linux/include/linux/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_PGTABLE_H
   3#define _LINUX_PGTABLE_H
   4
   5#include <linux/pfn.h>
   6#include <asm/pgtable.h>
   7
   8#ifndef __ASSEMBLY__
   9#ifdef CONFIG_MMU
  10
  11#include <linux/mm_types.h>
  12#include <linux/bug.h>
  13#include <linux/errno.h>
  14#include <asm-generic/pgtable_uffd.h>
  15
  16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
  17        defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
  18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
  19#endif
  20
  21/*
  22 * On almost all architectures and configurations, 0 can be used as the
  23 * upper ceiling to free_pgtables(): on many architectures it has the same
  24 * effect as using TASK_SIZE.  However, there is one configuration which
  25 * must impose a more careful limit, to avoid freeing kernel pgtables.
  26 */
  27#ifndef USER_PGTABLES_CEILING
  28#define USER_PGTABLES_CEILING   0UL
  29#endif
  30
  31/*
  32 * This defines the first usable user address. Platforms
  33 * can override its value with custom FIRST_USER_ADDRESS
  34 * defined in their respective <asm/pgtable.h>.
  35 */
  36#ifndef FIRST_USER_ADDRESS
  37#define FIRST_USER_ADDRESS      0UL
  38#endif
  39
  40/*
  41 * This defines the generic helper for accessing PMD page
  42 * table page. Although platforms can still override this
  43 * via their respective <asm/pgtable.h>.
  44 */
  45#ifndef pmd_pgtable
  46#define pmd_pgtable(pmd) pmd_page(pmd)
  47#endif
  48
  49/*
  50 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
  51 *
  52 * The pXx_index() functions return the index of the entry in the page
  53 * table page which would control the given virtual address
  54 *
  55 * As these functions may be used by the same code for different levels of
  56 * the page table folding, they are always available, regardless of
  57 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
  58 * because in such cases PTRS_PER_PxD equals 1.
  59 */
  60
  61static inline unsigned long pte_index(unsigned long address)
  62{
  63        return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  64}
  65
  66#ifndef pmd_index
  67static inline unsigned long pmd_index(unsigned long address)
  68{
  69        return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
  70}
  71#define pmd_index pmd_index
  72#endif
  73
  74#ifndef pud_index
  75static inline unsigned long pud_index(unsigned long address)
  76{
  77        return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
  78}
  79#define pud_index pud_index
  80#endif
  81
  82#ifndef pgd_index
  83/* Must be a compile-time constant, so implement it as a macro */
  84#define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
  85#endif
  86
  87#ifndef pte_offset_kernel
  88static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
  89{
  90        return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
  91}
  92#define pte_offset_kernel pte_offset_kernel
  93#endif
  94
  95#if defined(CONFIG_HIGHPTE)
  96#define pte_offset_map(dir, address)                            \
  97        ((pte_t *)kmap_atomic(pmd_page(*(dir))) +               \
  98         pte_index((address)))
  99#define pte_unmap(pte) kunmap_atomic((pte))
 100#else
 101#define pte_offset_map(dir, address)    pte_offset_kernel((dir), (address))
 102#define pte_unmap(pte) ((void)(pte))    /* NOP */
 103#endif
 104
 105/* Find an entry in the second-level page table.. */
 106#ifndef pmd_offset
 107static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
 108{
 109        return pud_pgtable(*pud) + pmd_index(address);
 110}
 111#define pmd_offset pmd_offset
 112#endif
 113
 114#ifndef pud_offset
 115static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
 116{
 117        return p4d_pgtable(*p4d) + pud_index(address);
 118}
 119#define pud_offset pud_offset
 120#endif
 121
 122static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
 123{
 124        return (pgd + pgd_index(address));
 125};
 126
 127/*
 128 * a shortcut to get a pgd_t in a given mm
 129 */
 130#ifndef pgd_offset
 131#define pgd_offset(mm, address)         pgd_offset_pgd((mm)->pgd, (address))
 132#endif
 133
 134/*
 135 * a shortcut which implies the use of the kernel's pgd, instead
 136 * of a process's
 137 */
 138#ifndef pgd_offset_k
 139#define pgd_offset_k(address)           pgd_offset(&init_mm, (address))
 140#endif
 141
 142/*
 143 * In many cases it is known that a virtual address is mapped at PMD or PTE
 144 * level, so instead of traversing all the page table levels, we can get a
 145 * pointer to the PMD entry in user or kernel page table or translate a virtual
 146 * address to the pointer in the PTE in the kernel page tables with simple
 147 * helpers.
 148 */
 149static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
 150{
 151        return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
 152}
 153
 154static inline pmd_t *pmd_off_k(unsigned long va)
 155{
 156        return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
 157}
 158
 159static inline pte_t *virt_to_kpte(unsigned long vaddr)
 160{
 161        pmd_t *pmd = pmd_off_k(vaddr);
 162
 163        return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
 164}
 165
 166#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 167extern int ptep_set_access_flags(struct vm_area_struct *vma,
 168                                 unsigned long address, pte_t *ptep,
 169                                 pte_t entry, int dirty);
 170#endif
 171
 172#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 173#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 174extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 175                                 unsigned long address, pmd_t *pmdp,
 176                                 pmd_t entry, int dirty);
 177extern int pudp_set_access_flags(struct vm_area_struct *vma,
 178                                 unsigned long address, pud_t *pudp,
 179                                 pud_t entry, int dirty);
 180#else
 181static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
 182                                        unsigned long address, pmd_t *pmdp,
 183                                        pmd_t entry, int dirty)
 184{
 185        BUILD_BUG();
 186        return 0;
 187}
 188static inline int pudp_set_access_flags(struct vm_area_struct *vma,
 189                                        unsigned long address, pud_t *pudp,
 190                                        pud_t entry, int dirty)
 191{
 192        BUILD_BUG();
 193        return 0;
 194}
 195#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 196#endif
 197
 198#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 199static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 200                                            unsigned long address,
 201                                            pte_t *ptep)
 202{
 203        pte_t pte = *ptep;
 204        int r = 1;
 205        if (!pte_young(pte))
 206                r = 0;
 207        else
 208                set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
 209        return r;
 210}
 211#endif
 212
 213#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 214#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 215static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 216                                            unsigned long address,
 217                                            pmd_t *pmdp)
 218{
 219        pmd_t pmd = *pmdp;
 220        int r = 1;
 221        if (!pmd_young(pmd))
 222                r = 0;
 223        else
 224                set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
 225        return r;
 226}
 227#else
 228static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 229                                            unsigned long address,
 230                                            pmd_t *pmdp)
 231{
 232        BUILD_BUG();
 233        return 0;
 234}
 235#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 236#endif
 237
 238#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 239int ptep_clear_flush_young(struct vm_area_struct *vma,
 240                           unsigned long address, pte_t *ptep);
 241#endif
 242
 243#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 244#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 245extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 246                                  unsigned long address, pmd_t *pmdp);
 247#else
 248/*
 249 * Despite relevant to THP only, this API is called from generic rmap code
 250 * under PageTransHuge(), hence needs a dummy implementation for !THP
 251 */
 252static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
 253                                         unsigned long address, pmd_t *pmdp)
 254{
 255        BUILD_BUG();
 256        return 0;
 257}
 258#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 259#endif
 260
 261#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 262static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 263                                       unsigned long address,
 264                                       pte_t *ptep)
 265{
 266        pte_t pte = *ptep;
 267        pte_clear(mm, address, ptep);
 268        return pte;
 269}
 270#endif
 271
 272#ifndef __HAVE_ARCH_PTEP_GET
 273static inline pte_t ptep_get(pte_t *ptep)
 274{
 275        return READ_ONCE(*ptep);
 276}
 277#endif
 278
 279#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
 280/*
 281 * WARNING: only to be used in the get_user_pages_fast() implementation.
 282 *
 283 * With get_user_pages_fast(), we walk down the pagetables without taking any
 284 * locks.  For this we would like to load the pointers atomically, but sometimes
 285 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
 286 * we do have is the guarantee that a PTE will only either go from not present
 287 * to present, or present to not present or both -- it will not switch to a
 288 * completely different present page without a TLB flush in between; something
 289 * that we are blocking by holding interrupts off.
 290 *
 291 * Setting ptes from not present to present goes:
 292 *
 293 *   ptep->pte_high = h;
 294 *   smp_wmb();
 295 *   ptep->pte_low = l;
 296 *
 297 * And present to not present goes:
 298 *
 299 *   ptep->pte_low = 0;
 300 *   smp_wmb();
 301 *   ptep->pte_high = 0;
 302 *
 303 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
 304 * We load pte_high *after* loading pte_low, which ensures we don't see an older
 305 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
 306 * picked up a changed pte high. We might have gotten rubbish values from
 307 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
 308 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
 309 * operates on present ptes we're safe.
 310 */
 311static inline pte_t ptep_get_lockless(pte_t *ptep)
 312{
 313        pte_t pte;
 314
 315        do {
 316                pte.pte_low = ptep->pte_low;
 317                smp_rmb();
 318                pte.pte_high = ptep->pte_high;
 319                smp_rmb();
 320        } while (unlikely(pte.pte_low != ptep->pte_low));
 321
 322        return pte;
 323}
 324#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
 325/*
 326 * We require that the PTE can be read atomically.
 327 */
 328static inline pte_t ptep_get_lockless(pte_t *ptep)
 329{
 330        return ptep_get(ptep);
 331}
 332#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
 333
 334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 335#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
 336static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
 337                                            unsigned long address,
 338                                            pmd_t *pmdp)
 339{
 340        pmd_t pmd = *pmdp;
 341        pmd_clear(pmdp);
 342        return pmd;
 343}
 344#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
 345#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
 346static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
 347                                            unsigned long address,
 348                                            pud_t *pudp)
 349{
 350        pud_t pud = *pudp;
 351
 352        pud_clear(pudp);
 353        return pud;
 354}
 355#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
 356#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 357
 358#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 359#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
 360static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
 361                                            unsigned long address, pmd_t *pmdp,
 362                                            int full)
 363{
 364        return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
 365}
 366#endif
 367
 368#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
 369static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
 370                                            unsigned long address, pud_t *pudp,
 371                                            int full)
 372{
 373        return pudp_huge_get_and_clear(mm, address, pudp);
 374}
 375#endif
 376#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 377
 378#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 379static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 380                                            unsigned long address, pte_t *ptep,
 381                                            int full)
 382{
 383        pte_t pte;
 384        pte = ptep_get_and_clear(mm, address, ptep);
 385        return pte;
 386}
 387#endif
 388
 389
 390/*
 391 * If two threads concurrently fault at the same page, the thread that
 392 * won the race updates the PTE and its local TLB/Cache. The other thread
 393 * gives up, simply does nothing, and continues; on architectures where
 394 * software can update TLB,  local TLB can be updated here to avoid next page
 395 * fault. This function updates TLB only, do nothing with cache or others.
 396 * It is the difference with function update_mmu_cache.
 397 */
 398#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
 399static inline void update_mmu_tlb(struct vm_area_struct *vma,
 400                                unsigned long address, pte_t *ptep)
 401{
 402}
 403#define __HAVE_ARCH_UPDATE_MMU_TLB
 404#endif
 405
 406/*
 407 * Some architectures may be able to avoid expensive synchronization
 408 * primitives when modifications are made to PTE's which are already
 409 * not present, or in the process of an address space destruction.
 410 */
 411#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 412static inline void pte_clear_not_present_full(struct mm_struct *mm,
 413                                              unsigned long address,
 414                                              pte_t *ptep,
 415                                              int full)
 416{
 417        pte_clear(mm, address, ptep);
 418}
 419#endif
 420
 421#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 422extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
 423                              unsigned long address,
 424                              pte_t *ptep);
 425#endif
 426
 427#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
 428extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
 429                              unsigned long address,
 430                              pmd_t *pmdp);
 431extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
 432                              unsigned long address,
 433                              pud_t *pudp);
 434#endif
 435
 436#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 437struct mm_struct;
 438static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 439{
 440        pte_t old_pte = *ptep;
 441        set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 442}
 443#endif
 444
 445/*
 446 * On some architectures hardware does not set page access bit when accessing
 447 * memory page, it is responsibility of software setting this bit. It brings
 448 * out extra page fault penalty to track page access bit. For optimization page
 449 * access bit can be set during all page fault flow on these arches.
 450 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
 451 * where software maintains page access bit.
 452 */
 453#ifndef pte_sw_mkyoung
 454static inline pte_t pte_sw_mkyoung(pte_t pte)
 455{
 456        return pte;
 457}
 458#define pte_sw_mkyoung  pte_sw_mkyoung
 459#endif
 460
 461#ifndef pte_savedwrite
 462#define pte_savedwrite pte_write
 463#endif
 464
 465#ifndef pte_mk_savedwrite
 466#define pte_mk_savedwrite pte_mkwrite
 467#endif
 468
 469#ifndef pte_clear_savedwrite
 470#define pte_clear_savedwrite pte_wrprotect
 471#endif
 472
 473#ifndef pmd_savedwrite
 474#define pmd_savedwrite pmd_write
 475#endif
 476
 477#ifndef pmd_mk_savedwrite
 478#define pmd_mk_savedwrite pmd_mkwrite
 479#endif
 480
 481#ifndef pmd_clear_savedwrite
 482#define pmd_clear_savedwrite pmd_wrprotect
 483#endif
 484
 485#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
 486#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 487static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 488                                      unsigned long address, pmd_t *pmdp)
 489{
 490        pmd_t old_pmd = *pmdp;
 491        set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
 492}
 493#else
 494static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 495                                      unsigned long address, pmd_t *pmdp)
 496{
 497        BUILD_BUG();
 498}
 499#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 500#endif
 501#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
 502#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 503static inline void pudp_set_wrprotect(struct mm_struct *mm,
 504                                      unsigned long address, pud_t *pudp)
 505{
 506        pud_t old_pud = *pudp;
 507
 508        set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
 509}
 510#else
 511static inline void pudp_set_wrprotect(struct mm_struct *mm,
 512                                      unsigned long address, pud_t *pudp)
 513{
 514        BUILD_BUG();
 515}
 516#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 517#endif
 518
 519#ifndef pmdp_collapse_flush
 520#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 521extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 522                                 unsigned long address, pmd_t *pmdp);
 523#else
 524static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 525                                        unsigned long address,
 526                                        pmd_t *pmdp)
 527{
 528        BUILD_BUG();
 529        return *pmdp;
 530}
 531#define pmdp_collapse_flush pmdp_collapse_flush
 532#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 533#endif
 534
 535#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
 536extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 537                                       pgtable_t pgtable);
 538#endif
 539
 540#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
 541extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 542#endif
 543
 544#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 545/*
 546 * This is an implementation of pmdp_establish() that is only suitable for an
 547 * architecture that doesn't have hardware dirty/accessed bits. In this case we
 548 * can't race with CPU which sets these bits and non-atomic approach is fine.
 549 */
 550static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
 551                unsigned long address, pmd_t *pmdp, pmd_t pmd)
 552{
 553        pmd_t old_pmd = *pmdp;
 554        set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 555        return old_pmd;
 556}
 557#endif
 558
 559#ifndef __HAVE_ARCH_PMDP_INVALIDATE
 560extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 561                            pmd_t *pmdp);
 562#endif
 563
 564#ifndef __HAVE_ARCH_PTE_SAME
 565static inline int pte_same(pte_t pte_a, pte_t pte_b)
 566{
 567        return pte_val(pte_a) == pte_val(pte_b);
 568}
 569#endif
 570
 571#ifndef __HAVE_ARCH_PTE_UNUSED
 572/*
 573 * Some architectures provide facilities to virtualization guests
 574 * so that they can flag allocated pages as unused. This allows the
 575 * host to transparently reclaim unused pages. This function returns
 576 * whether the pte's page is unused.
 577 */
 578static inline int pte_unused(pte_t pte)
 579{
 580        return 0;
 581}
 582#endif
 583
 584#ifndef pte_access_permitted
 585#define pte_access_permitted(pte, write) \
 586        (pte_present(pte) && (!(write) || pte_write(pte)))
 587#endif
 588
 589#ifndef pmd_access_permitted
 590#define pmd_access_permitted(pmd, write) \
 591        (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
 592#endif
 593
 594#ifndef pud_access_permitted
 595#define pud_access_permitted(pud, write) \
 596        (pud_present(pud) && (!(write) || pud_write(pud)))
 597#endif
 598
 599#ifndef p4d_access_permitted
 600#define p4d_access_permitted(p4d, write) \
 601        (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
 602#endif
 603
 604#ifndef pgd_access_permitted
 605#define pgd_access_permitted(pgd, write) \
 606        (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
 607#endif
 608
 609#ifndef __HAVE_ARCH_PMD_SAME
 610static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 611{
 612        return pmd_val(pmd_a) == pmd_val(pmd_b);
 613}
 614
 615static inline int pud_same(pud_t pud_a, pud_t pud_b)
 616{
 617        return pud_val(pud_a) == pud_val(pud_b);
 618}
 619#endif
 620
 621#ifndef __HAVE_ARCH_P4D_SAME
 622static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
 623{
 624        return p4d_val(p4d_a) == p4d_val(p4d_b);
 625}
 626#endif
 627
 628#ifndef __HAVE_ARCH_PGD_SAME
 629static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
 630{
 631        return pgd_val(pgd_a) == pgd_val(pgd_b);
 632}
 633#endif
 634
 635/*
 636 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
 637 * TLB flush will be required as a result of the "set". For example, use
 638 * in scenarios where it is known ahead of time that the routine is
 639 * setting non-present entries, or re-setting an existing entry to the
 640 * same value. Otherwise, use the typical "set" helpers and flush the
 641 * TLB.
 642 */
 643#define set_pte_safe(ptep, pte) \
 644({ \
 645        WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
 646        set_pte(ptep, pte); \
 647})
 648
 649#define set_pmd_safe(pmdp, pmd) \
 650({ \
 651        WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
 652        set_pmd(pmdp, pmd); \
 653})
 654
 655#define set_pud_safe(pudp, pud) \
 656({ \
 657        WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
 658        set_pud(pudp, pud); \
 659})
 660
 661#define set_p4d_safe(p4dp, p4d) \
 662({ \
 663        WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
 664        set_p4d(p4dp, p4d); \
 665})
 666
 667#define set_pgd_safe(pgdp, pgd) \
 668({ \
 669        WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
 670        set_pgd(pgdp, pgd); \
 671})
 672
 673#ifndef __HAVE_ARCH_DO_SWAP_PAGE
 674/*
 675 * Some architectures support metadata associated with a page. When a
 676 * page is being swapped out, this metadata must be saved so it can be
 677 * restored when the page is swapped back in. SPARC M7 and newer
 678 * processors support an ADI (Application Data Integrity) tag for the
 679 * page as metadata for the page. arch_do_swap_page() can restore this
 680 * metadata when a page is swapped back in.
 681 */
 682static inline void arch_do_swap_page(struct mm_struct *mm,
 683                                     struct vm_area_struct *vma,
 684                                     unsigned long addr,
 685                                     pte_t pte, pte_t oldpte)
 686{
 687
 688}
 689#endif
 690
 691#ifndef __HAVE_ARCH_UNMAP_ONE
 692/*
 693 * Some architectures support metadata associated with a page. When a
 694 * page is being swapped out, this metadata must be saved so it can be
 695 * restored when the page is swapped back in. SPARC M7 and newer
 696 * processors support an ADI (Application Data Integrity) tag for the
 697 * page as metadata for the page. arch_unmap_one() can save this
 698 * metadata on a swap-out of a page.
 699 */
 700static inline int arch_unmap_one(struct mm_struct *mm,
 701                                  struct vm_area_struct *vma,
 702                                  unsigned long addr,
 703                                  pte_t orig_pte)
 704{
 705        return 0;
 706}
 707#endif
 708
 709/*
 710 * Allow architectures to preserve additional metadata associated with
 711 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
 712 * prototypes must be defined in the arch-specific asm/pgtable.h file.
 713 */
 714#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
 715static inline int arch_prepare_to_swap(struct page *page)
 716{
 717        return 0;
 718}
 719#endif
 720
 721#ifndef __HAVE_ARCH_SWAP_INVALIDATE
 722static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
 723{
 724}
 725
 726static inline void arch_swap_invalidate_area(int type)
 727{
 728}
 729#endif
 730
 731#ifndef __HAVE_ARCH_SWAP_RESTORE
 732static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
 733{
 734}
 735#endif
 736
 737#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
 738#define pgd_offset_gate(mm, addr)       pgd_offset(mm, addr)
 739#endif
 740
 741#ifndef __HAVE_ARCH_MOVE_PTE
 742#define move_pte(pte, prot, old_addr, new_addr) (pte)
 743#endif
 744
 745#ifndef pte_accessible
 746# define pte_accessible(mm, pte)        ((void)(pte), 1)
 747#endif
 748
 749#ifndef flush_tlb_fix_spurious_fault
 750#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
 751#endif
 752
 753/*
 754 * When walking page tables, get the address of the next boundary,
 755 * or the end address of the range if that comes earlier.  Although no
 756 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
 757 */
 758
 759#define pgd_addr_end(addr, end)                                         \
 760({      unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;  \
 761        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 762})
 763
 764#ifndef p4d_addr_end
 765#define p4d_addr_end(addr, end)                                         \
 766({      unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;      \
 767        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 768})
 769#endif
 770
 771#ifndef pud_addr_end
 772#define pud_addr_end(addr, end)                                         \
 773({      unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;      \
 774        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 775})
 776#endif
 777
 778#ifndef pmd_addr_end
 779#define pmd_addr_end(addr, end)                                         \
 780({      unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;      \
 781        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 782})
 783#endif
 784
 785/*
 786 * When walking page tables, we usually want to skip any p?d_none entries;
 787 * and any p?d_bad entries - reporting the error before resetting to none.
 788 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 789 */
 790void pgd_clear_bad(pgd_t *);
 791
 792#ifndef __PAGETABLE_P4D_FOLDED
 793void p4d_clear_bad(p4d_t *);
 794#else
 795#define p4d_clear_bad(p4d)        do { } while (0)
 796#endif
 797
 798#ifndef __PAGETABLE_PUD_FOLDED
 799void pud_clear_bad(pud_t *);
 800#else
 801#define pud_clear_bad(p4d)        do { } while (0)
 802#endif
 803
 804void pmd_clear_bad(pmd_t *);
 805
 806static inline int pgd_none_or_clear_bad(pgd_t *pgd)
 807{
 808        if (pgd_none(*pgd))
 809                return 1;
 810        if (unlikely(pgd_bad(*pgd))) {
 811                pgd_clear_bad(pgd);
 812                return 1;
 813        }
 814        return 0;
 815}
 816
 817static inline int p4d_none_or_clear_bad(p4d_t *p4d)
 818{
 819        if (p4d_none(*p4d))
 820                return 1;
 821        if (unlikely(p4d_bad(*p4d))) {
 822                p4d_clear_bad(p4d);
 823                return 1;
 824        }
 825        return 0;
 826}
 827
 828static inline int pud_none_or_clear_bad(pud_t *pud)
 829{
 830        if (pud_none(*pud))
 831                return 1;
 832        if (unlikely(pud_bad(*pud))) {
 833                pud_clear_bad(pud);
 834                return 1;
 835        }
 836        return 0;
 837}
 838
 839static inline int pmd_none_or_clear_bad(pmd_t *pmd)
 840{
 841        if (pmd_none(*pmd))
 842                return 1;
 843        if (unlikely(pmd_bad(*pmd))) {
 844                pmd_clear_bad(pmd);
 845                return 1;
 846        }
 847        return 0;
 848}
 849
 850static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
 851                                             unsigned long addr,
 852                                             pte_t *ptep)
 853{
 854        /*
 855         * Get the current pte state, but zero it out to make it
 856         * non-present, preventing the hardware from asynchronously
 857         * updating it.
 858         */
 859        return ptep_get_and_clear(vma->vm_mm, addr, ptep);
 860}
 861
 862static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
 863                                             unsigned long addr,
 864                                             pte_t *ptep, pte_t pte)
 865{
 866        /*
 867         * The pte is non-present, so there's no hardware state to
 868         * preserve.
 869         */
 870        set_pte_at(vma->vm_mm, addr, ptep, pte);
 871}
 872
 873#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 874/*
 875 * Start a pte protection read-modify-write transaction, which
 876 * protects against asynchronous hardware modifications to the pte.
 877 * The intention is not to prevent the hardware from making pte
 878 * updates, but to prevent any updates it may make from being lost.
 879 *
 880 * This does not protect against other software modifications of the
 881 * pte; the appropriate pte lock must be held over the transaction.
 882 *
 883 * Note that this interface is intended to be batchable, meaning that
 884 * ptep_modify_prot_commit may not actually update the pte, but merely
 885 * queue the update to be done at some later time.  The update must be
 886 * actually committed before the pte lock is released, however.
 887 */
 888static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
 889                                           unsigned long addr,
 890                                           pte_t *ptep)
 891{
 892        return __ptep_modify_prot_start(vma, addr, ptep);
 893}
 894
 895/*
 896 * Commit an update to a pte, leaving any hardware-controlled bits in
 897 * the PTE unmodified.
 898 */
 899static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
 900                                           unsigned long addr,
 901                                           pte_t *ptep, pte_t old_pte, pte_t pte)
 902{
 903        __ptep_modify_prot_commit(vma, addr, ptep, pte);
 904}
 905#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
 906#endif /* CONFIG_MMU */
 907
 908/*
 909 * No-op macros that just return the current protection value. Defined here
 910 * because these macros can be used even if CONFIG_MMU is not defined.
 911 */
 912
 913#ifndef pgprot_nx
 914#define pgprot_nx(prot) (prot)
 915#endif
 916
 917#ifndef pgprot_noncached
 918#define pgprot_noncached(prot)  (prot)
 919#endif
 920
 921#ifndef pgprot_writecombine
 922#define pgprot_writecombine pgprot_noncached
 923#endif
 924
 925#ifndef pgprot_writethrough
 926#define pgprot_writethrough pgprot_noncached
 927#endif
 928
 929#ifndef pgprot_device
 930#define pgprot_device pgprot_noncached
 931#endif
 932
 933#ifndef pgprot_mhp
 934#define pgprot_mhp(prot)        (prot)
 935#endif
 936
 937#ifdef CONFIG_MMU
 938#ifndef pgprot_modify
 939#define pgprot_modify pgprot_modify
 940static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
 941{
 942        if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
 943                newprot = pgprot_noncached(newprot);
 944        if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
 945                newprot = pgprot_writecombine(newprot);
 946        if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
 947                newprot = pgprot_device(newprot);
 948        return newprot;
 949}
 950#endif
 951#endif /* CONFIG_MMU */
 952
 953#ifndef pgprot_encrypted
 954#define pgprot_encrypted(prot)  (prot)
 955#endif
 956
 957#ifndef pgprot_decrypted
 958#define pgprot_decrypted(prot)  (prot)
 959#endif
 960
 961/*
 962 * A facility to provide lazy MMU batching.  This allows PTE updates and
 963 * page invalidations to be delayed until a call to leave lazy MMU mode
 964 * is issued.  Some architectures may benefit from doing this, and it is
 965 * beneficial for both shadow and direct mode hypervisors, which may batch
 966 * the PTE updates which happen during this window.  Note that using this
 967 * interface requires that read hazards be removed from the code.  A read
 968 * hazard could result in the direct mode hypervisor case, since the actual
 969 * write to the page tables may not yet have taken place, so reads though
 970 * a raw PTE pointer after it has been modified are not guaranteed to be
 971 * up to date.  This mode can only be entered and left under the protection of
 972 * the page table locks for all page tables which may be modified.  In the UP
 973 * case, this is required so that preemption is disabled, and in the SMP case,
 974 * it must synchronize the delayed page table writes properly on other CPUs.
 975 */
 976#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
 977#define arch_enter_lazy_mmu_mode()      do {} while (0)
 978#define arch_leave_lazy_mmu_mode()      do {} while (0)
 979#define arch_flush_lazy_mmu_mode()      do {} while (0)
 980#endif
 981
 982/*
 983 * A facility to provide batching of the reload of page tables and
 984 * other process state with the actual context switch code for
 985 * paravirtualized guests.  By convention, only one of the batched
 986 * update (lazy) modes (CPU, MMU) should be active at any given time,
 987 * entry should never be nested, and entry and exits should always be
 988 * paired.  This is for sanity of maintaining and reasoning about the
 989 * kernel code.  In this case, the exit (end of the context switch) is
 990 * in architecture-specific code, and so doesn't need a generic
 991 * definition.
 992 */
 993#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
 994#define arch_start_context_switch(prev) do {} while (0)
 995#endif
 996
 997#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 998#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
 999static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1000{
1001        return pmd;
1002}
1003
1004static inline int pmd_swp_soft_dirty(pmd_t pmd)
1005{
1006        return 0;
1007}
1008
1009static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1010{
1011        return pmd;
1012}
1013#endif
1014#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1015static inline int pte_soft_dirty(pte_t pte)
1016{
1017        return 0;
1018}
1019
1020static inline int pmd_soft_dirty(pmd_t pmd)
1021{
1022        return 0;
1023}
1024
1025static inline pte_t pte_mksoft_dirty(pte_t pte)
1026{
1027        return pte;
1028}
1029
1030static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1031{
1032        return pmd;
1033}
1034
1035static inline pte_t pte_clear_soft_dirty(pte_t pte)
1036{
1037        return pte;
1038}
1039
1040static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1041{
1042        return pmd;
1043}
1044
1045static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1046{
1047        return pte;
1048}
1049
1050static inline int pte_swp_soft_dirty(pte_t pte)
1051{
1052        return 0;
1053}
1054
1055static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1056{
1057        return pte;
1058}
1059
1060static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1061{
1062        return pmd;
1063}
1064
1065static inline int pmd_swp_soft_dirty(pmd_t pmd)
1066{
1067        return 0;
1068}
1069
1070static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1071{
1072        return pmd;
1073}
1074#endif
1075
1076#ifndef __HAVE_PFNMAP_TRACKING
1077/*
1078 * Interfaces that can be used by architecture code to keep track of
1079 * memory type of pfn mappings specified by the remap_pfn_range,
1080 * vmf_insert_pfn.
1081 */
1082
1083/*
1084 * track_pfn_remap is called when a _new_ pfn mapping is being established
1085 * by remap_pfn_range() for physical range indicated by pfn and size.
1086 */
1087static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1088                                  unsigned long pfn, unsigned long addr,
1089                                  unsigned long size)
1090{
1091        return 0;
1092}
1093
1094/*
1095 * track_pfn_insert is called when a _new_ single pfn is established
1096 * by vmf_insert_pfn().
1097 */
1098static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1099                                    pfn_t pfn)
1100{
1101}
1102
1103/*
1104 * track_pfn_copy is called when vma that is covering the pfnmap gets
1105 * copied through copy_page_range().
1106 */
1107static inline int track_pfn_copy(struct vm_area_struct *vma)
1108{
1109        return 0;
1110}
1111
1112/*
1113 * untrack_pfn is called while unmapping a pfnmap for a region.
1114 * untrack can be called for a specific region indicated by pfn and size or
1115 * can be for the entire vma (in which case pfn, size are zero).
1116 */
1117static inline void untrack_pfn(struct vm_area_struct *vma,
1118                               unsigned long pfn, unsigned long size)
1119{
1120}
1121
1122/*
1123 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1124 */
1125static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1126{
1127}
1128#else
1129extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1130                           unsigned long pfn, unsigned long addr,
1131                           unsigned long size);
1132extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1133                             pfn_t pfn);
1134extern int track_pfn_copy(struct vm_area_struct *vma);
1135extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1136                        unsigned long size);
1137extern void untrack_pfn_moved(struct vm_area_struct *vma);
1138#endif
1139
1140#ifdef CONFIG_MMU
1141#ifdef __HAVE_COLOR_ZERO_PAGE
1142static inline int is_zero_pfn(unsigned long pfn)
1143{
1144        extern unsigned long zero_pfn;
1145        unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1146        return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1147}
1148
1149#define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
1150
1151#else
1152static inline int is_zero_pfn(unsigned long pfn)
1153{
1154        extern unsigned long zero_pfn;
1155        return pfn == zero_pfn;
1156}
1157
1158static inline unsigned long my_zero_pfn(unsigned long addr)
1159{
1160        extern unsigned long zero_pfn;
1161        return zero_pfn;
1162}
1163#endif
1164#else
1165static inline int is_zero_pfn(unsigned long pfn)
1166{
1167        return 0;
1168}
1169
1170static inline unsigned long my_zero_pfn(unsigned long addr)
1171{
1172        return 0;
1173}
1174#endif /* CONFIG_MMU */
1175
1176#ifdef CONFIG_MMU
1177
1178#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1179static inline int pmd_trans_huge(pmd_t pmd)
1180{
1181        return 0;
1182}
1183#ifndef pmd_write
1184static inline int pmd_write(pmd_t pmd)
1185{
1186        BUG();
1187        return 0;
1188}
1189#endif /* pmd_write */
1190#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1191
1192#ifndef pud_write
1193static inline int pud_write(pud_t pud)
1194{
1195        BUG();
1196        return 0;
1197}
1198#endif /* pud_write */
1199
1200#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1201static inline int pmd_devmap(pmd_t pmd)
1202{
1203        return 0;
1204}
1205static inline int pud_devmap(pud_t pud)
1206{
1207        return 0;
1208}
1209static inline int pgd_devmap(pgd_t pgd)
1210{
1211        return 0;
1212}
1213#endif
1214
1215#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1216        (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1217         !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1218static inline int pud_trans_huge(pud_t pud)
1219{
1220        return 0;
1221}
1222#endif
1223
1224/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1225static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1226{
1227        pud_t pudval = READ_ONCE(*pud);
1228
1229        if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1230                return 1;
1231        if (unlikely(pud_bad(pudval))) {
1232                pud_clear_bad(pud);
1233                return 1;
1234        }
1235        return 0;
1236}
1237
1238/* See pmd_trans_unstable for discussion. */
1239static inline int pud_trans_unstable(pud_t *pud)
1240{
1241#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
1242        defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1243        return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1244#else
1245        return 0;
1246#endif
1247}
1248
1249#ifndef pmd_read_atomic
1250static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1251{
1252        /*
1253         * Depend on compiler for an atomic pmd read. NOTE: this is
1254         * only going to work, if the pmdval_t isn't larger than
1255         * an unsigned long.
1256         */
1257        return *pmdp;
1258}
1259#endif
1260
1261#ifndef arch_needs_pgtable_deposit
1262#define arch_needs_pgtable_deposit() (false)
1263#endif
1264/*
1265 * This function is meant to be used by sites walking pagetables with
1266 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1267 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1268 * into a null pmd and the transhuge page fault can convert a null pmd
1269 * into an hugepmd or into a regular pmd (if the hugepage allocation
1270 * fails). While holding the mmap_lock in read mode the pmd becomes
1271 * stable and stops changing under us only if it's not null and not a
1272 * transhuge pmd. When those races occurs and this function makes a
1273 * difference vs the standard pmd_none_or_clear_bad, the result is
1274 * undefined so behaving like if the pmd was none is safe (because it
1275 * can return none anyway). The compiler level barrier() is critically
1276 * important to compute the two checks atomically on the same pmdval.
1277 *
1278 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1279 * care of reading the pmd atomically to avoid SMP race conditions
1280 * against pmd_populate() when the mmap_lock is hold for reading by the
1281 * caller (a special atomic read not done by "gcc" as in the generic
1282 * version above, is also needed when THP is disabled because the page
1283 * fault can populate the pmd from under us).
1284 */
1285static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1286{
1287        pmd_t pmdval = pmd_read_atomic(pmd);
1288        /*
1289         * The barrier will stabilize the pmdval in a register or on
1290         * the stack so that it will stop changing under the code.
1291         *
1292         * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1293         * pmd_read_atomic is allowed to return a not atomic pmdval
1294         * (for example pointing to an hugepage that has never been
1295         * mapped in the pmd). The below checks will only care about
1296         * the low part of the pmd with 32bit PAE x86 anyway, with the
1297         * exception of pmd_none(). So the important thing is that if
1298         * the low part of the pmd is found null, the high part will
1299         * be also null or the pmd_none() check below would be
1300         * confused.
1301         */
1302#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1303        barrier();
1304#endif
1305        /*
1306         * !pmd_present() checks for pmd migration entries
1307         *
1308         * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1309         * But using that requires moving current function and pmd_trans_unstable()
1310         * to linux/swapops.h to resolve dependency, which is too much code move.
1311         *
1312         * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1313         * because !pmd_present() pages can only be under migration not swapped
1314         * out.
1315         *
1316         * pmd_none() is preserved for future condition checks on pmd migration
1317         * entries and not confusing with this function name, although it is
1318         * redundant with !pmd_present().
1319         */
1320        if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1321                (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1322                return 1;
1323        if (unlikely(pmd_bad(pmdval))) {
1324                pmd_clear_bad(pmd);
1325                return 1;
1326        }
1327        return 0;
1328}
1329
1330/*
1331 * This is a noop if Transparent Hugepage Support is not built into
1332 * the kernel. Otherwise it is equivalent to
1333 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1334 * places that already verified the pmd is not none and they want to
1335 * walk ptes while holding the mmap sem in read mode (write mode don't
1336 * need this). If THP is not enabled, the pmd can't go away under the
1337 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1338 * run a pmd_trans_unstable before walking the ptes after
1339 * split_huge_pmd returns (because it may have run when the pmd become
1340 * null, but then a page fault can map in a THP and not a regular page).
1341 */
1342static inline int pmd_trans_unstable(pmd_t *pmd)
1343{
1344#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1345        return pmd_none_or_trans_huge_or_clear_bad(pmd);
1346#else
1347        return 0;
1348#endif
1349}
1350
1351/*
1352 * the ordering of these checks is important for pmds with _page_devmap set.
1353 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1354 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1355 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1356 */
1357static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1358{
1359        return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1360}
1361
1362#ifndef CONFIG_NUMA_BALANCING
1363/*
1364 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1365 * the only case the kernel cares is for NUMA balancing and is only ever set
1366 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1367 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1368 * is the responsibility of the caller to distinguish between PROT_NONE
1369 * protections and NUMA hinting fault protections.
1370 */
1371static inline int pte_protnone(pte_t pte)
1372{
1373        return 0;
1374}
1375
1376static inline int pmd_protnone(pmd_t pmd)
1377{
1378        return 0;
1379}
1380#endif /* CONFIG_NUMA_BALANCING */
1381
1382#endif /* CONFIG_MMU */
1383
1384#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1385
1386#ifndef __PAGETABLE_P4D_FOLDED
1387int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1388int p4d_clear_huge(p4d_t *p4d);
1389#else
1390static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1391{
1392        return 0;
1393}
1394static inline int p4d_clear_huge(p4d_t *p4d)
1395{
1396        return 0;
1397}
1398#endif /* !__PAGETABLE_P4D_FOLDED */
1399
1400int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1401int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1402int pud_clear_huge(pud_t *pud);
1403int pmd_clear_huge(pmd_t *pmd);
1404int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1405int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1406int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1407#else   /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1408static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1409{
1410        return 0;
1411}
1412static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1413{
1414        return 0;
1415}
1416static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1417{
1418        return 0;
1419}
1420static inline int p4d_clear_huge(p4d_t *p4d)
1421{
1422        return 0;
1423}
1424static inline int pud_clear_huge(pud_t *pud)
1425{
1426        return 0;
1427}
1428static inline int pmd_clear_huge(pmd_t *pmd)
1429{
1430        return 0;
1431}
1432static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1433{
1434        return 0;
1435}
1436static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1437{
1438        return 0;
1439}
1440static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1441{
1442        return 0;
1443}
1444#endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1445
1446#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1447#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1448/*
1449 * ARCHes with special requirements for evicting THP backing TLB entries can
1450 * implement this. Otherwise also, it can help optimize normal TLB flush in
1451 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1452 * entire TLB if flush span is greater than a threshold, which will
1453 * likely be true for a single huge page. Thus a single THP flush will
1454 * invalidate the entire TLB which is not desirable.
1455 * e.g. see arch/arc: flush_pmd_tlb_range
1456 */
1457#define flush_pmd_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
1458#define flush_pud_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
1459#else
1460#define flush_pmd_tlb_range(vma, addr, end)     BUILD_BUG()
1461#define flush_pud_tlb_range(vma, addr, end)     BUILD_BUG()
1462#endif
1463#endif
1464
1465struct file;
1466int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1467                        unsigned long size, pgprot_t *vma_prot);
1468
1469#ifndef CONFIG_X86_ESPFIX64
1470static inline void init_espfix_bsp(void) { }
1471#endif
1472
1473extern void __init pgtable_cache_init(void);
1474
1475#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1476static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1477{
1478        return true;
1479}
1480
1481static inline bool arch_has_pfn_modify_check(void)
1482{
1483        return false;
1484}
1485#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1486
1487/*
1488 * Architecture PAGE_KERNEL_* fallbacks
1489 *
1490 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1491 * because they really don't support them, or the port needs to be updated to
1492 * reflect the required functionality. Below are a set of relatively safe
1493 * fallbacks, as best effort, which we can count on in lieu of the architectures
1494 * not defining them on their own yet.
1495 */
1496
1497#ifndef PAGE_KERNEL_RO
1498# define PAGE_KERNEL_RO PAGE_KERNEL
1499#endif
1500
1501#ifndef PAGE_KERNEL_EXEC
1502# define PAGE_KERNEL_EXEC PAGE_KERNEL
1503#endif
1504
1505/*
1506 * Page Table Modification bits for pgtbl_mod_mask.
1507 *
1508 * These are used by the p?d_alloc_track*() set of functions an in the generic
1509 * vmalloc/ioremap code to track at which page-table levels entries have been
1510 * modified. Based on that the code can better decide when vmalloc and ioremap
1511 * mapping changes need to be synchronized to other page-tables in the system.
1512 */
1513#define         __PGTBL_PGD_MODIFIED    0
1514#define         __PGTBL_P4D_MODIFIED    1
1515#define         __PGTBL_PUD_MODIFIED    2
1516#define         __PGTBL_PMD_MODIFIED    3
1517#define         __PGTBL_PTE_MODIFIED    4
1518
1519#define         PGTBL_PGD_MODIFIED      BIT(__PGTBL_PGD_MODIFIED)
1520#define         PGTBL_P4D_MODIFIED      BIT(__PGTBL_P4D_MODIFIED)
1521#define         PGTBL_PUD_MODIFIED      BIT(__PGTBL_PUD_MODIFIED)
1522#define         PGTBL_PMD_MODIFIED      BIT(__PGTBL_PMD_MODIFIED)
1523#define         PGTBL_PTE_MODIFIED      BIT(__PGTBL_PTE_MODIFIED)
1524
1525/* Page-Table Modification Mask */
1526typedef unsigned int pgtbl_mod_mask;
1527
1528#endif /* !__ASSEMBLY__ */
1529
1530#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1531#ifdef CONFIG_PHYS_ADDR_T_64BIT
1532/*
1533 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1534 * with physical address space extension, but falls back to
1535 * BITS_PER_LONG otherwise.
1536 */
1537#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1538#else
1539#define MAX_POSSIBLE_PHYSMEM_BITS 32
1540#endif
1541#endif
1542
1543#ifndef has_transparent_hugepage
1544#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1545#define has_transparent_hugepage() 1
1546#else
1547#define has_transparent_hugepage() 0
1548#endif
1549#endif
1550
1551/*
1552 * On some architectures it depends on the mm if the p4d/pud or pmd
1553 * layer of the page table hierarchy is folded or not.
1554 */
1555#ifndef mm_p4d_folded
1556#define mm_p4d_folded(mm)       __is_defined(__PAGETABLE_P4D_FOLDED)
1557#endif
1558
1559#ifndef mm_pud_folded
1560#define mm_pud_folded(mm)       __is_defined(__PAGETABLE_PUD_FOLDED)
1561#endif
1562
1563#ifndef mm_pmd_folded
1564#define mm_pmd_folded(mm)       __is_defined(__PAGETABLE_PMD_FOLDED)
1565#endif
1566
1567#ifndef p4d_offset_lockless
1568#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1569#endif
1570#ifndef pud_offset_lockless
1571#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1572#endif
1573#ifndef pmd_offset_lockless
1574#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1575#endif
1576
1577/*
1578 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1579 * This differs from p?d_huge() by the fact that they are always available (if
1580 * the architecture supports large pages at the appropriate level) even
1581 * if CONFIG_HUGETLB_PAGE is not defined.
1582 * Only meaningful when called on a valid entry.
1583 */
1584#ifndef pgd_leaf
1585#define pgd_leaf(x)     0
1586#endif
1587#ifndef p4d_leaf
1588#define p4d_leaf(x)     0
1589#endif
1590#ifndef pud_leaf
1591#define pud_leaf(x)     0
1592#endif
1593#ifndef pmd_leaf
1594#define pmd_leaf(x)     0
1595#endif
1596
1597#ifndef pgd_leaf_size
1598#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1599#endif
1600#ifndef p4d_leaf_size
1601#define p4d_leaf_size(x) P4D_SIZE
1602#endif
1603#ifndef pud_leaf_size
1604#define pud_leaf_size(x) PUD_SIZE
1605#endif
1606#ifndef pmd_leaf_size
1607#define pmd_leaf_size(x) PMD_SIZE
1608#endif
1609#ifndef pte_leaf_size
1610#define pte_leaf_size(x) PAGE_SIZE
1611#endif
1612
1613/*
1614 * Some architectures have MMUs that are configurable or selectable at boot
1615 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1616 * helps to have a static maximum value.
1617 */
1618
1619#ifndef MAX_PTRS_PER_PTE
1620#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1621#endif
1622
1623#ifndef MAX_PTRS_PER_PMD
1624#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1625#endif
1626
1627#ifndef MAX_PTRS_PER_PUD
1628#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1629#endif
1630
1631#ifndef MAX_PTRS_PER_P4D
1632#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1633#endif
1634
1635#endif /* _LINUX_PGTABLE_H */
1636