linux/include/linux/hyperv.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 *
   4 * Copyright (c) 2011, Microsoft Corporation.
   5 *
   6 * Authors:
   7 *   Haiyang Zhang <haiyangz@microsoft.com>
   8 *   Hank Janssen  <hjanssen@microsoft.com>
   9 *   K. Y. Srinivasan <kys@microsoft.com>
  10 */
  11
  12#ifndef _HYPERV_H
  13#define _HYPERV_H
  14
  15#include <uapi/linux/hyperv.h>
  16
  17#include <linux/mm.h>
  18#include <linux/types.h>
  19#include <linux/scatterlist.h>
  20#include <linux/list.h>
  21#include <linux/timer.h>
  22#include <linux/completion.h>
  23#include <linux/device.h>
  24#include <linux/mod_devicetable.h>
  25#include <linux/interrupt.h>
  26#include <linux/reciprocal_div.h>
  27#include <asm/hyperv-tlfs.h>
  28
  29#define MAX_PAGE_BUFFER_COUNT                           32
  30#define MAX_MULTIPAGE_BUFFER_COUNT                      32 /* 128K */
  31
  32#pragma pack(push, 1)
  33
  34/*
  35 * Types for GPADL, decides is how GPADL header is created.
  36 *
  37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the
  38 * same as HV_HYP_PAGE_SIZE.
  39 *
  40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers
  41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put
  42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each
  43 * HV_HYP_PAGE will be different between different types of GPADL, for example
  44 * if PAGE_SIZE is 64K:
  45 *
  46 * BUFFER:
  47 *
  48 * gva:    |--       64k      --|--       64k      --| ... |
  49 * gpa:    | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k |
  50 * index:  0    1    2     15   16   17   18 .. 31   32 ...
  51 *         |    |    ...   |    |    |   ...    |   ...
  52 *         v    V          V    V    V          V
  53 * gpadl:  | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... |
  54 * index:  0    1    2 ... 15   16   17   18 .. 31   32 ...
  55 *
  56 * RING:
  57 *
  58 *         | header  |           data           | header  |     data      |
  59 * gva:    |-- 64k --|--       64k      --| ... |-- 64k --|-- 64k --| ... |
  60 * gpa:    | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... |
  61 * index:  0    1    16   17   18    31   ...   n   n+1  n+16 ...         2n
  62 *         |         /    /          /          |         /               /
  63 *         |        /    /          /           |        /               /
  64 *         |       /    /   ...    /    ...     |       /      ...      /
  65 *         |      /    /          /             |      /               /
  66 *         |     /    /          /              |     /               /
  67 *         V    V    V          V               V    V               v
  68 * gpadl:  | 4k | 4k |   ...    |    ...        | 4k | 4k |  ...     |
  69 * index:  0    1    2   ...    16   ...       n-15 n-14 n-13  ...  2n-30
  70 */
  71enum hv_gpadl_type {
  72        HV_GPADL_BUFFER,
  73        HV_GPADL_RING
  74};
  75
  76/* Single-page buffer */
  77struct hv_page_buffer {
  78        u32 len;
  79        u32 offset;
  80        u64 pfn;
  81};
  82
  83/* Multiple-page buffer */
  84struct hv_multipage_buffer {
  85        /* Length and Offset determines the # of pfns in the array */
  86        u32 len;
  87        u32 offset;
  88        u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
  89};
  90
  91/*
  92 * Multiple-page buffer array; the pfn array is variable size:
  93 * The number of entries in the PFN array is determined by
  94 * "len" and "offset".
  95 */
  96struct hv_mpb_array {
  97        /* Length and Offset determines the # of pfns in the array */
  98        u32 len;
  99        u32 offset;
 100        u64 pfn_array[];
 101};
 102
 103/* 0x18 includes the proprietary packet header */
 104#define MAX_PAGE_BUFFER_PACKET          (0x18 +                 \
 105                                        (sizeof(struct hv_page_buffer) * \
 106                                         MAX_PAGE_BUFFER_COUNT))
 107#define MAX_MULTIPAGE_BUFFER_PACKET     (0x18 +                 \
 108                                         sizeof(struct hv_multipage_buffer))
 109
 110
 111#pragma pack(pop)
 112
 113struct hv_ring_buffer {
 114        /* Offset in bytes from the start of ring data below */
 115        u32 write_index;
 116
 117        /* Offset in bytes from the start of ring data below */
 118        u32 read_index;
 119
 120        u32 interrupt_mask;
 121
 122        /*
 123         * WS2012/Win8 and later versions of Hyper-V implement interrupt
 124         * driven flow management. The feature bit feat_pending_send_sz
 125         * is set by the host on the host->guest ring buffer, and by the
 126         * guest on the guest->host ring buffer.
 127         *
 128         * The meaning of the feature bit is a bit complex in that it has
 129         * semantics that apply to both ring buffers.  If the guest sets
 130         * the feature bit in the guest->host ring buffer, the guest is
 131         * telling the host that:
 132         * 1) It will set the pending_send_sz field in the guest->host ring
 133         *    buffer when it is waiting for space to become available, and
 134         * 2) It will read the pending_send_sz field in the host->guest
 135         *    ring buffer and interrupt the host when it frees enough space
 136         *
 137         * Similarly, if the host sets the feature bit in the host->guest
 138         * ring buffer, the host is telling the guest that:
 139         * 1) It will set the pending_send_sz field in the host->guest ring
 140         *    buffer when it is waiting for space to become available, and
 141         * 2) It will read the pending_send_sz field in the guest->host
 142         *    ring buffer and interrupt the guest when it frees enough space
 143         *
 144         * If either the guest or host does not set the feature bit that it
 145         * owns, that guest or host must do polling if it encounters a full
 146         * ring buffer, and not signal the other end with an interrupt.
 147         */
 148        u32 pending_send_sz;
 149        u32 reserved1[12];
 150        union {
 151                struct {
 152                        u32 feat_pending_send_sz:1;
 153                };
 154                u32 value;
 155        } feature_bits;
 156
 157        /* Pad it to PAGE_SIZE so that data starts on page boundary */
 158        u8      reserved2[PAGE_SIZE - 68];
 159
 160        /*
 161         * Ring data starts here + RingDataStartOffset
 162         * !!! DO NOT place any fields below this !!!
 163         */
 164        u8 buffer[];
 165} __packed;
 166
 167/* Calculate the proper size of a ringbuffer, it must be page-aligned */
 168#define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(sizeof(struct hv_ring_buffer) + \
 169                                               (payload_sz))
 170
 171struct hv_ring_buffer_info {
 172        struct hv_ring_buffer *ring_buffer;
 173        u32 ring_size;                  /* Include the shared header */
 174        struct reciprocal_value ring_size_div10_reciprocal;
 175        spinlock_t ring_lock;
 176
 177        u32 ring_datasize;              /* < ring_size */
 178        u32 priv_read_index;
 179        /*
 180         * The ring buffer mutex lock. This lock prevents the ring buffer from
 181         * being freed while the ring buffer is being accessed.
 182         */
 183        struct mutex ring_buffer_mutex;
 184
 185        /* Buffer that holds a copy of an incoming host packet */
 186        void *pkt_buffer;
 187        u32 pkt_buffer_size;
 188};
 189
 190
 191static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
 192{
 193        u32 read_loc, write_loc, dsize, read;
 194
 195        dsize = rbi->ring_datasize;
 196        read_loc = rbi->ring_buffer->read_index;
 197        write_loc = READ_ONCE(rbi->ring_buffer->write_index);
 198
 199        read = write_loc >= read_loc ? (write_loc - read_loc) :
 200                (dsize - read_loc) + write_loc;
 201
 202        return read;
 203}
 204
 205static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
 206{
 207        u32 read_loc, write_loc, dsize, write;
 208
 209        dsize = rbi->ring_datasize;
 210        read_loc = READ_ONCE(rbi->ring_buffer->read_index);
 211        write_loc = rbi->ring_buffer->write_index;
 212
 213        write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
 214                read_loc - write_loc;
 215        return write;
 216}
 217
 218static inline u32 hv_get_avail_to_write_percent(
 219                const struct hv_ring_buffer_info *rbi)
 220{
 221        u32 avail_write = hv_get_bytes_to_write(rbi);
 222
 223        return reciprocal_divide(
 224                        (avail_write  << 3) + (avail_write << 1),
 225                        rbi->ring_size_div10_reciprocal);
 226}
 227
 228/*
 229 * VMBUS version is 32 bit entity broken up into
 230 * two 16 bit quantities: major_number. minor_number.
 231 *
 232 * 0 . 13 (Windows Server 2008)
 233 * 1 . 1  (Windows 7)
 234 * 2 . 4  (Windows 8)
 235 * 3 . 0  (Windows 8 R2)
 236 * 4 . 0  (Windows 10)
 237 * 4 . 1  (Windows 10 RS3)
 238 * 5 . 0  (Newer Windows 10)
 239 * 5 . 1  (Windows 10 RS4)
 240 * 5 . 2  (Windows Server 2019, RS5)
 241 * 5 . 3  (Windows Server 2022)
 242 */
 243
 244#define VERSION_WS2008  ((0 << 16) | (13))
 245#define VERSION_WIN7    ((1 << 16) | (1))
 246#define VERSION_WIN8    ((2 << 16) | (4))
 247#define VERSION_WIN8_1    ((3 << 16) | (0))
 248#define VERSION_WIN10 ((4 << 16) | (0))
 249#define VERSION_WIN10_V4_1 ((4 << 16) | (1))
 250#define VERSION_WIN10_V5 ((5 << 16) | (0))
 251#define VERSION_WIN10_V5_1 ((5 << 16) | (1))
 252#define VERSION_WIN10_V5_2 ((5 << 16) | (2))
 253#define VERSION_WIN10_V5_3 ((5 << 16) | (3))
 254
 255/* Make maximum size of pipe payload of 16K */
 256#define MAX_PIPE_DATA_PAYLOAD           (sizeof(u8) * 16384)
 257
 258/* Define PipeMode values. */
 259#define VMBUS_PIPE_TYPE_BYTE            0x00000000
 260#define VMBUS_PIPE_TYPE_MESSAGE         0x00000004
 261
 262/* The size of the user defined data buffer for non-pipe offers. */
 263#define MAX_USER_DEFINED_BYTES          120
 264
 265/* The size of the user defined data buffer for pipe offers. */
 266#define MAX_PIPE_USER_DEFINED_BYTES     116
 267
 268/*
 269 * At the center of the Channel Management library is the Channel Offer. This
 270 * struct contains the fundamental information about an offer.
 271 */
 272struct vmbus_channel_offer {
 273        guid_t if_type;
 274        guid_t if_instance;
 275
 276        /*
 277         * These two fields are not currently used.
 278         */
 279        u64 reserved1;
 280        u64 reserved2;
 281
 282        u16 chn_flags;
 283        u16 mmio_megabytes;             /* in bytes * 1024 * 1024 */
 284
 285        union {
 286                /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
 287                struct {
 288                        unsigned char user_def[MAX_USER_DEFINED_BYTES];
 289                } std;
 290
 291                /*
 292                 * Pipes:
 293                 * The following structure is an integrated pipe protocol, which
 294                 * is implemented on top of standard user-defined data. Pipe
 295                 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
 296                 * use.
 297                 */
 298                struct {
 299                        u32  pipe_mode;
 300                        unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
 301                } pipe;
 302        } u;
 303        /*
 304         * The sub_channel_index is defined in Win8: a value of zero means a
 305         * primary channel and a value of non-zero means a sub-channel.
 306         *
 307         * Before Win8, the field is reserved, meaning it's always zero.
 308         */
 309        u16 sub_channel_index;
 310        u16 reserved3;
 311} __packed;
 312
 313/* Server Flags */
 314#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE        1
 315#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES    2
 316#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS            4
 317#define VMBUS_CHANNEL_NAMED_PIPE_MODE                   0x10
 318#define VMBUS_CHANNEL_LOOPBACK_OFFER                    0x100
 319#define VMBUS_CHANNEL_PARENT_OFFER                      0x200
 320#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION    0x400
 321#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER              0x2000
 322
 323struct vmpacket_descriptor {
 324        u16 type;
 325        u16 offset8;
 326        u16 len8;
 327        u16 flags;
 328        u64 trans_id;
 329} __packed;
 330
 331struct vmpacket_header {
 332        u32 prev_pkt_start_offset;
 333        struct vmpacket_descriptor descriptor;
 334} __packed;
 335
 336struct vmtransfer_page_range {
 337        u32 byte_count;
 338        u32 byte_offset;
 339} __packed;
 340
 341struct vmtransfer_page_packet_header {
 342        struct vmpacket_descriptor d;
 343        u16 xfer_pageset_id;
 344        u8  sender_owns_set;
 345        u8 reserved;
 346        u32 range_cnt;
 347        struct vmtransfer_page_range ranges[1];
 348} __packed;
 349
 350struct vmgpadl_packet_header {
 351        struct vmpacket_descriptor d;
 352        u32 gpadl;
 353        u32 reserved;
 354} __packed;
 355
 356struct vmadd_remove_transfer_page_set {
 357        struct vmpacket_descriptor d;
 358        u32 gpadl;
 359        u16 xfer_pageset_id;
 360        u16 reserved;
 361} __packed;
 362
 363/*
 364 * This structure defines a range in guest physical space that can be made to
 365 * look virtually contiguous.
 366 */
 367struct gpa_range {
 368        u32 byte_count;
 369        u32 byte_offset;
 370        u64 pfn_array[];
 371};
 372
 373/*
 374 * This is the format for an Establish Gpadl packet, which contains a handle by
 375 * which this GPADL will be known and a set of GPA ranges associated with it.
 376 * This can be converted to a MDL by the guest OS.  If there are multiple GPA
 377 * ranges, then the resulting MDL will be "chained," representing multiple VA
 378 * ranges.
 379 */
 380struct vmestablish_gpadl {
 381        struct vmpacket_descriptor d;
 382        u32 gpadl;
 383        u32 range_cnt;
 384        struct gpa_range range[1];
 385} __packed;
 386
 387/*
 388 * This is the format for a Teardown Gpadl packet, which indicates that the
 389 * GPADL handle in the Establish Gpadl packet will never be referenced again.
 390 */
 391struct vmteardown_gpadl {
 392        struct vmpacket_descriptor d;
 393        u32 gpadl;
 394        u32 reserved;   /* for alignment to a 8-byte boundary */
 395} __packed;
 396
 397/*
 398 * This is the format for a GPA-Direct packet, which contains a set of GPA
 399 * ranges, in addition to commands and/or data.
 400 */
 401struct vmdata_gpa_direct {
 402        struct vmpacket_descriptor d;
 403        u32 reserved;
 404        u32 range_cnt;
 405        struct gpa_range range[1];
 406} __packed;
 407
 408/* This is the format for a Additional Data Packet. */
 409struct vmadditional_data {
 410        struct vmpacket_descriptor d;
 411        u64 total_bytes;
 412        u32 offset;
 413        u32 byte_cnt;
 414        unsigned char data[1];
 415} __packed;
 416
 417union vmpacket_largest_possible_header {
 418        struct vmpacket_descriptor simple_hdr;
 419        struct vmtransfer_page_packet_header xfer_page_hdr;
 420        struct vmgpadl_packet_header gpadl_hdr;
 421        struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
 422        struct vmestablish_gpadl establish_gpadl_hdr;
 423        struct vmteardown_gpadl teardown_gpadl_hdr;
 424        struct vmdata_gpa_direct data_gpa_direct_hdr;
 425};
 426
 427#define VMPACKET_DATA_START_ADDRESS(__packet)   \
 428        (void *)(((unsigned char *)__packet) +  \
 429         ((struct vmpacket_descriptor)__packet)->offset8 * 8)
 430
 431#define VMPACKET_DATA_LENGTH(__packet)          \
 432        ((((struct vmpacket_descriptor)__packet)->len8 -        \
 433          ((struct vmpacket_descriptor)__packet)->offset8) * 8)
 434
 435#define VMPACKET_TRANSFER_MODE(__packet)        \
 436        (((struct IMPACT)__packet)->type)
 437
 438enum vmbus_packet_type {
 439        VM_PKT_INVALID                          = 0x0,
 440        VM_PKT_SYNCH                            = 0x1,
 441        VM_PKT_ADD_XFER_PAGESET                 = 0x2,
 442        VM_PKT_RM_XFER_PAGESET                  = 0x3,
 443        VM_PKT_ESTABLISH_GPADL                  = 0x4,
 444        VM_PKT_TEARDOWN_GPADL                   = 0x5,
 445        VM_PKT_DATA_INBAND                      = 0x6,
 446        VM_PKT_DATA_USING_XFER_PAGES            = 0x7,
 447        VM_PKT_DATA_USING_GPADL                 = 0x8,
 448        VM_PKT_DATA_USING_GPA_DIRECT            = 0x9,
 449        VM_PKT_CANCEL_REQUEST                   = 0xa,
 450        VM_PKT_COMP                             = 0xb,
 451        VM_PKT_DATA_USING_ADDITIONAL_PKT        = 0xc,
 452        VM_PKT_ADDITIONAL_DATA                  = 0xd
 453};
 454
 455#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED     1
 456
 457
 458/* Version 1 messages */
 459enum vmbus_channel_message_type {
 460        CHANNELMSG_INVALID                      =  0,
 461        CHANNELMSG_OFFERCHANNEL         =  1,
 462        CHANNELMSG_RESCIND_CHANNELOFFER =  2,
 463        CHANNELMSG_REQUESTOFFERS                =  3,
 464        CHANNELMSG_ALLOFFERS_DELIVERED  =  4,
 465        CHANNELMSG_OPENCHANNEL          =  5,
 466        CHANNELMSG_OPENCHANNEL_RESULT           =  6,
 467        CHANNELMSG_CLOSECHANNEL         =  7,
 468        CHANNELMSG_GPADL_HEADER         =  8,
 469        CHANNELMSG_GPADL_BODY                   =  9,
 470        CHANNELMSG_GPADL_CREATED                = 10,
 471        CHANNELMSG_GPADL_TEARDOWN               = 11,
 472        CHANNELMSG_GPADL_TORNDOWN               = 12,
 473        CHANNELMSG_RELID_RELEASED               = 13,
 474        CHANNELMSG_INITIATE_CONTACT             = 14,
 475        CHANNELMSG_VERSION_RESPONSE             = 15,
 476        CHANNELMSG_UNLOAD                       = 16,
 477        CHANNELMSG_UNLOAD_RESPONSE              = 17,
 478        CHANNELMSG_18                           = 18,
 479        CHANNELMSG_19                           = 19,
 480        CHANNELMSG_20                           = 20,
 481        CHANNELMSG_TL_CONNECT_REQUEST           = 21,
 482        CHANNELMSG_MODIFYCHANNEL                = 22,
 483        CHANNELMSG_TL_CONNECT_RESULT            = 23,
 484        CHANNELMSG_MODIFYCHANNEL_RESPONSE       = 24,
 485        CHANNELMSG_COUNT
 486};
 487
 488/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
 489#define INVALID_RELID   U32_MAX
 490
 491struct vmbus_channel_message_header {
 492        enum vmbus_channel_message_type msgtype;
 493        u32 padding;
 494} __packed;
 495
 496/* Query VMBus Version parameters */
 497struct vmbus_channel_query_vmbus_version {
 498        struct vmbus_channel_message_header header;
 499        u32 version;
 500} __packed;
 501
 502/* VMBus Version Supported parameters */
 503struct vmbus_channel_version_supported {
 504        struct vmbus_channel_message_header header;
 505        u8 version_supported;
 506} __packed;
 507
 508/* Offer Channel parameters */
 509struct vmbus_channel_offer_channel {
 510        struct vmbus_channel_message_header header;
 511        struct vmbus_channel_offer offer;
 512        u32 child_relid;
 513        u8 monitorid;
 514        /*
 515         * win7 and beyond splits this field into a bit field.
 516         */
 517        u8 monitor_allocated:1;
 518        u8 reserved:7;
 519        /*
 520         * These are new fields added in win7 and later.
 521         * Do not access these fields without checking the
 522         * negotiated protocol.
 523         *
 524         * If "is_dedicated_interrupt" is set, we must not set the
 525         * associated bit in the channel bitmap while sending the
 526         * interrupt to the host.
 527         *
 528         * connection_id is to be used in signaling the host.
 529         */
 530        u16 is_dedicated_interrupt:1;
 531        u16 reserved1:15;
 532        u32 connection_id;
 533} __packed;
 534
 535/* Rescind Offer parameters */
 536struct vmbus_channel_rescind_offer {
 537        struct vmbus_channel_message_header header;
 538        u32 child_relid;
 539} __packed;
 540
 541/*
 542 * Request Offer -- no parameters, SynIC message contains the partition ID
 543 * Set Snoop -- no parameters, SynIC message contains the partition ID
 544 * Clear Snoop -- no parameters, SynIC message contains the partition ID
 545 * All Offers Delivered -- no parameters, SynIC message contains the partition
 546 *                         ID
 547 * Flush Client -- no parameters, SynIC message contains the partition ID
 548 */
 549
 550/* Open Channel parameters */
 551struct vmbus_channel_open_channel {
 552        struct vmbus_channel_message_header header;
 553
 554        /* Identifies the specific VMBus channel that is being opened. */
 555        u32 child_relid;
 556
 557        /* ID making a particular open request at a channel offer unique. */
 558        u32 openid;
 559
 560        /* GPADL for the channel's ring buffer. */
 561        u32 ringbuffer_gpadlhandle;
 562
 563        /*
 564         * Starting with win8, this field will be used to specify
 565         * the target virtual processor on which to deliver the interrupt for
 566         * the host to guest communication.
 567         * Prior to win8, incoming channel interrupts would only
 568         * be delivered on cpu 0. Setting this value to 0 would
 569         * preserve the earlier behavior.
 570         */
 571        u32 target_vp;
 572
 573        /*
 574         * The upstream ring buffer begins at offset zero in the memory
 575         * described by RingBufferGpadlHandle. The downstream ring buffer
 576         * follows it at this offset (in pages).
 577         */
 578        u32 downstream_ringbuffer_pageoffset;
 579
 580        /* User-specific data to be passed along to the server endpoint. */
 581        unsigned char userdata[MAX_USER_DEFINED_BYTES];
 582} __packed;
 583
 584/* Open Channel Result parameters */
 585struct vmbus_channel_open_result {
 586        struct vmbus_channel_message_header header;
 587        u32 child_relid;
 588        u32 openid;
 589        u32 status;
 590} __packed;
 591
 592/* Modify Channel Result parameters */
 593struct vmbus_channel_modifychannel_response {
 594        struct vmbus_channel_message_header header;
 595        u32 child_relid;
 596        u32 status;
 597} __packed;
 598
 599/* Close channel parameters; */
 600struct vmbus_channel_close_channel {
 601        struct vmbus_channel_message_header header;
 602        u32 child_relid;
 603} __packed;
 604
 605/* Channel Message GPADL */
 606#define GPADL_TYPE_RING_BUFFER          1
 607#define GPADL_TYPE_SERVER_SAVE_AREA     2
 608#define GPADL_TYPE_TRANSACTION          8
 609
 610/*
 611 * The number of PFNs in a GPADL message is defined by the number of
 612 * pages that would be spanned by ByteCount and ByteOffset.  If the
 613 * implied number of PFNs won't fit in this packet, there will be a
 614 * follow-up packet that contains more.
 615 */
 616struct vmbus_channel_gpadl_header {
 617        struct vmbus_channel_message_header header;
 618        u32 child_relid;
 619        u32 gpadl;
 620        u16 range_buflen;
 621        u16 rangecount;
 622        struct gpa_range range[];
 623} __packed;
 624
 625/* This is the followup packet that contains more PFNs. */
 626struct vmbus_channel_gpadl_body {
 627        struct vmbus_channel_message_header header;
 628        u32 msgnumber;
 629        u32 gpadl;
 630        u64 pfn[];
 631} __packed;
 632
 633struct vmbus_channel_gpadl_created {
 634        struct vmbus_channel_message_header header;
 635        u32 child_relid;
 636        u32 gpadl;
 637        u32 creation_status;
 638} __packed;
 639
 640struct vmbus_channel_gpadl_teardown {
 641        struct vmbus_channel_message_header header;
 642        u32 child_relid;
 643        u32 gpadl;
 644} __packed;
 645
 646struct vmbus_channel_gpadl_torndown {
 647        struct vmbus_channel_message_header header;
 648        u32 gpadl;
 649} __packed;
 650
 651struct vmbus_channel_relid_released {
 652        struct vmbus_channel_message_header header;
 653        u32 child_relid;
 654} __packed;
 655
 656struct vmbus_channel_initiate_contact {
 657        struct vmbus_channel_message_header header;
 658        u32 vmbus_version_requested;
 659        u32 target_vcpu; /* The VCPU the host should respond to */
 660        union {
 661                u64 interrupt_page;
 662                struct {
 663                        u8      msg_sint;
 664                        u8      padding1[3];
 665                        u32     padding2;
 666                };
 667        };
 668        u64 monitor_page1;
 669        u64 monitor_page2;
 670} __packed;
 671
 672/* Hyper-V socket: guest's connect()-ing to host */
 673struct vmbus_channel_tl_connect_request {
 674        struct vmbus_channel_message_header header;
 675        guid_t guest_endpoint_id;
 676        guid_t host_service_id;
 677} __packed;
 678
 679/* Modify Channel parameters, cf. vmbus_send_modifychannel() */
 680struct vmbus_channel_modifychannel {
 681        struct vmbus_channel_message_header header;
 682        u32 child_relid;
 683        u32 target_vp;
 684} __packed;
 685
 686struct vmbus_channel_version_response {
 687        struct vmbus_channel_message_header header;
 688        u8 version_supported;
 689
 690        u8 connection_state;
 691        u16 padding;
 692
 693        /*
 694         * On new hosts that support VMBus protocol 5.0, we must use
 695         * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
 696         * and for subsequent messages, we must use the Message Connection ID
 697         * field in the host-returned Version Response Message.
 698         *
 699         * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
 700         */
 701        u32 msg_conn_id;
 702} __packed;
 703
 704enum vmbus_channel_state {
 705        CHANNEL_OFFER_STATE,
 706        CHANNEL_OPENING_STATE,
 707        CHANNEL_OPEN_STATE,
 708        CHANNEL_OPENED_STATE,
 709};
 710
 711/*
 712 * Represents each channel msg on the vmbus connection This is a
 713 * variable-size data structure depending on the msg type itself
 714 */
 715struct vmbus_channel_msginfo {
 716        /* Bookkeeping stuff */
 717        struct list_head msglistentry;
 718
 719        /* So far, this is only used to handle gpadl body message */
 720        struct list_head submsglist;
 721
 722        /* Synchronize the request/response if needed */
 723        struct completion  waitevent;
 724        struct vmbus_channel *waiting_channel;
 725        union {
 726                struct vmbus_channel_version_supported version_supported;
 727                struct vmbus_channel_open_result open_result;
 728                struct vmbus_channel_gpadl_torndown gpadl_torndown;
 729                struct vmbus_channel_gpadl_created gpadl_created;
 730                struct vmbus_channel_version_response version_response;
 731                struct vmbus_channel_modifychannel_response modify_response;
 732        } response;
 733
 734        u32 msgsize;
 735        /*
 736         * The channel message that goes out on the "wire".
 737         * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
 738         */
 739        unsigned char msg[];
 740};
 741
 742struct vmbus_close_msg {
 743        struct vmbus_channel_msginfo info;
 744        struct vmbus_channel_close_channel msg;
 745};
 746
 747/* Define connection identifier type. */
 748union hv_connection_id {
 749        u32 asu32;
 750        struct {
 751                u32 id:24;
 752                u32 reserved:8;
 753        } u;
 754};
 755
 756enum vmbus_device_type {
 757        HV_IDE = 0,
 758        HV_SCSI,
 759        HV_FC,
 760        HV_NIC,
 761        HV_ND,
 762        HV_PCIE,
 763        HV_FB,
 764        HV_KBD,
 765        HV_MOUSE,
 766        HV_KVP,
 767        HV_TS,
 768        HV_HB,
 769        HV_SHUTDOWN,
 770        HV_FCOPY,
 771        HV_BACKUP,
 772        HV_DM,
 773        HV_UNKNOWN,
 774};
 775
 776/*
 777 * Provides request ids for VMBus. Encapsulates guest memory
 778 * addresses and stores the next available slot in req_arr
 779 * to generate new ids in constant time.
 780 */
 781struct vmbus_requestor {
 782        u64 *req_arr;
 783        unsigned long *req_bitmap; /* is a given slot available? */
 784        u32 size;
 785        u64 next_request_id;
 786        spinlock_t req_lock; /* provides atomicity */
 787};
 788
 789#define VMBUS_NO_RQSTOR U64_MAX
 790#define VMBUS_RQST_ERROR (U64_MAX - 1)
 791/* NetVSC-specific */
 792#define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2)
 793/* StorVSC-specific */
 794#define VMBUS_RQST_INIT (U64_MAX - 2)
 795#define VMBUS_RQST_RESET (U64_MAX - 3)
 796
 797struct vmbus_device {
 798        u16  dev_type;
 799        guid_t guid;
 800        bool perf_device;
 801        bool allowed_in_isolated;
 802};
 803
 804#define VMBUS_DEFAULT_MAX_PKT_SIZE 4096
 805
 806struct vmbus_channel {
 807        struct list_head listentry;
 808
 809        struct hv_device *device_obj;
 810
 811        enum vmbus_channel_state state;
 812
 813        struct vmbus_channel_offer_channel offermsg;
 814        /*
 815         * These are based on the OfferMsg.MonitorId.
 816         * Save it here for easy access.
 817         */
 818        u8 monitor_grp;
 819        u8 monitor_bit;
 820
 821        bool rescind; /* got rescind msg */
 822        bool rescind_ref; /* got rescind msg, got channel reference */
 823        struct completion rescind_event;
 824
 825        u32 ringbuffer_gpadlhandle;
 826
 827        /* Allocated memory for ring buffer */
 828        struct page *ringbuffer_page;
 829        u32 ringbuffer_pagecount;
 830        u32 ringbuffer_send_offset;
 831        struct hv_ring_buffer_info outbound;    /* send to parent */
 832        struct hv_ring_buffer_info inbound;     /* receive from parent */
 833
 834        struct vmbus_close_msg close_msg;
 835
 836        /* Statistics */
 837        u64     interrupts;     /* Host to Guest interrupts */
 838        u64     sig_events;     /* Guest to Host events */
 839
 840        /*
 841         * Guest to host interrupts caused by the outbound ring buffer changing
 842         * from empty to not empty.
 843         */
 844        u64 intr_out_empty;
 845
 846        /*
 847         * Indicates that a full outbound ring buffer was encountered. The flag
 848         * is set to true when a full outbound ring buffer is encountered and
 849         * set to false when a write to the outbound ring buffer is completed.
 850         */
 851        bool out_full_flag;
 852
 853        /* Channel callback's invoked in softirq context */
 854        struct tasklet_struct callback_event;
 855        void (*onchannel_callback)(void *context);
 856        void *channel_callback_context;
 857
 858        void (*change_target_cpu_callback)(struct vmbus_channel *channel,
 859                        u32 old, u32 new);
 860
 861        /*
 862         * Synchronize channel scheduling and channel removal; see the inline
 863         * comments in vmbus_chan_sched() and vmbus_reset_channel_cb().
 864         */
 865        spinlock_t sched_lock;
 866
 867        /*
 868         * A channel can be marked for one of three modes of reading:
 869         *   BATCHED - callback called from taslket and should read
 870         *            channel until empty. Interrupts from the host
 871         *            are masked while read is in process (default).
 872         *   DIRECT - callback called from tasklet (softirq).
 873         *   ISR - callback called in interrupt context and must
 874         *         invoke its own deferred processing.
 875         *         Host interrupts are disabled and must be re-enabled
 876         *         when ring is empty.
 877         */
 878        enum hv_callback_mode {
 879                HV_CALL_BATCHED,
 880                HV_CALL_DIRECT,
 881                HV_CALL_ISR
 882        } callback_mode;
 883
 884        bool is_dedicated_interrupt;
 885        u64 sig_event;
 886
 887        /*
 888         * Starting with win8, this field will be used to specify the
 889         * target CPU on which to deliver the interrupt for the host
 890         * to guest communication.
 891         *
 892         * Prior to win8, incoming channel interrupts would only be
 893         * delivered on CPU 0. Setting this value to 0 would preserve
 894         * the earlier behavior.
 895         */
 896        u32 target_cpu;
 897        /*
 898         * Support for sub-channels. For high performance devices,
 899         * it will be useful to have multiple sub-channels to support
 900         * a scalable communication infrastructure with the host.
 901         * The support for sub-channels is implemented as an extension
 902         * to the current infrastructure.
 903         * The initial offer is considered the primary channel and this
 904         * offer message will indicate if the host supports sub-channels.
 905         * The guest is free to ask for sub-channels to be offered and can
 906         * open these sub-channels as a normal "primary" channel. However,
 907         * all sub-channels will have the same type and instance guids as the
 908         * primary channel. Requests sent on a given channel will result in a
 909         * response on the same channel.
 910         */
 911
 912        /*
 913         * Sub-channel creation callback. This callback will be called in
 914         * process context when a sub-channel offer is received from the host.
 915         * The guest can open the sub-channel in the context of this callback.
 916         */
 917        void (*sc_creation_callback)(struct vmbus_channel *new_sc);
 918
 919        /*
 920         * Channel rescind callback. Some channels (the hvsock ones), need to
 921         * register a callback which is invoked in vmbus_onoffer_rescind().
 922         */
 923        void (*chn_rescind_callback)(struct vmbus_channel *channel);
 924
 925        /*
 926         * All Sub-channels of a primary channel are linked here.
 927         */
 928        struct list_head sc_list;
 929        /*
 930         * The primary channel this sub-channel belongs to.
 931         * This will be NULL for the primary channel.
 932         */
 933        struct vmbus_channel *primary_channel;
 934        /*
 935         * Support per-channel state for use by vmbus drivers.
 936         */
 937        void *per_channel_state;
 938
 939        /*
 940         * Defer freeing channel until after all cpu's have
 941         * gone through grace period.
 942         */
 943        struct rcu_head rcu;
 944
 945        /*
 946         * For sysfs per-channel properties.
 947         */
 948        struct kobject                  kobj;
 949
 950        /*
 951         * For performance critical channels (storage, networking
 952         * etc,), Hyper-V has a mechanism to enhance the throughput
 953         * at the expense of latency:
 954         * When the host is to be signaled, we just set a bit in a shared page
 955         * and this bit will be inspected by the hypervisor within a certain
 956         * window and if the bit is set, the host will be signaled. The window
 957         * of time is the monitor latency - currently around 100 usecs. This
 958         * mechanism improves throughput by:
 959         *
 960         * A) Making the host more efficient - each time it wakes up,
 961         *    potentially it will process morev number of packets. The
 962         *    monitor latency allows a batch to build up.
 963         * B) By deferring the hypercall to signal, we will also minimize
 964         *    the interrupts.
 965         *
 966         * Clearly, these optimizations improve throughput at the expense of
 967         * latency. Furthermore, since the channel is shared for both
 968         * control and data messages, control messages currently suffer
 969         * unnecessary latency adversely impacting performance and boot
 970         * time. To fix this issue, permit tagging the channel as being
 971         * in "low latency" mode. In this mode, we will bypass the monitor
 972         * mechanism.
 973         */
 974        bool low_latency;
 975
 976        bool probe_done;
 977
 978        /*
 979         * Cache the device ID here for easy access; this is useful, in
 980         * particular, in situations where the channel's device_obj has
 981         * not been allocated/initialized yet.
 982         */
 983        u16 device_id;
 984
 985        /*
 986         * We must offload the handling of the primary/sub channels
 987         * from the single-threaded vmbus_connection.work_queue to
 988         * two different workqueue, otherwise we can block
 989         * vmbus_connection.work_queue and hang: see vmbus_process_offer().
 990         */
 991        struct work_struct add_channel_work;
 992
 993        /*
 994         * Guest to host interrupts caused by the inbound ring buffer changing
 995         * from full to not full while a packet is waiting.
 996         */
 997        u64 intr_in_full;
 998
 999        /*
1000         * The total number of write operations that encountered a full
1001         * outbound ring buffer.
1002         */
1003        u64 out_full_total;
1004
1005        /*
1006         * The number of write operations that were the first to encounter a
1007         * full outbound ring buffer.
1008         */
1009        u64 out_full_first;
1010
1011        /* enabling/disabling fuzz testing on the channel (default is false)*/
1012        bool fuzz_testing_state;
1013
1014        /*
1015         * Interrupt delay will delay the guest from emptying the ring buffer
1016         * for a specific amount of time. The delay is in microseconds and will
1017         * be between 1 to a maximum of 1000, its default is 0 (no delay).
1018         * The  Message delay will delay guest reading on a per message basis
1019         * in microseconds between 1 to 1000 with the default being 0
1020         * (no delay).
1021         */
1022        u32 fuzz_testing_interrupt_delay;
1023        u32 fuzz_testing_message_delay;
1024
1025        /* callback to generate a request ID from a request address */
1026        u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr);
1027        /* callback to retrieve a request address from a request ID */
1028        u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id);
1029
1030        /* request/transaction ids for VMBus */
1031        struct vmbus_requestor requestor;
1032        u32 rqstor_size;
1033
1034        /* The max size of a packet on this channel */
1035        u32 max_pkt_size;
1036};
1037
1038u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr);
1039u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id);
1040
1041static inline bool is_hvsock_channel(const struct vmbus_channel *c)
1042{
1043        return !!(c->offermsg.offer.chn_flags &
1044                  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
1045}
1046
1047static inline bool is_sub_channel(const struct vmbus_channel *c)
1048{
1049        return c->offermsg.offer.sub_channel_index != 0;
1050}
1051
1052static inline void set_channel_read_mode(struct vmbus_channel *c,
1053                                        enum hv_callback_mode mode)
1054{
1055        c->callback_mode = mode;
1056}
1057
1058static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
1059{
1060        c->per_channel_state = s;
1061}
1062
1063static inline void *get_per_channel_state(struct vmbus_channel *c)
1064{
1065        return c->per_channel_state;
1066}
1067
1068static inline void set_channel_pending_send_size(struct vmbus_channel *c,
1069                                                 u32 size)
1070{
1071        unsigned long flags;
1072
1073        if (size) {
1074                spin_lock_irqsave(&c->outbound.ring_lock, flags);
1075                ++c->out_full_total;
1076
1077                if (!c->out_full_flag) {
1078                        ++c->out_full_first;
1079                        c->out_full_flag = true;
1080                }
1081                spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
1082        } else {
1083                c->out_full_flag = false;
1084        }
1085
1086        c->outbound.ring_buffer->pending_send_sz = size;
1087}
1088
1089void vmbus_onmessage(struct vmbus_channel_message_header *hdr);
1090
1091int vmbus_request_offers(void);
1092
1093/*
1094 * APIs for managing sub-channels.
1095 */
1096
1097void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1098                        void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1099
1100void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1101                void (*chn_rescind_cb)(struct vmbus_channel *));
1102
1103/*
1104 * Check if sub-channels have already been offerred. This API will be useful
1105 * when the driver is unloaded after establishing sub-channels. In this case,
1106 * when the driver is re-loaded, the driver would have to check if the
1107 * subchannels have already been established before attempting to request
1108 * the creation of sub-channels.
1109 * This function returns TRUE to indicate that subchannels have already been
1110 * created.
1111 * This function should be invoked after setting the callback function for
1112 * sub-channel creation.
1113 */
1114bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1115
1116/* The format must be the same as struct vmdata_gpa_direct */
1117struct vmbus_channel_packet_page_buffer {
1118        u16 type;
1119        u16 dataoffset8;
1120        u16 length8;
1121        u16 flags;
1122        u64 transactionid;
1123        u32 reserved;
1124        u32 rangecount;
1125        struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1126} __packed;
1127
1128/* The format must be the same as struct vmdata_gpa_direct */
1129struct vmbus_channel_packet_multipage_buffer {
1130        u16 type;
1131        u16 dataoffset8;
1132        u16 length8;
1133        u16 flags;
1134        u64 transactionid;
1135        u32 reserved;
1136        u32 rangecount;         /* Always 1 in this case */
1137        struct hv_multipage_buffer range;
1138} __packed;
1139
1140/* The format must be the same as struct vmdata_gpa_direct */
1141struct vmbus_packet_mpb_array {
1142        u16 type;
1143        u16 dataoffset8;
1144        u16 length8;
1145        u16 flags;
1146        u64 transactionid;
1147        u32 reserved;
1148        u32 rangecount;         /* Always 1 in this case */
1149        struct hv_mpb_array range;
1150} __packed;
1151
1152int vmbus_alloc_ring(struct vmbus_channel *channel,
1153                     u32 send_size, u32 recv_size);
1154void vmbus_free_ring(struct vmbus_channel *channel);
1155
1156int vmbus_connect_ring(struct vmbus_channel *channel,
1157                       void (*onchannel_callback)(void *context),
1158                       void *context);
1159int vmbus_disconnect_ring(struct vmbus_channel *channel);
1160
1161extern int vmbus_open(struct vmbus_channel *channel,
1162                            u32 send_ringbuffersize,
1163                            u32 recv_ringbuffersize,
1164                            void *userdata,
1165                            u32 userdatalen,
1166                            void (*onchannel_callback)(void *context),
1167                            void *context);
1168
1169extern void vmbus_close(struct vmbus_channel *channel);
1170
1171extern int vmbus_sendpacket(struct vmbus_channel *channel,
1172                                  void *buffer,
1173                                  u32 bufferLen,
1174                                  u64 requestid,
1175                                  enum vmbus_packet_type type,
1176                                  u32 flags);
1177
1178extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1179                                            struct hv_page_buffer pagebuffers[],
1180                                            u32 pagecount,
1181                                            void *buffer,
1182                                            u32 bufferlen,
1183                                            u64 requestid);
1184
1185extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1186                                     struct vmbus_packet_mpb_array *mpb,
1187                                     u32 desc_size,
1188                                     void *buffer,
1189                                     u32 bufferlen,
1190                                     u64 requestid);
1191
1192extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1193                                      void *kbuffer,
1194                                      u32 size,
1195                                      u32 *gpadl_handle);
1196
1197extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1198                                     u32 gpadl_handle);
1199
1200void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1201
1202extern int vmbus_recvpacket(struct vmbus_channel *channel,
1203                                  void *buffer,
1204                                  u32 bufferlen,
1205                                  u32 *buffer_actual_len,
1206                                  u64 *requestid);
1207
1208extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1209                                     void *buffer,
1210                                     u32 bufferlen,
1211                                     u32 *buffer_actual_len,
1212                                     u64 *requestid);
1213
1214
1215extern void vmbus_ontimer(unsigned long data);
1216
1217/* Base driver object */
1218struct hv_driver {
1219        const char *name;
1220
1221        /*
1222         * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1223         * channel flag, actually doesn't mean a synthetic device because the
1224         * offer's if_type/if_instance can change for every new hvsock
1225         * connection.
1226         *
1227         * However, to facilitate the notification of new-offer/rescind-offer
1228         * from vmbus driver to hvsock driver, we can handle hvsock offer as
1229         * a special vmbus device, and hence we need the below flag to
1230         * indicate if the driver is the hvsock driver or not: we need to
1231         * specially treat the hvosck offer & driver in vmbus_match().
1232         */
1233        bool hvsock;
1234
1235        /* the device type supported by this driver */
1236        guid_t dev_type;
1237        const struct hv_vmbus_device_id *id_table;
1238
1239        struct device_driver driver;
1240
1241        /* dynamic device GUID's */
1242        struct  {
1243                spinlock_t lock;
1244                struct list_head list;
1245        } dynids;
1246
1247        int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1248        int (*remove)(struct hv_device *);
1249        void (*shutdown)(struct hv_device *);
1250
1251        int (*suspend)(struct hv_device *);
1252        int (*resume)(struct hv_device *);
1253
1254};
1255
1256/* Base device object */
1257struct hv_device {
1258        /* the device type id of this device */
1259        guid_t dev_type;
1260
1261        /* the device instance id of this device */
1262        guid_t dev_instance;
1263        u16 vendor_id;
1264        u16 device_id;
1265
1266        struct device device;
1267        char *driver_override; /* Driver name to force a match */
1268
1269        struct vmbus_channel *channel;
1270        struct kset          *channels_kset;
1271
1272        /* place holder to keep track of the dir for hv device in debugfs */
1273        struct dentry *debug_dir;
1274
1275};
1276
1277
1278static inline struct hv_device *device_to_hv_device(struct device *d)
1279{
1280        return container_of(d, struct hv_device, device);
1281}
1282
1283static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1284{
1285        return container_of(d, struct hv_driver, driver);
1286}
1287
1288static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1289{
1290        dev_set_drvdata(&dev->device, data);
1291}
1292
1293static inline void *hv_get_drvdata(struct hv_device *dev)
1294{
1295        return dev_get_drvdata(&dev->device);
1296}
1297
1298struct hv_ring_buffer_debug_info {
1299        u32 current_interrupt_mask;
1300        u32 current_read_index;
1301        u32 current_write_index;
1302        u32 bytes_avail_toread;
1303        u32 bytes_avail_towrite;
1304};
1305
1306
1307int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1308                                struct hv_ring_buffer_debug_info *debug_info);
1309
1310/* Vmbus interface */
1311#define vmbus_driver_register(driver)   \
1312        __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1313int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1314                                         struct module *owner,
1315                                         const char *mod_name);
1316void vmbus_driver_unregister(struct hv_driver *hv_driver);
1317
1318void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1319
1320int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1321                        resource_size_t min, resource_size_t max,
1322                        resource_size_t size, resource_size_t align,
1323                        bool fb_overlap_ok);
1324void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1325
1326/*
1327 * GUID definitions of various offer types - services offered to the guest.
1328 */
1329
1330/*
1331 * Network GUID
1332 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1333 */
1334#define HV_NIC_GUID \
1335        .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1336                          0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1337
1338/*
1339 * IDE GUID
1340 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1341 */
1342#define HV_IDE_GUID \
1343        .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1344                          0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1345
1346/*
1347 * SCSI GUID
1348 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1349 */
1350#define HV_SCSI_GUID \
1351        .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1352                          0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1353
1354/*
1355 * Shutdown GUID
1356 * {0e0b6031-5213-4934-818b-38d90ced39db}
1357 */
1358#define HV_SHUTDOWN_GUID \
1359        .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1360                          0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1361
1362/*
1363 * Time Synch GUID
1364 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1365 */
1366#define HV_TS_GUID \
1367        .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1368                          0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1369
1370/*
1371 * Heartbeat GUID
1372 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1373 */
1374#define HV_HEART_BEAT_GUID \
1375        .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1376                          0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1377
1378/*
1379 * KVP GUID
1380 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1381 */
1382#define HV_KVP_GUID \
1383        .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1384                          0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1385
1386/*
1387 * Dynamic memory GUID
1388 * {525074dc-8985-46e2-8057-a307dc18a502}
1389 */
1390#define HV_DM_GUID \
1391        .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1392                          0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1393
1394/*
1395 * Mouse GUID
1396 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1397 */
1398#define HV_MOUSE_GUID \
1399        .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1400                          0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1401
1402/*
1403 * Keyboard GUID
1404 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1405 */
1406#define HV_KBD_GUID \
1407        .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1408                          0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1409
1410/*
1411 * VSS (Backup/Restore) GUID
1412 */
1413#define HV_VSS_GUID \
1414        .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1415                          0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1416/*
1417 * Synthetic Video GUID
1418 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1419 */
1420#define HV_SYNTHVID_GUID \
1421        .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1422                          0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1423
1424/*
1425 * Synthetic FC GUID
1426 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1427 */
1428#define HV_SYNTHFC_GUID \
1429        .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1430                          0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1431
1432/*
1433 * Guest File Copy Service
1434 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1435 */
1436
1437#define HV_FCOPY_GUID \
1438        .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1439                          0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1440
1441/*
1442 * NetworkDirect. This is the guest RDMA service.
1443 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1444 */
1445#define HV_ND_GUID \
1446        .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1447                          0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1448
1449/*
1450 * PCI Express Pass Through
1451 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1452 */
1453
1454#define HV_PCIE_GUID \
1455        .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1456                          0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1457
1458/*
1459 * Linux doesn't support the 3 devices: the first two are for
1460 * Automatic Virtual Machine Activation, and the third is for
1461 * Remote Desktop Virtualization.
1462 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1463 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1464 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1465 */
1466
1467#define HV_AVMA1_GUID \
1468        .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1469                          0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1470
1471#define HV_AVMA2_GUID \
1472        .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1473                          0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1474
1475#define HV_RDV_GUID \
1476        .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1477                          0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1478
1479/*
1480 * Common header for Hyper-V ICs
1481 */
1482
1483#define ICMSGTYPE_NEGOTIATE             0
1484#define ICMSGTYPE_HEARTBEAT             1
1485#define ICMSGTYPE_KVPEXCHANGE           2
1486#define ICMSGTYPE_SHUTDOWN              3
1487#define ICMSGTYPE_TIMESYNC              4
1488#define ICMSGTYPE_VSS                   5
1489#define ICMSGTYPE_FCOPY                 7
1490
1491#define ICMSGHDRFLAG_TRANSACTION        1
1492#define ICMSGHDRFLAG_REQUEST            2
1493#define ICMSGHDRFLAG_RESPONSE           4
1494
1495
1496/*
1497 * While we want to handle util services as regular devices,
1498 * there is only one instance of each of these services; so
1499 * we statically allocate the service specific state.
1500 */
1501
1502struct hv_util_service {
1503        u8 *recv_buffer;
1504        void *channel;
1505        void (*util_cb)(void *);
1506        int (*util_init)(struct hv_util_service *);
1507        void (*util_deinit)(void);
1508        int (*util_pre_suspend)(void);
1509        int (*util_pre_resume)(void);
1510};
1511
1512struct vmbuspipe_hdr {
1513        u32 flags;
1514        u32 msgsize;
1515} __packed;
1516
1517struct ic_version {
1518        u16 major;
1519        u16 minor;
1520} __packed;
1521
1522struct icmsg_hdr {
1523        struct ic_version icverframe;
1524        u16 icmsgtype;
1525        struct ic_version icvermsg;
1526        u16 icmsgsize;
1527        u32 status;
1528        u8 ictransaction_id;
1529        u8 icflags;
1530        u8 reserved[2];
1531} __packed;
1532
1533#define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100
1534#define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr))
1535#define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \
1536        (ICMSG_HDR + sizeof(struct icmsg_negotiate) + \
1537         (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version)))
1538
1539struct icmsg_negotiate {
1540        u16 icframe_vercnt;
1541        u16 icmsg_vercnt;
1542        u32 reserved;
1543        struct ic_version icversion_data[]; /* any size array */
1544} __packed;
1545
1546struct shutdown_msg_data {
1547        u32 reason_code;
1548        u32 timeout_seconds;
1549        u32 flags;
1550        u8  display_message[2048];
1551} __packed;
1552
1553struct heartbeat_msg_data {
1554        u64 seq_num;
1555        u32 reserved[8];
1556} __packed;
1557
1558/* Time Sync IC defs */
1559#define ICTIMESYNCFLAG_PROBE    0
1560#define ICTIMESYNCFLAG_SYNC     1
1561#define ICTIMESYNCFLAG_SAMPLE   2
1562
1563#ifdef __x86_64__
1564#define WLTIMEDELTA     116444736000000000L     /* in 100ns unit */
1565#else
1566#define WLTIMEDELTA     116444736000000000LL
1567#endif
1568
1569struct ictimesync_data {
1570        u64 parenttime;
1571        u64 childtime;
1572        u64 roundtriptime;
1573        u8 flags;
1574} __packed;
1575
1576struct ictimesync_ref_data {
1577        u64 parenttime;
1578        u64 vmreferencetime;
1579        u8 flags;
1580        char leapflags;
1581        char stratum;
1582        u8 reserved[3];
1583} __packed;
1584
1585struct hyperv_service_callback {
1586        u8 msg_type;
1587        char *log_msg;
1588        guid_t data;
1589        struct vmbus_channel *channel;
1590        void (*callback)(void *context);
1591};
1592
1593#define MAX_SRV_VER     0x7ffffff
1594extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen,
1595                                const int *fw_version, int fw_vercnt,
1596                                const int *srv_version, int srv_vercnt,
1597                                int *nego_fw_version, int *nego_srv_version);
1598
1599void hv_process_channel_removal(struct vmbus_channel *channel);
1600
1601void vmbus_setevent(struct vmbus_channel *channel);
1602/*
1603 * Negotiated version with the Host.
1604 */
1605
1606extern __u32 vmbus_proto_version;
1607
1608int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1609                                  const guid_t *shv_host_servie_id);
1610int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp);
1611void vmbus_set_event(struct vmbus_channel *channel);
1612
1613/* Get the start of the ring buffer. */
1614static inline void *
1615hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1616{
1617        return ring_info->ring_buffer->buffer;
1618}
1619
1620/*
1621 * Mask off host interrupt callback notifications
1622 */
1623static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1624{
1625        rbi->ring_buffer->interrupt_mask = 1;
1626
1627        /* make sure mask update is not reordered */
1628        virt_mb();
1629}
1630
1631/*
1632 * Re-enable host callback and return number of outstanding bytes
1633 */
1634static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1635{
1636
1637        rbi->ring_buffer->interrupt_mask = 0;
1638
1639        /* make sure mask update is not reordered */
1640        virt_mb();
1641
1642        /*
1643         * Now check to see if the ring buffer is still empty.
1644         * If it is not, we raced and we need to process new
1645         * incoming messages.
1646         */
1647        return hv_get_bytes_to_read(rbi);
1648}
1649
1650/*
1651 * An API to support in-place processing of incoming VMBUS packets.
1652 */
1653
1654/* Get data payload associated with descriptor */
1655static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1656{
1657        return (void *)((unsigned long)desc + (desc->offset8 << 3));
1658}
1659
1660/* Get data size associated with descriptor */
1661static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1662{
1663        return (desc->len8 << 3) - (desc->offset8 << 3);
1664}
1665
1666
1667struct vmpacket_descriptor *
1668hv_pkt_iter_first_raw(struct vmbus_channel *channel);
1669
1670struct vmpacket_descriptor *
1671hv_pkt_iter_first(struct vmbus_channel *channel);
1672
1673struct vmpacket_descriptor *
1674__hv_pkt_iter_next(struct vmbus_channel *channel,
1675                   const struct vmpacket_descriptor *pkt,
1676                   bool copy);
1677
1678void hv_pkt_iter_close(struct vmbus_channel *channel);
1679
1680static inline struct vmpacket_descriptor *
1681hv_pkt_iter_next_pkt(struct vmbus_channel *channel,
1682                     const struct vmpacket_descriptor *pkt,
1683                     bool copy)
1684{
1685        struct vmpacket_descriptor *nxt;
1686
1687        nxt = __hv_pkt_iter_next(channel, pkt, copy);
1688        if (!nxt)
1689                hv_pkt_iter_close(channel);
1690
1691        return nxt;
1692}
1693
1694/*
1695 * Get next packet descriptor without copying it out of the ring buffer
1696 * If at end of list, return NULL and update host.
1697 */
1698static inline struct vmpacket_descriptor *
1699hv_pkt_iter_next_raw(struct vmbus_channel *channel,
1700                     const struct vmpacket_descriptor *pkt)
1701{
1702        return hv_pkt_iter_next_pkt(channel, pkt, false);
1703}
1704
1705/*
1706 * Get next packet descriptor from iterator
1707 * If at end of list, return NULL and update host.
1708 */
1709static inline struct vmpacket_descriptor *
1710hv_pkt_iter_next(struct vmbus_channel *channel,
1711                 const struct vmpacket_descriptor *pkt)
1712{
1713        return hv_pkt_iter_next_pkt(channel, pkt, true);
1714}
1715
1716#define foreach_vmbus_pkt(pkt, channel) \
1717        for (pkt = hv_pkt_iter_first(channel); pkt; \
1718            pkt = hv_pkt_iter_next(channel, pkt))
1719
1720/*
1721 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1722 * sends requests to read and write blocks. Each block must be 128 bytes or
1723 * smaller. Optionally, the VF driver can register a callback function which
1724 * will be invoked when the host says that one or more of the first 64 block
1725 * IDs is "invalid" which means that the VF driver should reread them.
1726 */
1727#define HV_CONFIG_BLOCK_SIZE_MAX 128
1728
1729int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1730                        unsigned int block_id, unsigned int *bytes_returned);
1731int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1732                         unsigned int block_id);
1733int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1734                                void (*block_invalidate)(void *context,
1735                                                         u64 block_mask));
1736
1737struct hyperv_pci_block_ops {
1738        int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1739                          unsigned int block_id, unsigned int *bytes_returned);
1740        int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1741                           unsigned int block_id);
1742        int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1743                                  void (*block_invalidate)(void *context,
1744                                                           u64 block_mask));
1745};
1746
1747extern struct hyperv_pci_block_ops hvpci_block_ops;
1748
1749static inline unsigned long virt_to_hvpfn(void *addr)
1750{
1751        phys_addr_t paddr;
1752
1753        if (is_vmalloc_addr(addr))
1754                paddr = page_to_phys(vmalloc_to_page(addr)) +
1755                                     offset_in_page(addr);
1756        else
1757                paddr = __pa(addr);
1758
1759        return  paddr >> HV_HYP_PAGE_SHIFT;
1760}
1761
1762#define NR_HV_HYP_PAGES_IN_PAGE (PAGE_SIZE / HV_HYP_PAGE_SIZE)
1763#define offset_in_hvpage(ptr)   ((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK)
1764#define HVPFN_UP(x)     (((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT)
1765#define HVPFN_DOWN(x)   ((x) >> HV_HYP_PAGE_SHIFT)
1766#define page_to_hvpfn(page)     (page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE)
1767
1768#endif /* _HYPERV_H */
1769