linux/include/linux/rbtree.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3  Red Black Trees
   4  (C) 1999  Andrea Arcangeli <andrea@suse.de>
   5  
   6
   7  linux/include/linux/rbtree.h
   8
   9  To use rbtrees you'll have to implement your own insert and search cores.
  10  This will avoid us to use callbacks and to drop drammatically performances.
  11  I know it's not the cleaner way,  but in C (not in C++) to get
  12  performances and genericity...
  13
  14  See Documentation/core-api/rbtree.rst for documentation and samples.
  15*/
  16
  17#ifndef _LINUX_RBTREE_H
  18#define _LINUX_RBTREE_H
  19
  20#include <linux/rbtree_types.h>
  21
  22#include <linux/kernel.h>
  23#include <linux/stddef.h>
  24#include <linux/rcupdate.h>
  25
  26#define rb_parent(r)   ((struct rb_node *)((r)->__rb_parent_color & ~3))
  27
  28#define rb_entry(ptr, type, member) container_of(ptr, type, member)
  29
  30#define RB_EMPTY_ROOT(root)  (READ_ONCE((root)->rb_node) == NULL)
  31
  32/* 'empty' nodes are nodes that are known not to be inserted in an rbtree */
  33#define RB_EMPTY_NODE(node)  \
  34        ((node)->__rb_parent_color == (unsigned long)(node))
  35#define RB_CLEAR_NODE(node)  \
  36        ((node)->__rb_parent_color = (unsigned long)(node))
  37
  38
  39extern void rb_insert_color(struct rb_node *, struct rb_root *);
  40extern void rb_erase(struct rb_node *, struct rb_root *);
  41
  42
  43/* Find logical next and previous nodes in a tree */
  44extern struct rb_node *rb_next(const struct rb_node *);
  45extern struct rb_node *rb_prev(const struct rb_node *);
  46extern struct rb_node *rb_first(const struct rb_root *);
  47extern struct rb_node *rb_last(const struct rb_root *);
  48
  49/* Postorder iteration - always visit the parent after its children */
  50extern struct rb_node *rb_first_postorder(const struct rb_root *);
  51extern struct rb_node *rb_next_postorder(const struct rb_node *);
  52
  53/* Fast replacement of a single node without remove/rebalance/add/rebalance */
  54extern void rb_replace_node(struct rb_node *victim, struct rb_node *new,
  55                            struct rb_root *root);
  56extern void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
  57                                struct rb_root *root);
  58
  59static inline void rb_link_node(struct rb_node *node, struct rb_node *parent,
  60                                struct rb_node **rb_link)
  61{
  62        node->__rb_parent_color = (unsigned long)parent;
  63        node->rb_left = node->rb_right = NULL;
  64
  65        *rb_link = node;
  66}
  67
  68static inline void rb_link_node_rcu(struct rb_node *node, struct rb_node *parent,
  69                                    struct rb_node **rb_link)
  70{
  71        node->__rb_parent_color = (unsigned long)parent;
  72        node->rb_left = node->rb_right = NULL;
  73
  74        rcu_assign_pointer(*rb_link, node);
  75}
  76
  77#define rb_entry_safe(ptr, type, member) \
  78        ({ typeof(ptr) ____ptr = (ptr); \
  79           ____ptr ? rb_entry(____ptr, type, member) : NULL; \
  80        })
  81
  82/**
  83 * rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of
  84 * given type allowing the backing memory of @pos to be invalidated
  85 *
  86 * @pos:        the 'type *' to use as a loop cursor.
  87 * @n:          another 'type *' to use as temporary storage
  88 * @root:       'rb_root *' of the rbtree.
  89 * @field:      the name of the rb_node field within 'type'.
  90 *
  91 * rbtree_postorder_for_each_entry_safe() provides a similar guarantee as
  92 * list_for_each_entry_safe() and allows the iteration to continue independent
  93 * of changes to @pos by the body of the loop.
  94 *
  95 * Note, however, that it cannot handle other modifications that re-order the
  96 * rbtree it is iterating over. This includes calling rb_erase() on @pos, as
  97 * rb_erase() may rebalance the tree, causing us to miss some nodes.
  98 */
  99#define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \
 100        for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \
 101             pos && ({ n = rb_entry_safe(rb_next_postorder(&pos->field), \
 102                        typeof(*pos), field); 1; }); \
 103             pos = n)
 104
 105/* Same as rb_first(), but O(1) */
 106#define rb_first_cached(root) (root)->rb_leftmost
 107
 108static inline void rb_insert_color_cached(struct rb_node *node,
 109                                          struct rb_root_cached *root,
 110                                          bool leftmost)
 111{
 112        if (leftmost)
 113                root->rb_leftmost = node;
 114        rb_insert_color(node, &root->rb_root);
 115}
 116
 117
 118static inline struct rb_node *
 119rb_erase_cached(struct rb_node *node, struct rb_root_cached *root)
 120{
 121        struct rb_node *leftmost = NULL;
 122
 123        if (root->rb_leftmost == node)
 124                leftmost = root->rb_leftmost = rb_next(node);
 125
 126        rb_erase(node, &root->rb_root);
 127
 128        return leftmost;
 129}
 130
 131static inline void rb_replace_node_cached(struct rb_node *victim,
 132                                          struct rb_node *new,
 133                                          struct rb_root_cached *root)
 134{
 135        if (root->rb_leftmost == victim)
 136                root->rb_leftmost = new;
 137        rb_replace_node(victim, new, &root->rb_root);
 138}
 139
 140/*
 141 * The below helper functions use 2 operators with 3 different
 142 * calling conventions. The operators are related like:
 143 *
 144 *      comp(a->key,b) < 0  := less(a,b)
 145 *      comp(a->key,b) > 0  := less(b,a)
 146 *      comp(a->key,b) == 0 := !less(a,b) && !less(b,a)
 147 *
 148 * If these operators define a partial order on the elements we make no
 149 * guarantee on which of the elements matching the key is found. See
 150 * rb_find().
 151 *
 152 * The reason for this is to allow the find() interface without requiring an
 153 * on-stack dummy object, which might not be feasible due to object size.
 154 */
 155
 156/**
 157 * rb_add_cached() - insert @node into the leftmost cached tree @tree
 158 * @node: node to insert
 159 * @tree: leftmost cached tree to insert @node into
 160 * @less: operator defining the (partial) node order
 161 *
 162 * Returns @node when it is the new leftmost, or NULL.
 163 */
 164static __always_inline struct rb_node *
 165rb_add_cached(struct rb_node *node, struct rb_root_cached *tree,
 166              bool (*less)(struct rb_node *, const struct rb_node *))
 167{
 168        struct rb_node **link = &tree->rb_root.rb_node;
 169        struct rb_node *parent = NULL;
 170        bool leftmost = true;
 171
 172        while (*link) {
 173                parent = *link;
 174                if (less(node, parent)) {
 175                        link = &parent->rb_left;
 176                } else {
 177                        link = &parent->rb_right;
 178                        leftmost = false;
 179                }
 180        }
 181
 182        rb_link_node(node, parent, link);
 183        rb_insert_color_cached(node, tree, leftmost);
 184
 185        return leftmost ? node : NULL;
 186}
 187
 188/**
 189 * rb_add() - insert @node into @tree
 190 * @node: node to insert
 191 * @tree: tree to insert @node into
 192 * @less: operator defining the (partial) node order
 193 */
 194static __always_inline void
 195rb_add(struct rb_node *node, struct rb_root *tree,
 196       bool (*less)(struct rb_node *, const struct rb_node *))
 197{
 198        struct rb_node **link = &tree->rb_node;
 199        struct rb_node *parent = NULL;
 200
 201        while (*link) {
 202                parent = *link;
 203                if (less(node, parent))
 204                        link = &parent->rb_left;
 205                else
 206                        link = &parent->rb_right;
 207        }
 208
 209        rb_link_node(node, parent, link);
 210        rb_insert_color(node, tree);
 211}
 212
 213/**
 214 * rb_find_add() - find equivalent @node in @tree, or add @node
 215 * @node: node to look-for / insert
 216 * @tree: tree to search / modify
 217 * @cmp: operator defining the node order
 218 *
 219 * Returns the rb_node matching @node, or NULL when no match is found and @node
 220 * is inserted.
 221 */
 222static __always_inline struct rb_node *
 223rb_find_add(struct rb_node *node, struct rb_root *tree,
 224            int (*cmp)(struct rb_node *, const struct rb_node *))
 225{
 226        struct rb_node **link = &tree->rb_node;
 227        struct rb_node *parent = NULL;
 228        int c;
 229
 230        while (*link) {
 231                parent = *link;
 232                c = cmp(node, parent);
 233
 234                if (c < 0)
 235                        link = &parent->rb_left;
 236                else if (c > 0)
 237                        link = &parent->rb_right;
 238                else
 239                        return parent;
 240        }
 241
 242        rb_link_node(node, parent, link);
 243        rb_insert_color(node, tree);
 244        return NULL;
 245}
 246
 247/**
 248 * rb_find() - find @key in tree @tree
 249 * @key: key to match
 250 * @tree: tree to search
 251 * @cmp: operator defining the node order
 252 *
 253 * Returns the rb_node matching @key or NULL.
 254 */
 255static __always_inline struct rb_node *
 256rb_find(const void *key, const struct rb_root *tree,
 257        int (*cmp)(const void *key, const struct rb_node *))
 258{
 259        struct rb_node *node = tree->rb_node;
 260
 261        while (node) {
 262                int c = cmp(key, node);
 263
 264                if (c < 0)
 265                        node = node->rb_left;
 266                else if (c > 0)
 267                        node = node->rb_right;
 268                else
 269                        return node;
 270        }
 271
 272        return NULL;
 273}
 274
 275/**
 276 * rb_find_first() - find the first @key in @tree
 277 * @key: key to match
 278 * @tree: tree to search
 279 * @cmp: operator defining node order
 280 *
 281 * Returns the leftmost node matching @key, or NULL.
 282 */
 283static __always_inline struct rb_node *
 284rb_find_first(const void *key, const struct rb_root *tree,
 285              int (*cmp)(const void *key, const struct rb_node *))
 286{
 287        struct rb_node *node = tree->rb_node;
 288        struct rb_node *match = NULL;
 289
 290        while (node) {
 291                int c = cmp(key, node);
 292
 293                if (c <= 0) {
 294                        if (!c)
 295                                match = node;
 296                        node = node->rb_left;
 297                } else if (c > 0) {
 298                        node = node->rb_right;
 299                }
 300        }
 301
 302        return match;
 303}
 304
 305/**
 306 * rb_next_match() - find the next @key in @tree
 307 * @key: key to match
 308 * @tree: tree to search
 309 * @cmp: operator defining node order
 310 *
 311 * Returns the next node matching @key, or NULL.
 312 */
 313static __always_inline struct rb_node *
 314rb_next_match(const void *key, struct rb_node *node,
 315              int (*cmp)(const void *key, const struct rb_node *))
 316{
 317        node = rb_next(node);
 318        if (node && cmp(key, node))
 319                node = NULL;
 320        return node;
 321}
 322
 323/**
 324 * rb_for_each() - iterates a subtree matching @key
 325 * @node: iterator
 326 * @key: key to match
 327 * @tree: tree to search
 328 * @cmp: operator defining node order
 329 */
 330#define rb_for_each(node, key, tree, cmp) \
 331        for ((node) = rb_find_first((key), (tree), (cmp)); \
 332             (node); (node) = rb_next_match((key), (node), (cmp)))
 333
 334#endif  /* _LINUX_RBTREE_H */
 335