linux/include/linux/rculist.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_RCULIST_H
   3#define _LINUX_RCULIST_H
   4
   5#ifdef __KERNEL__
   6
   7/*
   8 * RCU-protected list version
   9 */
  10#include <linux/list.h>
  11#include <linux/rcupdate.h>
  12
  13/*
  14 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
  15 * @list: list to be initialized
  16 *
  17 * You should instead use INIT_LIST_HEAD() for normal initialization and
  18 * cleanup tasks, when readers have no access to the list being initialized.
  19 * However, if the list being initialized is visible to readers, you
  20 * need to keep the compiler from being too mischievous.
  21 */
  22static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
  23{
  24        WRITE_ONCE(list->next, list);
  25        WRITE_ONCE(list->prev, list);
  26}
  27
  28/*
  29 * return the ->next pointer of a list_head in an rcu safe
  30 * way, we must not access it directly
  31 */
  32#define list_next_rcu(list)     (*((struct list_head __rcu **)(&(list)->next)))
  33
  34/**
  35 * list_tail_rcu - returns the prev pointer of the head of the list
  36 * @head: the head of the list
  37 *
  38 * Note: This should only be used with the list header, and even then
  39 * only if list_del() and similar primitives are not also used on the
  40 * list header.
  41 */
  42#define list_tail_rcu(head)     (*((struct list_head __rcu **)(&(head)->prev)))
  43
  44/*
  45 * Check during list traversal that we are within an RCU reader
  46 */
  47
  48#define check_arg_count_one(dummy)
  49
  50#ifdef CONFIG_PROVE_RCU_LIST
  51#define __list_check_rcu(dummy, cond, extra...)                         \
  52        ({                                                              \
  53        check_arg_count_one(extra);                                     \
  54        RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(),          \
  55                         "RCU-list traversed in non-reader section!");  \
  56        })
  57
  58#define __list_check_srcu(cond)                                  \
  59        ({                                                               \
  60        RCU_LOCKDEP_WARN(!(cond),                                        \
  61                "RCU-list traversed without holding the required lock!");\
  62        })
  63#else
  64#define __list_check_rcu(dummy, cond, extra...)                         \
  65        ({ check_arg_count_one(extra); })
  66
  67#define __list_check_srcu(cond) ({ })
  68#endif
  69
  70/*
  71 * Insert a new entry between two known consecutive entries.
  72 *
  73 * This is only for internal list manipulation where we know
  74 * the prev/next entries already!
  75 */
  76static inline void __list_add_rcu(struct list_head *new,
  77                struct list_head *prev, struct list_head *next)
  78{
  79        if (!__list_add_valid(new, prev, next))
  80                return;
  81
  82        new->next = next;
  83        new->prev = prev;
  84        rcu_assign_pointer(list_next_rcu(prev), new);
  85        next->prev = new;
  86}
  87
  88/**
  89 * list_add_rcu - add a new entry to rcu-protected list
  90 * @new: new entry to be added
  91 * @head: list head to add it after
  92 *
  93 * Insert a new entry after the specified head.
  94 * This is good for implementing stacks.
  95 *
  96 * The caller must take whatever precautions are necessary
  97 * (such as holding appropriate locks) to avoid racing
  98 * with another list-mutation primitive, such as list_add_rcu()
  99 * or list_del_rcu(), running on this same list.
 100 * However, it is perfectly legal to run concurrently with
 101 * the _rcu list-traversal primitives, such as
 102 * list_for_each_entry_rcu().
 103 */
 104static inline void list_add_rcu(struct list_head *new, struct list_head *head)
 105{
 106        __list_add_rcu(new, head, head->next);
 107}
 108
 109/**
 110 * list_add_tail_rcu - add a new entry to rcu-protected list
 111 * @new: new entry to be added
 112 * @head: list head to add it before
 113 *
 114 * Insert a new entry before the specified head.
 115 * This is useful for implementing queues.
 116 *
 117 * The caller must take whatever precautions are necessary
 118 * (such as holding appropriate locks) to avoid racing
 119 * with another list-mutation primitive, such as list_add_tail_rcu()
 120 * or list_del_rcu(), running on this same list.
 121 * However, it is perfectly legal to run concurrently with
 122 * the _rcu list-traversal primitives, such as
 123 * list_for_each_entry_rcu().
 124 */
 125static inline void list_add_tail_rcu(struct list_head *new,
 126                                        struct list_head *head)
 127{
 128        __list_add_rcu(new, head->prev, head);
 129}
 130
 131/**
 132 * list_del_rcu - deletes entry from list without re-initialization
 133 * @entry: the element to delete from the list.
 134 *
 135 * Note: list_empty() on entry does not return true after this,
 136 * the entry is in an undefined state. It is useful for RCU based
 137 * lockfree traversal.
 138 *
 139 * In particular, it means that we can not poison the forward
 140 * pointers that may still be used for walking the list.
 141 *
 142 * The caller must take whatever precautions are necessary
 143 * (such as holding appropriate locks) to avoid racing
 144 * with another list-mutation primitive, such as list_del_rcu()
 145 * or list_add_rcu(), running on this same list.
 146 * However, it is perfectly legal to run concurrently with
 147 * the _rcu list-traversal primitives, such as
 148 * list_for_each_entry_rcu().
 149 *
 150 * Note that the caller is not permitted to immediately free
 151 * the newly deleted entry.  Instead, either synchronize_rcu()
 152 * or call_rcu() must be used to defer freeing until an RCU
 153 * grace period has elapsed.
 154 */
 155static inline void list_del_rcu(struct list_head *entry)
 156{
 157        __list_del_entry(entry);
 158        entry->prev = LIST_POISON2;
 159}
 160
 161/**
 162 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
 163 * @n: the element to delete from the hash list.
 164 *
 165 * Note: list_unhashed() on the node return true after this. It is
 166 * useful for RCU based read lockfree traversal if the writer side
 167 * must know if the list entry is still hashed or already unhashed.
 168 *
 169 * In particular, it means that we can not poison the forward pointers
 170 * that may still be used for walking the hash list and we can only
 171 * zero the pprev pointer so list_unhashed() will return true after
 172 * this.
 173 *
 174 * The caller must take whatever precautions are necessary (such as
 175 * holding appropriate locks) to avoid racing with another
 176 * list-mutation primitive, such as hlist_add_head_rcu() or
 177 * hlist_del_rcu(), running on this same list.  However, it is
 178 * perfectly legal to run concurrently with the _rcu list-traversal
 179 * primitives, such as hlist_for_each_entry_rcu().
 180 */
 181static inline void hlist_del_init_rcu(struct hlist_node *n)
 182{
 183        if (!hlist_unhashed(n)) {
 184                __hlist_del(n);
 185                WRITE_ONCE(n->pprev, NULL);
 186        }
 187}
 188
 189/**
 190 * list_replace_rcu - replace old entry by new one
 191 * @old : the element to be replaced
 192 * @new : the new element to insert
 193 *
 194 * The @old entry will be replaced with the @new entry atomically.
 195 * Note: @old should not be empty.
 196 */
 197static inline void list_replace_rcu(struct list_head *old,
 198                                struct list_head *new)
 199{
 200        new->next = old->next;
 201        new->prev = old->prev;
 202        rcu_assign_pointer(list_next_rcu(new->prev), new);
 203        new->next->prev = new;
 204        old->prev = LIST_POISON2;
 205}
 206
 207/**
 208 * __list_splice_init_rcu - join an RCU-protected list into an existing list.
 209 * @list:       the RCU-protected list to splice
 210 * @prev:       points to the last element of the existing list
 211 * @next:       points to the first element of the existing list
 212 * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
 213 *
 214 * The list pointed to by @prev and @next can be RCU-read traversed
 215 * concurrently with this function.
 216 *
 217 * Note that this function blocks.
 218 *
 219 * Important note: the caller must take whatever action is necessary to prevent
 220 * any other updates to the existing list.  In principle, it is possible to
 221 * modify the list as soon as sync() begins execution. If this sort of thing
 222 * becomes necessary, an alternative version based on call_rcu() could be
 223 * created.  But only if -really- needed -- there is no shortage of RCU API
 224 * members.
 225 */
 226static inline void __list_splice_init_rcu(struct list_head *list,
 227                                          struct list_head *prev,
 228                                          struct list_head *next,
 229                                          void (*sync)(void))
 230{
 231        struct list_head *first = list->next;
 232        struct list_head *last = list->prev;
 233
 234        /*
 235         * "first" and "last" tracking list, so initialize it.  RCU readers
 236         * have access to this list, so we must use INIT_LIST_HEAD_RCU()
 237         * instead of INIT_LIST_HEAD().
 238         */
 239
 240        INIT_LIST_HEAD_RCU(list);
 241
 242        /*
 243         * At this point, the list body still points to the source list.
 244         * Wait for any readers to finish using the list before splicing
 245         * the list body into the new list.  Any new readers will see
 246         * an empty list.
 247         */
 248
 249        sync();
 250        ASSERT_EXCLUSIVE_ACCESS(*first);
 251        ASSERT_EXCLUSIVE_ACCESS(*last);
 252
 253        /*
 254         * Readers are finished with the source list, so perform splice.
 255         * The order is important if the new list is global and accessible
 256         * to concurrent RCU readers.  Note that RCU readers are not
 257         * permitted to traverse the prev pointers without excluding
 258         * this function.
 259         */
 260
 261        last->next = next;
 262        rcu_assign_pointer(list_next_rcu(prev), first);
 263        first->prev = prev;
 264        next->prev = last;
 265}
 266
 267/**
 268 * list_splice_init_rcu - splice an RCU-protected list into an existing list,
 269 *                        designed for stacks.
 270 * @list:       the RCU-protected list to splice
 271 * @head:       the place in the existing list to splice the first list into
 272 * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
 273 */
 274static inline void list_splice_init_rcu(struct list_head *list,
 275                                        struct list_head *head,
 276                                        void (*sync)(void))
 277{
 278        if (!list_empty(list))
 279                __list_splice_init_rcu(list, head, head->next, sync);
 280}
 281
 282/**
 283 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
 284 *                             list, designed for queues.
 285 * @list:       the RCU-protected list to splice
 286 * @head:       the place in the existing list to splice the first list into
 287 * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
 288 */
 289static inline void list_splice_tail_init_rcu(struct list_head *list,
 290                                             struct list_head *head,
 291                                             void (*sync)(void))
 292{
 293        if (!list_empty(list))
 294                __list_splice_init_rcu(list, head->prev, head, sync);
 295}
 296
 297/**
 298 * list_entry_rcu - get the struct for this entry
 299 * @ptr:        the &struct list_head pointer.
 300 * @type:       the type of the struct this is embedded in.
 301 * @member:     the name of the list_head within the struct.
 302 *
 303 * This primitive may safely run concurrently with the _rcu list-mutation
 304 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 305 */
 306#define list_entry_rcu(ptr, type, member) \
 307        container_of(READ_ONCE(ptr), type, member)
 308
 309/*
 310 * Where are list_empty_rcu() and list_first_entry_rcu()?
 311 *
 312 * They do not exist because they would lead to subtle race conditions:
 313 *
 314 * if (!list_empty_rcu(mylist)) {
 315 *      struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
 316 *      do_something(bar);
 317 * }
 318 *
 319 * The list might be non-empty when list_empty_rcu() checks it, but it
 320 * might have become empty by the time that list_first_entry_rcu() rereads
 321 * the ->next pointer, which would result in a SEGV.
 322 *
 323 * When not using RCU, it is OK for list_first_entry() to re-read that
 324 * pointer because both functions should be protected by some lock that
 325 * blocks writers.
 326 *
 327 * When using RCU, list_empty() uses READ_ONCE() to fetch the
 328 * RCU-protected ->next pointer and then compares it to the address of the
 329 * list head.  However, it neither dereferences this pointer nor provides
 330 * this pointer to its caller.  Thus, READ_ONCE() suffices (that is,
 331 * rcu_dereference() is not needed), which means that list_empty() can be
 332 * used anywhere you would want to use list_empty_rcu().  Just don't
 333 * expect anything useful to happen if you do a subsequent lockless
 334 * call to list_first_entry_rcu()!!!
 335 *
 336 * See list_first_or_null_rcu for an alternative.
 337 */
 338
 339/**
 340 * list_first_or_null_rcu - get the first element from a list
 341 * @ptr:        the list head to take the element from.
 342 * @type:       the type of the struct this is embedded in.
 343 * @member:     the name of the list_head within the struct.
 344 *
 345 * Note that if the list is empty, it returns NULL.
 346 *
 347 * This primitive may safely run concurrently with the _rcu list-mutation
 348 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 349 */
 350#define list_first_or_null_rcu(ptr, type, member) \
 351({ \
 352        struct list_head *__ptr = (ptr); \
 353        struct list_head *__next = READ_ONCE(__ptr->next); \
 354        likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
 355})
 356
 357/**
 358 * list_next_or_null_rcu - get the first element from a list
 359 * @head:       the head for the list.
 360 * @ptr:        the list head to take the next element from.
 361 * @type:       the type of the struct this is embedded in.
 362 * @member:     the name of the list_head within the struct.
 363 *
 364 * Note that if the ptr is at the end of the list, NULL is returned.
 365 *
 366 * This primitive may safely run concurrently with the _rcu list-mutation
 367 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 368 */
 369#define list_next_or_null_rcu(head, ptr, type, member) \
 370({ \
 371        struct list_head *__head = (head); \
 372        struct list_head *__ptr = (ptr); \
 373        struct list_head *__next = READ_ONCE(__ptr->next); \
 374        likely(__next != __head) ? list_entry_rcu(__next, type, \
 375                                                  member) : NULL; \
 376})
 377
 378/**
 379 * list_for_each_entry_rcu      -       iterate over rcu list of given type
 380 * @pos:        the type * to use as a loop cursor.
 381 * @head:       the head for your list.
 382 * @member:     the name of the list_head within the struct.
 383 * @cond:       optional lockdep expression if called from non-RCU protection.
 384 *
 385 * This list-traversal primitive may safely run concurrently with
 386 * the _rcu list-mutation primitives such as list_add_rcu()
 387 * as long as the traversal is guarded by rcu_read_lock().
 388 */
 389#define list_for_each_entry_rcu(pos, head, member, cond...)             \
 390        for (__list_check_rcu(dummy, ## cond, 0),                       \
 391             pos = list_entry_rcu((head)->next, typeof(*pos), member);  \
 392                &pos->member != (head);                                 \
 393                pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 394
 395/**
 396 * list_for_each_entry_srcu     -       iterate over rcu list of given type
 397 * @pos:        the type * to use as a loop cursor.
 398 * @head:       the head for your list.
 399 * @member:     the name of the list_head within the struct.
 400 * @cond:       lockdep expression for the lock required to traverse the list.
 401 *
 402 * This list-traversal primitive may safely run concurrently with
 403 * the _rcu list-mutation primitives such as list_add_rcu()
 404 * as long as the traversal is guarded by srcu_read_lock().
 405 * The lockdep expression srcu_read_lock_held() can be passed as the
 406 * cond argument from read side.
 407 */
 408#define list_for_each_entry_srcu(pos, head, member, cond)               \
 409        for (__list_check_srcu(cond),                                   \
 410             pos = list_entry_rcu((head)->next, typeof(*pos), member);  \
 411                &pos->member != (head);                                 \
 412                pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 413
 414/**
 415 * list_entry_lockless - get the struct for this entry
 416 * @ptr:        the &struct list_head pointer.
 417 * @type:       the type of the struct this is embedded in.
 418 * @member:     the name of the list_head within the struct.
 419 *
 420 * This primitive may safely run concurrently with the _rcu
 421 * list-mutation primitives such as list_add_rcu(), but requires some
 422 * implicit RCU read-side guarding.  One example is running within a special
 423 * exception-time environment where preemption is disabled and where lockdep
 424 * cannot be invoked.  Another example is when items are added to the list,
 425 * but never deleted.
 426 */
 427#define list_entry_lockless(ptr, type, member) \
 428        container_of((typeof(ptr))READ_ONCE(ptr), type, member)
 429
 430/**
 431 * list_for_each_entry_lockless - iterate over rcu list of given type
 432 * @pos:        the type * to use as a loop cursor.
 433 * @head:       the head for your list.
 434 * @member:     the name of the list_struct within the struct.
 435 *
 436 * This primitive may safely run concurrently with the _rcu
 437 * list-mutation primitives such as list_add_rcu(), but requires some
 438 * implicit RCU read-side guarding.  One example is running within a special
 439 * exception-time environment where preemption is disabled and where lockdep
 440 * cannot be invoked.  Another example is when items are added to the list,
 441 * but never deleted.
 442 */
 443#define list_for_each_entry_lockless(pos, head, member) \
 444        for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
 445             &pos->member != (head); \
 446             pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
 447
 448/**
 449 * list_for_each_entry_continue_rcu - continue iteration over list of given type
 450 * @pos:        the type * to use as a loop cursor.
 451 * @head:       the head for your list.
 452 * @member:     the name of the list_head within the struct.
 453 *
 454 * Continue to iterate over list of given type, continuing after
 455 * the current position which must have been in the list when the RCU read
 456 * lock was taken.
 457 * This would typically require either that you obtained the node from a
 458 * previous walk of the list in the same RCU read-side critical section, or
 459 * that you held some sort of non-RCU reference (such as a reference count)
 460 * to keep the node alive *and* in the list.
 461 *
 462 * This iterator is similar to list_for_each_entry_from_rcu() except
 463 * this starts after the given position and that one starts at the given
 464 * position.
 465 */
 466#define list_for_each_entry_continue_rcu(pos, head, member)             \
 467        for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
 468             &pos->member != (head);    \
 469             pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 470
 471/**
 472 * list_for_each_entry_from_rcu - iterate over a list from current point
 473 * @pos:        the type * to use as a loop cursor.
 474 * @head:       the head for your list.
 475 * @member:     the name of the list_node within the struct.
 476 *
 477 * Iterate over the tail of a list starting from a given position,
 478 * which must have been in the list when the RCU read lock was taken.
 479 * This would typically require either that you obtained the node from a
 480 * previous walk of the list in the same RCU read-side critical section, or
 481 * that you held some sort of non-RCU reference (such as a reference count)
 482 * to keep the node alive *and* in the list.
 483 *
 484 * This iterator is similar to list_for_each_entry_continue_rcu() except
 485 * this starts from the given position and that one starts from the position
 486 * after the given position.
 487 */
 488#define list_for_each_entry_from_rcu(pos, head, member)                 \
 489        for (; &(pos)->member != (head);                                        \
 490                pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
 491
 492/**
 493 * hlist_del_rcu - deletes entry from hash list without re-initialization
 494 * @n: the element to delete from the hash list.
 495 *
 496 * Note: list_unhashed() on entry does not return true after this,
 497 * the entry is in an undefined state. It is useful for RCU based
 498 * lockfree traversal.
 499 *
 500 * In particular, it means that we can not poison the forward
 501 * pointers that may still be used for walking the hash list.
 502 *
 503 * The caller must take whatever precautions are necessary
 504 * (such as holding appropriate locks) to avoid racing
 505 * with another list-mutation primitive, such as hlist_add_head_rcu()
 506 * or hlist_del_rcu(), running on this same list.
 507 * However, it is perfectly legal to run concurrently with
 508 * the _rcu list-traversal primitives, such as
 509 * hlist_for_each_entry().
 510 */
 511static inline void hlist_del_rcu(struct hlist_node *n)
 512{
 513        __hlist_del(n);
 514        WRITE_ONCE(n->pprev, LIST_POISON2);
 515}
 516
 517/**
 518 * hlist_replace_rcu - replace old entry by new one
 519 * @old : the element to be replaced
 520 * @new : the new element to insert
 521 *
 522 * The @old entry will be replaced with the @new entry atomically.
 523 */
 524static inline void hlist_replace_rcu(struct hlist_node *old,
 525                                        struct hlist_node *new)
 526{
 527        struct hlist_node *next = old->next;
 528
 529        new->next = next;
 530        WRITE_ONCE(new->pprev, old->pprev);
 531        rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
 532        if (next)
 533                WRITE_ONCE(new->next->pprev, &new->next);
 534        WRITE_ONCE(old->pprev, LIST_POISON2);
 535}
 536
 537/**
 538 * hlists_swap_heads_rcu - swap the lists the hlist heads point to
 539 * @left:  The hlist head on the left
 540 * @right: The hlist head on the right
 541 *
 542 * The lists start out as [@left  ][node1 ... ] and
 543 *                        [@right ][node2 ... ]
 544 * The lists end up as    [@left  ][node2 ... ]
 545 *                        [@right ][node1 ... ]
 546 */
 547static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right)
 548{
 549        struct hlist_node *node1 = left->first;
 550        struct hlist_node *node2 = right->first;
 551
 552        rcu_assign_pointer(left->first, node2);
 553        rcu_assign_pointer(right->first, node1);
 554        WRITE_ONCE(node2->pprev, &left->first);
 555        WRITE_ONCE(node1->pprev, &right->first);
 556}
 557
 558/*
 559 * return the first or the next element in an RCU protected hlist
 560 */
 561#define hlist_first_rcu(head)   (*((struct hlist_node __rcu **)(&(head)->first)))
 562#define hlist_next_rcu(node)    (*((struct hlist_node __rcu **)(&(node)->next)))
 563#define hlist_pprev_rcu(node)   (*((struct hlist_node __rcu **)((node)->pprev)))
 564
 565/**
 566 * hlist_add_head_rcu
 567 * @n: the element to add to the hash list.
 568 * @h: the list to add to.
 569 *
 570 * Description:
 571 * Adds the specified element to the specified hlist,
 572 * while permitting racing traversals.
 573 *
 574 * The caller must take whatever precautions are necessary
 575 * (such as holding appropriate locks) to avoid racing
 576 * with another list-mutation primitive, such as hlist_add_head_rcu()
 577 * or hlist_del_rcu(), running on this same list.
 578 * However, it is perfectly legal to run concurrently with
 579 * the _rcu list-traversal primitives, such as
 580 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 581 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 582 * list-traversal primitive must be guarded by rcu_read_lock().
 583 */
 584static inline void hlist_add_head_rcu(struct hlist_node *n,
 585                                        struct hlist_head *h)
 586{
 587        struct hlist_node *first = h->first;
 588
 589        n->next = first;
 590        WRITE_ONCE(n->pprev, &h->first);
 591        rcu_assign_pointer(hlist_first_rcu(h), n);
 592        if (first)
 593                WRITE_ONCE(first->pprev, &n->next);
 594}
 595
 596/**
 597 * hlist_add_tail_rcu
 598 * @n: the element to add to the hash list.
 599 * @h: the list to add to.
 600 *
 601 * Description:
 602 * Adds the specified element to the specified hlist,
 603 * while permitting racing traversals.
 604 *
 605 * The caller must take whatever precautions are necessary
 606 * (such as holding appropriate locks) to avoid racing
 607 * with another list-mutation primitive, such as hlist_add_head_rcu()
 608 * or hlist_del_rcu(), running on this same list.
 609 * However, it is perfectly legal to run concurrently with
 610 * the _rcu list-traversal primitives, such as
 611 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 612 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 613 * list-traversal primitive must be guarded by rcu_read_lock().
 614 */
 615static inline void hlist_add_tail_rcu(struct hlist_node *n,
 616                                      struct hlist_head *h)
 617{
 618        struct hlist_node *i, *last = NULL;
 619
 620        /* Note: write side code, so rcu accessors are not needed. */
 621        for (i = h->first; i; i = i->next)
 622                last = i;
 623
 624        if (last) {
 625                n->next = last->next;
 626                WRITE_ONCE(n->pprev, &last->next);
 627                rcu_assign_pointer(hlist_next_rcu(last), n);
 628        } else {
 629                hlist_add_head_rcu(n, h);
 630        }
 631}
 632
 633/**
 634 * hlist_add_before_rcu
 635 * @n: the new element to add to the hash list.
 636 * @next: the existing element to add the new element before.
 637 *
 638 * Description:
 639 * Adds the specified element to the specified hlist
 640 * before the specified node while permitting racing traversals.
 641 *
 642 * The caller must take whatever precautions are necessary
 643 * (such as holding appropriate locks) to avoid racing
 644 * with another list-mutation primitive, such as hlist_add_head_rcu()
 645 * or hlist_del_rcu(), running on this same list.
 646 * However, it is perfectly legal to run concurrently with
 647 * the _rcu list-traversal primitives, such as
 648 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 649 * problems on Alpha CPUs.
 650 */
 651static inline void hlist_add_before_rcu(struct hlist_node *n,
 652                                        struct hlist_node *next)
 653{
 654        WRITE_ONCE(n->pprev, next->pprev);
 655        n->next = next;
 656        rcu_assign_pointer(hlist_pprev_rcu(n), n);
 657        WRITE_ONCE(next->pprev, &n->next);
 658}
 659
 660/**
 661 * hlist_add_behind_rcu
 662 * @n: the new element to add to the hash list.
 663 * @prev: the existing element to add the new element after.
 664 *
 665 * Description:
 666 * Adds the specified element to the specified hlist
 667 * after the specified node while permitting racing traversals.
 668 *
 669 * The caller must take whatever precautions are necessary
 670 * (such as holding appropriate locks) to avoid racing
 671 * with another list-mutation primitive, such as hlist_add_head_rcu()
 672 * or hlist_del_rcu(), running on this same list.
 673 * However, it is perfectly legal to run concurrently with
 674 * the _rcu list-traversal primitives, such as
 675 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 676 * problems on Alpha CPUs.
 677 */
 678static inline void hlist_add_behind_rcu(struct hlist_node *n,
 679                                        struct hlist_node *prev)
 680{
 681        n->next = prev->next;
 682        WRITE_ONCE(n->pprev, &prev->next);
 683        rcu_assign_pointer(hlist_next_rcu(prev), n);
 684        if (n->next)
 685                WRITE_ONCE(n->next->pprev, &n->next);
 686}
 687
 688#define __hlist_for_each_rcu(pos, head)                         \
 689        for (pos = rcu_dereference(hlist_first_rcu(head));      \
 690             pos;                                               \
 691             pos = rcu_dereference(hlist_next_rcu(pos)))
 692
 693/**
 694 * hlist_for_each_entry_rcu - iterate over rcu list of given type
 695 * @pos:        the type * to use as a loop cursor.
 696 * @head:       the head for your list.
 697 * @member:     the name of the hlist_node within the struct.
 698 * @cond:       optional lockdep expression if called from non-RCU protection.
 699 *
 700 * This list-traversal primitive may safely run concurrently with
 701 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 702 * as long as the traversal is guarded by rcu_read_lock().
 703 */
 704#define hlist_for_each_entry_rcu(pos, head, member, cond...)            \
 705        for (__list_check_rcu(dummy, ## cond, 0),                       \
 706             pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
 707                        typeof(*(pos)), member);                        \
 708                pos;                                                    \
 709                pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
 710                        &(pos)->member)), typeof(*(pos)), member))
 711
 712/**
 713 * hlist_for_each_entry_srcu - iterate over rcu list of given type
 714 * @pos:        the type * to use as a loop cursor.
 715 * @head:       the head for your list.
 716 * @member:     the name of the hlist_node within the struct.
 717 * @cond:       lockdep expression for the lock required to traverse the list.
 718 *
 719 * This list-traversal primitive may safely run concurrently with
 720 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 721 * as long as the traversal is guarded by srcu_read_lock().
 722 * The lockdep expression srcu_read_lock_held() can be passed as the
 723 * cond argument from read side.
 724 */
 725#define hlist_for_each_entry_srcu(pos, head, member, cond)              \
 726        for (__list_check_srcu(cond),                                   \
 727             pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
 728                        typeof(*(pos)), member);                        \
 729                pos;                                                    \
 730                pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
 731                        &(pos)->member)), typeof(*(pos)), member))
 732
 733/**
 734 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
 735 * @pos:        the type * to use as a loop cursor.
 736 * @head:       the head for your list.
 737 * @member:     the name of the hlist_node within the struct.
 738 *
 739 * This list-traversal primitive may safely run concurrently with
 740 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 741 * as long as the traversal is guarded by rcu_read_lock().
 742 *
 743 * This is the same as hlist_for_each_entry_rcu() except that it does
 744 * not do any RCU debugging or tracing.
 745 */
 746#define hlist_for_each_entry_rcu_notrace(pos, head, member)                     \
 747        for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\
 748                        typeof(*(pos)), member);                        \
 749                pos;                                                    \
 750                pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\
 751                        &(pos)->member)), typeof(*(pos)), member))
 752
 753/**
 754 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
 755 * @pos:        the type * to use as a loop cursor.
 756 * @head:       the head for your list.
 757 * @member:     the name of the hlist_node within the struct.
 758 *
 759 * This list-traversal primitive may safely run concurrently with
 760 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 761 * as long as the traversal is guarded by rcu_read_lock().
 762 */
 763#define hlist_for_each_entry_rcu_bh(pos, head, member)                  \
 764        for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
 765                        typeof(*(pos)), member);                        \
 766                pos;                                                    \
 767                pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
 768                        &(pos)->member)), typeof(*(pos)), member))
 769
 770/**
 771 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
 772 * @pos:        the type * to use as a loop cursor.
 773 * @member:     the name of the hlist_node within the struct.
 774 */
 775#define hlist_for_each_entry_continue_rcu(pos, member)                  \
 776        for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 777                        &(pos)->member)), typeof(*(pos)), member);      \
 778             pos;                                                       \
 779             pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 780                        &(pos)->member)), typeof(*(pos)), member))
 781
 782/**
 783 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
 784 * @pos:        the type * to use as a loop cursor.
 785 * @member:     the name of the hlist_node within the struct.
 786 */
 787#define hlist_for_each_entry_continue_rcu_bh(pos, member)               \
 788        for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
 789                        &(pos)->member)), typeof(*(pos)), member);      \
 790             pos;                                                       \
 791             pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
 792                        &(pos)->member)), typeof(*(pos)), member))
 793
 794/**
 795 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
 796 * @pos:        the type * to use as a loop cursor.
 797 * @member:     the name of the hlist_node within the struct.
 798 */
 799#define hlist_for_each_entry_from_rcu(pos, member)                      \
 800        for (; pos;                                                     \
 801             pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 802                        &(pos)->member)), typeof(*(pos)), member))
 803
 804#endif  /* __KERNEL__ */
 805#endif
 806