linux/include/linux/jiffies.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_JIFFIES_H
   3#define _LINUX_JIFFIES_H
   4
   5#include <linux/cache.h>
   6#include <linux/limits.h>
   7#include <linux/math64.h>
   8#include <linux/minmax.h>
   9#include <linux/types.h>
  10#include <linux/time.h>
  11#include <linux/timex.h>
  12#include <vdso/jiffies.h>
  13#include <asm/param.h>                  /* for HZ */
  14#include <generated/timeconst.h>
  15
  16/*
  17 * The following defines establish the engineering parameters of the PLL
  18 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
  19 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
  20 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
  21 * nearest power of two in order to avoid hardware multiply operations.
  22 */
  23#if HZ >= 12 && HZ < 24
  24# define SHIFT_HZ       4
  25#elif HZ >= 24 && HZ < 48
  26# define SHIFT_HZ       5
  27#elif HZ >= 48 && HZ < 96
  28# define SHIFT_HZ       6
  29#elif HZ >= 96 && HZ < 192
  30# define SHIFT_HZ       7
  31#elif HZ >= 192 && HZ < 384
  32# define SHIFT_HZ       8
  33#elif HZ >= 384 && HZ < 768
  34# define SHIFT_HZ       9
  35#elif HZ >= 768 && HZ < 1536
  36# define SHIFT_HZ       10
  37#elif HZ >= 1536 && HZ < 3072
  38# define SHIFT_HZ       11
  39#elif HZ >= 3072 && HZ < 6144
  40# define SHIFT_HZ       12
  41#elif HZ >= 6144 && HZ < 12288
  42# define SHIFT_HZ       13
  43#else
  44# error Invalid value of HZ.
  45#endif
  46
  47/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
  48 * improve accuracy by shifting LSH bits, hence calculating:
  49 *     (NOM << LSH) / DEN
  50 * This however means trouble for large NOM, because (NOM << LSH) may no
  51 * longer fit in 32 bits. The following way of calculating this gives us
  52 * some slack, under the following conditions:
  53 *   - (NOM / DEN) fits in (32 - LSH) bits.
  54 *   - (NOM % DEN) fits in (32 - LSH) bits.
  55 */
  56#define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
  57                             + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
  58
  59/* LATCH is used in the interval timer and ftape setup. */
  60#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)   /* For divider */
  61
  62extern int register_refined_jiffies(long clock_tick_rate);
  63
  64/* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */
  65#define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ)
  66
  67/* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
  68#define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
  69
  70#ifndef __jiffy_arch_data
  71#define __jiffy_arch_data
  72#endif
  73
  74/*
  75 * The 64-bit value is not atomic - you MUST NOT read it
  76 * without sampling the sequence number in jiffies_lock.
  77 * get_jiffies_64() will do this for you as appropriate.
  78 */
  79extern u64 __cacheline_aligned_in_smp jiffies_64;
  80extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
  81
  82#if (BITS_PER_LONG < 64)
  83u64 get_jiffies_64(void);
  84#else
  85static inline u64 get_jiffies_64(void)
  86{
  87        return (u64)jiffies;
  88}
  89#endif
  90
  91/*
  92 *      These inlines deal with timer wrapping correctly. You are 
  93 *      strongly encouraged to use them
  94 *      1. Because people otherwise forget
  95 *      2. Because if the timer wrap changes in future you won't have to
  96 *         alter your driver code.
  97 *
  98 * time_after(a,b) returns true if the time a is after time b.
  99 *
 100 * Do this with "<0" and ">=0" to only test the sign of the result. A
 101 * good compiler would generate better code (and a really good compiler
 102 * wouldn't care). Gcc is currently neither.
 103 */
 104#define time_after(a,b)         \
 105        (typecheck(unsigned long, a) && \
 106         typecheck(unsigned long, b) && \
 107         ((long)((b) - (a)) < 0))
 108#define time_before(a,b)        time_after(b,a)
 109
 110#define time_after_eq(a,b)      \
 111        (typecheck(unsigned long, a) && \
 112         typecheck(unsigned long, b) && \
 113         ((long)((a) - (b)) >= 0))
 114#define time_before_eq(a,b)     time_after_eq(b,a)
 115
 116/*
 117 * Calculate whether a is in the range of [b, c].
 118 */
 119#define time_in_range(a,b,c) \
 120        (time_after_eq(a,b) && \
 121         time_before_eq(a,c))
 122
 123/*
 124 * Calculate whether a is in the range of [b, c).
 125 */
 126#define time_in_range_open(a,b,c) \
 127        (time_after_eq(a,b) && \
 128         time_before(a,c))
 129
 130/* Same as above, but does so with platform independent 64bit types.
 131 * These must be used when utilizing jiffies_64 (i.e. return value of
 132 * get_jiffies_64() */
 133#define time_after64(a,b)       \
 134        (typecheck(__u64, a) && \
 135         typecheck(__u64, b) && \
 136         ((__s64)((b) - (a)) < 0))
 137#define time_before64(a,b)      time_after64(b,a)
 138
 139#define time_after_eq64(a,b)    \
 140        (typecheck(__u64, a) && \
 141         typecheck(__u64, b) && \
 142         ((__s64)((a) - (b)) >= 0))
 143#define time_before_eq64(a,b)   time_after_eq64(b,a)
 144
 145#define time_in_range64(a, b, c) \
 146        (time_after_eq64(a, b) && \
 147         time_before_eq64(a, c))
 148
 149/*
 150 * These four macros compare jiffies and 'a' for convenience.
 151 */
 152
 153/* time_is_before_jiffies(a) return true if a is before jiffies */
 154#define time_is_before_jiffies(a) time_after(jiffies, a)
 155#define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
 156
 157/* time_is_after_jiffies(a) return true if a is after jiffies */
 158#define time_is_after_jiffies(a) time_before(jiffies, a)
 159#define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
 160
 161/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
 162#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
 163#define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
 164
 165/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
 166#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
 167#define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
 168
 169/*
 170 * Have the 32 bit jiffies value wrap 5 minutes after boot
 171 * so jiffies wrap bugs show up earlier.
 172 */
 173#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
 174
 175/*
 176 * Change timeval to jiffies, trying to avoid the
 177 * most obvious overflows..
 178 *
 179 * And some not so obvious.
 180 *
 181 * Note that we don't want to return LONG_MAX, because
 182 * for various timeout reasons we often end up having
 183 * to wait "jiffies+1" in order to guarantee that we wait
 184 * at _least_ "jiffies" - so "jiffies+1" had better still
 185 * be positive.
 186 */
 187#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
 188
 189extern unsigned long preset_lpj;
 190
 191/*
 192 * We want to do realistic conversions of time so we need to use the same
 193 * values the update wall clock code uses as the jiffies size.  This value
 194 * is: TICK_NSEC (which is defined in timex.h).  This
 195 * is a constant and is in nanoseconds.  We will use scaled math
 196 * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
 197 * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
 198 * constants and so are computed at compile time.  SHIFT_HZ (computed in
 199 * timex.h) adjusts the scaling for different HZ values.
 200
 201 * Scaled math???  What is that?
 202 *
 203 * Scaled math is a way to do integer math on values that would,
 204 * otherwise, either overflow, underflow, or cause undesired div
 205 * instructions to appear in the execution path.  In short, we "scale"
 206 * up the operands so they take more bits (more precision, less
 207 * underflow), do the desired operation and then "scale" the result back
 208 * by the same amount.  If we do the scaling by shifting we avoid the
 209 * costly mpy and the dastardly div instructions.
 210
 211 * Suppose, for example, we want to convert from seconds to jiffies
 212 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
 213 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
 214 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
 215 * might calculate at compile time, however, the result will only have
 216 * about 3-4 bits of precision (less for smaller values of HZ).
 217 *
 218 * So, we scale as follows:
 219 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
 220 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
 221 * Then we make SCALE a power of two so:
 222 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
 223 * Now we define:
 224 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
 225 * jiff = (sec * SEC_CONV) >> SCALE;
 226 *
 227 * Often the math we use will expand beyond 32-bits so we tell C how to
 228 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
 229 * which should take the result back to 32-bits.  We want this expansion
 230 * to capture as much precision as possible.  At the same time we don't
 231 * want to overflow so we pick the SCALE to avoid this.  In this file,
 232 * that means using a different scale for each range of HZ values (as
 233 * defined in timex.h).
 234 *
 235 * For those who want to know, gcc will give a 64-bit result from a "*"
 236 * operator if the result is a long long AND at least one of the
 237 * operands is cast to long long (usually just prior to the "*" so as
 238 * not to confuse it into thinking it really has a 64-bit operand,
 239 * which, buy the way, it can do, but it takes more code and at least 2
 240 * mpys).
 241
 242 * We also need to be aware that one second in nanoseconds is only a
 243 * couple of bits away from overflowing a 32-bit word, so we MUST use
 244 * 64-bits to get the full range time in nanoseconds.
 245
 246 */
 247
 248/*
 249 * Here are the scales we will use.  One for seconds, nanoseconds and
 250 * microseconds.
 251 *
 252 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
 253 * check if the sign bit is set.  If not, we bump the shift count by 1.
 254 * (Gets an extra bit of precision where we can use it.)
 255 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
 256 * Haven't tested others.
 257
 258 * Limits of cpp (for #if expressions) only long (no long long), but
 259 * then we only need the most signicant bit.
 260 */
 261
 262#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
 263#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
 264#undef SEC_JIFFIE_SC
 265#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
 266#endif
 267#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
 268#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
 269                                TICK_NSEC -1) / (u64)TICK_NSEC))
 270
 271#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
 272                                        TICK_NSEC -1) / (u64)TICK_NSEC))
 273/*
 274 * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
 275 * into seconds.  The 64-bit case will overflow if we are not careful,
 276 * so use the messy SH_DIV macro to do it.  Still all constants.
 277 */
 278#if BITS_PER_LONG < 64
 279# define MAX_SEC_IN_JIFFIES \
 280        (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
 281#else   /* take care of overflow on 64 bits machines */
 282# define MAX_SEC_IN_JIFFIES \
 283        (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
 284
 285#endif
 286
 287/*
 288 * Convert various time units to each other:
 289 */
 290extern unsigned int jiffies_to_msecs(const unsigned long j);
 291extern unsigned int jiffies_to_usecs(const unsigned long j);
 292
 293static inline u64 jiffies_to_nsecs(const unsigned long j)
 294{
 295        return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
 296}
 297
 298extern u64 jiffies64_to_nsecs(u64 j);
 299extern u64 jiffies64_to_msecs(u64 j);
 300
 301extern unsigned long __msecs_to_jiffies(const unsigned int m);
 302#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 303/*
 304 * HZ is equal to or smaller than 1000, and 1000 is a nice round
 305 * multiple of HZ, divide with the factor between them, but round
 306 * upwards:
 307 */
 308static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 309{
 310        return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
 311}
 312#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 313/*
 314 * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
 315 * simply multiply with the factor between them.
 316 *
 317 * But first make sure the multiplication result cannot overflow:
 318 */
 319static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 320{
 321        if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 322                return MAX_JIFFY_OFFSET;
 323        return m * (HZ / MSEC_PER_SEC);
 324}
 325#else
 326/*
 327 * Generic case - multiply, round and divide. But first check that if
 328 * we are doing a net multiplication, that we wouldn't overflow:
 329 */
 330static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 331{
 332        if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 333                return MAX_JIFFY_OFFSET;
 334
 335        return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
 336}
 337#endif
 338/**
 339 * msecs_to_jiffies: - convert milliseconds to jiffies
 340 * @m:  time in milliseconds
 341 *
 342 * conversion is done as follows:
 343 *
 344 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 345 *
 346 * - 'too large' values [that would result in larger than
 347 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 348 *
 349 * - all other values are converted to jiffies by either multiplying
 350 *   the input value by a factor or dividing it with a factor and
 351 *   handling any 32-bit overflows.
 352 *   for the details see __msecs_to_jiffies()
 353 *
 354 * msecs_to_jiffies() checks for the passed in value being a constant
 355 * via __builtin_constant_p() allowing gcc to eliminate most of the
 356 * code, __msecs_to_jiffies() is called if the value passed does not
 357 * allow constant folding and the actual conversion must be done at
 358 * runtime.
 359 * the HZ range specific helpers _msecs_to_jiffies() are called both
 360 * directly here and from __msecs_to_jiffies() in the case where
 361 * constant folding is not possible.
 362 */
 363static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
 364{
 365        if (__builtin_constant_p(m)) {
 366                if ((int)m < 0)
 367                        return MAX_JIFFY_OFFSET;
 368                return _msecs_to_jiffies(m);
 369        } else {
 370                return __msecs_to_jiffies(m);
 371        }
 372}
 373
 374extern unsigned long __usecs_to_jiffies(const unsigned int u);
 375#if !(USEC_PER_SEC % HZ)
 376static inline unsigned long _usecs_to_jiffies(const unsigned int u)
 377{
 378        return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
 379}
 380#else
 381static inline unsigned long _usecs_to_jiffies(const unsigned int u)
 382{
 383        return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
 384                >> USEC_TO_HZ_SHR32;
 385}
 386#endif
 387
 388/**
 389 * usecs_to_jiffies: - convert microseconds to jiffies
 390 * @u:  time in microseconds
 391 *
 392 * conversion is done as follows:
 393 *
 394 * - 'too large' values [that would result in larger than
 395 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 396 *
 397 * - all other values are converted to jiffies by either multiplying
 398 *   the input value by a factor or dividing it with a factor and
 399 *   handling any 32-bit overflows as for msecs_to_jiffies.
 400 *
 401 * usecs_to_jiffies() checks for the passed in value being a constant
 402 * via __builtin_constant_p() allowing gcc to eliminate most of the
 403 * code, __usecs_to_jiffies() is called if the value passed does not
 404 * allow constant folding and the actual conversion must be done at
 405 * runtime.
 406 * the HZ range specific helpers _usecs_to_jiffies() are called both
 407 * directly here and from __msecs_to_jiffies() in the case where
 408 * constant folding is not possible.
 409 */
 410static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
 411{
 412        if (__builtin_constant_p(u)) {
 413                if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 414                        return MAX_JIFFY_OFFSET;
 415                return _usecs_to_jiffies(u);
 416        } else {
 417                return __usecs_to_jiffies(u);
 418        }
 419}
 420
 421extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
 422extern void jiffies_to_timespec64(const unsigned long jiffies,
 423                                  struct timespec64 *value);
 424extern clock_t jiffies_to_clock_t(unsigned long x);
 425static inline clock_t jiffies_delta_to_clock_t(long delta)
 426{
 427        return jiffies_to_clock_t(max(0L, delta));
 428}
 429
 430static inline unsigned int jiffies_delta_to_msecs(long delta)
 431{
 432        return jiffies_to_msecs(max(0L, delta));
 433}
 434
 435extern unsigned long clock_t_to_jiffies(unsigned long x);
 436extern u64 jiffies_64_to_clock_t(u64 x);
 437extern u64 nsec_to_clock_t(u64 x);
 438extern u64 nsecs_to_jiffies64(u64 n);
 439extern unsigned long nsecs_to_jiffies(u64 n);
 440
 441#define TIMESTAMP_SIZE  30
 442
 443#endif
 444