linux/include/linux/filter.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Linux Socket Filter Data Structures
   4 */
   5#ifndef __LINUX_FILTER_H__
   6#define __LINUX_FILTER_H__
   7
   8#include <linux/atomic.h>
   9#include <linux/refcount.h>
  10#include <linux/compat.h>
  11#include <linux/skbuff.h>
  12#include <linux/linkage.h>
  13#include <linux/printk.h>
  14#include <linux/workqueue.h>
  15#include <linux/sched.h>
  16#include <linux/capability.h>
  17#include <linux/set_memory.h>
  18#include <linux/kallsyms.h>
  19#include <linux/if_vlan.h>
  20#include <linux/vmalloc.h>
  21#include <linux/sockptr.h>
  22#include <crypto/sha1.h>
  23#include <linux/u64_stats_sync.h>
  24
  25#include <net/sch_generic.h>
  26
  27#include <asm/byteorder.h>
  28#include <uapi/linux/filter.h>
  29#include <uapi/linux/bpf.h>
  30
  31struct sk_buff;
  32struct sock;
  33struct seccomp_data;
  34struct bpf_prog_aux;
  35struct xdp_rxq_info;
  36struct xdp_buff;
  37struct sock_reuseport;
  38struct ctl_table;
  39struct ctl_table_header;
  40
  41/* ArgX, context and stack frame pointer register positions. Note,
  42 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
  43 * calls in BPF_CALL instruction.
  44 */
  45#define BPF_REG_ARG1    BPF_REG_1
  46#define BPF_REG_ARG2    BPF_REG_2
  47#define BPF_REG_ARG3    BPF_REG_3
  48#define BPF_REG_ARG4    BPF_REG_4
  49#define BPF_REG_ARG5    BPF_REG_5
  50#define BPF_REG_CTX     BPF_REG_6
  51#define BPF_REG_FP      BPF_REG_10
  52
  53/* Additional register mappings for converted user programs. */
  54#define BPF_REG_A       BPF_REG_0
  55#define BPF_REG_X       BPF_REG_7
  56#define BPF_REG_TMP     BPF_REG_2       /* scratch reg */
  57#define BPF_REG_D       BPF_REG_8       /* data, callee-saved */
  58#define BPF_REG_H       BPF_REG_9       /* hlen, callee-saved */
  59
  60/* Kernel hidden auxiliary/helper register. */
  61#define BPF_REG_AX              MAX_BPF_REG
  62#define MAX_BPF_EXT_REG         (MAX_BPF_REG + 1)
  63#define MAX_BPF_JIT_REG         MAX_BPF_EXT_REG
  64
  65/* unused opcode to mark special call to bpf_tail_call() helper */
  66#define BPF_TAIL_CALL   0xf0
  67
  68/* unused opcode to mark special load instruction. Same as BPF_ABS */
  69#define BPF_PROBE_MEM   0x20
  70
  71/* unused opcode to mark call to interpreter with arguments */
  72#define BPF_CALL_ARGS   0xe0
  73
  74/* unused opcode to mark speculation barrier for mitigating
  75 * Speculative Store Bypass
  76 */
  77#define BPF_NOSPEC      0xc0
  78
  79/* As per nm, we expose JITed images as text (code) section for
  80 * kallsyms. That way, tools like perf can find it to match
  81 * addresses.
  82 */
  83#define BPF_SYM_ELF_TYPE        't'
  84
  85/* BPF program can access up to 512 bytes of stack space. */
  86#define MAX_BPF_STACK   512
  87
  88/* Helper macros for filter block array initializers. */
  89
  90/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
  91
  92#define BPF_ALU64_REG(OP, DST, SRC)                             \
  93        ((struct bpf_insn) {                                    \
  94                .code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,        \
  95                .dst_reg = DST,                                 \
  96                .src_reg = SRC,                                 \
  97                .off   = 0,                                     \
  98                .imm   = 0 })
  99
 100#define BPF_ALU32_REG(OP, DST, SRC)                             \
 101        ((struct bpf_insn) {                                    \
 102                .code  = BPF_ALU | BPF_OP(OP) | BPF_X,          \
 103                .dst_reg = DST,                                 \
 104                .src_reg = SRC,                                 \
 105                .off   = 0,                                     \
 106                .imm   = 0 })
 107
 108/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
 109
 110#define BPF_ALU64_IMM(OP, DST, IMM)                             \
 111        ((struct bpf_insn) {                                    \
 112                .code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,        \
 113                .dst_reg = DST,                                 \
 114                .src_reg = 0,                                   \
 115                .off   = 0,                                     \
 116                .imm   = IMM })
 117
 118#define BPF_ALU32_IMM(OP, DST, IMM)                             \
 119        ((struct bpf_insn) {                                    \
 120                .code  = BPF_ALU | BPF_OP(OP) | BPF_K,          \
 121                .dst_reg = DST,                                 \
 122                .src_reg = 0,                                   \
 123                .off   = 0,                                     \
 124                .imm   = IMM })
 125
 126/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
 127
 128#define BPF_ENDIAN(TYPE, DST, LEN)                              \
 129        ((struct bpf_insn) {                                    \
 130                .code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),     \
 131                .dst_reg = DST,                                 \
 132                .src_reg = 0,                                   \
 133                .off   = 0,                                     \
 134                .imm   = LEN })
 135
 136/* Short form of mov, dst_reg = src_reg */
 137
 138#define BPF_MOV64_REG(DST, SRC)                                 \
 139        ((struct bpf_insn) {                                    \
 140                .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
 141                .dst_reg = DST,                                 \
 142                .src_reg = SRC,                                 \
 143                .off   = 0,                                     \
 144                .imm   = 0 })
 145
 146#define BPF_MOV32_REG(DST, SRC)                                 \
 147        ((struct bpf_insn) {                                    \
 148                .code  = BPF_ALU | BPF_MOV | BPF_X,             \
 149                .dst_reg = DST,                                 \
 150                .src_reg = SRC,                                 \
 151                .off   = 0,                                     \
 152                .imm   = 0 })
 153
 154/* Short form of mov, dst_reg = imm32 */
 155
 156#define BPF_MOV64_IMM(DST, IMM)                                 \
 157        ((struct bpf_insn) {                                    \
 158                .code  = BPF_ALU64 | BPF_MOV | BPF_K,           \
 159                .dst_reg = DST,                                 \
 160                .src_reg = 0,                                   \
 161                .off   = 0,                                     \
 162                .imm   = IMM })
 163
 164#define BPF_MOV32_IMM(DST, IMM)                                 \
 165        ((struct bpf_insn) {                                    \
 166                .code  = BPF_ALU | BPF_MOV | BPF_K,             \
 167                .dst_reg = DST,                                 \
 168                .src_reg = 0,                                   \
 169                .off   = 0,                                     \
 170                .imm   = IMM })
 171
 172/* Special form of mov32, used for doing explicit zero extension on dst. */
 173#define BPF_ZEXT_REG(DST)                                       \
 174        ((struct bpf_insn) {                                    \
 175                .code  = BPF_ALU | BPF_MOV | BPF_X,             \
 176                .dst_reg = DST,                                 \
 177                .src_reg = DST,                                 \
 178                .off   = 0,                                     \
 179                .imm   = 1 })
 180
 181static inline bool insn_is_zext(const struct bpf_insn *insn)
 182{
 183        return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
 184}
 185
 186/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
 187#define BPF_LD_IMM64(DST, IMM)                                  \
 188        BPF_LD_IMM64_RAW(DST, 0, IMM)
 189
 190#define BPF_LD_IMM64_RAW(DST, SRC, IMM)                         \
 191        ((struct bpf_insn) {                                    \
 192                .code  = BPF_LD | BPF_DW | BPF_IMM,             \
 193                .dst_reg = DST,                                 \
 194                .src_reg = SRC,                                 \
 195                .off   = 0,                                     \
 196                .imm   = (__u32) (IMM) }),                      \
 197        ((struct bpf_insn) {                                    \
 198                .code  = 0, /* zero is reserved opcode */       \
 199                .dst_reg = 0,                                   \
 200                .src_reg = 0,                                   \
 201                .off   = 0,                                     \
 202                .imm   = ((__u64) (IMM)) >> 32 })
 203
 204/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
 205#define BPF_LD_MAP_FD(DST, MAP_FD)                              \
 206        BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
 207
 208/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
 209
 210#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)                      \
 211        ((struct bpf_insn) {                                    \
 212                .code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),   \
 213                .dst_reg = DST,                                 \
 214                .src_reg = SRC,                                 \
 215                .off   = 0,                                     \
 216                .imm   = IMM })
 217
 218#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)                      \
 219        ((struct bpf_insn) {                                    \
 220                .code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),     \
 221                .dst_reg = DST,                                 \
 222                .src_reg = SRC,                                 \
 223                .off   = 0,                                     \
 224                .imm   = IMM })
 225
 226/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
 227
 228#define BPF_LD_ABS(SIZE, IMM)                                   \
 229        ((struct bpf_insn) {                                    \
 230                .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,     \
 231                .dst_reg = 0,                                   \
 232                .src_reg = 0,                                   \
 233                .off   = 0,                                     \
 234                .imm   = IMM })
 235
 236/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
 237
 238#define BPF_LD_IND(SIZE, SRC, IMM)                              \
 239        ((struct bpf_insn) {                                    \
 240                .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,     \
 241                .dst_reg = 0,                                   \
 242                .src_reg = SRC,                                 \
 243                .off   = 0,                                     \
 244                .imm   = IMM })
 245
 246/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
 247
 248#define BPF_LDX_MEM(SIZE, DST, SRC, OFF)                        \
 249        ((struct bpf_insn) {                                    \
 250                .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,    \
 251                .dst_reg = DST,                                 \
 252                .src_reg = SRC,                                 \
 253                .off   = OFF,                                   \
 254                .imm   = 0 })
 255
 256/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
 257
 258#define BPF_STX_MEM(SIZE, DST, SRC, OFF)                        \
 259        ((struct bpf_insn) {                                    \
 260                .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,    \
 261                .dst_reg = DST,                                 \
 262                .src_reg = SRC,                                 \
 263                .off   = OFF,                                   \
 264                .imm   = 0 })
 265
 266
 267/*
 268 * Atomic operations:
 269 *
 270 *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
 271 *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
 272 *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
 273 *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
 274 *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
 275 *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
 276 *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
 277 *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
 278 *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
 279 *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
 280 */
 281
 282#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)                  \
 283        ((struct bpf_insn) {                                    \
 284                .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
 285                .dst_reg = DST,                                 \
 286                .src_reg = SRC,                                 \
 287                .off   = OFF,                                   \
 288                .imm   = OP })
 289
 290/* Legacy alias */
 291#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
 292
 293/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
 294
 295#define BPF_ST_MEM(SIZE, DST, OFF, IMM)                         \
 296        ((struct bpf_insn) {                                    \
 297                .code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,     \
 298                .dst_reg = DST,                                 \
 299                .src_reg = 0,                                   \
 300                .off   = OFF,                                   \
 301                .imm   = IMM })
 302
 303/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
 304
 305#define BPF_JMP_REG(OP, DST, SRC, OFF)                          \
 306        ((struct bpf_insn) {                                    \
 307                .code  = BPF_JMP | BPF_OP(OP) | BPF_X,          \
 308                .dst_reg = DST,                                 \
 309                .src_reg = SRC,                                 \
 310                .off   = OFF,                                   \
 311                .imm   = 0 })
 312
 313/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
 314
 315#define BPF_JMP_IMM(OP, DST, IMM, OFF)                          \
 316        ((struct bpf_insn) {                                    \
 317                .code  = BPF_JMP | BPF_OP(OP) | BPF_K,          \
 318                .dst_reg = DST,                                 \
 319                .src_reg = 0,                                   \
 320                .off   = OFF,                                   \
 321                .imm   = IMM })
 322
 323/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
 324
 325#define BPF_JMP32_REG(OP, DST, SRC, OFF)                        \
 326        ((struct bpf_insn) {                                    \
 327                .code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,        \
 328                .dst_reg = DST,                                 \
 329                .src_reg = SRC,                                 \
 330                .off   = OFF,                                   \
 331                .imm   = 0 })
 332
 333/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
 334
 335#define BPF_JMP32_IMM(OP, DST, IMM, OFF)                        \
 336        ((struct bpf_insn) {                                    \
 337                .code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,        \
 338                .dst_reg = DST,                                 \
 339                .src_reg = 0,                                   \
 340                .off   = OFF,                                   \
 341                .imm   = IMM })
 342
 343/* Unconditional jumps, goto pc + off16 */
 344
 345#define BPF_JMP_A(OFF)                                          \
 346        ((struct bpf_insn) {                                    \
 347                .code  = BPF_JMP | BPF_JA,                      \
 348                .dst_reg = 0,                                   \
 349                .src_reg = 0,                                   \
 350                .off   = OFF,                                   \
 351                .imm   = 0 })
 352
 353/* Relative call */
 354
 355#define BPF_CALL_REL(TGT)                                       \
 356        ((struct bpf_insn) {                                    \
 357                .code  = BPF_JMP | BPF_CALL,                    \
 358                .dst_reg = 0,                                   \
 359                .src_reg = BPF_PSEUDO_CALL,                     \
 360                .off   = 0,                                     \
 361                .imm   = TGT })
 362
 363/* Function call */
 364
 365#define BPF_CAST_CALL(x)                                        \
 366                ((u64 (*)(u64, u64, u64, u64, u64))(x))
 367
 368#define BPF_EMIT_CALL(FUNC)                                     \
 369        ((struct bpf_insn) {                                    \
 370                .code  = BPF_JMP | BPF_CALL,                    \
 371                .dst_reg = 0,                                   \
 372                .src_reg = 0,                                   \
 373                .off   = 0,                                     \
 374                .imm   = ((FUNC) - __bpf_call_base) })
 375
 376/* Raw code statement block */
 377
 378#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)                  \
 379        ((struct bpf_insn) {                                    \
 380                .code  = CODE,                                  \
 381                .dst_reg = DST,                                 \
 382                .src_reg = SRC,                                 \
 383                .off   = OFF,                                   \
 384                .imm   = IMM })
 385
 386/* Program exit */
 387
 388#define BPF_EXIT_INSN()                                         \
 389        ((struct bpf_insn) {                                    \
 390                .code  = BPF_JMP | BPF_EXIT,                    \
 391                .dst_reg = 0,                                   \
 392                .src_reg = 0,                                   \
 393                .off   = 0,                                     \
 394                .imm   = 0 })
 395
 396/* Speculation barrier */
 397
 398#define BPF_ST_NOSPEC()                                         \
 399        ((struct bpf_insn) {                                    \
 400                .code  = BPF_ST | BPF_NOSPEC,                   \
 401                .dst_reg = 0,                                   \
 402                .src_reg = 0,                                   \
 403                .off   = 0,                                     \
 404                .imm   = 0 })
 405
 406/* Internal classic blocks for direct assignment */
 407
 408#define __BPF_STMT(CODE, K)                                     \
 409        ((struct sock_filter) BPF_STMT(CODE, K))
 410
 411#define __BPF_JUMP(CODE, K, JT, JF)                             \
 412        ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
 413
 414#define bytes_to_bpf_size(bytes)                                \
 415({                                                              \
 416        int bpf_size = -EINVAL;                                 \
 417                                                                \
 418        if (bytes == sizeof(u8))                                \
 419                bpf_size = BPF_B;                               \
 420        else if (bytes == sizeof(u16))                          \
 421                bpf_size = BPF_H;                               \
 422        else if (bytes == sizeof(u32))                          \
 423                bpf_size = BPF_W;                               \
 424        else if (bytes == sizeof(u64))                          \
 425                bpf_size = BPF_DW;                              \
 426                                                                \
 427        bpf_size;                                               \
 428})
 429
 430#define bpf_size_to_bytes(bpf_size)                             \
 431({                                                              \
 432        int bytes = -EINVAL;                                    \
 433                                                                \
 434        if (bpf_size == BPF_B)                                  \
 435                bytes = sizeof(u8);                             \
 436        else if (bpf_size == BPF_H)                             \
 437                bytes = sizeof(u16);                            \
 438        else if (bpf_size == BPF_W)                             \
 439                bytes = sizeof(u32);                            \
 440        else if (bpf_size == BPF_DW)                            \
 441                bytes = sizeof(u64);                            \
 442                                                                \
 443        bytes;                                                  \
 444})
 445
 446#define BPF_SIZEOF(type)                                        \
 447        ({                                                      \
 448                const int __size = bytes_to_bpf_size(sizeof(type)); \
 449                BUILD_BUG_ON(__size < 0);                       \
 450                __size;                                         \
 451        })
 452
 453#define BPF_FIELD_SIZEOF(type, field)                           \
 454        ({                                                      \
 455                const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
 456                BUILD_BUG_ON(__size < 0);                       \
 457                __size;                                         \
 458        })
 459
 460#define BPF_LDST_BYTES(insn)                                    \
 461        ({                                                      \
 462                const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
 463                WARN_ON(__size < 0);                            \
 464                __size;                                         \
 465        })
 466
 467#define __BPF_MAP_0(m, v, ...) v
 468#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
 469#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
 470#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
 471#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
 472#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
 473
 474#define __BPF_REG_0(...) __BPF_PAD(5)
 475#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
 476#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
 477#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
 478#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
 479#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
 480
 481#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
 482#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
 483
 484#define __BPF_CAST(t, a)                                                       \
 485        (__force t)                                                            \
 486        (__force                                                               \
 487         typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
 488                                      (unsigned long)0, (t)0))) a
 489#define __BPF_V void
 490#define __BPF_N
 491
 492#define __BPF_DECL_ARGS(t, a) t   a
 493#define __BPF_DECL_REGS(t, a) u64 a
 494
 495#define __BPF_PAD(n)                                                           \
 496        __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
 497                  u64, __ur_3, u64, __ur_4, u64, __ur_5)
 498
 499#define BPF_CALL_x(x, name, ...)                                               \
 500        static __always_inline                                                 \
 501        u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
 502        typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
 503        u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));         \
 504        u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))          \
 505        {                                                                      \
 506                return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
 507        }                                                                      \
 508        static __always_inline                                                 \
 509        u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
 510
 511#define BPF_CALL_0(name, ...)   BPF_CALL_x(0, name, __VA_ARGS__)
 512#define BPF_CALL_1(name, ...)   BPF_CALL_x(1, name, __VA_ARGS__)
 513#define BPF_CALL_2(name, ...)   BPF_CALL_x(2, name, __VA_ARGS__)
 514#define BPF_CALL_3(name, ...)   BPF_CALL_x(3, name, __VA_ARGS__)
 515#define BPF_CALL_4(name, ...)   BPF_CALL_x(4, name, __VA_ARGS__)
 516#define BPF_CALL_5(name, ...)   BPF_CALL_x(5, name, __VA_ARGS__)
 517
 518#define bpf_ctx_range(TYPE, MEMBER)                                             \
 519        offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
 520#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)                              \
 521        offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
 522#if BITS_PER_LONG == 64
 523# define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
 524        offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
 525#else
 526# define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
 527        offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
 528#endif /* BITS_PER_LONG == 64 */
 529
 530#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)                            \
 531        ({                                                                      \
 532                BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));             \
 533                *(PTR_SIZE) = (SIZE);                                           \
 534                offsetof(TYPE, MEMBER);                                         \
 535        })
 536
 537/* A struct sock_filter is architecture independent. */
 538struct compat_sock_fprog {
 539        u16             len;
 540        compat_uptr_t   filter; /* struct sock_filter * */
 541};
 542
 543struct sock_fprog_kern {
 544        u16                     len;
 545        struct sock_filter      *filter;
 546};
 547
 548/* Some arches need doubleword alignment for their instructions and/or data */
 549#define BPF_IMAGE_ALIGNMENT 8
 550
 551struct bpf_binary_header {
 552        u32 pages;
 553        u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
 554};
 555
 556struct bpf_prog_stats {
 557        u64 cnt;
 558        u64 nsecs;
 559        u64 misses;
 560        struct u64_stats_sync syncp;
 561} __aligned(2 * sizeof(u64));
 562
 563struct bpf_prog {
 564        u16                     pages;          /* Number of allocated pages */
 565        u16                     jited:1,        /* Is our filter JIT'ed? */
 566                                jit_requested:1,/* archs need to JIT the prog */
 567                                gpl_compatible:1, /* Is filter GPL compatible? */
 568                                cb_access:1,    /* Is control block accessed? */
 569                                dst_needed:1,   /* Do we need dst entry? */
 570                                blinded:1,      /* Was blinded */
 571                                is_func:1,      /* program is a bpf function */
 572                                kprobe_override:1, /* Do we override a kprobe? */
 573                                has_callchain_buf:1, /* callchain buffer allocated? */
 574                                enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
 575                                call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
 576                                call_get_func_ip:1; /* Do we call get_func_ip() */
 577        enum bpf_prog_type      type;           /* Type of BPF program */
 578        enum bpf_attach_type    expected_attach_type; /* For some prog types */
 579        u32                     len;            /* Number of filter blocks */
 580        u32                     jited_len;      /* Size of jited insns in bytes */
 581        u8                      tag[BPF_TAG_SIZE];
 582        struct bpf_prog_stats __percpu *stats;
 583        int __percpu            *active;
 584        unsigned int            (*bpf_func)(const void *ctx,
 585                                            const struct bpf_insn *insn);
 586        struct bpf_prog_aux     *aux;           /* Auxiliary fields */
 587        struct sock_fprog_kern  *orig_prog;     /* Original BPF program */
 588        /* Instructions for interpreter */
 589        struct sock_filter      insns[0];
 590        struct bpf_insn         insnsi[];
 591};
 592
 593struct sk_filter {
 594        refcount_t      refcnt;
 595        struct rcu_head rcu;
 596        struct bpf_prog *prog;
 597};
 598
 599DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
 600
 601typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
 602                                          const struct bpf_insn *insnsi,
 603                                          unsigned int (*bpf_func)(const void *,
 604                                                                   const struct bpf_insn *));
 605
 606static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
 607                                          const void *ctx,
 608                                          bpf_dispatcher_fn dfunc)
 609{
 610        u32 ret;
 611
 612        cant_migrate();
 613        if (static_branch_unlikely(&bpf_stats_enabled_key)) {
 614                struct bpf_prog_stats *stats;
 615                u64 start = sched_clock();
 616
 617                ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
 618                stats = this_cpu_ptr(prog->stats);
 619                u64_stats_update_begin(&stats->syncp);
 620                stats->cnt++;
 621                stats->nsecs += sched_clock() - start;
 622                u64_stats_update_end(&stats->syncp);
 623        } else {
 624                ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
 625        }
 626        return ret;
 627}
 628
 629static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
 630{
 631        return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
 632}
 633
 634/*
 635 * Use in preemptible and therefore migratable context to make sure that
 636 * the execution of the BPF program runs on one CPU.
 637 *
 638 * This uses migrate_disable/enable() explicitly to document that the
 639 * invocation of a BPF program does not require reentrancy protection
 640 * against a BPF program which is invoked from a preempting task.
 641 *
 642 * For non RT enabled kernels migrate_disable/enable() maps to
 643 * preempt_disable/enable(), i.e. it disables also preemption.
 644 */
 645static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
 646                                          const void *ctx)
 647{
 648        u32 ret;
 649
 650        migrate_disable();
 651        ret = bpf_prog_run(prog, ctx);
 652        migrate_enable();
 653        return ret;
 654}
 655
 656#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
 657
 658struct bpf_skb_data_end {
 659        struct qdisc_skb_cb qdisc_cb;
 660        void *data_meta;
 661        void *data_end;
 662};
 663
 664struct bpf_nh_params {
 665        u32 nh_family;
 666        union {
 667                u32 ipv4_nh;
 668                struct in6_addr ipv6_nh;
 669        };
 670};
 671
 672struct bpf_redirect_info {
 673        u32 flags;
 674        u32 tgt_index;
 675        void *tgt_value;
 676        struct bpf_map *map;
 677        u32 map_id;
 678        enum bpf_map_type map_type;
 679        u32 kern_flags;
 680        struct bpf_nh_params nh;
 681};
 682
 683DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
 684
 685/* flags for bpf_redirect_info kern_flags */
 686#define BPF_RI_F_RF_NO_DIRECT   BIT(0)  /* no napi_direct on return_frame */
 687
 688/* Compute the linear packet data range [data, data_end) which
 689 * will be accessed by various program types (cls_bpf, act_bpf,
 690 * lwt, ...). Subsystems allowing direct data access must (!)
 691 * ensure that cb[] area can be written to when BPF program is
 692 * invoked (otherwise cb[] save/restore is necessary).
 693 */
 694static inline void bpf_compute_data_pointers(struct sk_buff *skb)
 695{
 696        struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 697
 698        BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
 699        cb->data_meta = skb->data - skb_metadata_len(skb);
 700        cb->data_end  = skb->data + skb_headlen(skb);
 701}
 702
 703/* Similar to bpf_compute_data_pointers(), except that save orginal
 704 * data in cb->data and cb->meta_data for restore.
 705 */
 706static inline void bpf_compute_and_save_data_end(
 707        struct sk_buff *skb, void **saved_data_end)
 708{
 709        struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 710
 711        *saved_data_end = cb->data_end;
 712        cb->data_end  = skb->data + skb_headlen(skb);
 713}
 714
 715/* Restore data saved by bpf_compute_data_pointers(). */
 716static inline void bpf_restore_data_end(
 717        struct sk_buff *skb, void *saved_data_end)
 718{
 719        struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 720
 721        cb->data_end = saved_data_end;
 722}
 723
 724static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
 725{
 726        /* eBPF programs may read/write skb->cb[] area to transfer meta
 727         * data between tail calls. Since this also needs to work with
 728         * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
 729         *
 730         * In some socket filter cases, the cb unfortunately needs to be
 731         * saved/restored so that protocol specific skb->cb[] data won't
 732         * be lost. In any case, due to unpriviledged eBPF programs
 733         * attached to sockets, we need to clear the bpf_skb_cb() area
 734         * to not leak previous contents to user space.
 735         */
 736        BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
 737        BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
 738                     sizeof_field(struct qdisc_skb_cb, data));
 739
 740        return qdisc_skb_cb(skb)->data;
 741}
 742
 743/* Must be invoked with migration disabled */
 744static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
 745                                         const void *ctx)
 746{
 747        const struct sk_buff *skb = ctx;
 748        u8 *cb_data = bpf_skb_cb(skb);
 749        u8 cb_saved[BPF_SKB_CB_LEN];
 750        u32 res;
 751
 752        if (unlikely(prog->cb_access)) {
 753                memcpy(cb_saved, cb_data, sizeof(cb_saved));
 754                memset(cb_data, 0, sizeof(cb_saved));
 755        }
 756
 757        res = bpf_prog_run(prog, skb);
 758
 759        if (unlikely(prog->cb_access))
 760                memcpy(cb_data, cb_saved, sizeof(cb_saved));
 761
 762        return res;
 763}
 764
 765static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
 766                                       struct sk_buff *skb)
 767{
 768        u32 res;
 769
 770        migrate_disable();
 771        res = __bpf_prog_run_save_cb(prog, skb);
 772        migrate_enable();
 773        return res;
 774}
 775
 776static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
 777                                        struct sk_buff *skb)
 778{
 779        u8 *cb_data = bpf_skb_cb(skb);
 780        u32 res;
 781
 782        if (unlikely(prog->cb_access))
 783                memset(cb_data, 0, BPF_SKB_CB_LEN);
 784
 785        res = bpf_prog_run_pin_on_cpu(prog, skb);
 786        return res;
 787}
 788
 789DECLARE_BPF_DISPATCHER(xdp)
 790
 791DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
 792
 793u32 xdp_master_redirect(struct xdp_buff *xdp);
 794
 795static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
 796                                            struct xdp_buff *xdp)
 797{
 798        /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
 799         * under local_bh_disable(), which provides the needed RCU protection
 800         * for accessing map entries.
 801         */
 802        u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
 803
 804        if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) {
 805                if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev))
 806                        act = xdp_master_redirect(xdp);
 807        }
 808
 809        return act;
 810}
 811
 812void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
 813
 814static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
 815{
 816        return prog->len * sizeof(struct bpf_insn);
 817}
 818
 819static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
 820{
 821        return round_up(bpf_prog_insn_size(prog) +
 822                        sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
 823}
 824
 825static inline unsigned int bpf_prog_size(unsigned int proglen)
 826{
 827        return max(sizeof(struct bpf_prog),
 828                   offsetof(struct bpf_prog, insns[proglen]));
 829}
 830
 831static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
 832{
 833        /* When classic BPF programs have been loaded and the arch
 834         * does not have a classic BPF JIT (anymore), they have been
 835         * converted via bpf_migrate_filter() to eBPF and thus always
 836         * have an unspec program type.
 837         */
 838        return prog->type == BPF_PROG_TYPE_UNSPEC;
 839}
 840
 841static inline u32 bpf_ctx_off_adjust_machine(u32 size)
 842{
 843        const u32 size_machine = sizeof(unsigned long);
 844
 845        if (size > size_machine && size % size_machine == 0)
 846                size = size_machine;
 847
 848        return size;
 849}
 850
 851static inline bool
 852bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
 853{
 854        return size <= size_default && (size & (size - 1)) == 0;
 855}
 856
 857static inline u8
 858bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
 859{
 860        u8 access_off = off & (size_default - 1);
 861
 862#ifdef __LITTLE_ENDIAN
 863        return access_off;
 864#else
 865        return size_default - (access_off + size);
 866#endif
 867}
 868
 869#define bpf_ctx_wide_access_ok(off, size, type, field)                  \
 870        (size == sizeof(__u64) &&                                       \
 871        off >= offsetof(type, field) &&                                 \
 872        off + sizeof(__u64) <= offsetofend(type, field) &&              \
 873        off % sizeof(__u64) == 0)
 874
 875#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
 876
 877static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
 878{
 879#ifndef CONFIG_BPF_JIT_ALWAYS_ON
 880        if (!fp->jited) {
 881                set_vm_flush_reset_perms(fp);
 882                set_memory_ro((unsigned long)fp, fp->pages);
 883        }
 884#endif
 885}
 886
 887static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
 888{
 889        set_vm_flush_reset_perms(hdr);
 890        set_memory_ro((unsigned long)hdr, hdr->pages);
 891        set_memory_x((unsigned long)hdr, hdr->pages);
 892}
 893
 894static inline struct bpf_binary_header *
 895bpf_jit_binary_hdr(const struct bpf_prog *fp)
 896{
 897        unsigned long real_start = (unsigned long)fp->bpf_func;
 898        unsigned long addr = real_start & PAGE_MASK;
 899
 900        return (void *)addr;
 901}
 902
 903int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
 904static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
 905{
 906        return sk_filter_trim_cap(sk, skb, 1);
 907}
 908
 909struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
 910void bpf_prog_free(struct bpf_prog *fp);
 911
 912bool bpf_opcode_in_insntable(u8 code);
 913
 914void bpf_prog_free_linfo(struct bpf_prog *prog);
 915void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 916                               const u32 *insn_to_jit_off);
 917int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
 918void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
 919
 920struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
 921struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
 922struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 923                                  gfp_t gfp_extra_flags);
 924void __bpf_prog_free(struct bpf_prog *fp);
 925
 926static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
 927{
 928        __bpf_prog_free(fp);
 929}
 930
 931typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
 932                                       unsigned int flen);
 933
 934int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
 935int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
 936                              bpf_aux_classic_check_t trans, bool save_orig);
 937void bpf_prog_destroy(struct bpf_prog *fp);
 938
 939int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
 940int sk_attach_bpf(u32 ufd, struct sock *sk);
 941int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
 942int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
 943void sk_reuseport_prog_free(struct bpf_prog *prog);
 944int sk_detach_filter(struct sock *sk);
 945int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
 946                  unsigned int len);
 947
 948bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
 949void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
 950
 951u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
 952#define __bpf_call_base_args \
 953        ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
 954         (void *)__bpf_call_base)
 955
 956struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
 957void bpf_jit_compile(struct bpf_prog *prog);
 958bool bpf_jit_needs_zext(void);
 959bool bpf_jit_supports_kfunc_call(void);
 960bool bpf_helper_changes_pkt_data(void *func);
 961
 962static inline bool bpf_dump_raw_ok(const struct cred *cred)
 963{
 964        /* Reconstruction of call-sites is dependent on kallsyms,
 965         * thus make dump the same restriction.
 966         */
 967        return kallsyms_show_value(cred);
 968}
 969
 970struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 971                                       const struct bpf_insn *patch, u32 len);
 972int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
 973
 974void bpf_clear_redirect_map(struct bpf_map *map);
 975
 976static inline bool xdp_return_frame_no_direct(void)
 977{
 978        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 979
 980        return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
 981}
 982
 983static inline void xdp_set_return_frame_no_direct(void)
 984{
 985        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 986
 987        ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
 988}
 989
 990static inline void xdp_clear_return_frame_no_direct(void)
 991{
 992        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 993
 994        ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
 995}
 996
 997static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
 998                                 unsigned int pktlen)
 999{
1000        unsigned int len;
1001
1002        if (unlikely(!(fwd->flags & IFF_UP)))
1003                return -ENETDOWN;
1004
1005        len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1006        if (pktlen > len)
1007                return -EMSGSIZE;
1008
1009        return 0;
1010}
1011
1012/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1013 * same cpu context. Further for best results no more than a single map
1014 * for the do_redirect/do_flush pair should be used. This limitation is
1015 * because we only track one map and force a flush when the map changes.
1016 * This does not appear to be a real limitation for existing software.
1017 */
1018int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1019                            struct xdp_buff *xdp, struct bpf_prog *prog);
1020int xdp_do_redirect(struct net_device *dev,
1021                    struct xdp_buff *xdp,
1022                    struct bpf_prog *prog);
1023void xdp_do_flush(void);
1024
1025/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
1026 * it is no longer only flushing maps. Keep this define for compatibility
1027 * until all drivers are updated - do not use xdp_do_flush_map() in new code!
1028 */
1029#define xdp_do_flush_map xdp_do_flush
1030
1031void bpf_warn_invalid_xdp_action(u32 act);
1032
1033#ifdef CONFIG_INET
1034struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1035                                  struct bpf_prog *prog, struct sk_buff *skb,
1036                                  struct sock *migrating_sk,
1037                                  u32 hash);
1038#else
1039static inline struct sock *
1040bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1041                     struct bpf_prog *prog, struct sk_buff *skb,
1042                     struct sock *migrating_sk,
1043                     u32 hash)
1044{
1045        return NULL;
1046}
1047#endif
1048
1049#ifdef CONFIG_BPF_JIT
1050extern int bpf_jit_enable;
1051extern int bpf_jit_harden;
1052extern int bpf_jit_kallsyms;
1053extern long bpf_jit_limit;
1054extern long bpf_jit_limit_max;
1055
1056typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1057
1058struct bpf_binary_header *
1059bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1060                     unsigned int alignment,
1061                     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1062void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1063u64 bpf_jit_alloc_exec_limit(void);
1064void *bpf_jit_alloc_exec(unsigned long size);
1065void bpf_jit_free_exec(void *addr);
1066void bpf_jit_free(struct bpf_prog *fp);
1067
1068int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1069                                struct bpf_jit_poke_descriptor *poke);
1070
1071int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1072                          const struct bpf_insn *insn, bool extra_pass,
1073                          u64 *func_addr, bool *func_addr_fixed);
1074
1075struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1076void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1077
1078static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1079                                u32 pass, void *image)
1080{
1081        pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1082               proglen, pass, image, current->comm, task_pid_nr(current));
1083
1084        if (image)
1085                print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1086                               16, 1, image, proglen, false);
1087}
1088
1089static inline bool bpf_jit_is_ebpf(void)
1090{
1091# ifdef CONFIG_HAVE_EBPF_JIT
1092        return true;
1093# else
1094        return false;
1095# endif
1096}
1097
1098static inline bool ebpf_jit_enabled(void)
1099{
1100        return bpf_jit_enable && bpf_jit_is_ebpf();
1101}
1102
1103static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1104{
1105        return fp->jited && bpf_jit_is_ebpf();
1106}
1107
1108static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1109{
1110        /* These are the prerequisites, should someone ever have the
1111         * idea to call blinding outside of them, we make sure to
1112         * bail out.
1113         */
1114        if (!bpf_jit_is_ebpf())
1115                return false;
1116        if (!prog->jit_requested)
1117                return false;
1118        if (!bpf_jit_harden)
1119                return false;
1120        if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1121                return false;
1122
1123        return true;
1124}
1125
1126static inline bool bpf_jit_kallsyms_enabled(void)
1127{
1128        /* There are a couple of corner cases where kallsyms should
1129         * not be enabled f.e. on hardening.
1130         */
1131        if (bpf_jit_harden)
1132                return false;
1133        if (!bpf_jit_kallsyms)
1134                return false;
1135        if (bpf_jit_kallsyms == 1)
1136                return true;
1137
1138        return false;
1139}
1140
1141const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1142                                 unsigned long *off, char *sym);
1143bool is_bpf_text_address(unsigned long addr);
1144int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1145                    char *sym);
1146
1147static inline const char *
1148bpf_address_lookup(unsigned long addr, unsigned long *size,
1149                   unsigned long *off, char **modname, char *sym)
1150{
1151        const char *ret = __bpf_address_lookup(addr, size, off, sym);
1152
1153        if (ret && modname)
1154                *modname = NULL;
1155        return ret;
1156}
1157
1158void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1159void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1160
1161#else /* CONFIG_BPF_JIT */
1162
1163static inline bool ebpf_jit_enabled(void)
1164{
1165        return false;
1166}
1167
1168static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1169{
1170        return false;
1171}
1172
1173static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1174{
1175        return false;
1176}
1177
1178static inline int
1179bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1180                            struct bpf_jit_poke_descriptor *poke)
1181{
1182        return -ENOTSUPP;
1183}
1184
1185static inline void bpf_jit_free(struct bpf_prog *fp)
1186{
1187        bpf_prog_unlock_free(fp);
1188}
1189
1190static inline bool bpf_jit_kallsyms_enabled(void)
1191{
1192        return false;
1193}
1194
1195static inline const char *
1196__bpf_address_lookup(unsigned long addr, unsigned long *size,
1197                     unsigned long *off, char *sym)
1198{
1199        return NULL;
1200}
1201
1202static inline bool is_bpf_text_address(unsigned long addr)
1203{
1204        return false;
1205}
1206
1207static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1208                                  char *type, char *sym)
1209{
1210        return -ERANGE;
1211}
1212
1213static inline const char *
1214bpf_address_lookup(unsigned long addr, unsigned long *size,
1215                   unsigned long *off, char **modname, char *sym)
1216{
1217        return NULL;
1218}
1219
1220static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1221{
1222}
1223
1224static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1225{
1226}
1227
1228#endif /* CONFIG_BPF_JIT */
1229
1230void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1231
1232#define BPF_ANC         BIT(15)
1233
1234static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1235{
1236        switch (first->code) {
1237        case BPF_RET | BPF_K:
1238        case BPF_LD | BPF_W | BPF_LEN:
1239                return false;
1240
1241        case BPF_LD | BPF_W | BPF_ABS:
1242        case BPF_LD | BPF_H | BPF_ABS:
1243        case BPF_LD | BPF_B | BPF_ABS:
1244                if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1245                        return true;
1246                return false;
1247
1248        default:
1249                return true;
1250        }
1251}
1252
1253static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1254{
1255        BUG_ON(ftest->code & BPF_ANC);
1256
1257        switch (ftest->code) {
1258        case BPF_LD | BPF_W | BPF_ABS:
1259        case BPF_LD | BPF_H | BPF_ABS:
1260        case BPF_LD | BPF_B | BPF_ABS:
1261#define BPF_ANCILLARY(CODE)     case SKF_AD_OFF + SKF_AD_##CODE:        \
1262                                return BPF_ANC | SKF_AD_##CODE
1263                switch (ftest->k) {
1264                BPF_ANCILLARY(PROTOCOL);
1265                BPF_ANCILLARY(PKTTYPE);
1266                BPF_ANCILLARY(IFINDEX);
1267                BPF_ANCILLARY(NLATTR);
1268                BPF_ANCILLARY(NLATTR_NEST);
1269                BPF_ANCILLARY(MARK);
1270                BPF_ANCILLARY(QUEUE);
1271                BPF_ANCILLARY(HATYPE);
1272                BPF_ANCILLARY(RXHASH);
1273                BPF_ANCILLARY(CPU);
1274                BPF_ANCILLARY(ALU_XOR_X);
1275                BPF_ANCILLARY(VLAN_TAG);
1276                BPF_ANCILLARY(VLAN_TAG_PRESENT);
1277                BPF_ANCILLARY(PAY_OFFSET);
1278                BPF_ANCILLARY(RANDOM);
1279                BPF_ANCILLARY(VLAN_TPID);
1280                }
1281                fallthrough;
1282        default:
1283                return ftest->code;
1284        }
1285}
1286
1287void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1288                                           int k, unsigned int size);
1289
1290static inline int bpf_tell_extensions(void)
1291{
1292        return SKF_AD_MAX;
1293}
1294
1295struct bpf_sock_addr_kern {
1296        struct sock *sk;
1297        struct sockaddr *uaddr;
1298        /* Temporary "register" to make indirect stores to nested structures
1299         * defined above. We need three registers to make such a store, but
1300         * only two (src and dst) are available at convert_ctx_access time
1301         */
1302        u64 tmp_reg;
1303        void *t_ctx;    /* Attach type specific context. */
1304};
1305
1306struct bpf_sock_ops_kern {
1307        struct  sock *sk;
1308        union {
1309                u32 args[4];
1310                u32 reply;
1311                u32 replylong[4];
1312        };
1313        struct sk_buff  *syn_skb;
1314        struct sk_buff  *skb;
1315        void    *skb_data_end;
1316        u8      op;
1317        u8      is_fullsock;
1318        u8      remaining_opt_len;
1319        u64     temp;                   /* temp and everything after is not
1320                                         * initialized to 0 before calling
1321                                         * the BPF program. New fields that
1322                                         * should be initialized to 0 should
1323                                         * be inserted before temp.
1324                                         * temp is scratch storage used by
1325                                         * sock_ops_convert_ctx_access
1326                                         * as temporary storage of a register.
1327                                         */
1328};
1329
1330struct bpf_sysctl_kern {
1331        struct ctl_table_header *head;
1332        struct ctl_table *table;
1333        void *cur_val;
1334        size_t cur_len;
1335        void *new_val;
1336        size_t new_len;
1337        int new_updated;
1338        int write;
1339        loff_t *ppos;
1340        /* Temporary "register" for indirect stores to ppos. */
1341        u64 tmp_reg;
1342};
1343
1344#define BPF_SOCKOPT_KERN_BUF_SIZE       32
1345struct bpf_sockopt_buf {
1346        u8              data[BPF_SOCKOPT_KERN_BUF_SIZE];
1347};
1348
1349struct bpf_sockopt_kern {
1350        struct sock     *sk;
1351        u8              *optval;
1352        u8              *optval_end;
1353        s32             level;
1354        s32             optname;
1355        s32             optlen;
1356        s32             retval;
1357};
1358
1359int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1360
1361struct bpf_sk_lookup_kern {
1362        u16             family;
1363        u16             protocol;
1364        __be16          sport;
1365        u16             dport;
1366        struct {
1367                __be32 saddr;
1368                __be32 daddr;
1369        } v4;
1370        struct {
1371                const struct in6_addr *saddr;
1372                const struct in6_addr *daddr;
1373        } v6;
1374        struct sock     *selected_sk;
1375        bool            no_reuseport;
1376};
1377
1378extern struct static_key_false bpf_sk_lookup_enabled;
1379
1380/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1381 *
1382 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1383 * SK_DROP. Their meaning is as follows:
1384 *
1385 *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1386 *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1387 *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1388 *
1389 * This macro aggregates return values and selected sockets from
1390 * multiple BPF programs according to following rules in order:
1391 *
1392 *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1393 *     macro result is SK_PASS and last ctx.selected_sk is used.
1394 *  2. If any program returned SK_DROP return value,
1395 *     macro result is SK_DROP.
1396 *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1397 *
1398 * Caller must ensure that the prog array is non-NULL, and that the
1399 * array as well as the programs it contains remain valid.
1400 */
1401#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)                  \
1402        ({                                                              \
1403                struct bpf_sk_lookup_kern *_ctx = &(ctx);               \
1404                struct bpf_prog_array_item *_item;                      \
1405                struct sock *_selected_sk = NULL;                       \
1406                bool _no_reuseport = false;                             \
1407                struct bpf_prog *_prog;                                 \
1408                bool _all_pass = true;                                  \
1409                u32 _ret;                                               \
1410                                                                        \
1411                migrate_disable();                                      \
1412                _item = &(array)->items[0];                             \
1413                while ((_prog = READ_ONCE(_item->prog))) {              \
1414                        /* restore most recent selection */             \
1415                        _ctx->selected_sk = _selected_sk;               \
1416                        _ctx->no_reuseport = _no_reuseport;             \
1417                                                                        \
1418                        _ret = func(_prog, _ctx);                       \
1419                        if (_ret == SK_PASS && _ctx->selected_sk) {     \
1420                                /* remember last non-NULL socket */     \
1421                                _selected_sk = _ctx->selected_sk;       \
1422                                _no_reuseport = _ctx->no_reuseport;     \
1423                        } else if (_ret == SK_DROP && _all_pass) {      \
1424                                _all_pass = false;                      \
1425                        }                                               \
1426                        _item++;                                        \
1427                }                                                       \
1428                _ctx->selected_sk = _selected_sk;                       \
1429                _ctx->no_reuseport = _no_reuseport;                     \
1430                migrate_enable();                                       \
1431                _all_pass || _selected_sk ? SK_PASS : SK_DROP;          \
1432         })
1433
1434static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1435                                        const __be32 saddr, const __be16 sport,
1436                                        const __be32 daddr, const u16 dport,
1437                                        struct sock **psk)
1438{
1439        struct bpf_prog_array *run_array;
1440        struct sock *selected_sk = NULL;
1441        bool no_reuseport = false;
1442
1443        rcu_read_lock();
1444        run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1445        if (run_array) {
1446                struct bpf_sk_lookup_kern ctx = {
1447                        .family         = AF_INET,
1448                        .protocol       = protocol,
1449                        .v4.saddr       = saddr,
1450                        .v4.daddr       = daddr,
1451                        .sport          = sport,
1452                        .dport          = dport,
1453                };
1454                u32 act;
1455
1456                act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1457                if (act == SK_PASS) {
1458                        selected_sk = ctx.selected_sk;
1459                        no_reuseport = ctx.no_reuseport;
1460                } else {
1461                        selected_sk = ERR_PTR(-ECONNREFUSED);
1462                }
1463        }
1464        rcu_read_unlock();
1465        *psk = selected_sk;
1466        return no_reuseport;
1467}
1468
1469#if IS_ENABLED(CONFIG_IPV6)
1470static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1471                                        const struct in6_addr *saddr,
1472                                        const __be16 sport,
1473                                        const struct in6_addr *daddr,
1474                                        const u16 dport,
1475                                        struct sock **psk)
1476{
1477        struct bpf_prog_array *run_array;
1478        struct sock *selected_sk = NULL;
1479        bool no_reuseport = false;
1480
1481        rcu_read_lock();
1482        run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1483        if (run_array) {
1484                struct bpf_sk_lookup_kern ctx = {
1485                        .family         = AF_INET6,
1486                        .protocol       = protocol,
1487                        .v6.saddr       = saddr,
1488                        .v6.daddr       = daddr,
1489                        .sport          = sport,
1490                        .dport          = dport,
1491                };
1492                u32 act;
1493
1494                act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1495                if (act == SK_PASS) {
1496                        selected_sk = ctx.selected_sk;
1497                        no_reuseport = ctx.no_reuseport;
1498                } else {
1499                        selected_sk = ERR_PTR(-ECONNREFUSED);
1500                }
1501        }
1502        rcu_read_unlock();
1503        *psk = selected_sk;
1504        return no_reuseport;
1505}
1506#endif /* IS_ENABLED(CONFIG_IPV6) */
1507
1508static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
1509                                                  u64 flags, const u64 flag_mask,
1510                                                  void *lookup_elem(struct bpf_map *map, u32 key))
1511{
1512        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1513        const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1514
1515        /* Lower bits of the flags are used as return code on lookup failure */
1516        if (unlikely(flags & ~(action_mask | flag_mask)))
1517                return XDP_ABORTED;
1518
1519        ri->tgt_value = lookup_elem(map, ifindex);
1520        if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1521                /* If the lookup fails we want to clear out the state in the
1522                 * redirect_info struct completely, so that if an eBPF program
1523                 * performs multiple lookups, the last one always takes
1524                 * precedence.
1525                 */
1526                ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1527                ri->map_type = BPF_MAP_TYPE_UNSPEC;
1528                return flags & action_mask;
1529        }
1530
1531        ri->tgt_index = ifindex;
1532        ri->map_id = map->id;
1533        ri->map_type = map->map_type;
1534
1535        if (flags & BPF_F_BROADCAST) {
1536                WRITE_ONCE(ri->map, map);
1537                ri->flags = flags;
1538        } else {
1539                WRITE_ONCE(ri->map, NULL);
1540                ri->flags = 0;
1541        }
1542
1543        return XDP_REDIRECT;
1544}
1545
1546#endif /* __LINUX_FILTER_H__ */
1547