linux/include/linux/list.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_LIST_H
   3#define _LINUX_LIST_H
   4
   5#include <linux/types.h>
   6#include <linux/stddef.h>
   7#include <linux/poison.h>
   8#include <linux/const.h>
   9#include <linux/kernel.h>
  10
  11/*
  12 * Circular doubly linked list implementation.
  13 *
  14 * Some of the internal functions ("__xxx") are useful when
  15 * manipulating whole lists rather than single entries, as
  16 * sometimes we already know the next/prev entries and we can
  17 * generate better code by using them directly rather than
  18 * using the generic single-entry routines.
  19 */
  20
  21#define LIST_HEAD_INIT(name) { &(name), &(name) }
  22
  23#define LIST_HEAD(name) \
  24        struct list_head name = LIST_HEAD_INIT(name)
  25
  26/**
  27 * INIT_LIST_HEAD - Initialize a list_head structure
  28 * @list: list_head structure to be initialized.
  29 *
  30 * Initializes the list_head to point to itself.  If it is a list header,
  31 * the result is an empty list.
  32 */
  33static inline void INIT_LIST_HEAD(struct list_head *list)
  34{
  35        WRITE_ONCE(list->next, list);
  36        list->prev = list;
  37}
  38
  39#ifdef CONFIG_DEBUG_LIST
  40extern bool __list_add_valid(struct list_head *new,
  41                              struct list_head *prev,
  42                              struct list_head *next);
  43extern bool __list_del_entry_valid(struct list_head *entry);
  44#else
  45static inline bool __list_add_valid(struct list_head *new,
  46                                struct list_head *prev,
  47                                struct list_head *next)
  48{
  49        return true;
  50}
  51static inline bool __list_del_entry_valid(struct list_head *entry)
  52{
  53        return true;
  54}
  55#endif
  56
  57/*
  58 * Insert a new entry between two known consecutive entries.
  59 *
  60 * This is only for internal list manipulation where we know
  61 * the prev/next entries already!
  62 */
  63static inline void __list_add(struct list_head *new,
  64                              struct list_head *prev,
  65                              struct list_head *next)
  66{
  67        if (!__list_add_valid(new, prev, next))
  68                return;
  69
  70        next->prev = new;
  71        new->next = next;
  72        new->prev = prev;
  73        WRITE_ONCE(prev->next, new);
  74}
  75
  76/**
  77 * list_add - add a new entry
  78 * @new: new entry to be added
  79 * @head: list head to add it after
  80 *
  81 * Insert a new entry after the specified head.
  82 * This is good for implementing stacks.
  83 */
  84static inline void list_add(struct list_head *new, struct list_head *head)
  85{
  86        __list_add(new, head, head->next);
  87}
  88
  89
  90/**
  91 * list_add_tail - add a new entry
  92 * @new: new entry to be added
  93 * @head: list head to add it before
  94 *
  95 * Insert a new entry before the specified head.
  96 * This is useful for implementing queues.
  97 */
  98static inline void list_add_tail(struct list_head *new, struct list_head *head)
  99{
 100        __list_add(new, head->prev, head);
 101}
 102
 103/*
 104 * Delete a list entry by making the prev/next entries
 105 * point to each other.
 106 *
 107 * This is only for internal list manipulation where we know
 108 * the prev/next entries already!
 109 */
 110static inline void __list_del(struct list_head * prev, struct list_head * next)
 111{
 112        next->prev = prev;
 113        WRITE_ONCE(prev->next, next);
 114}
 115
 116/*
 117 * Delete a list entry and clear the 'prev' pointer.
 118 *
 119 * This is a special-purpose list clearing method used in the networking code
 120 * for lists allocated as per-cpu, where we don't want to incur the extra
 121 * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
 122 * needs to check the node 'prev' pointer instead of calling list_empty().
 123 */
 124static inline void __list_del_clearprev(struct list_head *entry)
 125{
 126        __list_del(entry->prev, entry->next);
 127        entry->prev = NULL;
 128}
 129
 130static inline void __list_del_entry(struct list_head *entry)
 131{
 132        if (!__list_del_entry_valid(entry))
 133                return;
 134
 135        __list_del(entry->prev, entry->next);
 136}
 137
 138/**
 139 * list_del - deletes entry from list.
 140 * @entry: the element to delete from the list.
 141 * Note: list_empty() on entry does not return true after this, the entry is
 142 * in an undefined state.
 143 */
 144static inline void list_del(struct list_head *entry)
 145{
 146        __list_del_entry(entry);
 147        entry->next = LIST_POISON1;
 148        entry->prev = LIST_POISON2;
 149}
 150
 151/**
 152 * list_replace - replace old entry by new one
 153 * @old : the element to be replaced
 154 * @new : the new element to insert
 155 *
 156 * If @old was empty, it will be overwritten.
 157 */
 158static inline void list_replace(struct list_head *old,
 159                                struct list_head *new)
 160{
 161        new->next = old->next;
 162        new->next->prev = new;
 163        new->prev = old->prev;
 164        new->prev->next = new;
 165}
 166
 167/**
 168 * list_replace_init - replace old entry by new one and initialize the old one
 169 * @old : the element to be replaced
 170 * @new : the new element to insert
 171 *
 172 * If @old was empty, it will be overwritten.
 173 */
 174static inline void list_replace_init(struct list_head *old,
 175                                     struct list_head *new)
 176{
 177        list_replace(old, new);
 178        INIT_LIST_HEAD(old);
 179}
 180
 181/**
 182 * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
 183 * @entry1: the location to place entry2
 184 * @entry2: the location to place entry1
 185 */
 186static inline void list_swap(struct list_head *entry1,
 187                             struct list_head *entry2)
 188{
 189        struct list_head *pos = entry2->prev;
 190
 191        list_del(entry2);
 192        list_replace(entry1, entry2);
 193        if (pos == entry1)
 194                pos = entry2;
 195        list_add(entry1, pos);
 196}
 197
 198/**
 199 * list_del_init - deletes entry from list and reinitialize it.
 200 * @entry: the element to delete from the list.
 201 */
 202static inline void list_del_init(struct list_head *entry)
 203{
 204        __list_del_entry(entry);
 205        INIT_LIST_HEAD(entry);
 206}
 207
 208/**
 209 * list_move - delete from one list and add as another's head
 210 * @list: the entry to move
 211 * @head: the head that will precede our entry
 212 */
 213static inline void list_move(struct list_head *list, struct list_head *head)
 214{
 215        __list_del_entry(list);
 216        list_add(list, head);
 217}
 218
 219/**
 220 * list_move_tail - delete from one list and add as another's tail
 221 * @list: the entry to move
 222 * @head: the head that will follow our entry
 223 */
 224static inline void list_move_tail(struct list_head *list,
 225                                  struct list_head *head)
 226{
 227        __list_del_entry(list);
 228        list_add_tail(list, head);
 229}
 230
 231/**
 232 * list_bulk_move_tail - move a subsection of a list to its tail
 233 * @head: the head that will follow our entry
 234 * @first: first entry to move
 235 * @last: last entry to move, can be the same as first
 236 *
 237 * Move all entries between @first and including @last before @head.
 238 * All three entries must belong to the same linked list.
 239 */
 240static inline void list_bulk_move_tail(struct list_head *head,
 241                                       struct list_head *first,
 242                                       struct list_head *last)
 243{
 244        first->prev->next = last->next;
 245        last->next->prev = first->prev;
 246
 247        head->prev->next = first;
 248        first->prev = head->prev;
 249
 250        last->next = head;
 251        head->prev = last;
 252}
 253
 254/**
 255 * list_is_first -- tests whether @list is the first entry in list @head
 256 * @list: the entry to test
 257 * @head: the head of the list
 258 */
 259static inline int list_is_first(const struct list_head *list,
 260                                        const struct list_head *head)
 261{
 262        return list->prev == head;
 263}
 264
 265/**
 266 * list_is_last - tests whether @list is the last entry in list @head
 267 * @list: the entry to test
 268 * @head: the head of the list
 269 */
 270static inline int list_is_last(const struct list_head *list,
 271                                const struct list_head *head)
 272{
 273        return list->next == head;
 274}
 275
 276/**
 277 * list_empty - tests whether a list is empty
 278 * @head: the list to test.
 279 */
 280static inline int list_empty(const struct list_head *head)
 281{
 282        return READ_ONCE(head->next) == head;
 283}
 284
 285/**
 286 * list_del_init_careful - deletes entry from list and reinitialize it.
 287 * @entry: the element to delete from the list.
 288 *
 289 * This is the same as list_del_init(), except designed to be used
 290 * together with list_empty_careful() in a way to guarantee ordering
 291 * of other memory operations.
 292 *
 293 * Any memory operations done before a list_del_init_careful() are
 294 * guaranteed to be visible after a list_empty_careful() test.
 295 */
 296static inline void list_del_init_careful(struct list_head *entry)
 297{
 298        __list_del_entry(entry);
 299        entry->prev = entry;
 300        smp_store_release(&entry->next, entry);
 301}
 302
 303/**
 304 * list_empty_careful - tests whether a list is empty and not being modified
 305 * @head: the list to test
 306 *
 307 * Description:
 308 * tests whether a list is empty _and_ checks that no other CPU might be
 309 * in the process of modifying either member (next or prev)
 310 *
 311 * NOTE: using list_empty_careful() without synchronization
 312 * can only be safe if the only activity that can happen
 313 * to the list entry is list_del_init(). Eg. it cannot be used
 314 * if another CPU could re-list_add() it.
 315 */
 316static inline int list_empty_careful(const struct list_head *head)
 317{
 318        struct list_head *next = smp_load_acquire(&head->next);
 319        return (next == head) && (next == head->prev);
 320}
 321
 322/**
 323 * list_rotate_left - rotate the list to the left
 324 * @head: the head of the list
 325 */
 326static inline void list_rotate_left(struct list_head *head)
 327{
 328        struct list_head *first;
 329
 330        if (!list_empty(head)) {
 331                first = head->next;
 332                list_move_tail(first, head);
 333        }
 334}
 335
 336/**
 337 * list_rotate_to_front() - Rotate list to specific item.
 338 * @list: The desired new front of the list.
 339 * @head: The head of the list.
 340 *
 341 * Rotates list so that @list becomes the new front of the list.
 342 */
 343static inline void list_rotate_to_front(struct list_head *list,
 344                                        struct list_head *head)
 345{
 346        /*
 347         * Deletes the list head from the list denoted by @head and
 348         * places it as the tail of @list, this effectively rotates the
 349         * list so that @list is at the front.
 350         */
 351        list_move_tail(head, list);
 352}
 353
 354/**
 355 * list_is_singular - tests whether a list has just one entry.
 356 * @head: the list to test.
 357 */
 358static inline int list_is_singular(const struct list_head *head)
 359{
 360        return !list_empty(head) && (head->next == head->prev);
 361}
 362
 363static inline void __list_cut_position(struct list_head *list,
 364                struct list_head *head, struct list_head *entry)
 365{
 366        struct list_head *new_first = entry->next;
 367        list->next = head->next;
 368        list->next->prev = list;
 369        list->prev = entry;
 370        entry->next = list;
 371        head->next = new_first;
 372        new_first->prev = head;
 373}
 374
 375/**
 376 * list_cut_position - cut a list into two
 377 * @list: a new list to add all removed entries
 378 * @head: a list with entries
 379 * @entry: an entry within head, could be the head itself
 380 *      and if so we won't cut the list
 381 *
 382 * This helper moves the initial part of @head, up to and
 383 * including @entry, from @head to @list. You should
 384 * pass on @entry an element you know is on @head. @list
 385 * should be an empty list or a list you do not care about
 386 * losing its data.
 387 *
 388 */
 389static inline void list_cut_position(struct list_head *list,
 390                struct list_head *head, struct list_head *entry)
 391{
 392        if (list_empty(head))
 393                return;
 394        if (list_is_singular(head) &&
 395                (head->next != entry && head != entry))
 396                return;
 397        if (entry == head)
 398                INIT_LIST_HEAD(list);
 399        else
 400                __list_cut_position(list, head, entry);
 401}
 402
 403/**
 404 * list_cut_before - cut a list into two, before given entry
 405 * @list: a new list to add all removed entries
 406 * @head: a list with entries
 407 * @entry: an entry within head, could be the head itself
 408 *
 409 * This helper moves the initial part of @head, up to but
 410 * excluding @entry, from @head to @list.  You should pass
 411 * in @entry an element you know is on @head.  @list should
 412 * be an empty list or a list you do not care about losing
 413 * its data.
 414 * If @entry == @head, all entries on @head are moved to
 415 * @list.
 416 */
 417static inline void list_cut_before(struct list_head *list,
 418                                   struct list_head *head,
 419                                   struct list_head *entry)
 420{
 421        if (head->next == entry) {
 422                INIT_LIST_HEAD(list);
 423                return;
 424        }
 425        list->next = head->next;
 426        list->next->prev = list;
 427        list->prev = entry->prev;
 428        list->prev->next = list;
 429        head->next = entry;
 430        entry->prev = head;
 431}
 432
 433static inline void __list_splice(const struct list_head *list,
 434                                 struct list_head *prev,
 435                                 struct list_head *next)
 436{
 437        struct list_head *first = list->next;
 438        struct list_head *last = list->prev;
 439
 440        first->prev = prev;
 441        prev->next = first;
 442
 443        last->next = next;
 444        next->prev = last;
 445}
 446
 447/**
 448 * list_splice - join two lists, this is designed for stacks
 449 * @list: the new list to add.
 450 * @head: the place to add it in the first list.
 451 */
 452static inline void list_splice(const struct list_head *list,
 453                                struct list_head *head)
 454{
 455        if (!list_empty(list))
 456                __list_splice(list, head, head->next);
 457}
 458
 459/**
 460 * list_splice_tail - join two lists, each list being a queue
 461 * @list: the new list to add.
 462 * @head: the place to add it in the first list.
 463 */
 464static inline void list_splice_tail(struct list_head *list,
 465                                struct list_head *head)
 466{
 467        if (!list_empty(list))
 468                __list_splice(list, head->prev, head);
 469}
 470
 471/**
 472 * list_splice_init - join two lists and reinitialise the emptied list.
 473 * @list: the new list to add.
 474 * @head: the place to add it in the first list.
 475 *
 476 * The list at @list is reinitialised
 477 */
 478static inline void list_splice_init(struct list_head *list,
 479                                    struct list_head *head)
 480{
 481        if (!list_empty(list)) {
 482                __list_splice(list, head, head->next);
 483                INIT_LIST_HEAD(list);
 484        }
 485}
 486
 487/**
 488 * list_splice_tail_init - join two lists and reinitialise the emptied list
 489 * @list: the new list to add.
 490 * @head: the place to add it in the first list.
 491 *
 492 * Each of the lists is a queue.
 493 * The list at @list is reinitialised
 494 */
 495static inline void list_splice_tail_init(struct list_head *list,
 496                                         struct list_head *head)
 497{
 498        if (!list_empty(list)) {
 499                __list_splice(list, head->prev, head);
 500                INIT_LIST_HEAD(list);
 501        }
 502}
 503
 504/**
 505 * list_entry - get the struct for this entry
 506 * @ptr:        the &struct list_head pointer.
 507 * @type:       the type of the struct this is embedded in.
 508 * @member:     the name of the list_head within the struct.
 509 */
 510#define list_entry(ptr, type, member) \
 511        container_of(ptr, type, member)
 512
 513/**
 514 * list_first_entry - get the first element from a list
 515 * @ptr:        the list head to take the element from.
 516 * @type:       the type of the struct this is embedded in.
 517 * @member:     the name of the list_head within the struct.
 518 *
 519 * Note, that list is expected to be not empty.
 520 */
 521#define list_first_entry(ptr, type, member) \
 522        list_entry((ptr)->next, type, member)
 523
 524/**
 525 * list_last_entry - get the last element from a list
 526 * @ptr:        the list head to take the element from.
 527 * @type:       the type of the struct this is embedded in.
 528 * @member:     the name of the list_head within the struct.
 529 *
 530 * Note, that list is expected to be not empty.
 531 */
 532#define list_last_entry(ptr, type, member) \
 533        list_entry((ptr)->prev, type, member)
 534
 535/**
 536 * list_first_entry_or_null - get the first element from a list
 537 * @ptr:        the list head to take the element from.
 538 * @type:       the type of the struct this is embedded in.
 539 * @member:     the name of the list_head within the struct.
 540 *
 541 * Note that if the list is empty, it returns NULL.
 542 */
 543#define list_first_entry_or_null(ptr, type, member) ({ \
 544        struct list_head *head__ = (ptr); \
 545        struct list_head *pos__ = READ_ONCE(head__->next); \
 546        pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
 547})
 548
 549/**
 550 * list_next_entry - get the next element in list
 551 * @pos:        the type * to cursor
 552 * @member:     the name of the list_head within the struct.
 553 */
 554#define list_next_entry(pos, member) \
 555        list_entry((pos)->member.next, typeof(*(pos)), member)
 556
 557/**
 558 * list_prev_entry - get the prev element in list
 559 * @pos:        the type * to cursor
 560 * @member:     the name of the list_head within the struct.
 561 */
 562#define list_prev_entry(pos, member) \
 563        list_entry((pos)->member.prev, typeof(*(pos)), member)
 564
 565/**
 566 * list_for_each        -       iterate over a list
 567 * @pos:        the &struct list_head to use as a loop cursor.
 568 * @head:       the head for your list.
 569 */
 570#define list_for_each(pos, head) \
 571        for (pos = (head)->next; pos != (head); pos = pos->next)
 572
 573/**
 574 * list_for_each_continue - continue iteration over a list
 575 * @pos:        the &struct list_head to use as a loop cursor.
 576 * @head:       the head for your list.
 577 *
 578 * Continue to iterate over a list, continuing after the current position.
 579 */
 580#define list_for_each_continue(pos, head) \
 581        for (pos = pos->next; pos != (head); pos = pos->next)
 582
 583/**
 584 * list_for_each_prev   -       iterate over a list backwards
 585 * @pos:        the &struct list_head to use as a loop cursor.
 586 * @head:       the head for your list.
 587 */
 588#define list_for_each_prev(pos, head) \
 589        for (pos = (head)->prev; pos != (head); pos = pos->prev)
 590
 591/**
 592 * list_for_each_safe - iterate over a list safe against removal of list entry
 593 * @pos:        the &struct list_head to use as a loop cursor.
 594 * @n:          another &struct list_head to use as temporary storage
 595 * @head:       the head for your list.
 596 */
 597#define list_for_each_safe(pos, n, head) \
 598        for (pos = (head)->next, n = pos->next; pos != (head); \
 599                pos = n, n = pos->next)
 600
 601/**
 602 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 603 * @pos:        the &struct list_head to use as a loop cursor.
 604 * @n:          another &struct list_head to use as temporary storage
 605 * @head:       the head for your list.
 606 */
 607#define list_for_each_prev_safe(pos, n, head) \
 608        for (pos = (head)->prev, n = pos->prev; \
 609             pos != (head); \
 610             pos = n, n = pos->prev)
 611
 612/**
 613 * list_entry_is_head - test if the entry points to the head of the list
 614 * @pos:        the type * to cursor
 615 * @head:       the head for your list.
 616 * @member:     the name of the list_head within the struct.
 617 */
 618#define list_entry_is_head(pos, head, member)                           \
 619        (&pos->member == (head))
 620
 621/**
 622 * list_for_each_entry  -       iterate over list of given type
 623 * @pos:        the type * to use as a loop cursor.
 624 * @head:       the head for your list.
 625 * @member:     the name of the list_head within the struct.
 626 */
 627#define list_for_each_entry(pos, head, member)                          \
 628        for (pos = list_first_entry(head, typeof(*pos), member);        \
 629             !list_entry_is_head(pos, head, member);                    \
 630             pos = list_next_entry(pos, member))
 631
 632/**
 633 * list_for_each_entry_reverse - iterate backwards over list of given type.
 634 * @pos:        the type * to use as a loop cursor.
 635 * @head:       the head for your list.
 636 * @member:     the name of the list_head within the struct.
 637 */
 638#define list_for_each_entry_reverse(pos, head, member)                  \
 639        for (pos = list_last_entry(head, typeof(*pos), member);         \
 640             !list_entry_is_head(pos, head, member);                    \
 641             pos = list_prev_entry(pos, member))
 642
 643/**
 644 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
 645 * @pos:        the type * to use as a start point
 646 * @head:       the head of the list
 647 * @member:     the name of the list_head within the struct.
 648 *
 649 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
 650 */
 651#define list_prepare_entry(pos, head, member) \
 652        ((pos) ? : list_entry(head, typeof(*pos), member))
 653
 654/**
 655 * list_for_each_entry_continue - continue iteration over list of given type
 656 * @pos:        the type * to use as a loop cursor.
 657 * @head:       the head for your list.
 658 * @member:     the name of the list_head within the struct.
 659 *
 660 * Continue to iterate over list of given type, continuing after
 661 * the current position.
 662 */
 663#define list_for_each_entry_continue(pos, head, member)                 \
 664        for (pos = list_next_entry(pos, member);                        \
 665             !list_entry_is_head(pos, head, member);                    \
 666             pos = list_next_entry(pos, member))
 667
 668/**
 669 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 670 * @pos:        the type * to use as a loop cursor.
 671 * @head:       the head for your list.
 672 * @member:     the name of the list_head within the struct.
 673 *
 674 * Start to iterate over list of given type backwards, continuing after
 675 * the current position.
 676 */
 677#define list_for_each_entry_continue_reverse(pos, head, member)         \
 678        for (pos = list_prev_entry(pos, member);                        \
 679             !list_entry_is_head(pos, head, member);                    \
 680             pos = list_prev_entry(pos, member))
 681
 682/**
 683 * list_for_each_entry_from - iterate over list of given type from the current point
 684 * @pos:        the type * to use as a loop cursor.
 685 * @head:       the head for your list.
 686 * @member:     the name of the list_head within the struct.
 687 *
 688 * Iterate over list of given type, continuing from current position.
 689 */
 690#define list_for_each_entry_from(pos, head, member)                     \
 691        for (; !list_entry_is_head(pos, head, member);                  \
 692             pos = list_next_entry(pos, member))
 693
 694/**
 695 * list_for_each_entry_from_reverse - iterate backwards over list of given type
 696 *                                    from the current point
 697 * @pos:        the type * to use as a loop cursor.
 698 * @head:       the head for your list.
 699 * @member:     the name of the list_head within the struct.
 700 *
 701 * Iterate backwards over list of given type, continuing from current position.
 702 */
 703#define list_for_each_entry_from_reverse(pos, head, member)             \
 704        for (; !list_entry_is_head(pos, head, member);                  \
 705             pos = list_prev_entry(pos, member))
 706
 707/**
 708 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 709 * @pos:        the type * to use as a loop cursor.
 710 * @n:          another type * to use as temporary storage
 711 * @head:       the head for your list.
 712 * @member:     the name of the list_head within the struct.
 713 */
 714#define list_for_each_entry_safe(pos, n, head, member)                  \
 715        for (pos = list_first_entry(head, typeof(*pos), member),        \
 716                n = list_next_entry(pos, member);                       \
 717             !list_entry_is_head(pos, head, member);                    \
 718             pos = n, n = list_next_entry(n, member))
 719
 720/**
 721 * list_for_each_entry_safe_continue - continue list iteration safe against removal
 722 * @pos:        the type * to use as a loop cursor.
 723 * @n:          another type * to use as temporary storage
 724 * @head:       the head for your list.
 725 * @member:     the name of the list_head within the struct.
 726 *
 727 * Iterate over list of given type, continuing after current point,
 728 * safe against removal of list entry.
 729 */
 730#define list_for_each_entry_safe_continue(pos, n, head, member)                 \
 731        for (pos = list_next_entry(pos, member),                                \
 732                n = list_next_entry(pos, member);                               \
 733             !list_entry_is_head(pos, head, member);                            \
 734             pos = n, n = list_next_entry(n, member))
 735
 736/**
 737 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
 738 * @pos:        the type * to use as a loop cursor.
 739 * @n:          another type * to use as temporary storage
 740 * @head:       the head for your list.
 741 * @member:     the name of the list_head within the struct.
 742 *
 743 * Iterate over list of given type from current point, safe against
 744 * removal of list entry.
 745 */
 746#define list_for_each_entry_safe_from(pos, n, head, member)                     \
 747        for (n = list_next_entry(pos, member);                                  \
 748             !list_entry_is_head(pos, head, member);                            \
 749             pos = n, n = list_next_entry(n, member))
 750
 751/**
 752 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
 753 * @pos:        the type * to use as a loop cursor.
 754 * @n:          another type * to use as temporary storage
 755 * @head:       the head for your list.
 756 * @member:     the name of the list_head within the struct.
 757 *
 758 * Iterate backwards over list of given type, safe against removal
 759 * of list entry.
 760 */
 761#define list_for_each_entry_safe_reverse(pos, n, head, member)          \
 762        for (pos = list_last_entry(head, typeof(*pos), member),         \
 763                n = list_prev_entry(pos, member);                       \
 764             !list_entry_is_head(pos, head, member);                    \
 765             pos = n, n = list_prev_entry(n, member))
 766
 767/**
 768 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
 769 * @pos:        the loop cursor used in the list_for_each_entry_safe loop
 770 * @n:          temporary storage used in list_for_each_entry_safe
 771 * @member:     the name of the list_head within the struct.
 772 *
 773 * list_safe_reset_next is not safe to use in general if the list may be
 774 * modified concurrently (eg. the lock is dropped in the loop body). An
 775 * exception to this is if the cursor element (pos) is pinned in the list,
 776 * and list_safe_reset_next is called after re-taking the lock and before
 777 * completing the current iteration of the loop body.
 778 */
 779#define list_safe_reset_next(pos, n, member)                            \
 780        n = list_next_entry(pos, member)
 781
 782/*
 783 * Double linked lists with a single pointer list head.
 784 * Mostly useful for hash tables where the two pointer list head is
 785 * too wasteful.
 786 * You lose the ability to access the tail in O(1).
 787 */
 788
 789#define HLIST_HEAD_INIT { .first = NULL }
 790#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
 791#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
 792static inline void INIT_HLIST_NODE(struct hlist_node *h)
 793{
 794        h->next = NULL;
 795        h->pprev = NULL;
 796}
 797
 798/**
 799 * hlist_unhashed - Has node been removed from list and reinitialized?
 800 * @h: Node to be checked
 801 *
 802 * Not that not all removal functions will leave a node in unhashed
 803 * state.  For example, hlist_nulls_del_init_rcu() does leave the
 804 * node in unhashed state, but hlist_nulls_del() does not.
 805 */
 806static inline int hlist_unhashed(const struct hlist_node *h)
 807{
 808        return !h->pprev;
 809}
 810
 811/**
 812 * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
 813 * @h: Node to be checked
 814 *
 815 * This variant of hlist_unhashed() must be used in lockless contexts
 816 * to avoid potential load-tearing.  The READ_ONCE() is paired with the
 817 * various WRITE_ONCE() in hlist helpers that are defined below.
 818 */
 819static inline int hlist_unhashed_lockless(const struct hlist_node *h)
 820{
 821        return !READ_ONCE(h->pprev);
 822}
 823
 824/**
 825 * hlist_empty - Is the specified hlist_head structure an empty hlist?
 826 * @h: Structure to check.
 827 */
 828static inline int hlist_empty(const struct hlist_head *h)
 829{
 830        return !READ_ONCE(h->first);
 831}
 832
 833static inline void __hlist_del(struct hlist_node *n)
 834{
 835        struct hlist_node *next = n->next;
 836        struct hlist_node **pprev = n->pprev;
 837
 838        WRITE_ONCE(*pprev, next);
 839        if (next)
 840                WRITE_ONCE(next->pprev, pprev);
 841}
 842
 843/**
 844 * hlist_del - Delete the specified hlist_node from its list
 845 * @n: Node to delete.
 846 *
 847 * Note that this function leaves the node in hashed state.  Use
 848 * hlist_del_init() or similar instead to unhash @n.
 849 */
 850static inline void hlist_del(struct hlist_node *n)
 851{
 852        __hlist_del(n);
 853        n->next = LIST_POISON1;
 854        n->pprev = LIST_POISON2;
 855}
 856
 857/**
 858 * hlist_del_init - Delete the specified hlist_node from its list and initialize
 859 * @n: Node to delete.
 860 *
 861 * Note that this function leaves the node in unhashed state.
 862 */
 863static inline void hlist_del_init(struct hlist_node *n)
 864{
 865        if (!hlist_unhashed(n)) {
 866                __hlist_del(n);
 867                INIT_HLIST_NODE(n);
 868        }
 869}
 870
 871/**
 872 * hlist_add_head - add a new entry at the beginning of the hlist
 873 * @n: new entry to be added
 874 * @h: hlist head to add it after
 875 *
 876 * Insert a new entry after the specified head.
 877 * This is good for implementing stacks.
 878 */
 879static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
 880{
 881        struct hlist_node *first = h->first;
 882        WRITE_ONCE(n->next, first);
 883        if (first)
 884                WRITE_ONCE(first->pprev, &n->next);
 885        WRITE_ONCE(h->first, n);
 886        WRITE_ONCE(n->pprev, &h->first);
 887}
 888
 889/**
 890 * hlist_add_before - add a new entry before the one specified
 891 * @n: new entry to be added
 892 * @next: hlist node to add it before, which must be non-NULL
 893 */
 894static inline void hlist_add_before(struct hlist_node *n,
 895                                    struct hlist_node *next)
 896{
 897        WRITE_ONCE(n->pprev, next->pprev);
 898        WRITE_ONCE(n->next, next);
 899        WRITE_ONCE(next->pprev, &n->next);
 900        WRITE_ONCE(*(n->pprev), n);
 901}
 902
 903/**
 904 * hlist_add_behind - add a new entry after the one specified
 905 * @n: new entry to be added
 906 * @prev: hlist node to add it after, which must be non-NULL
 907 */
 908static inline void hlist_add_behind(struct hlist_node *n,
 909                                    struct hlist_node *prev)
 910{
 911        WRITE_ONCE(n->next, prev->next);
 912        WRITE_ONCE(prev->next, n);
 913        WRITE_ONCE(n->pprev, &prev->next);
 914
 915        if (n->next)
 916                WRITE_ONCE(n->next->pprev, &n->next);
 917}
 918
 919/**
 920 * hlist_add_fake - create a fake hlist consisting of a single headless node
 921 * @n: Node to make a fake list out of
 922 *
 923 * This makes @n appear to be its own predecessor on a headless hlist.
 924 * The point of this is to allow things like hlist_del() to work correctly
 925 * in cases where there is no list.
 926 */
 927static inline void hlist_add_fake(struct hlist_node *n)
 928{
 929        n->pprev = &n->next;
 930}
 931
 932/**
 933 * hlist_fake: Is this node a fake hlist?
 934 * @h: Node to check for being a self-referential fake hlist.
 935 */
 936static inline bool hlist_fake(struct hlist_node *h)
 937{
 938        return h->pprev == &h->next;
 939}
 940
 941/**
 942 * hlist_is_singular_node - is node the only element of the specified hlist?
 943 * @n: Node to check for singularity.
 944 * @h: Header for potentially singular list.
 945 *
 946 * Check whether the node is the only node of the head without
 947 * accessing head, thus avoiding unnecessary cache misses.
 948 */
 949static inline bool
 950hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
 951{
 952        return !n->next && n->pprev == &h->first;
 953}
 954
 955/**
 956 * hlist_move_list - Move an hlist
 957 * @old: hlist_head for old list.
 958 * @new: hlist_head for new list.
 959 *
 960 * Move a list from one list head to another. Fixup the pprev
 961 * reference of the first entry if it exists.
 962 */
 963static inline void hlist_move_list(struct hlist_head *old,
 964                                   struct hlist_head *new)
 965{
 966        new->first = old->first;
 967        if (new->first)
 968                new->first->pprev = &new->first;
 969        old->first = NULL;
 970}
 971
 972#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
 973
 974#define hlist_for_each(pos, head) \
 975        for (pos = (head)->first; pos ; pos = pos->next)
 976
 977#define hlist_for_each_safe(pos, n, head) \
 978        for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
 979             pos = n)
 980
 981#define hlist_entry_safe(ptr, type, member) \
 982        ({ typeof(ptr) ____ptr = (ptr); \
 983           ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
 984        })
 985
 986/**
 987 * hlist_for_each_entry - iterate over list of given type
 988 * @pos:        the type * to use as a loop cursor.
 989 * @head:       the head for your list.
 990 * @member:     the name of the hlist_node within the struct.
 991 */
 992#define hlist_for_each_entry(pos, head, member)                         \
 993        for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
 994             pos;                                                       \
 995             pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
 996
 997/**
 998 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
 999 * @pos:        the type * to use as a loop cursor.
1000 * @member:     the name of the hlist_node within the struct.
1001 */
1002#define hlist_for_each_entry_continue(pos, member)                      \
1003        for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
1004             pos;                                                       \
1005             pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1006
1007/**
1008 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1009 * @pos:        the type * to use as a loop cursor.
1010 * @member:     the name of the hlist_node within the struct.
1011 */
1012#define hlist_for_each_entry_from(pos, member)                          \
1013        for (; pos;                                                     \
1014             pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1015
1016/**
1017 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1018 * @pos:        the type * to use as a loop cursor.
1019 * @n:          a &struct hlist_node to use as temporary storage
1020 * @head:       the head for your list.
1021 * @member:     the name of the hlist_node within the struct.
1022 */
1023#define hlist_for_each_entry_safe(pos, n, head, member)                 \
1024        for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1025             pos && ({ n = pos->member.next; 1; });                     \
1026             pos = hlist_entry_safe(n, typeof(*pos), member))
1027
1028#endif
1029