linux/include/linux/mtd/rawnand.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
   4 *                        Steven J. Hill <sjhill@realitydiluted.com>
   5 *                        Thomas Gleixner <tglx@linutronix.de>
   6 *
   7 * Info:
   8 *      Contains standard defines and IDs for NAND flash devices
   9 *
  10 * Changelog:
  11 *      See git changelog.
  12 */
  13#ifndef __LINUX_MTD_RAWNAND_H
  14#define __LINUX_MTD_RAWNAND_H
  15
  16#include <linux/mtd/mtd.h>
  17#include <linux/mtd/nand.h>
  18#include <linux/mtd/flashchip.h>
  19#include <linux/mtd/bbm.h>
  20#include <linux/mtd/jedec.h>
  21#include <linux/mtd/onfi.h>
  22#include <linux/mutex.h>
  23#include <linux/of.h>
  24#include <linux/types.h>
  25
  26struct nand_chip;
  27struct gpio_desc;
  28
  29/* The maximum number of NAND chips in an array */
  30#define NAND_MAX_CHIPS          8
  31
  32/*
  33 * Constants for hardware specific CLE/ALE/NCE function
  34 *
  35 * These are bits which can be or'ed to set/clear multiple
  36 * bits in one go.
  37 */
  38/* Select the chip by setting nCE to low */
  39#define NAND_NCE                0x01
  40/* Select the command latch by setting CLE to high */
  41#define NAND_CLE                0x02
  42/* Select the address latch by setting ALE to high */
  43#define NAND_ALE                0x04
  44
  45#define NAND_CTRL_CLE           (NAND_NCE | NAND_CLE)
  46#define NAND_CTRL_ALE           (NAND_NCE | NAND_ALE)
  47#define NAND_CTRL_CHANGE        0x80
  48
  49/*
  50 * Standard NAND flash commands
  51 */
  52#define NAND_CMD_READ0          0
  53#define NAND_CMD_READ1          1
  54#define NAND_CMD_RNDOUT         5
  55#define NAND_CMD_PAGEPROG       0x10
  56#define NAND_CMD_READOOB        0x50
  57#define NAND_CMD_ERASE1         0x60
  58#define NAND_CMD_STATUS         0x70
  59#define NAND_CMD_SEQIN          0x80
  60#define NAND_CMD_RNDIN          0x85
  61#define NAND_CMD_READID         0x90
  62#define NAND_CMD_ERASE2         0xd0
  63#define NAND_CMD_PARAM          0xec
  64#define NAND_CMD_GET_FEATURES   0xee
  65#define NAND_CMD_SET_FEATURES   0xef
  66#define NAND_CMD_RESET          0xff
  67
  68/* Extended commands for large page devices */
  69#define NAND_CMD_READSTART      0x30
  70#define NAND_CMD_RNDOUTSTART    0xE0
  71#define NAND_CMD_CACHEDPROG     0x15
  72
  73#define NAND_CMD_NONE           -1
  74
  75/* Status bits */
  76#define NAND_STATUS_FAIL        0x01
  77#define NAND_STATUS_FAIL_N1     0x02
  78#define NAND_STATUS_TRUE_READY  0x20
  79#define NAND_STATUS_READY       0x40
  80#define NAND_STATUS_WP          0x80
  81
  82#define NAND_DATA_IFACE_CHECK_ONLY      -1
  83
  84/*
  85 * Constants for Hardware ECC
  86 */
  87/* Reset Hardware ECC for read */
  88#define NAND_ECC_READ           0
  89/* Reset Hardware ECC for write */
  90#define NAND_ECC_WRITE          1
  91/* Enable Hardware ECC before syndrome is read back from flash */
  92#define NAND_ECC_READSYN        2
  93
  94/*
  95 * Enable generic NAND 'page erased' check. This check is only done when
  96 * ecc.correct() returns -EBADMSG.
  97 * Set this flag if your implementation does not fix bitflips in erased
  98 * pages and you want to rely on the default implementation.
  99 */
 100#define NAND_ECC_GENERIC_ERASED_CHECK   BIT(0)
 101
 102/*
 103 * Option constants for bizarre disfunctionality and real
 104 * features.
 105 */
 106
 107/* Buswidth is 16 bit */
 108#define NAND_BUSWIDTH_16        BIT(1)
 109
 110/*
 111 * When using software implementation of Hamming, we can specify which byte
 112 * ordering should be used.
 113 */
 114#define NAND_ECC_SOFT_HAMMING_SM_ORDER  BIT(2)
 115
 116/* Chip has cache program function */
 117#define NAND_CACHEPRG           BIT(3)
 118/* Options valid for Samsung large page devices */
 119#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
 120
 121/*
 122 * Chip requires ready check on read (for auto-incremented sequential read).
 123 * True only for small page devices; large page devices do not support
 124 * autoincrement.
 125 */
 126#define NAND_NEED_READRDY       BIT(8)
 127
 128/* Chip does not allow subpage writes */
 129#define NAND_NO_SUBPAGE_WRITE   BIT(9)
 130
 131/* Device is one of 'new' xD cards that expose fake nand command set */
 132#define NAND_BROKEN_XD          BIT(10)
 133
 134/* Device behaves just like nand, but is readonly */
 135#define NAND_ROM                BIT(11)
 136
 137/* Device supports subpage reads */
 138#define NAND_SUBPAGE_READ       BIT(12)
 139/* Macros to identify the above */
 140#define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
 141
 142/*
 143 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
 144 * patterns.
 145 */
 146#define NAND_NEED_SCRAMBLING    BIT(13)
 147
 148/* Device needs 3rd row address cycle */
 149#define NAND_ROW_ADDR_3         BIT(14)
 150
 151/* Non chip related options */
 152/* This option skips the bbt scan during initialization. */
 153#define NAND_SKIP_BBTSCAN       BIT(16)
 154/* Chip may not exist, so silence any errors in scan */
 155#define NAND_SCAN_SILENT_NODEV  BIT(18)
 156
 157/*
 158 * Autodetect nand buswidth with readid/onfi.
 159 * This suppose the driver will configure the hardware in 8 bits mode
 160 * when calling nand_scan_ident, and update its configuration
 161 * before calling nand_scan_tail.
 162 */
 163#define NAND_BUSWIDTH_AUTO      BIT(19)
 164
 165/*
 166 * This option could be defined by controller drivers to protect against
 167 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
 168 */
 169#define NAND_USES_DMA           BIT(20)
 170
 171/*
 172 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
 173 * on the default ->cmdfunc() implementation, you may want to let the core
 174 * handle the tCCS delay which is required when a column change (RNDIN or
 175 * RNDOUT) is requested.
 176 * If your controller already takes care of this delay, you don't need to set
 177 * this flag.
 178 */
 179#define NAND_WAIT_TCCS          BIT(21)
 180
 181/*
 182 * Whether the NAND chip is a boot medium. Drivers might use this information
 183 * to select ECC algorithms supported by the boot ROM or similar restrictions.
 184 */
 185#define NAND_IS_BOOT_MEDIUM     BIT(22)
 186
 187/*
 188 * Do not try to tweak the timings at runtime. This is needed when the
 189 * controller initializes the timings on itself or when it relies on
 190 * configuration done by the bootloader.
 191 */
 192#define NAND_KEEP_TIMINGS       BIT(23)
 193
 194/*
 195 * There are different places where the manufacturer stores the factory bad
 196 * block markers.
 197 *
 198 * Position within the block: Each of these pages needs to be checked for a
 199 * bad block marking pattern.
 200 */
 201#define NAND_BBM_FIRSTPAGE      BIT(24)
 202#define NAND_BBM_SECONDPAGE     BIT(25)
 203#define NAND_BBM_LASTPAGE       BIT(26)
 204
 205/*
 206 * Some controllers with pipelined ECC engines override the BBM marker with
 207 * data or ECC bytes, thus making bad block detection through bad block marker
 208 * impossible. Let's flag those chips so the core knows it shouldn't check the
 209 * BBM and consider all blocks good.
 210 */
 211#define NAND_NO_BBM_QUIRK       BIT(27)
 212
 213/* Cell info constants */
 214#define NAND_CI_CHIPNR_MSK      0x03
 215#define NAND_CI_CELLTYPE_MSK    0x0C
 216#define NAND_CI_CELLTYPE_SHIFT  2
 217
 218/* Position within the OOB data of the page */
 219#define NAND_BBM_POS_SMALL              5
 220#define NAND_BBM_POS_LARGE              0
 221
 222/**
 223 * struct nand_parameters - NAND generic parameters from the parameter page
 224 * @model: Model name
 225 * @supports_set_get_features: The NAND chip supports setting/getting features
 226 * @set_feature_list: Bitmap of features that can be set
 227 * @get_feature_list: Bitmap of features that can be get
 228 * @onfi: ONFI specific parameters
 229 */
 230struct nand_parameters {
 231        /* Generic parameters */
 232        const char *model;
 233        bool supports_set_get_features;
 234        DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
 235        DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
 236
 237        /* ONFI parameters */
 238        struct onfi_params *onfi;
 239};
 240
 241/* The maximum expected count of bytes in the NAND ID sequence */
 242#define NAND_MAX_ID_LEN 8
 243
 244/**
 245 * struct nand_id - NAND id structure
 246 * @data: buffer containing the id bytes.
 247 * @len: ID length.
 248 */
 249struct nand_id {
 250        u8 data[NAND_MAX_ID_LEN];
 251        int len;
 252};
 253
 254/**
 255 * struct nand_ecc_step_info - ECC step information of ECC engine
 256 * @stepsize: data bytes per ECC step
 257 * @strengths: array of supported strengths
 258 * @nstrengths: number of supported strengths
 259 */
 260struct nand_ecc_step_info {
 261        int stepsize;
 262        const int *strengths;
 263        int nstrengths;
 264};
 265
 266/**
 267 * struct nand_ecc_caps - capability of ECC engine
 268 * @stepinfos: array of ECC step information
 269 * @nstepinfos: number of ECC step information
 270 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
 271 */
 272struct nand_ecc_caps {
 273        const struct nand_ecc_step_info *stepinfos;
 274        int nstepinfos;
 275        int (*calc_ecc_bytes)(int step_size, int strength);
 276};
 277
 278/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
 279#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)       \
 280static const int __name##_strengths[] = { __VA_ARGS__ };        \
 281static const struct nand_ecc_step_info __name##_stepinfo = {    \
 282        .stepsize = __step,                                     \
 283        .strengths = __name##_strengths,                        \
 284        .nstrengths = ARRAY_SIZE(__name##_strengths),           \
 285};                                                              \
 286static const struct nand_ecc_caps __name = {                    \
 287        .stepinfos = &__name##_stepinfo,                        \
 288        .nstepinfos = 1,                                        \
 289        .calc_ecc_bytes = __calc,                               \
 290}
 291
 292/**
 293 * struct nand_ecc_ctrl - Control structure for ECC
 294 * @engine_type: ECC engine type
 295 * @placement:  OOB bytes placement
 296 * @algo:       ECC algorithm
 297 * @steps:      number of ECC steps per page
 298 * @size:       data bytes per ECC step
 299 * @bytes:      ECC bytes per step
 300 * @strength:   max number of correctible bits per ECC step
 301 * @total:      total number of ECC bytes per page
 302 * @prepad:     padding information for syndrome based ECC generators
 303 * @postpad:    padding information for syndrome based ECC generators
 304 * @options:    ECC specific options (see NAND_ECC_XXX flags defined above)
 305 * @calc_buf:   buffer for calculated ECC, size is oobsize.
 306 * @code_buf:   buffer for ECC read from flash, size is oobsize.
 307 * @hwctl:      function to control hardware ECC generator. Must only
 308 *              be provided if an hardware ECC is available
 309 * @calculate:  function for ECC calculation or readback from ECC hardware
 310 * @correct:    function for ECC correction, matching to ECC generator (sw/hw).
 311 *              Should return a positive number representing the number of
 312 *              corrected bitflips, -EBADMSG if the number of bitflips exceed
 313 *              ECC strength, or any other error code if the error is not
 314 *              directly related to correction.
 315 *              If -EBADMSG is returned the input buffers should be left
 316 *              untouched.
 317 * @read_page_raw:      function to read a raw page without ECC. This function
 318 *                      should hide the specific layout used by the ECC
 319 *                      controller and always return contiguous in-band and
 320 *                      out-of-band data even if they're not stored
 321 *                      contiguously on the NAND chip (e.g.
 322 *                      NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
 323 *                      out-of-band data).
 324 * @write_page_raw:     function to write a raw page without ECC. This function
 325 *                      should hide the specific layout used by the ECC
 326 *                      controller and consider the passed data as contiguous
 327 *                      in-band and out-of-band data. ECC controller is
 328 *                      responsible for doing the appropriate transformations
 329 *                      to adapt to its specific layout (e.g.
 330 *                      NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
 331 *                      out-of-band data).
 332 * @read_page:  function to read a page according to the ECC generator
 333 *              requirements; returns maximum number of bitflips corrected in
 334 *              any single ECC step, -EIO hw error
 335 * @read_subpage:       function to read parts of the page covered by ECC;
 336 *                      returns same as read_page()
 337 * @write_subpage:      function to write parts of the page covered by ECC.
 338 * @write_page: function to write a page according to the ECC generator
 339 *              requirements.
 340 * @write_oob_raw:      function to write chip OOB data without ECC
 341 * @read_oob_raw:       function to read chip OOB data without ECC
 342 * @read_oob:   function to read chip OOB data
 343 * @write_oob:  function to write chip OOB data
 344 */
 345struct nand_ecc_ctrl {
 346        enum nand_ecc_engine_type engine_type;
 347        enum nand_ecc_placement placement;
 348        enum nand_ecc_algo algo;
 349        int steps;
 350        int size;
 351        int bytes;
 352        int total;
 353        int strength;
 354        int prepad;
 355        int postpad;
 356        unsigned int options;
 357        u8 *calc_buf;
 358        u8 *code_buf;
 359        void (*hwctl)(struct nand_chip *chip, int mode);
 360        int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
 361                         uint8_t *ecc_code);
 362        int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
 363                       uint8_t *calc_ecc);
 364        int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
 365                             int oob_required, int page);
 366        int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
 367                              int oob_required, int page);
 368        int (*read_page)(struct nand_chip *chip, uint8_t *buf,
 369                         int oob_required, int page);
 370        int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
 371                            uint32_t len, uint8_t *buf, int page);
 372        int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
 373                             uint32_t data_len, const uint8_t *data_buf,
 374                             int oob_required, int page);
 375        int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
 376                          int oob_required, int page);
 377        int (*write_oob_raw)(struct nand_chip *chip, int page);
 378        int (*read_oob_raw)(struct nand_chip *chip, int page);
 379        int (*read_oob)(struct nand_chip *chip, int page);
 380        int (*write_oob)(struct nand_chip *chip, int page);
 381};
 382
 383/**
 384 * struct nand_sdr_timings - SDR NAND chip timings
 385 *
 386 * This struct defines the timing requirements of a SDR NAND chip.
 387 * These information can be found in every NAND datasheets and the timings
 388 * meaning are described in the ONFI specifications:
 389 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_3_1_spec.pdf
 390 * (chapter 4.15 Timing Parameters)
 391 *
 392 * All these timings are expressed in picoseconds.
 393 *
 394 * @tBERS_max: Block erase time
 395 * @tCCS_min: Change column setup time
 396 * @tPROG_max: Page program time
 397 * @tR_max: Page read time
 398 * @tALH_min: ALE hold time
 399 * @tADL_min: ALE to data loading time
 400 * @tALS_min: ALE setup time
 401 * @tAR_min: ALE to RE# delay
 402 * @tCEA_max: CE# access time
 403 * @tCEH_min: CE# high hold time
 404 * @tCH_min:  CE# hold time
 405 * @tCHZ_max: CE# high to output hi-Z
 406 * @tCLH_min: CLE hold time
 407 * @tCLR_min: CLE to RE# delay
 408 * @tCLS_min: CLE setup time
 409 * @tCOH_min: CE# high to output hold
 410 * @tCS_min: CE# setup time
 411 * @tDH_min: Data hold time
 412 * @tDS_min: Data setup time
 413 * @tFEAT_max: Busy time for Set Features and Get Features
 414 * @tIR_min: Output hi-Z to RE# low
 415 * @tITC_max: Interface and Timing Mode Change time
 416 * @tRC_min: RE# cycle time
 417 * @tREA_max: RE# access time
 418 * @tREH_min: RE# high hold time
 419 * @tRHOH_min: RE# high to output hold
 420 * @tRHW_min: RE# high to WE# low
 421 * @tRHZ_max: RE# high to output hi-Z
 422 * @tRLOH_min: RE# low to output hold
 423 * @tRP_min: RE# pulse width
 424 * @tRR_min: Ready to RE# low (data only)
 425 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
 426 *            rising edge of R/B#.
 427 * @tWB_max: WE# high to SR[6] low
 428 * @tWC_min: WE# cycle time
 429 * @tWH_min: WE# high hold time
 430 * @tWHR_min: WE# high to RE# low
 431 * @tWP_min: WE# pulse width
 432 * @tWW_min: WP# transition to WE# low
 433 */
 434struct nand_sdr_timings {
 435        u64 tBERS_max;
 436        u32 tCCS_min;
 437        u64 tPROG_max;
 438        u64 tR_max;
 439        u32 tALH_min;
 440        u32 tADL_min;
 441        u32 tALS_min;
 442        u32 tAR_min;
 443        u32 tCEA_max;
 444        u32 tCEH_min;
 445        u32 tCH_min;
 446        u32 tCHZ_max;
 447        u32 tCLH_min;
 448        u32 tCLR_min;
 449        u32 tCLS_min;
 450        u32 tCOH_min;
 451        u32 tCS_min;
 452        u32 tDH_min;
 453        u32 tDS_min;
 454        u32 tFEAT_max;
 455        u32 tIR_min;
 456        u32 tITC_max;
 457        u32 tRC_min;
 458        u32 tREA_max;
 459        u32 tREH_min;
 460        u32 tRHOH_min;
 461        u32 tRHW_min;
 462        u32 tRHZ_max;
 463        u32 tRLOH_min;
 464        u32 tRP_min;
 465        u32 tRR_min;
 466        u64 tRST_max;
 467        u32 tWB_max;
 468        u32 tWC_min;
 469        u32 tWH_min;
 470        u32 tWHR_min;
 471        u32 tWP_min;
 472        u32 tWW_min;
 473};
 474
 475/**
 476 * struct nand_nvddr_timings - NV-DDR NAND chip timings
 477 *
 478 * This struct defines the timing requirements of a NV-DDR NAND data interface.
 479 * These information can be found in every NAND datasheets and the timings
 480 * meaning are described in the ONFI specifications:
 481 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_1_gold.pdf
 482 * (chapter 4.18.2 NV-DDR)
 483 *
 484 * All these timings are expressed in picoseconds.
 485 *
 486 * @tBERS_max: Block erase time
 487 * @tCCS_min: Change column setup time
 488 * @tPROG_max: Page program time
 489 * @tR_max: Page read time
 490 * @tAC_min: Access window of DQ[7:0] from CLK
 491 * @tAC_max: Access window of DQ[7:0] from CLK
 492 * @tADL_min: ALE to data loading time
 493 * @tCAD_min: Command, Address, Data delay
 494 * @tCAH_min: Command/Address DQ hold time
 495 * @tCALH_min: W/R_n, CLE and ALE hold time
 496 * @tCALS_min: W/R_n, CLE and ALE setup time
 497 * @tCAS_min: Command/address DQ setup time
 498 * @tCEH_min: CE# high hold time
 499 * @tCH_min:  CE# hold time
 500 * @tCK_min: Average clock cycle time
 501 * @tCS_min: CE# setup time
 502 * @tDH_min: Data hold time
 503 * @tDQSCK_min: Start of the access window of DQS from CLK
 504 * @tDQSCK_max: End of the access window of DQS from CLK
 505 * @tDQSD_min: Min W/R_n low to DQS/DQ driven by device
 506 * @tDQSD_max: Max W/R_n low to DQS/DQ driven by device
 507 * @tDQSHZ_max: W/R_n high to DQS/DQ tri-state by device
 508 * @tDQSQ_max: DQS-DQ skew, DQS to last DQ valid, per access
 509 * @tDS_min: Data setup time
 510 * @tDSC_min: DQS cycle time
 511 * @tFEAT_max: Busy time for Set Features and Get Features
 512 * @tITC_max: Interface and Timing Mode Change time
 513 * @tQHS_max: Data hold skew factor
 514 * @tRHW_min: Data output cycle to command, address, or data input cycle
 515 * @tRR_min: Ready to RE# low (data only)
 516 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
 517 *            rising edge of R/B#.
 518 * @tWB_max: WE# high to SR[6] low
 519 * @tWHR_min: WE# high to RE# low
 520 * @tWRCK_min: W/R_n low to data output cycle
 521 * @tWW_min: WP# transition to WE# low
 522 */
 523struct nand_nvddr_timings {
 524        u64 tBERS_max;
 525        u32 tCCS_min;
 526        u64 tPROG_max;
 527        u64 tR_max;
 528        u32 tAC_min;
 529        u32 tAC_max;
 530        u32 tADL_min;
 531        u32 tCAD_min;
 532        u32 tCAH_min;
 533        u32 tCALH_min;
 534        u32 tCALS_min;
 535        u32 tCAS_min;
 536        u32 tCEH_min;
 537        u32 tCH_min;
 538        u32 tCK_min;
 539        u32 tCS_min;
 540        u32 tDH_min;
 541        u32 tDQSCK_min;
 542        u32 tDQSCK_max;
 543        u32 tDQSD_min;
 544        u32 tDQSD_max;
 545        u32 tDQSHZ_max;
 546        u32 tDQSQ_max;
 547        u32 tDS_min;
 548        u32 tDSC_min;
 549        u32 tFEAT_max;
 550        u32 tITC_max;
 551        u32 tQHS_max;
 552        u32 tRHW_min;
 553        u32 tRR_min;
 554        u32 tRST_max;
 555        u32 tWB_max;
 556        u32 tWHR_min;
 557        u32 tWRCK_min;
 558        u32 tWW_min;
 559};
 560
 561/*
 562 * While timings related to the data interface itself are mostly different
 563 * between SDR and NV-DDR, timings related to the internal chip behavior are
 564 * common. IOW, the following entries which describe the internal delays have
 565 * the same definition and are shared in both SDR and NV-DDR timing structures:
 566 * - tADL_min
 567 * - tBERS_max
 568 * - tCCS_min
 569 * - tFEAT_max
 570 * - tPROG_max
 571 * - tR_max
 572 * - tRR_min
 573 * - tRST_max
 574 * - tWB_max
 575 *
 576 * The below macros return the value of a given timing, no matter the interface.
 577 */
 578#define NAND_COMMON_TIMING_PS(conf, timing_name)                \
 579        nand_interface_is_sdr(conf) ?                           \
 580                nand_get_sdr_timings(conf)->timing_name :       \
 581                nand_get_nvddr_timings(conf)->timing_name
 582
 583#define NAND_COMMON_TIMING_MS(conf, timing_name) \
 584        PSEC_TO_MSEC(NAND_COMMON_TIMING_PS((conf), timing_name))
 585
 586#define NAND_COMMON_TIMING_NS(conf, timing_name) \
 587        PSEC_TO_NSEC(NAND_COMMON_TIMING_PS((conf), timing_name))
 588
 589/**
 590 * enum nand_interface_type - NAND interface type
 591 * @NAND_SDR_IFACE:     Single Data Rate interface
 592 * @NAND_NVDDR_IFACE:   Double Data Rate interface
 593 */
 594enum nand_interface_type {
 595        NAND_SDR_IFACE,
 596        NAND_NVDDR_IFACE,
 597};
 598
 599/**
 600 * struct nand_interface_config - NAND interface timing
 601 * @type:        type of the timing
 602 * @timings:     The timing information
 603 * @timings.mode: Timing mode as defined in the specification
 604 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
 605 * @timings.nvddr: Use it when @type is %NAND_NVDDR_IFACE.
 606 */
 607struct nand_interface_config {
 608        enum nand_interface_type type;
 609        struct nand_timings {
 610                unsigned int mode;
 611                union {
 612                        struct nand_sdr_timings sdr;
 613                        struct nand_nvddr_timings nvddr;
 614                };
 615        } timings;
 616};
 617
 618/**
 619 * nand_interface_is_sdr - get the interface type
 620 * @conf:       The data interface
 621 */
 622static bool nand_interface_is_sdr(const struct nand_interface_config *conf)
 623{
 624        return conf->type == NAND_SDR_IFACE;
 625}
 626
 627/**
 628 * nand_interface_is_nvddr - get the interface type
 629 * @conf:       The data interface
 630 */
 631static bool nand_interface_is_nvddr(const struct nand_interface_config *conf)
 632{
 633        return conf->type == NAND_NVDDR_IFACE;
 634}
 635
 636/**
 637 * nand_get_sdr_timings - get SDR timing from data interface
 638 * @conf:       The data interface
 639 */
 640static inline const struct nand_sdr_timings *
 641nand_get_sdr_timings(const struct nand_interface_config *conf)
 642{
 643        if (!nand_interface_is_sdr(conf))
 644                return ERR_PTR(-EINVAL);
 645
 646        return &conf->timings.sdr;
 647}
 648
 649/**
 650 * nand_get_nvddr_timings - get NV-DDR timing from data interface
 651 * @conf:       The data interface
 652 */
 653static inline const struct nand_nvddr_timings *
 654nand_get_nvddr_timings(const struct nand_interface_config *conf)
 655{
 656        if (!nand_interface_is_nvddr(conf))
 657                return ERR_PTR(-EINVAL);
 658
 659        return &conf->timings.nvddr;
 660}
 661
 662/**
 663 * struct nand_op_cmd_instr - Definition of a command instruction
 664 * @opcode: the command to issue in one cycle
 665 */
 666struct nand_op_cmd_instr {
 667        u8 opcode;
 668};
 669
 670/**
 671 * struct nand_op_addr_instr - Definition of an address instruction
 672 * @naddrs: length of the @addrs array
 673 * @addrs: array containing the address cycles to issue
 674 */
 675struct nand_op_addr_instr {
 676        unsigned int naddrs;
 677        const u8 *addrs;
 678};
 679
 680/**
 681 * struct nand_op_data_instr - Definition of a data instruction
 682 * @len: number of data bytes to move
 683 * @buf: buffer to fill
 684 * @buf.in: buffer to fill when reading from the NAND chip
 685 * @buf.out: buffer to read from when writing to the NAND chip
 686 * @force_8bit: force 8-bit access
 687 *
 688 * Please note that "in" and "out" are inverted from the ONFI specification
 689 * and are from the controller perspective, so a "in" is a read from the NAND
 690 * chip while a "out" is a write to the NAND chip.
 691 */
 692struct nand_op_data_instr {
 693        unsigned int len;
 694        union {
 695                void *in;
 696                const void *out;
 697        } buf;
 698        bool force_8bit;
 699};
 700
 701/**
 702 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
 703 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
 704 */
 705struct nand_op_waitrdy_instr {
 706        unsigned int timeout_ms;
 707};
 708
 709/**
 710 * enum nand_op_instr_type - Definition of all instruction types
 711 * @NAND_OP_CMD_INSTR: command instruction
 712 * @NAND_OP_ADDR_INSTR: address instruction
 713 * @NAND_OP_DATA_IN_INSTR: data in instruction
 714 * @NAND_OP_DATA_OUT_INSTR: data out instruction
 715 * @NAND_OP_WAITRDY_INSTR: wait ready instruction
 716 */
 717enum nand_op_instr_type {
 718        NAND_OP_CMD_INSTR,
 719        NAND_OP_ADDR_INSTR,
 720        NAND_OP_DATA_IN_INSTR,
 721        NAND_OP_DATA_OUT_INSTR,
 722        NAND_OP_WAITRDY_INSTR,
 723};
 724
 725/**
 726 * struct nand_op_instr - Instruction object
 727 * @type: the instruction type
 728 * @ctx:  extra data associated to the instruction. You'll have to use the
 729 *        appropriate element depending on @type
 730 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
 731 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
 732 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
 733 *            or %NAND_OP_DATA_OUT_INSTR
 734 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
 735 * @delay_ns: delay the controller should apply after the instruction has been
 736 *            issued on the bus. Most modern controllers have internal timings
 737 *            control logic, and in this case, the controller driver can ignore
 738 *            this field.
 739 */
 740struct nand_op_instr {
 741        enum nand_op_instr_type type;
 742        union {
 743                struct nand_op_cmd_instr cmd;
 744                struct nand_op_addr_instr addr;
 745                struct nand_op_data_instr data;
 746                struct nand_op_waitrdy_instr waitrdy;
 747        } ctx;
 748        unsigned int delay_ns;
 749};
 750
 751/*
 752 * Special handling must be done for the WAITRDY timeout parameter as it usually
 753 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
 754 * tBERS (during an erase) which all of them are u64 values that cannot be
 755 * divided by usual kernel macros and must be handled with the special
 756 * DIV_ROUND_UP_ULL() macro.
 757 *
 758 * Cast to type of dividend is needed here to guarantee that the result won't
 759 * be an unsigned long long when the dividend is an unsigned long (or smaller),
 760 * which is what the compiler does when it sees ternary operator with 2
 761 * different return types (picks the largest type to make sure there's no
 762 * loss).
 763 */
 764#define __DIVIDE(dividend, divisor) ({                                          \
 765        (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?      \
 766                               DIV_ROUND_UP(dividend, divisor) :                \
 767                               DIV_ROUND_UP_ULL(dividend, divisor));            \
 768        })
 769#define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
 770#define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
 771
 772#define NAND_OP_CMD(id, ns)                                             \
 773        {                                                               \
 774                .type = NAND_OP_CMD_INSTR,                              \
 775                .ctx.cmd.opcode = id,                                   \
 776                .delay_ns = ns,                                         \
 777        }
 778
 779#define NAND_OP_ADDR(ncycles, cycles, ns)                               \
 780        {                                                               \
 781                .type = NAND_OP_ADDR_INSTR,                             \
 782                .ctx.addr = {                                           \
 783                        .naddrs = ncycles,                              \
 784                        .addrs = cycles,                                \
 785                },                                                      \
 786                .delay_ns = ns,                                         \
 787        }
 788
 789#define NAND_OP_DATA_IN(l, b, ns)                                       \
 790        {                                                               \
 791                .type = NAND_OP_DATA_IN_INSTR,                          \
 792                .ctx.data = {                                           \
 793                        .len = l,                                       \
 794                        .buf.in = b,                                    \
 795                        .force_8bit = false,                            \
 796                },                                                      \
 797                .delay_ns = ns,                                         \
 798        }
 799
 800#define NAND_OP_DATA_OUT(l, b, ns)                                      \
 801        {                                                               \
 802                .type = NAND_OP_DATA_OUT_INSTR,                         \
 803                .ctx.data = {                                           \
 804                        .len = l,                                       \
 805                        .buf.out = b,                                   \
 806                        .force_8bit = false,                            \
 807                },                                                      \
 808                .delay_ns = ns,                                         \
 809        }
 810
 811#define NAND_OP_8BIT_DATA_IN(l, b, ns)                                  \
 812        {                                                               \
 813                .type = NAND_OP_DATA_IN_INSTR,                          \
 814                .ctx.data = {                                           \
 815                        .len = l,                                       \
 816                        .buf.in = b,                                    \
 817                        .force_8bit = true,                             \
 818                },                                                      \
 819                .delay_ns = ns,                                         \
 820        }
 821
 822#define NAND_OP_8BIT_DATA_OUT(l, b, ns)                                 \
 823        {                                                               \
 824                .type = NAND_OP_DATA_OUT_INSTR,                         \
 825                .ctx.data = {                                           \
 826                        .len = l,                                       \
 827                        .buf.out = b,                                   \
 828                        .force_8bit = true,                             \
 829                },                                                      \
 830                .delay_ns = ns,                                         \
 831        }
 832
 833#define NAND_OP_WAIT_RDY(tout_ms, ns)                                   \
 834        {                                                               \
 835                .type = NAND_OP_WAITRDY_INSTR,                          \
 836                .ctx.waitrdy.timeout_ms = tout_ms,                      \
 837                .delay_ns = ns,                                         \
 838        }
 839
 840/**
 841 * struct nand_subop - a sub operation
 842 * @cs: the CS line to select for this NAND sub-operation
 843 * @instrs: array of instructions
 844 * @ninstrs: length of the @instrs array
 845 * @first_instr_start_off: offset to start from for the first instruction
 846 *                         of the sub-operation
 847 * @last_instr_end_off: offset to end at (excluded) for the last instruction
 848 *                      of the sub-operation
 849 *
 850 * Both @first_instr_start_off and @last_instr_end_off only apply to data or
 851 * address instructions.
 852 *
 853 * When an operation cannot be handled as is by the NAND controller, it will
 854 * be split by the parser into sub-operations which will be passed to the
 855 * controller driver.
 856 */
 857struct nand_subop {
 858        unsigned int cs;
 859        const struct nand_op_instr *instrs;
 860        unsigned int ninstrs;
 861        unsigned int first_instr_start_off;
 862        unsigned int last_instr_end_off;
 863};
 864
 865unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
 866                                           unsigned int op_id);
 867unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
 868                                         unsigned int op_id);
 869unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
 870                                           unsigned int op_id);
 871unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
 872                                     unsigned int op_id);
 873
 874/**
 875 * struct nand_op_parser_addr_constraints - Constraints for address instructions
 876 * @maxcycles: maximum number of address cycles the controller can issue in a
 877 *             single step
 878 */
 879struct nand_op_parser_addr_constraints {
 880        unsigned int maxcycles;
 881};
 882
 883/**
 884 * struct nand_op_parser_data_constraints - Constraints for data instructions
 885 * @maxlen: maximum data length that the controller can handle in a single step
 886 */
 887struct nand_op_parser_data_constraints {
 888        unsigned int maxlen;
 889};
 890
 891/**
 892 * struct nand_op_parser_pattern_elem - One element of a pattern
 893 * @type: the instructuction type
 894 * @optional: whether this element of the pattern is optional or mandatory
 895 * @ctx: address or data constraint
 896 * @ctx.addr: address constraint (number of cycles)
 897 * @ctx.data: data constraint (data length)
 898 */
 899struct nand_op_parser_pattern_elem {
 900        enum nand_op_instr_type type;
 901        bool optional;
 902        union {
 903                struct nand_op_parser_addr_constraints addr;
 904                struct nand_op_parser_data_constraints data;
 905        } ctx;
 906};
 907
 908#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)                       \
 909        {                                                       \
 910                .type = NAND_OP_CMD_INSTR,                      \
 911                .optional = _opt,                               \
 912        }
 913
 914#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)          \
 915        {                                                       \
 916                .type = NAND_OP_ADDR_INSTR,                     \
 917                .optional = _opt,                               \
 918                .ctx.addr.maxcycles = _maxcycles,               \
 919        }
 920
 921#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)          \
 922        {                                                       \
 923                .type = NAND_OP_DATA_IN_INSTR,                  \
 924                .optional = _opt,                               \
 925                .ctx.data.maxlen = _maxlen,                     \
 926        }
 927
 928#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)         \
 929        {                                                       \
 930                .type = NAND_OP_DATA_OUT_INSTR,                 \
 931                .optional = _opt,                               \
 932                .ctx.data.maxlen = _maxlen,                     \
 933        }
 934
 935#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)                   \
 936        {                                                       \
 937                .type = NAND_OP_WAITRDY_INSTR,                  \
 938                .optional = _opt,                               \
 939        }
 940
 941/**
 942 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
 943 * @elems: array of pattern elements
 944 * @nelems: number of pattern elements in @elems array
 945 * @exec: the function that will issue a sub-operation
 946 *
 947 * A pattern is a list of elements, each element reprensenting one instruction
 948 * with its constraints. The pattern itself is used by the core to match NAND
 949 * chip operation with NAND controller operations.
 950 * Once a match between a NAND controller operation pattern and a NAND chip
 951 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
 952 * hook is called so that the controller driver can issue the operation on the
 953 * bus.
 954 *
 955 * Controller drivers should declare as many patterns as they support and pass
 956 * this list of patterns (created with the help of the following macro) to
 957 * the nand_op_parser_exec_op() helper.
 958 */
 959struct nand_op_parser_pattern {
 960        const struct nand_op_parser_pattern_elem *elems;
 961        unsigned int nelems;
 962        int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
 963};
 964
 965#define NAND_OP_PARSER_PATTERN(_exec, ...)                                                      \
 966        {                                                                                       \
 967                .exec = _exec,                                                                  \
 968                .elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },          \
 969                .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /      \
 970                          sizeof(struct nand_op_parser_pattern_elem),                           \
 971        }
 972
 973/**
 974 * struct nand_op_parser - NAND controller operation parser descriptor
 975 * @patterns: array of supported patterns
 976 * @npatterns: length of the @patterns array
 977 *
 978 * The parser descriptor is just an array of supported patterns which will be
 979 * iterated by nand_op_parser_exec_op() everytime it tries to execute an
 980 * NAND operation (or tries to determine if a specific operation is supported).
 981 *
 982 * It is worth mentioning that patterns will be tested in their declaration
 983 * order, and the first match will be taken, so it's important to order patterns
 984 * appropriately so that simple/inefficient patterns are placed at the end of
 985 * the list. Usually, this is where you put single instruction patterns.
 986 */
 987struct nand_op_parser {
 988        const struct nand_op_parser_pattern *patterns;
 989        unsigned int npatterns;
 990};
 991
 992#define NAND_OP_PARSER(...)                                                                     \
 993        {                                                                                       \
 994                .patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ },            \
 995                .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /        \
 996                             sizeof(struct nand_op_parser_pattern),                             \
 997        }
 998
 999/**
1000 * struct nand_operation - NAND operation descriptor
1001 * @cs: the CS line to select for this NAND operation
1002 * @instrs: array of instructions to execute
1003 * @ninstrs: length of the @instrs array
1004 *
1005 * The actual operation structure that will be passed to chip->exec_op().
1006 */
1007struct nand_operation {
1008        unsigned int cs;
1009        const struct nand_op_instr *instrs;
1010        unsigned int ninstrs;
1011};
1012
1013#define NAND_OPERATION(_cs, _instrs)                            \
1014        {                                                       \
1015                .cs = _cs,                                      \
1016                .instrs = _instrs,                              \
1017                .ninstrs = ARRAY_SIZE(_instrs),                 \
1018        }
1019
1020int nand_op_parser_exec_op(struct nand_chip *chip,
1021                           const struct nand_op_parser *parser,
1022                           const struct nand_operation *op, bool check_only);
1023
1024static inline void nand_op_trace(const char *prefix,
1025                                 const struct nand_op_instr *instr)
1026{
1027#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
1028        switch (instr->type) {
1029        case NAND_OP_CMD_INSTR:
1030                pr_debug("%sCMD      [0x%02x]\n", prefix,
1031                         instr->ctx.cmd.opcode);
1032                break;
1033        case NAND_OP_ADDR_INSTR:
1034                pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
1035                         instr->ctx.addr.naddrs,
1036                         instr->ctx.addr.naddrs < 64 ?
1037                         instr->ctx.addr.naddrs : 64,
1038                         instr->ctx.addr.addrs);
1039                break;
1040        case NAND_OP_DATA_IN_INSTR:
1041                pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
1042                         instr->ctx.data.len,
1043                         instr->ctx.data.force_8bit ?
1044                         ", force 8-bit" : "");
1045                break;
1046        case NAND_OP_DATA_OUT_INSTR:
1047                pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
1048                         instr->ctx.data.len,
1049                         instr->ctx.data.force_8bit ?
1050                         ", force 8-bit" : "");
1051                break;
1052        case NAND_OP_WAITRDY_INSTR:
1053                pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
1054                         instr->ctx.waitrdy.timeout_ms);
1055                break;
1056        }
1057#endif
1058}
1059
1060/**
1061 * struct nand_controller_ops - Controller operations
1062 *
1063 * @attach_chip: this method is called after the NAND detection phase after
1064 *               flash ID and MTD fields such as erase size, page size and OOB
1065 *               size have been set up. ECC requirements are available if
1066 *               provided by the NAND chip or device tree. Typically used to
1067 *               choose the appropriate ECC configuration and allocate
1068 *               associated resources.
1069 *               This hook is optional.
1070 * @detach_chip: free all resources allocated/claimed in
1071 *               nand_controller_ops->attach_chip().
1072 *               This hook is optional.
1073 * @exec_op:     controller specific method to execute NAND operations.
1074 *               This method replaces chip->legacy.cmdfunc(),
1075 *               chip->legacy.{read,write}_{buf,byte,word}(),
1076 *               chip->legacy.dev_ready() and chip->legacy.waifunc().
1077 * @setup_interface: setup the data interface and timing. If chipnr is set to
1078 *                   %NAND_DATA_IFACE_CHECK_ONLY this means the configuration
1079 *                   should not be applied but only checked.
1080 *                   This hook is optional.
1081 */
1082struct nand_controller_ops {
1083        int (*attach_chip)(struct nand_chip *chip);
1084        void (*detach_chip)(struct nand_chip *chip);
1085        int (*exec_op)(struct nand_chip *chip,
1086                       const struct nand_operation *op,
1087                       bool check_only);
1088        int (*setup_interface)(struct nand_chip *chip, int chipnr,
1089                               const struct nand_interface_config *conf);
1090};
1091
1092/**
1093 * struct nand_controller - Structure used to describe a NAND controller
1094 *
1095 * @lock:               lock used to serialize accesses to the NAND controller
1096 * @ops:                NAND controller operations.
1097 */
1098struct nand_controller {
1099        struct mutex lock;
1100        const struct nand_controller_ops *ops;
1101};
1102
1103static inline void nand_controller_init(struct nand_controller *nfc)
1104{
1105        mutex_init(&nfc->lock);
1106}
1107
1108/**
1109 * struct nand_legacy - NAND chip legacy fields/hooks
1110 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
1111 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
1112 * @select_chip: select/deselect a specific target/die
1113 * @read_byte: read one byte from the chip
1114 * @write_byte: write a single byte to the chip on the low 8 I/O lines
1115 * @write_buf: write data from the buffer to the chip
1116 * @read_buf: read data from the chip into the buffer
1117 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
1118 *            to write command and address
1119 * @cmdfunc: hardware specific function for writing commands to the chip.
1120 * @dev_ready: hardware specific function for accessing device ready/busy line.
1121 *             If set to NULL no access to ready/busy is available and the
1122 *             ready/busy information is read from the chip status register.
1123 * @waitfunc: hardware specific function for wait on ready.
1124 * @block_bad: check if a block is bad, using OOB markers
1125 * @block_markbad: mark a block bad
1126 * @set_features: set the NAND chip features
1127 * @get_features: get the NAND chip features
1128 * @chip_delay: chip dependent delay for transferring data from array to read
1129 *              regs (tR).
1130 * @dummy_controller: dummy controller implementation for drivers that can
1131 *                    only control a single chip
1132 *
1133 * If you look at this structure you're already wrong. These fields/hooks are
1134 * all deprecated.
1135 */
1136struct nand_legacy {
1137        void __iomem *IO_ADDR_R;
1138        void __iomem *IO_ADDR_W;
1139        void (*select_chip)(struct nand_chip *chip, int cs);
1140        u8 (*read_byte)(struct nand_chip *chip);
1141        void (*write_byte)(struct nand_chip *chip, u8 byte);
1142        void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
1143        void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
1144        void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
1145        void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
1146                        int page_addr);
1147        int (*dev_ready)(struct nand_chip *chip);
1148        int (*waitfunc)(struct nand_chip *chip);
1149        int (*block_bad)(struct nand_chip *chip, loff_t ofs);
1150        int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
1151        int (*set_features)(struct nand_chip *chip, int feature_addr,
1152                            u8 *subfeature_para);
1153        int (*get_features)(struct nand_chip *chip, int feature_addr,
1154                            u8 *subfeature_para);
1155        int chip_delay;
1156        struct nand_controller dummy_controller;
1157};
1158
1159/**
1160 * struct nand_chip_ops - NAND chip operations
1161 * @suspend: Suspend operation
1162 * @resume: Resume operation
1163 * @lock_area: Lock operation
1164 * @unlock_area: Unlock operation
1165 * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs)
1166 * @choose_interface_config: Choose the best interface configuration
1167 */
1168struct nand_chip_ops {
1169        int (*suspend)(struct nand_chip *chip);
1170        void (*resume)(struct nand_chip *chip);
1171        int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1172        int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1173        int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1174        int (*choose_interface_config)(struct nand_chip *chip,
1175                                       struct nand_interface_config *iface);
1176};
1177
1178/**
1179 * struct nand_manufacturer - NAND manufacturer structure
1180 * @desc: The manufacturer description
1181 * @priv: Private information for the manufacturer driver
1182 */
1183struct nand_manufacturer {
1184        const struct nand_manufacturer_desc *desc;
1185        void *priv;
1186};
1187
1188/**
1189 * struct nand_secure_region - NAND secure region structure
1190 * @offset: Offset of the start of the secure region
1191 * @size: Size of the secure region
1192 */
1193struct nand_secure_region {
1194        u64 offset;
1195        u64 size;
1196};
1197
1198/**
1199 * struct nand_chip - NAND Private Flash Chip Data
1200 * @base: Inherit from the generic NAND device
1201 * @id: Holds NAND ID
1202 * @parameters: Holds generic parameters under an easily readable form
1203 * @manufacturer: Manufacturer information
1204 * @ops: NAND chip operations
1205 * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try
1206 *          to use any of these fields/hooks, and if you're modifying an
1207 *          existing driver that is using those fields/hooks, you should
1208 *          consider reworking the driver and avoid using them.
1209 * @options: Various chip options. They can partly be set to inform nand_scan
1210 *           about special functionality. See the defines for further
1211 *           explanation.
1212 * @current_interface_config: The currently used NAND interface configuration
1213 * @best_interface_config: The best NAND interface configuration which fits both
1214 *                         the NAND chip and NAND controller constraints. If
1215 *                         unset, the default reset interface configuration must
1216 *                         be used.
1217 * @bbt_erase_shift: Number of address bits in a bbt entry
1218 * @bbt_options: Bad block table specific options. All options used here must
1219 *               come from bbm.h. By default, these options will be copied to
1220 *               the appropriate nand_bbt_descr's.
1221 * @badblockpos: Bad block marker position in the oob area
1222 * @badblockbits: Minimum number of set bits in a good block's bad block marker
1223 *                position; i.e., BBM = 11110111b is good when badblockbits = 7
1224 * @bbt_td: Bad block table descriptor for flash lookup
1225 * @bbt_md: Bad block table mirror descriptor
1226 * @badblock_pattern: Bad block scan pattern used for initial bad block scan
1227 * @bbt: Bad block table pointer
1228 * @page_shift: Number of address bits in a page (column address bits)
1229 * @phys_erase_shift: Number of address bits in a physical eraseblock
1230 * @chip_shift: Number of address bits in one chip
1231 * @pagemask: Page number mask = number of (pages / chip) - 1
1232 * @subpagesize: Holds the subpagesize
1233 * @data_buf: Buffer for data, size is (page size + oobsize)
1234 * @oob_poi: pointer on the OOB area covered by data_buf
1235 * @pagecache: Structure containing page cache related fields
1236 * @pagecache.bitflips: Number of bitflips of the cached page
1237 * @pagecache.page: Page number currently in the cache. -1 means no page is
1238 *                  currently cached
1239 * @buf_align: Minimum buffer alignment required by a platform
1240 * @lock: Lock protecting the suspended field. Also used to serialize accesses
1241 *        to the NAND device
1242 * @suspended: Set to 1 when the device is suspended, 0 when it's not
1243 * @cur_cs: Currently selected target. -1 means no target selected, otherwise we
1244 *          should always have cur_cs >= 0 && cur_cs < nanddev_ntargets().
1245 *          NAND Controller drivers should not modify this value, but they're
1246 *          allowed to read it.
1247 * @read_retries: The number of read retry modes supported
1248 * @secure_regions: Structure containing the secure regions info
1249 * @nr_secure_regions: Number of secure regions
1250 * @controller: The hardware controller structure which is shared among multiple
1251 *              independent devices
1252 * @ecc: The ECC controller structure
1253 * @priv: Chip private data
1254 */
1255struct nand_chip {
1256        struct nand_device base;
1257        struct nand_id id;
1258        struct nand_parameters parameters;
1259        struct nand_manufacturer manufacturer;
1260        struct nand_chip_ops ops;
1261        struct nand_legacy legacy;
1262        unsigned int options;
1263
1264        /* Data interface */
1265        const struct nand_interface_config *current_interface_config;
1266        struct nand_interface_config *best_interface_config;
1267
1268        /* Bad block information */
1269        unsigned int bbt_erase_shift;
1270        unsigned int bbt_options;
1271        unsigned int badblockpos;
1272        unsigned int badblockbits;
1273        struct nand_bbt_descr *bbt_td;
1274        struct nand_bbt_descr *bbt_md;
1275        struct nand_bbt_descr *badblock_pattern;
1276        u8 *bbt;
1277
1278        /* Device internal layout */
1279        unsigned int page_shift;
1280        unsigned int phys_erase_shift;
1281        unsigned int chip_shift;
1282        unsigned int pagemask;
1283        unsigned int subpagesize;
1284
1285        /* Buffers */
1286        u8 *data_buf;
1287        u8 *oob_poi;
1288        struct {
1289                unsigned int bitflips;
1290                int page;
1291        } pagecache;
1292        unsigned long buf_align;
1293
1294        /* Internals */
1295        struct mutex lock;
1296        unsigned int suspended : 1;
1297        int cur_cs;
1298        int read_retries;
1299        struct nand_secure_region *secure_regions;
1300        u8 nr_secure_regions;
1301
1302        /* Externals */
1303        struct nand_controller *controller;
1304        struct nand_ecc_ctrl ecc;
1305        void *priv;
1306};
1307
1308static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1309{
1310        return container_of(mtd, struct nand_chip, base.mtd);
1311}
1312
1313static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1314{
1315        return &chip->base.mtd;
1316}
1317
1318static inline void *nand_get_controller_data(struct nand_chip *chip)
1319{
1320        return chip->priv;
1321}
1322
1323static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1324{
1325        chip->priv = priv;
1326}
1327
1328static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1329                                              void *priv)
1330{
1331        chip->manufacturer.priv = priv;
1332}
1333
1334static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1335{
1336        return chip->manufacturer.priv;
1337}
1338
1339static inline void nand_set_flash_node(struct nand_chip *chip,
1340                                       struct device_node *np)
1341{
1342        mtd_set_of_node(nand_to_mtd(chip), np);
1343}
1344
1345static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1346{
1347        return mtd_get_of_node(nand_to_mtd(chip));
1348}
1349
1350/**
1351 * nand_get_interface_config - Retrieve the current interface configuration
1352 *                             of a NAND chip
1353 * @chip: The NAND chip
1354 */
1355static inline const struct nand_interface_config *
1356nand_get_interface_config(struct nand_chip *chip)
1357{
1358        return chip->current_interface_config;
1359}
1360
1361/*
1362 * A helper for defining older NAND chips where the second ID byte fully
1363 * defined the chip, including the geometry (chip size, eraseblock size, page
1364 * size). All these chips have 512 bytes NAND page size.
1365 */
1366#define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
1367        { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1368          .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1369
1370/*
1371 * A helper for defining newer chips which report their page size and
1372 * eraseblock size via the extended ID bytes.
1373 *
1374 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1375 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1376 * device ID now only represented a particular total chip size (and voltage,
1377 * buswidth), and the page size, eraseblock size, and OOB size could vary while
1378 * using the same device ID.
1379 */
1380#define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
1381        { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1382          .options = (opts) }
1383
1384#define NAND_ECC_INFO(_strength, _step) \
1385                        { .strength_ds = (_strength), .step_ds = (_step) }
1386#define NAND_ECC_STRENGTH(type)         ((type)->ecc.strength_ds)
1387#define NAND_ECC_STEP(type)             ((type)->ecc.step_ds)
1388
1389/**
1390 * struct nand_flash_dev - NAND Flash Device ID Structure
1391 * @name: a human-readable name of the NAND chip
1392 * @dev_id: the device ID (the second byte of the full chip ID array)
1393 * @mfr_id: manufacturer ID part of the full chip ID array (refers the same
1394 *          memory address as ``id[0]``)
1395 * @dev_id: device ID part of the full chip ID array (refers the same memory
1396 *          address as ``id[1]``)
1397 * @id: full device ID array
1398 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1399 *            well as the eraseblock size) is determined from the extended NAND
1400 *            chip ID array)
1401 * @chipsize: total chip size in MiB
1402 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1403 * @options: stores various chip bit options
1404 * @id_len: The valid length of the @id.
1405 * @oobsize: OOB size
1406 * @ecc: ECC correctability and step information from the datasheet.
1407 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1408 *                   @ecc_strength_ds in nand_chip{}.
1409 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1410 *               @ecc_step_ds in nand_chip{}, also from the datasheet.
1411 *               For example, the "4bit ECC for each 512Byte" can be set with
1412 *               NAND_ECC_INFO(4, 512).
1413 */
1414struct nand_flash_dev {
1415        char *name;
1416        union {
1417                struct {
1418                        uint8_t mfr_id;
1419                        uint8_t dev_id;
1420                };
1421                uint8_t id[NAND_MAX_ID_LEN];
1422        };
1423        unsigned int pagesize;
1424        unsigned int chipsize;
1425        unsigned int erasesize;
1426        unsigned int options;
1427        uint16_t id_len;
1428        uint16_t oobsize;
1429        struct {
1430                uint16_t strength_ds;
1431                uint16_t step_ds;
1432        } ecc;
1433};
1434
1435int nand_create_bbt(struct nand_chip *chip);
1436
1437/*
1438 * Check if it is a SLC nand.
1439 * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1440 * We do not distinguish the MLC and TLC now.
1441 */
1442static inline bool nand_is_slc(struct nand_chip *chip)
1443{
1444        WARN(nanddev_bits_per_cell(&chip->base) == 0,
1445             "chip->bits_per_cell is used uninitialized\n");
1446        return nanddev_bits_per_cell(&chip->base) == 1;
1447}
1448
1449/**
1450 * nand_opcode_8bits - Check if the opcode's address should be sent only on the
1451 *      lower 8 bits
1452 * @command: opcode to check
1453 */
1454static inline int nand_opcode_8bits(unsigned int command)
1455{
1456        switch (command) {
1457        case NAND_CMD_READID:
1458        case NAND_CMD_PARAM:
1459        case NAND_CMD_GET_FEATURES:
1460        case NAND_CMD_SET_FEATURES:
1461                return 1;
1462        default:
1463                break;
1464        }
1465        return 0;
1466}
1467
1468int rawnand_sw_hamming_init(struct nand_chip *chip);
1469int rawnand_sw_hamming_calculate(struct nand_chip *chip,
1470                                 const unsigned char *buf,
1471                                 unsigned char *code);
1472int rawnand_sw_hamming_correct(struct nand_chip *chip,
1473                               unsigned char *buf,
1474                               unsigned char *read_ecc,
1475                               unsigned char *calc_ecc);
1476void rawnand_sw_hamming_cleanup(struct nand_chip *chip);
1477int rawnand_sw_bch_init(struct nand_chip *chip);
1478int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
1479                           unsigned char *read_ecc, unsigned char *calc_ecc);
1480void rawnand_sw_bch_cleanup(struct nand_chip *chip);
1481
1482int nand_check_erased_ecc_chunk(void *data, int datalen,
1483                                void *ecc, int ecclen,
1484                                void *extraoob, int extraooblen,
1485                                int threshold);
1486
1487int nand_ecc_choose_conf(struct nand_chip *chip,
1488                         const struct nand_ecc_caps *caps, int oobavail);
1489
1490/* Default write_oob implementation */
1491int nand_write_oob_std(struct nand_chip *chip, int page);
1492
1493/* Default read_oob implementation */
1494int nand_read_oob_std(struct nand_chip *chip, int page);
1495
1496/* Stub used by drivers that do not support GET/SET FEATURES operations */
1497int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1498                                  u8 *subfeature_param);
1499
1500/* read_page_raw implementations */
1501int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1502                       int page);
1503int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1504                                  int oob_required, int page);
1505
1506/* write_page_raw implementations */
1507int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1508                        int oob_required, int page);
1509int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1510                                   int oob_required, int page);
1511
1512/* Reset and initialize a NAND device */
1513int nand_reset(struct nand_chip *chip, int chipnr);
1514
1515/* NAND operation helpers */
1516int nand_reset_op(struct nand_chip *chip);
1517int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1518                   unsigned int len);
1519int nand_status_op(struct nand_chip *chip, u8 *status);
1520int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1521int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1522                      unsigned int offset_in_page, void *buf, unsigned int len);
1523int nand_change_read_column_op(struct nand_chip *chip,
1524                               unsigned int offset_in_page, void *buf,
1525                               unsigned int len, bool force_8bit);
1526int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1527                     unsigned int offset_in_page, void *buf, unsigned int len);
1528int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1529                            unsigned int offset_in_page, const void *buf,
1530                            unsigned int len);
1531int nand_prog_page_end_op(struct nand_chip *chip);
1532int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1533                      unsigned int offset_in_page, const void *buf,
1534                      unsigned int len);
1535int nand_change_write_column_op(struct nand_chip *chip,
1536                                unsigned int offset_in_page, const void *buf,
1537                                unsigned int len, bool force_8bit);
1538int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1539                      bool force_8bit, bool check_only);
1540int nand_write_data_op(struct nand_chip *chip, const void *buf,
1541                       unsigned int len, bool force_8bit);
1542
1543/* Scan and identify a NAND device */
1544int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1545                       struct nand_flash_dev *ids);
1546
1547static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1548{
1549        return nand_scan_with_ids(chip, max_chips, NULL);
1550}
1551
1552/* Internal helper for board drivers which need to override command function */
1553void nand_wait_ready(struct nand_chip *chip);
1554
1555/*
1556 * Free resources held by the NAND device, must be called on error after a
1557 * sucessful nand_scan().
1558 */
1559void nand_cleanup(struct nand_chip *chip);
1560
1561/*
1562 * External helper for controller drivers that have to implement the WAITRDY
1563 * instruction and have no physical pin to check it.
1564 */
1565int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1566int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1567                      unsigned long timeout_ms);
1568
1569/* Select/deselect a NAND target. */
1570void nand_select_target(struct nand_chip *chip, unsigned int cs);
1571void nand_deselect_target(struct nand_chip *chip);
1572
1573/* Bitops */
1574void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
1575                       unsigned int src_off, unsigned int nbits);
1576
1577/**
1578 * nand_get_data_buf() - Get the internal page buffer
1579 * @chip: NAND chip object
1580 *
1581 * Returns the pre-allocated page buffer after invalidating the cache. This
1582 * function should be used by drivers that do not want to allocate their own
1583 * bounce buffer and still need such a buffer for specific operations (most
1584 * commonly when reading OOB data only).
1585 *
1586 * Be careful to never call this function in the write/write_oob path, because
1587 * the core may have placed the data to be written out in this buffer.
1588 *
1589 * Return: pointer to the page cache buffer
1590 */
1591static inline void *nand_get_data_buf(struct nand_chip *chip)
1592{
1593        chip->pagecache.page = -1;
1594
1595        return chip->data_buf;
1596}
1597
1598/* Parse the gpio-cs property */
1599int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
1600                             unsigned int *ncs_array);
1601
1602#endif /* __LINUX_MTD_RAWNAND_H */
1603