332                                         BPF_ALU_SANITIZE_DST)
 333
 334struct bpf_insn_aux_data {
 335        union {
 336                enum bpf_reg_type ptr_type;     /* pointer type for load/store insns */
 337                unsigned long map_ptr_state;    /* pointer/poison value for maps */
 338                s32 call_imm;                   /* saved imm field of call insn */
 339                u32 alu_limit;                  /* limit for add/sub register with pointer */
 340                struct {
 341                        u32 map_index;          /* index into used_maps[] */
 342                        u32 map_off;            /* offset from value base address */
 343                };
 344                struct {
 345                        enum bpf_reg_type reg_type;     /* type of pseudo_btf_id */
 346                        union {
 347                                struct {
 348                                        struct btf *btf;
 349                                        u32 btf_id;     /* btf_id for struct typed var */
 350                                };
 351                                u32 mem_size;   /* mem_size for non-struct typed var */
 352                        };
 353                } btf_var;
 354        };
 355        u64 map_key_state; /* constant (32 bit) key tracking for maps */
 356        int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
 357        u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
 358        bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
 359        bool zext_dst; /* this insn zero extends dst reg */
 360        u8 alu_state; /* used in combination with alu_limit */
 361
 362        /* below fields are initialized once */
 363        unsigned int orig_idx; /* original instruction index */
 364        bool prune_point;
 365};
 366
 367#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
 368#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
 369
 370#define BPF_VERIFIER_TMP_LOG_SIZE       1024
 371
 372struct bpf_verifier_log {
 373        u32 level;
 374        char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
 375        char __user *ubuf;
 376        u32 len_used;
 377        u32 len_total;
 378};
 379
 380static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
 381{
 382        return log->len_used >= log->len_total - 1;
 383}
 384
 385#define BPF_LOG_LEVEL1  1
 386#define BPF_LOG_LEVEL2  2
 387#define BPF_LOG_STATS   4
 388#define BPF_LOG_LEVEL   (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
 389#define BPF_LOG_MASK    (BPF_LOG_LEVEL | BPF_LOG_STATS)
 390#define BPF_LOG_KERNEL  (BPF_LOG_MASK + 1) /* kernel internal flag */
 391
 392static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
 393{
 394        return log &&
 395                ((log->level && log->ubuf && !bpf_verifier_log_full(log)) ||
 396                 log->level == BPF_LOG_KERNEL);
 397}
 398
 399#define BPF_MAX_SUBPROGS 256
 400
 401struct bpf_subprog_info {
 402        /* 'start' has to be the first field otherwise find_subprog() won't work */
 403        u32 start; /* insn idx of function entry point */
 404        u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
 405        u16 stack_depth; /* max. stack depth used by this function */
 406        bool has_tail_call;
 407        bool tail_call_reachable;
 408        bool has_ld_abs;
 409        bool is_async_cb;
 410};
 411
 412/* single container for all structs
 413 * one verifier_env per bpf_check() call
 414 */
 415struct bpf_verifier_env {
 416        u32 insn_idx;
 417        u32 prev_insn_idx;
 418        struct bpf_prog *prog;          /* eBPF program being verified */
 419        const struct bpf_verifier_ops *ops;
 420        struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
 421        int stack_size;                 /* number of states to be processed */
 422        bool strict_alignment;          /* perform strict pointer alignment checks */
 423        bool test_state_freq;           /* test verifier with different pruning frequency */
 424        struct bpf_verifier_state *cur_state; /* current verifier state */
 425        struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
 426        struct bpf_verifier_state_list *free_list;
 427        struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
 428        struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
 429        u32 used_map_cnt;               /* number of used maps */
 430        u32 used_btf_cnt;               /* number of used BTF objects */
 431        u32 id_gen;                     /* used to generate unique reg IDs */
 432        bool explore_alu_limits;
 433        bool allow_ptr_leaks;
 434        bool allow_uninit_stack;
 435        bool allow_ptr_to_map_access;
 436        bool bpf_capable;
 437        bool bypass_spec_v1;
 438        bool bypass_spec_v4;
 439        bool seen_direct_write;
 440        struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
 441        const struct bpf_line_info *prev_linfo;
 442        struct bpf_verifier_log log;
 443        struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
 444        struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE];
 445        struct {
 446                int *insn_state;
 447                int *insn_stack;
 448                int cur_stack;
 449        } cfg;
 450        u32 pass_cnt; /* number of times do_check() was called */
 451        u32 subprog_cnt;
 452        /* number of instructions analyzed by the verifier */
 453        u32 prev_insn_processed, insn_processed;
 454        /* number of jmps, calls, exits analyzed so far */
 455        u32 prev_jmps_processed, jmps_processed;
 456        /* total verification time */
 457        u64 verification_time;
 458        /* maximum number of verifier states kept in 'branching' instructions */
 459        u32 max_states_per_insn;
 460        /* total number of allocated verifier states */
 461        u32 total_states;
 462        /* some states are freed during program analysis.
 463         * this is peak number of states. this number dominates kernel
 464         * memory consumption during verification
 465         */
 466        u32 peak_states;
 467        /* longest register parentage chain walked for liveness marking */
 468        u32 longest_mark_read_walk;
 469        bpfptr_t fd_array;
 470};
 471
 472__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
 473                                      const char *fmt, va_list args);
 474__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
 475                                           const char *fmt, ...);
 476__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
 477                            const char *fmt, ...);
 478
 479static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
 480{
 481        struct bpf_verifier_state *cur = env->cur_state;
 482
 483        return cur->frame[cur->curframe];
 484}
 485
 486static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
 487{
 488        return cur_func(env)->regs;
 489}
 490
 491int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
 492int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
 493                                 int insn_idx, int prev_insn_idx);
 494int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
 495void
 496bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
 497                              struct bpf_insn *insn);
 498void
 499bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
 500
 501int check_ctx_reg(struct bpf_verifier_env *env,
 502                  const struct bpf_reg_state *reg, int regno);
 503int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
 504                   u32 regno, u32 mem_size);
 505
 506/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
 507static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
 508                                             struct btf *btf, u32 btf_id)
 509{
 510        if (tgt_prog)
 511                return ((u64)tgt_prog->aux->id << 32) | btf_id;
 512        else
 513                return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
 514}
 515
 516/* unpack the IDs from the key as constructed above */
 517static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
 518{
 519        if (obj_id)
 520                *obj_id = key >> 32;
 521        if (btf_id)
 522                *btf_id = key & 0x7FFFFFFF;
 523}
 524
 525int bpf_check_attach_target(struct bpf_verifier_log *log,
 526                            const struct bpf_prog *prog,
 527                            const struct bpf_prog *tgt_prog,
 528                            u32 btf_id,
 529                            struct bpf_attach_target_info *tgt_info);
 530
 531#endif /* _LINUX_BPF_VERIFIER_H */
 532