linux/include/linux/page-flags.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Macros for manipulating and testing page->flags
   4 */
   5
   6#ifndef PAGE_FLAGS_H
   7#define PAGE_FLAGS_H
   8
   9#include <linux/types.h>
  10#include <linux/bug.h>
  11#include <linux/mmdebug.h>
  12#ifndef __GENERATING_BOUNDS_H
  13#include <linux/mm_types.h>
  14#include <generated/bounds.h>
  15#endif /* !__GENERATING_BOUNDS_H */
  16
  17/*
  18 * Various page->flags bits:
  19 *
  20 * PG_reserved is set for special pages. The "struct page" of such a page
  21 * should in general not be touched (e.g. set dirty) except by its owner.
  22 * Pages marked as PG_reserved include:
  23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
  24 *   initrd, HW tables)
  25 * - Pages reserved or allocated early during boot (before the page allocator
  26 *   was initialized). This includes (depending on the architecture) the
  27 *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
  28 *   much more. Once (if ever) freed, PG_reserved is cleared and they will
  29 *   be given to the page allocator.
  30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
  31 *   to read/write these pages might end badly. Don't touch!
  32 * - The zero page(s)
  33 * - Pages not added to the page allocator when onlining a section because
  34 *   they were excluded via the online_page_callback() or because they are
  35 *   PG_hwpoison.
  36 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
  37 *   control pages, vmcoreinfo)
  38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
  39 *   not marked PG_reserved (as they might be in use by somebody else who does
  40 *   not respect the caching strategy).
  41 * - Pages part of an offline section (struct pages of offline sections should
  42 *   not be trusted as they will be initialized when first onlined).
  43 * - MCA pages on ia64
  44 * - Pages holding CPU notes for POWER Firmware Assisted Dump
  45 * - Device memory (e.g. PMEM, DAX, HMM)
  46 * Some PG_reserved pages will be excluded from the hibernation image.
  47 * PG_reserved does in general not hinder anybody from dumping or swapping
  48 * and is no longer required for remap_pfn_range(). ioremap might require it.
  49 * Consequently, PG_reserved for a page mapped into user space can indicate
  50 * the zero page, the vDSO, MMIO pages or device memory.
  51 *
  52 * The PG_private bitflag is set on pagecache pages if they contain filesystem
  53 * specific data (which is normally at page->private). It can be used by
  54 * private allocations for its own usage.
  55 *
  56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
  57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
  58 * is set before writeback starts and cleared when it finishes.
  59 *
  60 * PG_locked also pins a page in pagecache, and blocks truncation of the file
  61 * while it is held.
  62 *
  63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
  64 * to become unlocked.
  65 *
  66 * PG_swapbacked is set when a page uses swap as a backing storage.  This are
  67 * usually PageAnon or shmem pages but please note that even anonymous pages
  68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
  69 * a result of MADV_FREE).
  70 *
  71 * PG_uptodate tells whether the page's contents is valid.  When a read
  72 * completes, the page becomes uptodate, unless a disk I/O error happened.
  73 *
  74 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
  75 * file-backed pagecache (see mm/vmscan.c).
  76 *
  77 * PG_error is set to indicate that an I/O error occurred on this page.
  78 *
  79 * PG_arch_1 is an architecture specific page state bit.  The generic code
  80 * guarantees that this bit is cleared for a page when it first is entered into
  81 * the page cache.
  82 *
  83 * PG_hwpoison indicates that a page got corrupted in hardware and contains
  84 * data with incorrect ECC bits that triggered a machine check. Accessing is
  85 * not safe since it may cause another machine check. Don't touch!
  86 */
  87
  88/*
  89 * Don't use the pageflags directly.  Use the PageFoo macros.
  90 *
  91 * The page flags field is split into two parts, the main flags area
  92 * which extends from the low bits upwards, and the fields area which
  93 * extends from the high bits downwards.
  94 *
  95 *  | FIELD | ... | FLAGS |
  96 *  N-1           ^       0
  97 *               (NR_PAGEFLAGS)
  98 *
  99 * The fields area is reserved for fields mapping zone, node (for NUMA) and
 100 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
 101 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
 102 */
 103enum pageflags {
 104        PG_locked,              /* Page is locked. Don't touch. */
 105        PG_referenced,
 106        PG_uptodate,
 107        PG_dirty,
 108        PG_lru,
 109        PG_active,
 110        PG_workingset,
 111        PG_waiters,             /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
 112        PG_error,
 113        PG_slab,
 114        PG_owner_priv_1,        /* Owner use. If pagecache, fs may use*/
 115        PG_arch_1,
 116        PG_reserved,
 117        PG_private,             /* If pagecache, has fs-private data */
 118        PG_private_2,           /* If pagecache, has fs aux data */
 119        PG_writeback,           /* Page is under writeback */
 120        PG_head,                /* A head page */
 121        PG_mappedtodisk,        /* Has blocks allocated on-disk */
 122        PG_reclaim,             /* To be reclaimed asap */
 123        PG_swapbacked,          /* Page is backed by RAM/swap */
 124        PG_unevictable,         /* Page is "unevictable"  */
 125#ifdef CONFIG_MMU
 126        PG_mlocked,             /* Page is vma mlocked */
 127#endif
 128#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 129        PG_uncached,            /* Page has been mapped as uncached */
 130#endif
 131#ifdef CONFIG_MEMORY_FAILURE
 132        PG_hwpoison,            /* hardware poisoned page. Don't touch */
 133#endif
 134#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
 135        PG_young,
 136        PG_idle,
 137#endif
 138#ifdef CONFIG_64BIT
 139        PG_arch_2,
 140#endif
 141#ifdef CONFIG_KASAN_HW_TAGS
 142        PG_skip_kasan_poison,
 143#endif
 144        __NR_PAGEFLAGS,
 145
 146        /* Filesystems */
 147        PG_checked = PG_owner_priv_1,
 148
 149        /* SwapBacked */
 150        PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
 151
 152        /* Two page bits are conscripted by FS-Cache to maintain local caching
 153         * state.  These bits are set on pages belonging to the netfs's inodes
 154         * when those inodes are being locally cached.
 155         */
 156        PG_fscache = PG_private_2,      /* page backed by cache */
 157
 158        /* XEN */
 159        /* Pinned in Xen as a read-only pagetable page. */
 160        PG_pinned = PG_owner_priv_1,
 161        /* Pinned as part of domain save (see xen_mm_pin_all()). */
 162        PG_savepinned = PG_dirty,
 163        /* Has a grant mapping of another (foreign) domain's page. */
 164        PG_foreign = PG_owner_priv_1,
 165        /* Remapped by swiotlb-xen. */
 166        PG_xen_remapped = PG_owner_priv_1,
 167
 168        /* SLOB */
 169        PG_slob_free = PG_private,
 170
 171        /* Compound pages. Stored in first tail page's flags */
 172        PG_double_map = PG_workingset,
 173
 174#ifdef CONFIG_MEMORY_FAILURE
 175        /*
 176         * Compound pages. Stored in first tail page's flags.
 177         * Indicates that at least one subpage is hwpoisoned in the
 178         * THP.
 179         */
 180        PG_has_hwpoisoned = PG_mappedtodisk,
 181#endif
 182
 183        /* non-lru isolated movable page */
 184        PG_isolated = PG_reclaim,
 185
 186        /* Only valid for buddy pages. Used to track pages that are reported */
 187        PG_reported = PG_uptodate,
 188};
 189
 190#define PAGEFLAGS_MASK          ((1UL << NR_PAGEFLAGS) - 1)
 191
 192#ifndef __GENERATING_BOUNDS_H
 193
 194static inline unsigned long _compound_head(const struct page *page)
 195{
 196        unsigned long head = READ_ONCE(page->compound_head);
 197
 198        if (unlikely(head & 1))
 199                return head - 1;
 200        return (unsigned long)page;
 201}
 202
 203#define compound_head(page)     ((typeof(page))_compound_head(page))
 204
 205static __always_inline int PageTail(struct page *page)
 206{
 207        return READ_ONCE(page->compound_head) & 1;
 208}
 209
 210static __always_inline int PageCompound(struct page *page)
 211{
 212        return test_bit(PG_head, &page->flags) || PageTail(page);
 213}
 214
 215#define PAGE_POISON_PATTERN     -1l
 216static inline int PagePoisoned(const struct page *page)
 217{
 218        return page->flags == PAGE_POISON_PATTERN;
 219}
 220
 221#ifdef CONFIG_DEBUG_VM
 222void page_init_poison(struct page *page, size_t size);
 223#else
 224static inline void page_init_poison(struct page *page, size_t size)
 225{
 226}
 227#endif
 228
 229/*
 230 * Page flags policies wrt compound pages
 231 *
 232 * PF_POISONED_CHECK
 233 *     check if this struct page poisoned/uninitialized
 234 *
 235 * PF_ANY:
 236 *     the page flag is relevant for small, head and tail pages.
 237 *
 238 * PF_HEAD:
 239 *     for compound page all operations related to the page flag applied to
 240 *     head page.
 241 *
 242 * PF_ONLY_HEAD:
 243 *     for compound page, callers only ever operate on the head page.
 244 *
 245 * PF_NO_TAIL:
 246 *     modifications of the page flag must be done on small or head pages,
 247 *     checks can be done on tail pages too.
 248 *
 249 * PF_NO_COMPOUND:
 250 *     the page flag is not relevant for compound pages.
 251 *
 252 * PF_SECOND:
 253 *     the page flag is stored in the first tail page.
 254 */
 255#define PF_POISONED_CHECK(page) ({                                      \
 256                VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);            \
 257                page; })
 258#define PF_ANY(page, enforce)   PF_POISONED_CHECK(page)
 259#define PF_HEAD(page, enforce)  PF_POISONED_CHECK(compound_head(page))
 260#define PF_ONLY_HEAD(page, enforce) ({                                  \
 261                VM_BUG_ON_PGFLAGS(PageTail(page), page);                \
 262                PF_POISONED_CHECK(page); })
 263#define PF_NO_TAIL(page, enforce) ({                                    \
 264                VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);     \
 265                PF_POISONED_CHECK(compound_head(page)); })
 266#define PF_NO_COMPOUND(page, enforce) ({                                \
 267                VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
 268                PF_POISONED_CHECK(page); })
 269#define PF_SECOND(page, enforce) ({                                     \
 270                VM_BUG_ON_PGFLAGS(!PageHead(page), page);               \
 271                PF_POISONED_CHECK(&page[1]); })
 272
 273/*
 274 * Macros to create function definitions for page flags
 275 */
 276#define TESTPAGEFLAG(uname, lname, policy)                              \
 277static __always_inline int Page##uname(struct page *page)               \
 278        { return test_bit(PG_##lname, &policy(page, 0)->flags); }
 279
 280#define SETPAGEFLAG(uname, lname, policy)                               \
 281static __always_inline void SetPage##uname(struct page *page)           \
 282        { set_bit(PG_##lname, &policy(page, 1)->flags); }
 283
 284#define CLEARPAGEFLAG(uname, lname, policy)                             \
 285static __always_inline void ClearPage##uname(struct page *page)         \
 286        { clear_bit(PG_##lname, &policy(page, 1)->flags); }
 287
 288#define __SETPAGEFLAG(uname, lname, policy)                             \
 289static __always_inline void __SetPage##uname(struct page *page)         \
 290        { __set_bit(PG_##lname, &policy(page, 1)->flags); }
 291
 292#define __CLEARPAGEFLAG(uname, lname, policy)                           \
 293static __always_inline void __ClearPage##uname(struct page *page)       \
 294        { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
 295
 296#define TESTSETFLAG(uname, lname, policy)                               \
 297static __always_inline int TestSetPage##uname(struct page *page)        \
 298        { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
 299
 300#define TESTCLEARFLAG(uname, lname, policy)                             \
 301static __always_inline int TestClearPage##uname(struct page *page)      \
 302        { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
 303
 304#define PAGEFLAG(uname, lname, policy)                                  \
 305        TESTPAGEFLAG(uname, lname, policy)                              \
 306        SETPAGEFLAG(uname, lname, policy)                               \
 307        CLEARPAGEFLAG(uname, lname, policy)
 308
 309#define __PAGEFLAG(uname, lname, policy)                                \
 310        TESTPAGEFLAG(uname, lname, policy)                              \
 311        __SETPAGEFLAG(uname, lname, policy)                             \
 312        __CLEARPAGEFLAG(uname, lname, policy)
 313
 314#define TESTSCFLAG(uname, lname, policy)                                \
 315        TESTSETFLAG(uname, lname, policy)                               \
 316        TESTCLEARFLAG(uname, lname, policy)
 317
 318#define TESTPAGEFLAG_FALSE(uname)                                       \
 319static inline int Page##uname(const struct page *page) { return 0; }
 320
 321#define SETPAGEFLAG_NOOP(uname)                                         \
 322static inline void SetPage##uname(struct page *page) {  }
 323
 324#define CLEARPAGEFLAG_NOOP(uname)                                       \
 325static inline void ClearPage##uname(struct page *page) {  }
 326
 327#define __CLEARPAGEFLAG_NOOP(uname)                                     \
 328static inline void __ClearPage##uname(struct page *page) {  }
 329
 330#define TESTSETFLAG_FALSE(uname)                                        \
 331static inline int TestSetPage##uname(struct page *page) { return 0; }
 332
 333#define TESTCLEARFLAG_FALSE(uname)                                      \
 334static inline int TestClearPage##uname(struct page *page) { return 0; }
 335
 336#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)                 \
 337        SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
 338
 339#define TESTSCFLAG_FALSE(uname)                                         \
 340        TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
 341
 342__PAGEFLAG(Locked, locked, PF_NO_TAIL)
 343PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
 344PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
 345PAGEFLAG(Referenced, referenced, PF_HEAD)
 346        TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
 347        __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
 348PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
 349        __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
 350PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
 351        TESTCLEARFLAG(LRU, lru, PF_HEAD)
 352PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
 353        TESTCLEARFLAG(Active, active, PF_HEAD)
 354PAGEFLAG(Workingset, workingset, PF_HEAD)
 355        TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
 356__PAGEFLAG(Slab, slab, PF_NO_TAIL)
 357__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
 358PAGEFLAG(Checked, checked, PF_NO_COMPOUND)         /* Used by some filesystems */
 359
 360/* Xen */
 361PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
 362        TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
 363PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
 364PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
 365PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
 366        TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
 367
 368PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 369        __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 370        __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 371PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 372        __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 373        __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 374
 375/*
 376 * Private page markings that may be used by the filesystem that owns the page
 377 * for its own purposes.
 378 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
 379 */
 380PAGEFLAG(Private, private, PF_ANY)
 381PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
 382PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 383        TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 384
 385/*
 386 * Only test-and-set exist for PG_writeback.  The unconditional operators are
 387 * risky: they bypass page accounting.
 388 */
 389TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
 390        TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
 391PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
 392
 393/* PG_readahead is only used for reads; PG_reclaim is only for writes */
 394PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
 395        TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
 396PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 397        TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 398
 399#ifdef CONFIG_HIGHMEM
 400/*
 401 * Must use a macro here due to header dependency issues. page_zone() is not
 402 * available at this point.
 403 */
 404#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
 405#else
 406PAGEFLAG_FALSE(HighMem)
 407#endif
 408
 409#ifdef CONFIG_SWAP
 410static __always_inline int PageSwapCache(struct page *page)
 411{
 412#ifdef CONFIG_THP_SWAP
 413        page = compound_head(page);
 414#endif
 415        return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
 416
 417}
 418SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
 419CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
 420#else
 421PAGEFLAG_FALSE(SwapCache)
 422#endif
 423
 424PAGEFLAG(Unevictable, unevictable, PF_HEAD)
 425        __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
 426        TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
 427
 428#ifdef CONFIG_MMU
 429PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 430        __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 431        TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
 432#else
 433PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
 434        TESTSCFLAG_FALSE(Mlocked)
 435#endif
 436
 437#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 438PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
 439#else
 440PAGEFLAG_FALSE(Uncached)
 441#endif
 442
 443#ifdef CONFIG_MEMORY_FAILURE
 444PAGEFLAG(HWPoison, hwpoison, PF_ANY)
 445TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
 446#define __PG_HWPOISON (1UL << PG_hwpoison)
 447extern bool take_page_off_buddy(struct page *page);
 448#else
 449PAGEFLAG_FALSE(HWPoison)
 450#define __PG_HWPOISON 0
 451#endif
 452
 453#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
 454TESTPAGEFLAG(Young, young, PF_ANY)
 455SETPAGEFLAG(Young, young, PF_ANY)
 456TESTCLEARFLAG(Young, young, PF_ANY)
 457PAGEFLAG(Idle, idle, PF_ANY)
 458#endif
 459
 460#ifdef CONFIG_KASAN_HW_TAGS
 461PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
 462#else
 463PAGEFLAG_FALSE(SkipKASanPoison)
 464#endif
 465
 466/*
 467 * PageReported() is used to track reported free pages within the Buddy
 468 * allocator. We can use the non-atomic version of the test and set
 469 * operations as both should be shielded with the zone lock to prevent
 470 * any possible races on the setting or clearing of the bit.
 471 */
 472__PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
 473
 474/*
 475 * On an anonymous page mapped into a user virtual memory area,
 476 * page->mapping points to its anon_vma, not to a struct address_space;
 477 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 478 *
 479 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 480 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
 481 * bit; and then page->mapping points, not to an anon_vma, but to a private
 482 * structure which KSM associates with that merged page.  See ksm.h.
 483 *
 484 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
 485 * page and then page->mapping points a struct address_space.
 486 *
 487 * Please note that, confusingly, "page_mapping" refers to the inode
 488 * address_space which maps the page from disk; whereas "page_mapped"
 489 * refers to user virtual address space into which the page is mapped.
 490 */
 491#define PAGE_MAPPING_ANON       0x1
 492#define PAGE_MAPPING_MOVABLE    0x2
 493#define PAGE_MAPPING_KSM        (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 494#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 495
 496static __always_inline int PageMappingFlags(struct page *page)
 497{
 498        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
 499}
 500
 501static __always_inline int PageAnon(struct page *page)
 502{
 503        page = compound_head(page);
 504        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
 505}
 506
 507static __always_inline int __PageMovable(struct page *page)
 508{
 509        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 510                                PAGE_MAPPING_MOVABLE;
 511}
 512
 513#ifdef CONFIG_KSM
 514/*
 515 * A KSM page is one of those write-protected "shared pages" or "merged pages"
 516 * which KSM maps into multiple mms, wherever identical anonymous page content
 517 * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
 518 * anon_vma, but to that page's node of the stable tree.
 519 */
 520static __always_inline int PageKsm(struct page *page)
 521{
 522        page = compound_head(page);
 523        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 524                                PAGE_MAPPING_KSM;
 525}
 526#else
 527TESTPAGEFLAG_FALSE(Ksm)
 528#endif
 529
 530u64 stable_page_flags(struct page *page);
 531
 532static inline int PageUptodate(struct page *page)
 533{
 534        int ret;
 535        page = compound_head(page);
 536        ret = test_bit(PG_uptodate, &(page)->flags);
 537        /*
 538         * Must ensure that the data we read out of the page is loaded
 539         * _after_ we've loaded page->flags to check for PageUptodate.
 540         * We can skip the barrier if the page is not uptodate, because
 541         * we wouldn't be reading anything from it.
 542         *
 543         * See SetPageUptodate() for the other side of the story.
 544         */
 545        if (ret)
 546                smp_rmb();
 547
 548        return ret;
 549}
 550
 551static __always_inline void __SetPageUptodate(struct page *page)
 552{
 553        VM_BUG_ON_PAGE(PageTail(page), page);
 554        smp_wmb();
 555        __set_bit(PG_uptodate, &page->flags);
 556}
 557
 558static __always_inline void SetPageUptodate(struct page *page)
 559{
 560        VM_BUG_ON_PAGE(PageTail(page), page);
 561        /*
 562         * Memory barrier must be issued before setting the PG_uptodate bit,
 563         * so that all previous stores issued in order to bring the page
 564         * uptodate are actually visible before PageUptodate becomes true.
 565         */
 566        smp_wmb();
 567        set_bit(PG_uptodate, &page->flags);
 568}
 569
 570CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
 571
 572int test_clear_page_writeback(struct page *page);
 573int __test_set_page_writeback(struct page *page, bool keep_write);
 574
 575#define test_set_page_writeback(page)                   \
 576        __test_set_page_writeback(page, false)
 577#define test_set_page_writeback_keepwrite(page) \
 578        __test_set_page_writeback(page, true)
 579
 580static inline void set_page_writeback(struct page *page)
 581{
 582        test_set_page_writeback(page);
 583}
 584
 585static inline void set_page_writeback_keepwrite(struct page *page)
 586{
 587        test_set_page_writeback_keepwrite(page);
 588}
 589
 590__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
 591
 592static __always_inline void set_compound_head(struct page *page, struct page *head)
 593{
 594        WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
 595}
 596
 597static __always_inline void clear_compound_head(struct page *page)
 598{
 599        WRITE_ONCE(page->compound_head, 0);
 600}
 601
 602#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 603static inline void ClearPageCompound(struct page *page)
 604{
 605        BUG_ON(!PageHead(page));
 606        ClearPageHead(page);
 607}
 608#endif
 609
 610#define PG_head_mask ((1UL << PG_head))
 611
 612#ifdef CONFIG_HUGETLB_PAGE
 613int PageHuge(struct page *page);
 614int PageHeadHuge(struct page *page);
 615#else
 616TESTPAGEFLAG_FALSE(Huge)
 617TESTPAGEFLAG_FALSE(HeadHuge)
 618#endif
 619
 620
 621#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 622/*
 623 * PageHuge() only returns true for hugetlbfs pages, but not for
 624 * normal or transparent huge pages.
 625 *
 626 * PageTransHuge() returns true for both transparent huge and
 627 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
 628 * called only in the core VM paths where hugetlbfs pages can't exist.
 629 */
 630static inline int PageTransHuge(struct page *page)
 631{
 632        VM_BUG_ON_PAGE(PageTail(page), page);
 633        return PageHead(page);
 634}
 635
 636/*
 637 * PageTransCompound returns true for both transparent huge pages
 638 * and hugetlbfs pages, so it should only be called when it's known
 639 * that hugetlbfs pages aren't involved.
 640 */
 641static inline int PageTransCompound(struct page *page)
 642{
 643        return PageCompound(page);
 644}
 645
 646/*
 647 * PageTransTail returns true for both transparent huge pages
 648 * and hugetlbfs pages, so it should only be called when it's known
 649 * that hugetlbfs pages aren't involved.
 650 */
 651static inline int PageTransTail(struct page *page)
 652{
 653        return PageTail(page);
 654}
 655
 656/*
 657 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
 658 * as PMDs.
 659 *
 660 * This is required for optimization of rmap operations for THP: we can postpone
 661 * per small page mapcount accounting (and its overhead from atomic operations)
 662 * until the first PMD split.
 663 *
 664 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
 665 * by one. This reference will go away with last compound_mapcount.
 666 *
 667 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
 668 */
 669PAGEFLAG(DoubleMap, double_map, PF_SECOND)
 670        TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
 671#else
 672TESTPAGEFLAG_FALSE(TransHuge)
 673TESTPAGEFLAG_FALSE(TransCompound)
 674TESTPAGEFLAG_FALSE(TransCompoundMap)
 675TESTPAGEFLAG_FALSE(TransTail)
 676PAGEFLAG_FALSE(DoubleMap)
 677        TESTSCFLAG_FALSE(DoubleMap)
 678#endif
 679
 680#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
 681/*
 682 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
 683 * compound page.
 684 *
 685 * This flag is set by hwpoison handler.  Cleared by THP split or free page.
 686 */
 687PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
 688        TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
 689#else
 690PAGEFLAG_FALSE(HasHWPoisoned)
 691        TESTSCFLAG_FALSE(HasHWPoisoned)
 692#endif
 693
 694/*
 695 * Check if a page is currently marked HWPoisoned. Note that this check is
 696 * best effort only and inherently racy: there is no way to synchronize with
 697 * failing hardware.
 698 */
 699static inline bool is_page_hwpoison(struct page *page)
 700{
 701        if (PageHWPoison(page))
 702                return true;
 703        return PageHuge(page) && PageHWPoison(compound_head(page));
 704}
 705
 706/*
 707 * For pages that are never mapped to userspace (and aren't PageSlab),
 708 * page_type may be used.  Because it is initialised to -1, we invert the
 709 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
 710 * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
 711 * low bits so that an underflow or overflow of page_mapcount() won't be
 712 * mistaken for a page type value.
 713 */
 714
 715#define PAGE_TYPE_BASE  0xf0000000
 716/* Reserve              0x0000007f to catch underflows of page_mapcount */
 717#define PAGE_MAPCOUNT_RESERVE   -128
 718#define PG_buddy        0x00000080
 719#define PG_offline      0x00000100
 720#define PG_table        0x00000200
 721#define PG_guard        0x00000400
 722
 723#define PageType(page, flag)                                            \
 724        ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
 725
 726static inline int page_has_type(struct page *page)
 727{
 728        return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
 729}
 730
 731#define PAGE_TYPE_OPS(uname, lname)                                     \
 732static __always_inline int Page##uname(struct page *page)               \
 733{                                                                       \
 734        return PageType(page, PG_##lname);                              \
 735}                                                                       \
 736static __always_inline void __SetPage##uname(struct page *page)         \
 737{                                                                       \
 738        VM_BUG_ON_PAGE(!PageType(page, 0), page);                       \
 739        page->page_type &= ~PG_##lname;                                 \
 740}                                                                       \
 741static __always_inline void __ClearPage##uname(struct page *page)       \
 742{                                                                       \
 743        VM_BUG_ON_PAGE(!Page##uname(page), page);                       \
 744        page->page_type |= PG_##lname;                                  \
 745}
 746
 747/*
 748 * PageBuddy() indicates that the page is free and in the buddy system
 749 * (see mm/page_alloc.c).
 750 */
 751PAGE_TYPE_OPS(Buddy, buddy)
 752
 753/*
 754 * PageOffline() indicates that the page is logically offline although the
 755 * containing section is online. (e.g. inflated in a balloon driver or
 756 * not onlined when onlining the section).
 757 * The content of these pages is effectively stale. Such pages should not
 758 * be touched (read/write/dump/save) except by their owner.
 759 *
 760 * If a driver wants to allow to offline unmovable PageOffline() pages without
 761 * putting them back to the buddy, it can do so via the memory notifier by
 762 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
 763 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
 764 * pages (now with a reference count of zero) are treated like free pages,
 765 * allowing the containing memory block to get offlined. A driver that
 766 * relies on this feature is aware that re-onlining the memory block will
 767 * require to re-set the pages PageOffline() and not giving them to the
 768 * buddy via online_page_callback_t.
 769 *
 770 * There are drivers that mark a page PageOffline() and expect there won't be
 771 * any further access to page content. PFN walkers that read content of random
 772 * pages should check PageOffline() and synchronize with such drivers using
 773 * page_offline_freeze()/page_offline_thaw().
 774 */
 775PAGE_TYPE_OPS(Offline, offline)
 776
 777extern void page_offline_freeze(void);
 778extern void page_offline_thaw(void);
 779extern void page_offline_begin(void);
 780extern void page_offline_end(void);
 781
 782/*
 783 * Marks pages in use as page tables.
 784 */
 785PAGE_TYPE_OPS(Table, table)
 786
 787/*
 788 * Marks guardpages used with debug_pagealloc.
 789 */
 790PAGE_TYPE_OPS(Guard, guard)
 791
 792extern bool is_free_buddy_page(struct page *page);
 793
 794__PAGEFLAG(Isolated, isolated, PF_ANY);
 795
 796/*
 797 * If network-based swap is enabled, sl*b must keep track of whether pages
 798 * were allocated from pfmemalloc reserves.
 799 */
 800static inline int PageSlabPfmemalloc(struct page *page)
 801{
 802        VM_BUG_ON_PAGE(!PageSlab(page), page);
 803        return PageActive(page);
 804}
 805
 806/*
 807 * A version of PageSlabPfmemalloc() for opportunistic checks where the page
 808 * might have been freed under us and not be a PageSlab anymore.
 809 */
 810static inline int __PageSlabPfmemalloc(struct page *page)
 811{
 812        return PageActive(page);
 813}
 814
 815static inline void SetPageSlabPfmemalloc(struct page *page)
 816{
 817        VM_BUG_ON_PAGE(!PageSlab(page), page);
 818        SetPageActive(page);
 819}
 820
 821static inline void __ClearPageSlabPfmemalloc(struct page *page)
 822{
 823        VM_BUG_ON_PAGE(!PageSlab(page), page);
 824        __ClearPageActive(page);
 825}
 826
 827static inline void ClearPageSlabPfmemalloc(struct page *page)
 828{
 829        VM_BUG_ON_PAGE(!PageSlab(page), page);
 830        ClearPageActive(page);
 831}
 832
 833#ifdef CONFIG_MMU
 834#define __PG_MLOCKED            (1UL << PG_mlocked)
 835#else
 836#define __PG_MLOCKED            0
 837#endif
 838
 839/*
 840 * Flags checked when a page is freed.  Pages being freed should not have
 841 * these flags set.  If they are, there is a problem.
 842 */
 843#define PAGE_FLAGS_CHECK_AT_FREE                                \
 844        (1UL << PG_lru          | 1UL << PG_locked      |       \
 845         1UL << PG_private      | 1UL << PG_private_2   |       \
 846         1UL << PG_writeback    | 1UL << PG_reserved    |       \
 847         1UL << PG_slab         | 1UL << PG_active      |       \
 848         1UL << PG_unevictable  | __PG_MLOCKED)
 849
 850/*
 851 * Flags checked when a page is prepped for return by the page allocator.
 852 * Pages being prepped should not have these flags set.  If they are set,
 853 * there has been a kernel bug or struct page corruption.
 854 *
 855 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
 856 * alloc-free cycle to prevent from reusing the page.
 857 */
 858#define PAGE_FLAGS_CHECK_AT_PREP        \
 859        (PAGEFLAGS_MASK & ~__PG_HWPOISON)
 860
 861#define PAGE_FLAGS_PRIVATE                              \
 862        (1UL << PG_private | 1UL << PG_private_2)
 863/**
 864 * page_has_private - Determine if page has private stuff
 865 * @page: The page to be checked
 866 *
 867 * Determine if a page has private stuff, indicating that release routines
 868 * should be invoked upon it.
 869 */
 870static inline int page_has_private(struct page *page)
 871{
 872        return !!(page->flags & PAGE_FLAGS_PRIVATE);
 873}
 874
 875#undef PF_ANY
 876#undef PF_HEAD
 877#undef PF_ONLY_HEAD
 878#undef PF_NO_TAIL
 879#undef PF_NO_COMPOUND
 880#undef PF_SECOND
 881#endif /* !__GENERATING_BOUNDS_H */
 882
 883#endif  /* PAGE_FLAGS_H */
 884