linux/include/linux/mtd/mtd.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
   4 */
   5
   6#ifndef __MTD_MTD_H__
   7#define __MTD_MTD_H__
   8
   9#include <linux/types.h>
  10#include <linux/uio.h>
  11#include <linux/list.h>
  12#include <linux/notifier.h>
  13#include <linux/device.h>
  14#include <linux/of.h>
  15#include <linux/nvmem-provider.h>
  16
  17#include <mtd/mtd-abi.h>
  18
  19#include <asm/div64.h>
  20
  21#define MTD_FAIL_ADDR_UNKNOWN -1LL
  22
  23struct mtd_info;
  24
  25/*
  26 * If the erase fails, fail_addr might indicate exactly which block failed. If
  27 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
  28 * or was not specific to any particular block.
  29 */
  30struct erase_info {
  31        uint64_t addr;
  32        uint64_t len;
  33        uint64_t fail_addr;
  34};
  35
  36struct mtd_erase_region_info {
  37        uint64_t offset;                /* At which this region starts, from the beginning of the MTD */
  38        uint32_t erasesize;             /* For this region */
  39        uint32_t numblocks;             /* Number of blocks of erasesize in this region */
  40        unsigned long *lockmap;         /* If keeping bitmap of locks */
  41};
  42
  43/**
  44 * struct mtd_oob_ops - oob operation operands
  45 * @mode:       operation mode
  46 *
  47 * @len:        number of data bytes to write/read
  48 *
  49 * @retlen:     number of data bytes written/read
  50 *
  51 * @ooblen:     number of oob bytes to write/read
  52 * @oobretlen:  number of oob bytes written/read
  53 * @ooboffs:    offset of oob data in the oob area (only relevant when
  54 *              mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
  55 * @datbuf:     data buffer - if NULL only oob data are read/written
  56 * @oobbuf:     oob data buffer
  57 *
  58 * Note, some MTD drivers do not allow you to write more than one OOB area at
  59 * one go. If you try to do that on such an MTD device, -EINVAL will be
  60 * returned. If you want to make your implementation portable on all kind of MTD
  61 * devices you should split the write request into several sub-requests when the
  62 * request crosses a page boundary.
  63 */
  64struct mtd_oob_ops {
  65        unsigned int    mode;
  66        size_t          len;
  67        size_t          retlen;
  68        size_t          ooblen;
  69        size_t          oobretlen;
  70        uint32_t        ooboffs;
  71        uint8_t         *datbuf;
  72        uint8_t         *oobbuf;
  73};
  74
  75#define MTD_MAX_OOBFREE_ENTRIES_LARGE   32
  76#define MTD_MAX_ECCPOS_ENTRIES_LARGE    640
  77/**
  78 * struct mtd_oob_region - oob region definition
  79 * @offset: region offset
  80 * @length: region length
  81 *
  82 * This structure describes a region of the OOB area, and is used
  83 * to retrieve ECC or free bytes sections.
  84 * Each section is defined by an offset within the OOB area and a
  85 * length.
  86 */
  87struct mtd_oob_region {
  88        u32 offset;
  89        u32 length;
  90};
  91
  92/*
  93 * struct mtd_ooblayout_ops - NAND OOB layout operations
  94 * @ecc: function returning an ECC region in the OOB area.
  95 *       Should return -ERANGE if %section exceeds the total number of
  96 *       ECC sections.
  97 * @free: function returning a free region in the OOB area.
  98 *        Should return -ERANGE if %section exceeds the total number of
  99 *        free sections.
 100 */
 101struct mtd_ooblayout_ops {
 102        int (*ecc)(struct mtd_info *mtd, int section,
 103                   struct mtd_oob_region *oobecc);
 104        int (*free)(struct mtd_info *mtd, int section,
 105                    struct mtd_oob_region *oobfree);
 106};
 107
 108/**
 109 * struct mtd_pairing_info - page pairing information
 110 *
 111 * @pair: pair id
 112 * @group: group id
 113 *
 114 * The term "pair" is used here, even though TLC NANDs might group pages by 3
 115 * (3 bits in a single cell). A pair should regroup all pages that are sharing
 116 * the same cell. Pairs are then indexed in ascending order.
 117 *
 118 * @group is defining the position of a page in a given pair. It can also be
 119 * seen as the bit position in the cell: page attached to bit 0 belongs to
 120 * group 0, page attached to bit 1 belongs to group 1, etc.
 121 *
 122 * Example:
 123 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
 124 *
 125 *              group-0         group-1
 126 *
 127 *  pair-0      page-0          page-4
 128 *  pair-1      page-1          page-5
 129 *  pair-2      page-2          page-8
 130 *  ...
 131 *  pair-127    page-251        page-255
 132 *
 133 *
 134 * Note that the "group" and "pair" terms were extracted from Samsung and
 135 * Hynix datasheets, and might be referenced under other names in other
 136 * datasheets (Micron is describing this concept as "shared pages").
 137 */
 138struct mtd_pairing_info {
 139        int pair;
 140        int group;
 141};
 142
 143/**
 144 * struct mtd_pairing_scheme - page pairing scheme description
 145 *
 146 * @ngroups: number of groups. Should be related to the number of bits
 147 *           per cell.
 148 * @get_info: converts a write-unit (page number within an erase block) into
 149 *            mtd_pairing information (pair + group). This function should
 150 *            fill the info parameter based on the wunit index or return
 151 *            -EINVAL if the wunit parameter is invalid.
 152 * @get_wunit: converts pairing information into a write-unit (page) number.
 153 *             This function should return the wunit index pointed by the
 154 *             pairing information described in the info argument. It should
 155 *             return -EINVAL, if there's no wunit corresponding to the
 156 *             passed pairing information.
 157 *
 158 * See mtd_pairing_info documentation for a detailed explanation of the
 159 * pair and group concepts.
 160 *
 161 * The mtd_pairing_scheme structure provides a generic solution to represent
 162 * NAND page pairing scheme. Instead of exposing two big tables to do the
 163 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
 164 * implement the ->get_info() and ->get_wunit() functions.
 165 *
 166 * MTD users will then be able to query these information by using the
 167 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
 168 *
 169 * @ngroups is here to help MTD users iterating over all the pages in a
 170 * given pair. This value can be retrieved by MTD users using the
 171 * mtd_pairing_groups() helper.
 172 *
 173 * Examples are given in the mtd_pairing_info_to_wunit() and
 174 * mtd_wunit_to_pairing_info() documentation.
 175 */
 176struct mtd_pairing_scheme {
 177        int ngroups;
 178        int (*get_info)(struct mtd_info *mtd, int wunit,
 179                        struct mtd_pairing_info *info);
 180        int (*get_wunit)(struct mtd_info *mtd,
 181                         const struct mtd_pairing_info *info);
 182};
 183
 184struct module;  /* only needed for owner field in mtd_info */
 185
 186/**
 187 * struct mtd_debug_info - debugging information for an MTD device.
 188 *
 189 * @dfs_dir: direntry object of the MTD device debugfs directory
 190 */
 191struct mtd_debug_info {
 192        struct dentry *dfs_dir;
 193
 194        const char *partname;
 195        const char *partid;
 196};
 197
 198/**
 199 * struct mtd_part - MTD partition specific fields
 200 *
 201 * @node: list node used to add an MTD partition to the parent partition list
 202 * @offset: offset of the partition relatively to the parent offset
 203 * @size: partition size. Should be equal to mtd->size unless
 204 *        MTD_SLC_ON_MLC_EMULATION is set
 205 * @flags: original flags (before the mtdpart logic decided to tweak them based
 206 *         on flash constraints, like eraseblock/pagesize alignment)
 207 *
 208 * This struct is embedded in mtd_info and contains partition-specific
 209 * properties/fields.
 210 */
 211struct mtd_part {
 212        struct list_head node;
 213        u64 offset;
 214        u64 size;
 215        u32 flags;
 216};
 217
 218/**
 219 * struct mtd_master - MTD master specific fields
 220 *
 221 * @partitions_lock: lock protecting accesses to the partition list. Protects
 222 *                   not only the master partition list, but also all
 223 *                   sub-partitions.
 224 * @suspended: et to 1 when the device is suspended, 0 otherwise
 225 *
 226 * This struct is embedded in mtd_info and contains master-specific
 227 * properties/fields. The master is the root MTD device from the MTD partition
 228 * point of view.
 229 */
 230struct mtd_master {
 231        struct mutex partitions_lock;
 232        struct mutex chrdev_lock;
 233        unsigned int suspended : 1;
 234};
 235
 236struct mtd_info {
 237        u_char type;
 238        uint32_t flags;
 239        uint64_t size;   // Total size of the MTD
 240
 241        /* "Major" erase size for the device. Naïve users may take this
 242         * to be the only erase size available, or may use the more detailed
 243         * information below if they desire
 244         */
 245        uint32_t erasesize;
 246        /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
 247         * though individual bits can be cleared), in case of NAND flash it is
 248         * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
 249         * it is of ECC block size, etc. It is illegal to have writesize = 0.
 250         * Any driver registering a struct mtd_info must ensure a writesize of
 251         * 1 or larger.
 252         */
 253        uint32_t writesize;
 254
 255        /*
 256         * Size of the write buffer used by the MTD. MTD devices having a write
 257         * buffer can write multiple writesize chunks at a time. E.g. while
 258         * writing 4 * writesize bytes to a device with 2 * writesize bytes
 259         * buffer the MTD driver can (but doesn't have to) do 2 writesize
 260         * operations, but not 4. Currently, all NANDs have writebufsize
 261         * equivalent to writesize (NAND page size). Some NOR flashes do have
 262         * writebufsize greater than writesize.
 263         */
 264        uint32_t writebufsize;
 265
 266        uint32_t oobsize;   // Amount of OOB data per block (e.g. 16)
 267        uint32_t oobavail;  // Available OOB bytes per block
 268
 269        /*
 270         * If erasesize is a power of 2 then the shift is stored in
 271         * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
 272         */
 273        unsigned int erasesize_shift;
 274        unsigned int writesize_shift;
 275        /* Masks based on erasesize_shift and writesize_shift */
 276        unsigned int erasesize_mask;
 277        unsigned int writesize_mask;
 278
 279        /*
 280         * read ops return -EUCLEAN if max number of bitflips corrected on any
 281         * one region comprising an ecc step equals or exceeds this value.
 282         * Settable by driver, else defaults to ecc_strength.  User can override
 283         * in sysfs.  N.B. The meaning of the -EUCLEAN return code has changed;
 284         * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
 285         */
 286        unsigned int bitflip_threshold;
 287
 288        /* Kernel-only stuff starts here. */
 289        const char *name;
 290        int index;
 291
 292        /* OOB layout description */
 293        const struct mtd_ooblayout_ops *ooblayout;
 294
 295        /* NAND pairing scheme, only provided for MLC/TLC NANDs */
 296        const struct mtd_pairing_scheme *pairing;
 297
 298        /* the ecc step size. */
 299        unsigned int ecc_step_size;
 300
 301        /* max number of correctible bit errors per ecc step */
 302        unsigned int ecc_strength;
 303
 304        /* Data for variable erase regions. If numeraseregions is zero,
 305         * it means that the whole device has erasesize as given above.
 306         */
 307        int numeraseregions;
 308        struct mtd_erase_region_info *eraseregions;
 309
 310        /*
 311         * Do not call via these pointers, use corresponding mtd_*()
 312         * wrappers instead.
 313         */
 314        int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
 315        int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
 316                       size_t *retlen, void **virt, resource_size_t *phys);
 317        int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
 318        int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
 319                      size_t *retlen, u_char *buf);
 320        int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
 321                       size_t *retlen, const u_char *buf);
 322        int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
 323                             size_t *retlen, const u_char *buf);
 324        int (*_read_oob) (struct mtd_info *mtd, loff_t from,
 325                          struct mtd_oob_ops *ops);
 326        int (*_write_oob) (struct mtd_info *mtd, loff_t to,
 327                           struct mtd_oob_ops *ops);
 328        int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
 329                                    size_t *retlen, struct otp_info *buf);
 330        int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
 331                                    size_t len, size_t *retlen, u_char *buf);
 332        int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
 333                                    size_t *retlen, struct otp_info *buf);
 334        int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
 335                                    size_t len, size_t *retlen, u_char *buf);
 336        int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
 337                                     size_t len, size_t *retlen,
 338                                     const u_char *buf);
 339        int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
 340                                    size_t len);
 341        int (*_erase_user_prot_reg) (struct mtd_info *mtd, loff_t from,
 342                                     size_t len);
 343        int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
 344                        unsigned long count, loff_t to, size_t *retlen);
 345        void (*_sync) (struct mtd_info *mtd);
 346        int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
 347        int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
 348        int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
 349        int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
 350        int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
 351        int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
 352        int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
 353        int (*_suspend) (struct mtd_info *mtd);
 354        void (*_resume) (struct mtd_info *mtd);
 355        void (*_reboot) (struct mtd_info *mtd);
 356        /*
 357         * If the driver is something smart, like UBI, it may need to maintain
 358         * its own reference counting. The below functions are only for driver.
 359         */
 360        int (*_get_device) (struct mtd_info *mtd);
 361        void (*_put_device) (struct mtd_info *mtd);
 362
 363        /*
 364         * flag indicates a panic write, low level drivers can take appropriate
 365         * action if required to ensure writes go through
 366         */
 367        bool oops_panic_write;
 368
 369        struct notifier_block reboot_notifier;  /* default mode before reboot */
 370
 371        /* ECC status information */
 372        struct mtd_ecc_stats ecc_stats;
 373        /* Subpage shift (NAND) */
 374        int subpage_sft;
 375
 376        void *priv;
 377
 378        struct module *owner;
 379        struct device dev;
 380        int usecount;
 381        struct mtd_debug_info dbg;
 382        struct nvmem_device *nvmem;
 383        struct nvmem_device *otp_user_nvmem;
 384        struct nvmem_device *otp_factory_nvmem;
 385
 386        /*
 387         * Parent device from the MTD partition point of view.
 388         *
 389         * MTD masters do not have any parent, MTD partitions do. The parent
 390         * MTD device can itself be a partition.
 391         */
 392        struct mtd_info *parent;
 393
 394        /* List of partitions attached to this MTD device */
 395        struct list_head partitions;
 396
 397        union {
 398                struct mtd_part part;
 399                struct mtd_master master;
 400        };
 401};
 402
 403static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd)
 404{
 405        while (mtd->parent)
 406                mtd = mtd->parent;
 407
 408        return mtd;
 409}
 410
 411static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs)
 412{
 413        while (mtd->parent) {
 414                ofs += mtd->part.offset;
 415                mtd = mtd->parent;
 416        }
 417
 418        return ofs;
 419}
 420
 421static inline bool mtd_is_partition(const struct mtd_info *mtd)
 422{
 423        return mtd->parent;
 424}
 425
 426static inline bool mtd_has_partitions(const struct mtd_info *mtd)
 427{
 428        return !list_empty(&mtd->partitions);
 429}
 430
 431int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
 432                      struct mtd_oob_region *oobecc);
 433int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
 434                                 int *section,
 435                                 struct mtd_oob_region *oobregion);
 436int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
 437                               const u8 *oobbuf, int start, int nbytes);
 438int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
 439                               u8 *oobbuf, int start, int nbytes);
 440int mtd_ooblayout_free(struct mtd_info *mtd, int section,
 441                       struct mtd_oob_region *oobfree);
 442int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
 443                                const u8 *oobbuf, int start, int nbytes);
 444int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
 445                                u8 *oobbuf, int start, int nbytes);
 446int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
 447int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
 448
 449static inline void mtd_set_ooblayout(struct mtd_info *mtd,
 450                                     const struct mtd_ooblayout_ops *ooblayout)
 451{
 452        mtd->ooblayout = ooblayout;
 453}
 454
 455static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
 456                                const struct mtd_pairing_scheme *pairing)
 457{
 458        mtd->pairing = pairing;
 459}
 460
 461static inline void mtd_set_of_node(struct mtd_info *mtd,
 462                                   struct device_node *np)
 463{
 464        mtd->dev.of_node = np;
 465        if (!mtd->name)
 466                of_property_read_string(np, "label", &mtd->name);
 467}
 468
 469static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
 470{
 471        return dev_of_node(&mtd->dev);
 472}
 473
 474static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
 475{
 476        return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
 477}
 478
 479static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
 480                                     loff_t ofs, size_t len)
 481{
 482        struct mtd_info *master = mtd_get_master(mtd);
 483
 484        if (!master->_max_bad_blocks)
 485                return -ENOTSUPP;
 486
 487        if (mtd->size < (len + ofs) || ofs < 0)
 488                return -EINVAL;
 489
 490        return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs),
 491                                       len);
 492}
 493
 494int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
 495                              struct mtd_pairing_info *info);
 496int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
 497                              const struct mtd_pairing_info *info);
 498int mtd_pairing_groups(struct mtd_info *mtd);
 499int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
 500int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
 501              void **virt, resource_size_t *phys);
 502int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
 503unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
 504                                    unsigned long offset, unsigned long flags);
 505int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
 506             u_char *buf);
 507int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
 508              const u_char *buf);
 509int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
 510                    const u_char *buf);
 511
 512int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
 513int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
 514
 515int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
 516                           struct otp_info *buf);
 517int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
 518                           size_t *retlen, u_char *buf);
 519int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
 520                           struct otp_info *buf);
 521int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
 522                           size_t *retlen, u_char *buf);
 523int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
 524                            size_t *retlen, const u_char *buf);
 525int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
 526int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
 527
 528int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
 529               unsigned long count, loff_t to, size_t *retlen);
 530
 531static inline void mtd_sync(struct mtd_info *mtd)
 532{
 533        struct mtd_info *master = mtd_get_master(mtd);
 534
 535        if (master->_sync)
 536                master->_sync(master);
 537}
 538
 539int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 540int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 541int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 542int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
 543int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
 544int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
 545
 546static inline int mtd_suspend(struct mtd_info *mtd)
 547{
 548        struct mtd_info *master = mtd_get_master(mtd);
 549        int ret;
 550
 551        if (master->master.suspended)
 552                return 0;
 553
 554        ret = master->_suspend ? master->_suspend(master) : 0;
 555        if (ret)
 556                return ret;
 557
 558        master->master.suspended = 1;
 559        return 0;
 560}
 561
 562static inline void mtd_resume(struct mtd_info *mtd)
 563{
 564        struct mtd_info *master = mtd_get_master(mtd);
 565
 566        if (!master->master.suspended)
 567                return;
 568
 569        if (master->_resume)
 570                master->_resume(master);
 571
 572        master->master.suspended = 0;
 573}
 574
 575static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
 576{
 577        if (mtd->erasesize_shift)
 578                return sz >> mtd->erasesize_shift;
 579        do_div(sz, mtd->erasesize);
 580        return sz;
 581}
 582
 583static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
 584{
 585        if (mtd->erasesize_shift)
 586                return sz & mtd->erasesize_mask;
 587        return do_div(sz, mtd->erasesize);
 588}
 589
 590/**
 591 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock
 592 *                       boundaries.
 593 * @mtd: the MTD device this erase request applies on
 594 * @req: the erase request to adjust
 595 *
 596 * This function will adjust @req->addr and @req->len to align them on
 597 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0.
 598 */
 599static inline void mtd_align_erase_req(struct mtd_info *mtd,
 600                                       struct erase_info *req)
 601{
 602        u32 mod;
 603
 604        if (WARN_ON(!mtd->erasesize))
 605                return;
 606
 607        mod = mtd_mod_by_eb(req->addr, mtd);
 608        if (mod) {
 609                req->addr -= mod;
 610                req->len += mod;
 611        }
 612
 613        mod = mtd_mod_by_eb(req->addr + req->len, mtd);
 614        if (mod)
 615                req->len += mtd->erasesize - mod;
 616}
 617
 618static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
 619{
 620        if (mtd->writesize_shift)
 621                return sz >> mtd->writesize_shift;
 622        do_div(sz, mtd->writesize);
 623        return sz;
 624}
 625
 626static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
 627{
 628        if (mtd->writesize_shift)
 629                return sz & mtd->writesize_mask;
 630        return do_div(sz, mtd->writesize);
 631}
 632
 633static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
 634{
 635        struct mtd_info *master = mtd_get_master(mtd);
 636
 637        return master->erasesize / mtd->writesize;
 638}
 639
 640static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
 641{
 642        return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
 643}
 644
 645static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
 646                                         int wunit)
 647{
 648        return base + (wunit * mtd->writesize);
 649}
 650
 651
 652static inline int mtd_has_oob(const struct mtd_info *mtd)
 653{
 654        struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
 655
 656        return master->_read_oob && master->_write_oob;
 657}
 658
 659static inline int mtd_type_is_nand(const struct mtd_info *mtd)
 660{
 661        return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
 662}
 663
 664static inline int mtd_can_have_bb(const struct mtd_info *mtd)
 665{
 666        struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
 667
 668        return !!master->_block_isbad;
 669}
 670
 671        /* Kernel-side ioctl definitions */
 672
 673struct mtd_partition;
 674struct mtd_part_parser_data;
 675
 676extern int mtd_device_parse_register(struct mtd_info *mtd,
 677                                     const char * const *part_probe_types,
 678                                     struct mtd_part_parser_data *parser_data,
 679                                     const struct mtd_partition *defparts,
 680                                     int defnr_parts);
 681#define mtd_device_register(master, parts, nr_parts)    \
 682        mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
 683extern int mtd_device_unregister(struct mtd_info *master);
 684extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
 685extern int __get_mtd_device(struct mtd_info *mtd);
 686extern void __put_mtd_device(struct mtd_info *mtd);
 687extern struct mtd_info *get_mtd_device_nm(const char *name);
 688extern void put_mtd_device(struct mtd_info *mtd);
 689
 690
 691struct mtd_notifier {
 692        void (*add)(struct mtd_info *mtd);
 693        void (*remove)(struct mtd_info *mtd);
 694        struct list_head list;
 695};
 696
 697
 698extern void register_mtd_user (struct mtd_notifier *new);
 699extern int unregister_mtd_user (struct mtd_notifier *old);
 700void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
 701
 702static inline int mtd_is_bitflip(int err) {
 703        return err == -EUCLEAN;
 704}
 705
 706static inline int mtd_is_eccerr(int err) {
 707        return err == -EBADMSG;
 708}
 709
 710static inline int mtd_is_bitflip_or_eccerr(int err) {
 711        return mtd_is_bitflip(err) || mtd_is_eccerr(err);
 712}
 713
 714unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
 715
 716#endif /* __MTD_MTD_H__ */
 717