linux/include/linux/mtd/nand.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  Copyright 2017 - Free Electrons
   4 *
   5 *  Authors:
   6 *      Boris Brezillon <boris.brezillon@free-electrons.com>
   7 *      Peter Pan <peterpandong@micron.com>
   8 */
   9
  10#ifndef __LINUX_MTD_NAND_H
  11#define __LINUX_MTD_NAND_H
  12
  13#include <linux/mtd/mtd.h>
  14
  15struct nand_device;
  16
  17/**
  18 * struct nand_memory_organization - Memory organization structure
  19 * @bits_per_cell: number of bits per NAND cell
  20 * @pagesize: page size
  21 * @oobsize: OOB area size
  22 * @pages_per_eraseblock: number of pages per eraseblock
  23 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
  24 * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN
  25 * @planes_per_lun: number of planes per LUN
  26 * @luns_per_target: number of LUN per target (target is a synonym for die)
  27 * @ntargets: total number of targets exposed by the NAND device
  28 */
  29struct nand_memory_organization {
  30        unsigned int bits_per_cell;
  31        unsigned int pagesize;
  32        unsigned int oobsize;
  33        unsigned int pages_per_eraseblock;
  34        unsigned int eraseblocks_per_lun;
  35        unsigned int max_bad_eraseblocks_per_lun;
  36        unsigned int planes_per_lun;
  37        unsigned int luns_per_target;
  38        unsigned int ntargets;
  39};
  40
  41#define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt)   \
  42        {                                                       \
  43                .bits_per_cell = (bpc),                         \
  44                .pagesize = (ps),                               \
  45                .oobsize = (os),                                \
  46                .pages_per_eraseblock = (ppe),                  \
  47                .eraseblocks_per_lun = (epl),                   \
  48                .max_bad_eraseblocks_per_lun = (mbb),           \
  49                .planes_per_lun = (ppl),                        \
  50                .luns_per_target = (lpt),                       \
  51                .ntargets = (nt),                               \
  52        }
  53
  54/**
  55 * struct nand_row_converter - Information needed to convert an absolute offset
  56 *                             into a row address
  57 * @lun_addr_shift: position of the LUN identifier in the row address
  58 * @eraseblock_addr_shift: position of the eraseblock identifier in the row
  59 *                         address
  60 */
  61struct nand_row_converter {
  62        unsigned int lun_addr_shift;
  63        unsigned int eraseblock_addr_shift;
  64};
  65
  66/**
  67 * struct nand_pos - NAND position object
  68 * @target: the NAND target/die
  69 * @lun: the LUN identifier
  70 * @plane: the plane within the LUN
  71 * @eraseblock: the eraseblock within the LUN
  72 * @page: the page within the LUN
  73 *
  74 * These information are usually used by specific sub-layers to select the
  75 * appropriate target/die and generate a row address to pass to the device.
  76 */
  77struct nand_pos {
  78        unsigned int target;
  79        unsigned int lun;
  80        unsigned int plane;
  81        unsigned int eraseblock;
  82        unsigned int page;
  83};
  84
  85/**
  86 * enum nand_page_io_req_type - Direction of an I/O request
  87 * @NAND_PAGE_READ: from the chip, to the controller
  88 * @NAND_PAGE_WRITE: from the controller, to the chip
  89 */
  90enum nand_page_io_req_type {
  91        NAND_PAGE_READ = 0,
  92        NAND_PAGE_WRITE,
  93};
  94
  95/**
  96 * struct nand_page_io_req - NAND I/O request object
  97 * @type: the type of page I/O: read or write
  98 * @pos: the position this I/O request is targeting
  99 * @dataoffs: the offset within the page
 100 * @datalen: number of data bytes to read from/write to this page
 101 * @databuf: buffer to store data in or get data from
 102 * @ooboffs: the OOB offset within the page
 103 * @ooblen: the number of OOB bytes to read from/write to this page
 104 * @oobbuf: buffer to store OOB data in or get OOB data from
 105 * @mode: one of the %MTD_OPS_XXX mode
 106 *
 107 * This object is used to pass per-page I/O requests to NAND sub-layers. This
 108 * way all useful information are already formatted in a useful way and
 109 * specific NAND layers can focus on translating these information into
 110 * specific commands/operations.
 111 */
 112struct nand_page_io_req {
 113        enum nand_page_io_req_type type;
 114        struct nand_pos pos;
 115        unsigned int dataoffs;
 116        unsigned int datalen;
 117        union {
 118                const void *out;
 119                void *in;
 120        } databuf;
 121        unsigned int ooboffs;
 122        unsigned int ooblen;
 123        union {
 124                const void *out;
 125                void *in;
 126        } oobbuf;
 127        int mode;
 128};
 129
 130const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void);
 131const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void);
 132const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void);
 133
 134/**
 135 * enum nand_ecc_engine_type - NAND ECC engine type
 136 * @NAND_ECC_ENGINE_TYPE_INVALID: Invalid value
 137 * @NAND_ECC_ENGINE_TYPE_NONE: No ECC correction
 138 * @NAND_ECC_ENGINE_TYPE_SOFT: Software ECC correction
 139 * @NAND_ECC_ENGINE_TYPE_ON_HOST: On host hardware ECC correction
 140 * @NAND_ECC_ENGINE_TYPE_ON_DIE: On chip hardware ECC correction
 141 */
 142enum nand_ecc_engine_type {
 143        NAND_ECC_ENGINE_TYPE_INVALID,
 144        NAND_ECC_ENGINE_TYPE_NONE,
 145        NAND_ECC_ENGINE_TYPE_SOFT,
 146        NAND_ECC_ENGINE_TYPE_ON_HOST,
 147        NAND_ECC_ENGINE_TYPE_ON_DIE,
 148};
 149
 150/**
 151 * enum nand_ecc_placement - NAND ECC bytes placement
 152 * @NAND_ECC_PLACEMENT_UNKNOWN: The actual position of the ECC bytes is unknown
 153 * @NAND_ECC_PLACEMENT_OOB: The ECC bytes are located in the OOB area
 154 * @NAND_ECC_PLACEMENT_INTERLEAVED: Syndrome layout, there are ECC bytes
 155 *                                  interleaved with regular data in the main
 156 *                                  area
 157 */
 158enum nand_ecc_placement {
 159        NAND_ECC_PLACEMENT_UNKNOWN,
 160        NAND_ECC_PLACEMENT_OOB,
 161        NAND_ECC_PLACEMENT_INTERLEAVED,
 162};
 163
 164/**
 165 * enum nand_ecc_algo - NAND ECC algorithm
 166 * @NAND_ECC_ALGO_UNKNOWN: Unknown algorithm
 167 * @NAND_ECC_ALGO_HAMMING: Hamming algorithm
 168 * @NAND_ECC_ALGO_BCH: Bose-Chaudhuri-Hocquenghem algorithm
 169 * @NAND_ECC_ALGO_RS: Reed-Solomon algorithm
 170 */
 171enum nand_ecc_algo {
 172        NAND_ECC_ALGO_UNKNOWN,
 173        NAND_ECC_ALGO_HAMMING,
 174        NAND_ECC_ALGO_BCH,
 175        NAND_ECC_ALGO_RS,
 176};
 177
 178/**
 179 * struct nand_ecc_props - NAND ECC properties
 180 * @engine_type: ECC engine type
 181 * @placement: OOB placement (if relevant)
 182 * @algo: ECC algorithm (if relevant)
 183 * @strength: ECC strength
 184 * @step_size: Number of bytes per step
 185 * @flags: Misc properties
 186 */
 187struct nand_ecc_props {
 188        enum nand_ecc_engine_type engine_type;
 189        enum nand_ecc_placement placement;
 190        enum nand_ecc_algo algo;
 191        unsigned int strength;
 192        unsigned int step_size;
 193        unsigned int flags;
 194};
 195
 196#define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
 197
 198/* NAND ECC misc flags */
 199#define NAND_ECC_MAXIMIZE_STRENGTH BIT(0)
 200
 201/**
 202 * struct nand_bbt - bad block table object
 203 * @cache: in memory BBT cache
 204 */
 205struct nand_bbt {
 206        unsigned long *cache;
 207};
 208
 209/**
 210 * struct nand_ops - NAND operations
 211 * @erase: erase a specific block. No need to check if the block is bad before
 212 *         erasing, this has been taken care of by the generic NAND layer
 213 * @markbad: mark a specific block bad. No need to check if the block is
 214 *           already marked bad, this has been taken care of by the generic
 215 *           NAND layer. This method should just write the BBM (Bad Block
 216 *           Marker) so that future call to struct_nand_ops->isbad() return
 217 *           true
 218 * @isbad: check whether a block is bad or not. This method should just read
 219 *         the BBM and return whether the block is bad or not based on what it
 220 *         reads
 221 *
 222 * These are all low level operations that should be implemented by specialized
 223 * NAND layers (SPI NAND, raw NAND, ...).
 224 */
 225struct nand_ops {
 226        int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
 227        int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
 228        bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
 229};
 230
 231/**
 232 * struct nand_ecc_context - Context for the ECC engine
 233 * @conf: basic ECC engine parameters
 234 * @nsteps: number of ECC steps
 235 * @total: total number of bytes used for storing ECC codes, this is used by
 236 *         generic OOB layouts
 237 * @priv: ECC engine driver private data
 238 */
 239struct nand_ecc_context {
 240        struct nand_ecc_props conf;
 241        unsigned int nsteps;
 242        unsigned int total;
 243        void *priv;
 244};
 245
 246/**
 247 * struct nand_ecc_engine_ops - ECC engine operations
 248 * @init_ctx: given a desired user configuration for the pointed NAND device,
 249 *            requests the ECC engine driver to setup a configuration with
 250 *            values it supports.
 251 * @cleanup_ctx: clean the context initialized by @init_ctx.
 252 * @prepare_io_req: is called before reading/writing a page to prepare the I/O
 253 *                  request to be performed with ECC correction.
 254 * @finish_io_req: is called after reading/writing a page to terminate the I/O
 255 *                 request and ensure proper ECC correction.
 256 */
 257struct nand_ecc_engine_ops {
 258        int (*init_ctx)(struct nand_device *nand);
 259        void (*cleanup_ctx)(struct nand_device *nand);
 260        int (*prepare_io_req)(struct nand_device *nand,
 261                              struct nand_page_io_req *req);
 262        int (*finish_io_req)(struct nand_device *nand,
 263                             struct nand_page_io_req *req);
 264};
 265
 266/**
 267 * struct nand_ecc_engine - ECC engine abstraction for NAND devices
 268 * @ops: ECC engine operations
 269 */
 270struct nand_ecc_engine {
 271        struct nand_ecc_engine_ops *ops;
 272};
 273
 274void of_get_nand_ecc_user_config(struct nand_device *nand);
 275int nand_ecc_init_ctx(struct nand_device *nand);
 276void nand_ecc_cleanup_ctx(struct nand_device *nand);
 277int nand_ecc_prepare_io_req(struct nand_device *nand,
 278                            struct nand_page_io_req *req);
 279int nand_ecc_finish_io_req(struct nand_device *nand,
 280                           struct nand_page_io_req *req);
 281bool nand_ecc_is_strong_enough(struct nand_device *nand);
 282struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand);
 283struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand);
 284
 285#if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING)
 286struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void);
 287#else
 288static inline struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void)
 289{
 290        return NULL;
 291}
 292#endif /* CONFIG_MTD_NAND_ECC_SW_HAMMING */
 293
 294#if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)
 295struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void);
 296#else
 297static inline struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void)
 298{
 299        return NULL;
 300}
 301#endif /* CONFIG_MTD_NAND_ECC_SW_BCH */
 302
 303/**
 304 * struct nand_ecc_req_tweak_ctx - Help for automatically tweaking requests
 305 * @orig_req: Pointer to the original IO request
 306 * @nand: Related NAND device, to have access to its memory organization
 307 * @page_buffer_size: Real size of the page buffer to use (can be set by the
 308 *                    user before the tweaking mechanism initialization)
 309 * @oob_buffer_size: Real size of the OOB buffer to use (can be set by the
 310 *                   user before the tweaking mechanism initialization)
 311 * @spare_databuf: Data bounce buffer
 312 * @spare_oobbuf: OOB bounce buffer
 313 * @bounce_data: Flag indicating a data bounce buffer is used
 314 * @bounce_oob: Flag indicating an OOB bounce buffer is used
 315 */
 316struct nand_ecc_req_tweak_ctx {
 317        struct nand_page_io_req orig_req;
 318        struct nand_device *nand;
 319        unsigned int page_buffer_size;
 320        unsigned int oob_buffer_size;
 321        void *spare_databuf;
 322        void *spare_oobbuf;
 323        bool bounce_data;
 324        bool bounce_oob;
 325};
 326
 327int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx,
 328                               struct nand_device *nand);
 329void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx);
 330void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
 331                        struct nand_page_io_req *req);
 332void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx,
 333                          struct nand_page_io_req *req);
 334
 335/**
 336 * struct nand_ecc - Information relative to the ECC
 337 * @defaults: Default values, depend on the underlying subsystem
 338 * @requirements: ECC requirements from the NAND chip perspective
 339 * @user_conf: User desires in terms of ECC parameters
 340 * @ctx: ECC context for the ECC engine, derived from the device @requirements
 341 *       the @user_conf and the @defaults
 342 * @ondie_engine: On-die ECC engine reference, if any
 343 * @engine: ECC engine actually bound
 344 */
 345struct nand_ecc {
 346        struct nand_ecc_props defaults;
 347        struct nand_ecc_props requirements;
 348        struct nand_ecc_props user_conf;
 349        struct nand_ecc_context ctx;
 350        struct nand_ecc_engine *ondie_engine;
 351        struct nand_ecc_engine *engine;
 352};
 353
 354/**
 355 * struct nand_device - NAND device
 356 * @mtd: MTD instance attached to the NAND device
 357 * @memorg: memory layout
 358 * @ecc: NAND ECC object attached to the NAND device
 359 * @rowconv: position to row address converter
 360 * @bbt: bad block table info
 361 * @ops: NAND operations attached to the NAND device
 362 *
 363 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
 364 * should declare their own NAND object embedding a nand_device struct (that's
 365 * how inheritance is done).
 366 * struct_nand_device->memorg and struct_nand_device->ecc.requirements should
 367 * be filled at device detection time to reflect the NAND device
 368 * capabilities/requirements. Once this is done nanddev_init() can be called.
 369 * It will take care of converting NAND information into MTD ones, which means
 370 * the specialized NAND layers should never manually tweak
 371 * struct_nand_device->mtd except for the ->_read/write() hooks.
 372 */
 373struct nand_device {
 374        struct mtd_info mtd;
 375        struct nand_memory_organization memorg;
 376        struct nand_ecc ecc;
 377        struct nand_row_converter rowconv;
 378        struct nand_bbt bbt;
 379        const struct nand_ops *ops;
 380};
 381
 382/**
 383 * struct nand_io_iter - NAND I/O iterator
 384 * @req: current I/O request
 385 * @oobbytes_per_page: maximum number of OOB bytes per page
 386 * @dataleft: remaining number of data bytes to read/write
 387 * @oobleft: remaining number of OOB bytes to read/write
 388 *
 389 * Can be used by specialized NAND layers to iterate over all pages covered
 390 * by an MTD I/O request, which should greatly simplifies the boiler-plate
 391 * code needed to read/write data from/to a NAND device.
 392 */
 393struct nand_io_iter {
 394        struct nand_page_io_req req;
 395        unsigned int oobbytes_per_page;
 396        unsigned int dataleft;
 397        unsigned int oobleft;
 398};
 399
 400/**
 401 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
 402 * @mtd: MTD instance
 403 *
 404 * Return: the NAND device embedding @mtd.
 405 */
 406static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
 407{
 408        return container_of(mtd, struct nand_device, mtd);
 409}
 410
 411/**
 412 * nanddev_to_mtd() - Get the MTD device attached to a NAND device
 413 * @nand: NAND device
 414 *
 415 * Return: the MTD device embedded in @nand.
 416 */
 417static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
 418{
 419        return &nand->mtd;
 420}
 421
 422/*
 423 * nanddev_bits_per_cell() - Get the number of bits per cell
 424 * @nand: NAND device
 425 *
 426 * Return: the number of bits per cell.
 427 */
 428static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
 429{
 430        return nand->memorg.bits_per_cell;
 431}
 432
 433/**
 434 * nanddev_page_size() - Get NAND page size
 435 * @nand: NAND device
 436 *
 437 * Return: the page size.
 438 */
 439static inline size_t nanddev_page_size(const struct nand_device *nand)
 440{
 441        return nand->memorg.pagesize;
 442}
 443
 444/**
 445 * nanddev_per_page_oobsize() - Get NAND OOB size
 446 * @nand: NAND device
 447 *
 448 * Return: the OOB size.
 449 */
 450static inline unsigned int
 451nanddev_per_page_oobsize(const struct nand_device *nand)
 452{
 453        return nand->memorg.oobsize;
 454}
 455
 456/**
 457 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
 458 * @nand: NAND device
 459 *
 460 * Return: the number of pages per eraseblock.
 461 */
 462static inline unsigned int
 463nanddev_pages_per_eraseblock(const struct nand_device *nand)
 464{
 465        return nand->memorg.pages_per_eraseblock;
 466}
 467
 468/**
 469 * nanddev_pages_per_target() - Get the number of pages per target
 470 * @nand: NAND device
 471 *
 472 * Return: the number of pages per target.
 473 */
 474static inline unsigned int
 475nanddev_pages_per_target(const struct nand_device *nand)
 476{
 477        return nand->memorg.pages_per_eraseblock *
 478               nand->memorg.eraseblocks_per_lun *
 479               nand->memorg.luns_per_target;
 480}
 481
 482/**
 483 * nanddev_per_page_oobsize() - Get NAND erase block size
 484 * @nand: NAND device
 485 *
 486 * Return: the eraseblock size.
 487 */
 488static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
 489{
 490        return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
 491}
 492
 493/**
 494 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
 495 * @nand: NAND device
 496 *
 497 * Return: the number of eraseblocks per LUN.
 498 */
 499static inline unsigned int
 500nanddev_eraseblocks_per_lun(const struct nand_device *nand)
 501{
 502        return nand->memorg.eraseblocks_per_lun;
 503}
 504
 505/**
 506 * nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target
 507 * @nand: NAND device
 508 *
 509 * Return: the number of eraseblocks per target.
 510 */
 511static inline unsigned int
 512nanddev_eraseblocks_per_target(const struct nand_device *nand)
 513{
 514        return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target;
 515}
 516
 517/**
 518 * nanddev_target_size() - Get the total size provided by a single target/die
 519 * @nand: NAND device
 520 *
 521 * Return: the total size exposed by a single target/die in bytes.
 522 */
 523static inline u64 nanddev_target_size(const struct nand_device *nand)
 524{
 525        return (u64)nand->memorg.luns_per_target *
 526               nand->memorg.eraseblocks_per_lun *
 527               nand->memorg.pages_per_eraseblock *
 528               nand->memorg.pagesize;
 529}
 530
 531/**
 532 * nanddev_ntarget() - Get the total of targets
 533 * @nand: NAND device
 534 *
 535 * Return: the number of targets/dies exposed by @nand.
 536 */
 537static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
 538{
 539        return nand->memorg.ntargets;
 540}
 541
 542/**
 543 * nanddev_neraseblocks() - Get the total number of eraseblocks
 544 * @nand: NAND device
 545 *
 546 * Return: the total number of eraseblocks exposed by @nand.
 547 */
 548static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
 549{
 550        return nand->memorg.ntargets * nand->memorg.luns_per_target *
 551               nand->memorg.eraseblocks_per_lun;
 552}
 553
 554/**
 555 * nanddev_size() - Get NAND size
 556 * @nand: NAND device
 557 *
 558 * Return: the total size (in bytes) exposed by @nand.
 559 */
 560static inline u64 nanddev_size(const struct nand_device *nand)
 561{
 562        return nanddev_target_size(nand) * nanddev_ntargets(nand);
 563}
 564
 565/**
 566 * nanddev_get_memorg() - Extract memory organization info from a NAND device
 567 * @nand: NAND device
 568 *
 569 * This can be used by the upper layer to fill the memorg info before calling
 570 * nanddev_init().
 571 *
 572 * Return: the memorg object embedded in the NAND device.
 573 */
 574static inline struct nand_memory_organization *
 575nanddev_get_memorg(struct nand_device *nand)
 576{
 577        return &nand->memorg;
 578}
 579
 580/**
 581 * nanddev_get_ecc_conf() - Extract the ECC configuration from a NAND device
 582 * @nand: NAND device
 583 */
 584static inline const struct nand_ecc_props *
 585nanddev_get_ecc_conf(struct nand_device *nand)
 586{
 587        return &nand->ecc.ctx.conf;
 588}
 589
 590/**
 591 * nanddev_get_ecc_nsteps() - Extract the number of ECC steps
 592 * @nand: NAND device
 593 */
 594static inline unsigned int
 595nanddev_get_ecc_nsteps(struct nand_device *nand)
 596{
 597        return nand->ecc.ctx.nsteps;
 598}
 599
 600/**
 601 * nanddev_get_ecc_bytes_per_step() - Extract the number of ECC bytes per step
 602 * @nand: NAND device
 603 */
 604static inline unsigned int
 605nanddev_get_ecc_bytes_per_step(struct nand_device *nand)
 606{
 607        return nand->ecc.ctx.total / nand->ecc.ctx.nsteps;
 608}
 609
 610/**
 611 * nanddev_get_ecc_requirements() - Extract the ECC requirements from a NAND
 612 *                                  device
 613 * @nand: NAND device
 614 */
 615static inline const struct nand_ecc_props *
 616nanddev_get_ecc_requirements(struct nand_device *nand)
 617{
 618        return &nand->ecc.requirements;
 619}
 620
 621/**
 622 * nanddev_set_ecc_requirements() - Assign the ECC requirements of a NAND
 623 *                                  device
 624 * @nand: NAND device
 625 * @reqs: Requirements
 626 */
 627static inline void
 628nanddev_set_ecc_requirements(struct nand_device *nand,
 629                             const struct nand_ecc_props *reqs)
 630{
 631        nand->ecc.requirements = *reqs;
 632}
 633
 634int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
 635                 struct module *owner);
 636void nanddev_cleanup(struct nand_device *nand);
 637
 638/**
 639 * nanddev_register() - Register a NAND device
 640 * @nand: NAND device
 641 *
 642 * Register a NAND device.
 643 * This function is just a wrapper around mtd_device_register()
 644 * registering the MTD device embedded in @nand.
 645 *
 646 * Return: 0 in case of success, a negative error code otherwise.
 647 */
 648static inline int nanddev_register(struct nand_device *nand)
 649{
 650        return mtd_device_register(&nand->mtd, NULL, 0);
 651}
 652
 653/**
 654 * nanddev_unregister() - Unregister a NAND device
 655 * @nand: NAND device
 656 *
 657 * Unregister a NAND device.
 658 * This function is just a wrapper around mtd_device_unregister()
 659 * unregistering the MTD device embedded in @nand.
 660 *
 661 * Return: 0 in case of success, a negative error code otherwise.
 662 */
 663static inline int nanddev_unregister(struct nand_device *nand)
 664{
 665        return mtd_device_unregister(&nand->mtd);
 666}
 667
 668/**
 669 * nanddev_set_of_node() - Attach a DT node to a NAND device
 670 * @nand: NAND device
 671 * @np: DT node
 672 *
 673 * Attach a DT node to a NAND device.
 674 */
 675static inline void nanddev_set_of_node(struct nand_device *nand,
 676                                       struct device_node *np)
 677{
 678        mtd_set_of_node(&nand->mtd, np);
 679}
 680
 681/**
 682 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
 683 * @nand: NAND device
 684 *
 685 * Return: the DT node attached to @nand.
 686 */
 687static inline struct device_node *nanddev_get_of_node(struct nand_device *nand)
 688{
 689        return mtd_get_of_node(&nand->mtd);
 690}
 691
 692/**
 693 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
 694 * @nand: NAND device
 695 * @offs: absolute NAND offset (usually passed by the MTD layer)
 696 * @pos: a NAND position object to fill in
 697 *
 698 * Converts @offs into a nand_pos representation.
 699 *
 700 * Return: the offset within the NAND page pointed by @pos.
 701 */
 702static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
 703                                               loff_t offs,
 704                                               struct nand_pos *pos)
 705{
 706        unsigned int pageoffs;
 707        u64 tmp = offs;
 708
 709        pageoffs = do_div(tmp, nand->memorg.pagesize);
 710        pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
 711        pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
 712        pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
 713        pos->lun = do_div(tmp, nand->memorg.luns_per_target);
 714        pos->target = tmp;
 715
 716        return pageoffs;
 717}
 718
 719/**
 720 * nanddev_pos_cmp() - Compare two NAND positions
 721 * @a: First NAND position
 722 * @b: Second NAND position
 723 *
 724 * Compares two NAND positions.
 725 *
 726 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
 727 */
 728static inline int nanddev_pos_cmp(const struct nand_pos *a,
 729                                  const struct nand_pos *b)
 730{
 731        if (a->target != b->target)
 732                return a->target < b->target ? -1 : 1;
 733
 734        if (a->lun != b->lun)
 735                return a->lun < b->lun ? -1 : 1;
 736
 737        if (a->eraseblock != b->eraseblock)
 738                return a->eraseblock < b->eraseblock ? -1 : 1;
 739
 740        if (a->page != b->page)
 741                return a->page < b->page ? -1 : 1;
 742
 743        return 0;
 744}
 745
 746/**
 747 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
 748 * @nand: NAND device
 749 * @pos: the NAND position to convert
 750 *
 751 * Converts @pos NAND position into an absolute offset.
 752 *
 753 * Return: the absolute offset. Note that @pos points to the beginning of a
 754 *         page, if one wants to point to a specific offset within this page
 755 *         the returned offset has to be adjusted manually.
 756 */
 757static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
 758                                         const struct nand_pos *pos)
 759{
 760        unsigned int npages;
 761
 762        npages = pos->page +
 763                 ((pos->eraseblock +
 764                   (pos->lun +
 765                    (pos->target * nand->memorg.luns_per_target)) *
 766                   nand->memorg.eraseblocks_per_lun) *
 767                  nand->memorg.pages_per_eraseblock);
 768
 769        return (loff_t)npages * nand->memorg.pagesize;
 770}
 771
 772/**
 773 * nanddev_pos_to_row() - Extract a row address from a NAND position
 774 * @nand: NAND device
 775 * @pos: the position to convert
 776 *
 777 * Converts a NAND position into a row address that can then be passed to the
 778 * device.
 779 *
 780 * Return: the row address extracted from @pos.
 781 */
 782static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
 783                                              const struct nand_pos *pos)
 784{
 785        return (pos->lun << nand->rowconv.lun_addr_shift) |
 786               (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
 787               pos->page;
 788}
 789
 790/**
 791 * nanddev_pos_next_target() - Move a position to the next target/die
 792 * @nand: NAND device
 793 * @pos: the position to update
 794 *
 795 * Updates @pos to point to the start of the next target/die. Useful when you
 796 * want to iterate over all targets/dies of a NAND device.
 797 */
 798static inline void nanddev_pos_next_target(struct nand_device *nand,
 799                                           struct nand_pos *pos)
 800{
 801        pos->page = 0;
 802        pos->plane = 0;
 803        pos->eraseblock = 0;
 804        pos->lun = 0;
 805        pos->target++;
 806}
 807
 808/**
 809 * nanddev_pos_next_lun() - Move a position to the next LUN
 810 * @nand: NAND device
 811 * @pos: the position to update
 812 *
 813 * Updates @pos to point to the start of the next LUN. Useful when you want to
 814 * iterate over all LUNs of a NAND device.
 815 */
 816static inline void nanddev_pos_next_lun(struct nand_device *nand,
 817                                        struct nand_pos *pos)
 818{
 819        if (pos->lun >= nand->memorg.luns_per_target - 1)
 820                return nanddev_pos_next_target(nand, pos);
 821
 822        pos->lun++;
 823        pos->page = 0;
 824        pos->plane = 0;
 825        pos->eraseblock = 0;
 826}
 827
 828/**
 829 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
 830 * @nand: NAND device
 831 * @pos: the position to update
 832 *
 833 * Updates @pos to point to the start of the next eraseblock. Useful when you
 834 * want to iterate over all eraseblocks of a NAND device.
 835 */
 836static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
 837                                               struct nand_pos *pos)
 838{
 839        if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
 840                return nanddev_pos_next_lun(nand, pos);
 841
 842        pos->eraseblock++;
 843        pos->page = 0;
 844        pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
 845}
 846
 847/**
 848 * nanddev_pos_next_page() - Move a position to the next page
 849 * @nand: NAND device
 850 * @pos: the position to update
 851 *
 852 * Updates @pos to point to the start of the next page. Useful when you want to
 853 * iterate over all pages of a NAND device.
 854 */
 855static inline void nanddev_pos_next_page(struct nand_device *nand,
 856                                         struct nand_pos *pos)
 857{
 858        if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
 859                return nanddev_pos_next_eraseblock(nand, pos);
 860
 861        pos->page++;
 862}
 863
 864/**
 865 * nand_io_iter_init - Initialize a NAND I/O iterator
 866 * @nand: NAND device
 867 * @offs: absolute offset
 868 * @req: MTD request
 869 * @iter: NAND I/O iterator
 870 *
 871 * Initializes a NAND iterator based on the information passed by the MTD
 872 * layer.
 873 */
 874static inline void nanddev_io_iter_init(struct nand_device *nand,
 875                                        enum nand_page_io_req_type reqtype,
 876                                        loff_t offs, struct mtd_oob_ops *req,
 877                                        struct nand_io_iter *iter)
 878{
 879        struct mtd_info *mtd = nanddev_to_mtd(nand);
 880
 881        iter->req.type = reqtype;
 882        iter->req.mode = req->mode;
 883        iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
 884        iter->req.ooboffs = req->ooboffs;
 885        iter->oobbytes_per_page = mtd_oobavail(mtd, req);
 886        iter->dataleft = req->len;
 887        iter->oobleft = req->ooblen;
 888        iter->req.databuf.in = req->datbuf;
 889        iter->req.datalen = min_t(unsigned int,
 890                                  nand->memorg.pagesize - iter->req.dataoffs,
 891                                  iter->dataleft);
 892        iter->req.oobbuf.in = req->oobbuf;
 893        iter->req.ooblen = min_t(unsigned int,
 894                                 iter->oobbytes_per_page - iter->req.ooboffs,
 895                                 iter->oobleft);
 896}
 897
 898/**
 899 * nand_io_iter_next_page - Move to the next page
 900 * @nand: NAND device
 901 * @iter: NAND I/O iterator
 902 *
 903 * Updates the @iter to point to the next page.
 904 */
 905static inline void nanddev_io_iter_next_page(struct nand_device *nand,
 906                                             struct nand_io_iter *iter)
 907{
 908        nanddev_pos_next_page(nand, &iter->req.pos);
 909        iter->dataleft -= iter->req.datalen;
 910        iter->req.databuf.in += iter->req.datalen;
 911        iter->oobleft -= iter->req.ooblen;
 912        iter->req.oobbuf.in += iter->req.ooblen;
 913        iter->req.dataoffs = 0;
 914        iter->req.ooboffs = 0;
 915        iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
 916                                  iter->dataleft);
 917        iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
 918                                 iter->oobleft);
 919}
 920
 921/**
 922 * nand_io_iter_end - Should end iteration or not
 923 * @nand: NAND device
 924 * @iter: NAND I/O iterator
 925 *
 926 * Check whether @iter has reached the end of the NAND portion it was asked to
 927 * iterate on or not.
 928 *
 929 * Return: true if @iter has reached the end of the iteration request, false
 930 *         otherwise.
 931 */
 932static inline bool nanddev_io_iter_end(struct nand_device *nand,
 933                                       const struct nand_io_iter *iter)
 934{
 935        if (iter->dataleft || iter->oobleft)
 936                return false;
 937
 938        return true;
 939}
 940
 941/**
 942 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
 943 *                         request
 944 * @nand: NAND device
 945 * @start: start address to read/write from
 946 * @req: MTD I/O request
 947 * @iter: NAND I/O iterator
 948 *
 949 * Should be used for iterate over pages that are contained in an MTD request.
 950 */
 951#define nanddev_io_for_each_page(nand, type, start, req, iter)          \
 952        for (nanddev_io_iter_init(nand, type, start, req, iter);        \
 953             !nanddev_io_iter_end(nand, iter);                          \
 954             nanddev_io_iter_next_page(nand, iter))
 955
 956bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
 957bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
 958int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
 959int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
 960
 961/* ECC related functions */
 962int nanddev_ecc_engine_init(struct nand_device *nand);
 963void nanddev_ecc_engine_cleanup(struct nand_device *nand);
 964
 965/* BBT related functions */
 966enum nand_bbt_block_status {
 967        NAND_BBT_BLOCK_STATUS_UNKNOWN,
 968        NAND_BBT_BLOCK_GOOD,
 969        NAND_BBT_BLOCK_WORN,
 970        NAND_BBT_BLOCK_RESERVED,
 971        NAND_BBT_BLOCK_FACTORY_BAD,
 972        NAND_BBT_BLOCK_NUM_STATUS,
 973};
 974
 975int nanddev_bbt_init(struct nand_device *nand);
 976void nanddev_bbt_cleanup(struct nand_device *nand);
 977int nanddev_bbt_update(struct nand_device *nand);
 978int nanddev_bbt_get_block_status(const struct nand_device *nand,
 979                                 unsigned int entry);
 980int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
 981                                 enum nand_bbt_block_status status);
 982int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
 983
 984/**
 985 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
 986 * @nand: NAND device
 987 * @pos: the NAND position we want to get BBT entry for
 988 *
 989 * Return the BBT entry used to store information about the eraseblock pointed
 990 * by @pos.
 991 *
 992 * Return: the BBT entry storing information about eraseblock pointed by @pos.
 993 */
 994static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
 995                                                    const struct nand_pos *pos)
 996{
 997        return pos->eraseblock +
 998               ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
 999                nand->memorg.eraseblocks_per_lun);
1000}
1001
1002/**
1003 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
1004 * @nand: NAND device
1005 *
1006 * Return: true if the BBT has been initialized, false otherwise.
1007 */
1008static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
1009{
1010        return !!nand->bbt.cache;
1011}
1012
1013/* MTD -> NAND helper functions. */
1014int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
1015int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len);
1016
1017#endif /* __LINUX_MTD_NAND_H */
1018