linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion
   4 *
   5 * Copyright IBM Corporation, 2001
   6 *
   7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
   8 *
   9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
  10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  11 * Papers:
  12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  14 *
  15 * For detailed explanation of Read-Copy Update mechanism see -
  16 *              http://lse.sourceforge.net/locking/rcupdate.html
  17 *
  18 */
  19
  20#ifndef __LINUX_RCUPDATE_H
  21#define __LINUX_RCUPDATE_H
  22
  23#include <linux/types.h>
  24#include <linux/compiler.h>
  25#include <linux/atomic.h>
  26#include <linux/irqflags.h>
  27#include <linux/preempt.h>
  28#include <linux/bottom_half.h>
  29#include <linux/lockdep.h>
  30#include <asm/processor.h>
  31#include <linux/cpumask.h>
  32
  33#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
  34#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
  35#define ulong2long(a)           (*(long *)(&(a)))
  36#define USHORT_CMP_GE(a, b)     (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
  37#define USHORT_CMP_LT(a, b)     (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
  38
  39/* Exported common interfaces */
  40void call_rcu(struct rcu_head *head, rcu_callback_t func);
  41void rcu_barrier_tasks(void);
  42void rcu_barrier_tasks_rude(void);
  43void synchronize_rcu(void);
  44
  45#ifdef CONFIG_PREEMPT_RCU
  46
  47void __rcu_read_lock(void);
  48void __rcu_read_unlock(void);
  49
  50/*
  51 * Defined as a macro as it is a very low level header included from
  52 * areas that don't even know about current.  This gives the rcu_read_lock()
  53 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
  54 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
  55 */
  56#define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
  57
  58#else /* #ifdef CONFIG_PREEMPT_RCU */
  59
  60#ifdef CONFIG_TINY_RCU
  61#define rcu_read_unlock_strict() do { } while (0)
  62#else
  63void rcu_read_unlock_strict(void);
  64#endif
  65
  66static inline void __rcu_read_lock(void)
  67{
  68        preempt_disable();
  69}
  70
  71static inline void __rcu_read_unlock(void)
  72{
  73        preempt_enable();
  74        rcu_read_unlock_strict();
  75}
  76
  77static inline int rcu_preempt_depth(void)
  78{
  79        return 0;
  80}
  81
  82#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  83
  84/* Internal to kernel */
  85void rcu_init(void);
  86extern int rcu_scheduler_active __read_mostly;
  87void rcu_sched_clock_irq(int user);
  88void rcu_report_dead(unsigned int cpu);
  89void rcutree_migrate_callbacks(int cpu);
  90
  91#ifdef CONFIG_TASKS_RCU_GENERIC
  92void rcu_init_tasks_generic(void);
  93#else
  94static inline void rcu_init_tasks_generic(void) { }
  95#endif
  96
  97#ifdef CONFIG_RCU_STALL_COMMON
  98void rcu_sysrq_start(void);
  99void rcu_sysrq_end(void);
 100#else /* #ifdef CONFIG_RCU_STALL_COMMON */
 101static inline void rcu_sysrq_start(void) { }
 102static inline void rcu_sysrq_end(void) { }
 103#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
 104
 105#ifdef CONFIG_NO_HZ_FULL
 106void rcu_user_enter(void);
 107void rcu_user_exit(void);
 108#else
 109static inline void rcu_user_enter(void) { }
 110static inline void rcu_user_exit(void) { }
 111#endif /* CONFIG_NO_HZ_FULL */
 112
 113#ifdef CONFIG_RCU_NOCB_CPU
 114void rcu_init_nohz(void);
 115int rcu_nocb_cpu_offload(int cpu);
 116int rcu_nocb_cpu_deoffload(int cpu);
 117void rcu_nocb_flush_deferred_wakeup(void);
 118#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 119static inline void rcu_init_nohz(void) { }
 120static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
 121static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
 122static inline void rcu_nocb_flush_deferred_wakeup(void) { }
 123#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 124
 125/**
 126 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 127 * @a: Code that RCU needs to pay attention to.
 128 *
 129 * RCU read-side critical sections are forbidden in the inner idle loop,
 130 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
 131 * will happily ignore any such read-side critical sections.  However,
 132 * things like powertop need tracepoints in the inner idle loop.
 133 *
 134 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 135 * will tell RCU that it needs to pay attention, invoke its argument
 136 * (in this example, calling the do_something_with_RCU() function),
 137 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 138 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
 139 * on the order of a million or so, even on 32-bit systems).  It is
 140 * not legal to block within RCU_NONIDLE(), nor is it permissible to
 141 * transfer control either into or out of RCU_NONIDLE()'s statement.
 142 */
 143#define RCU_NONIDLE(a) \
 144        do { \
 145                rcu_irq_enter_irqson(); \
 146                do { a; } while (0); \
 147                rcu_irq_exit_irqson(); \
 148        } while (0)
 149
 150/*
 151 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
 152 * This is a macro rather than an inline function to avoid #include hell.
 153 */
 154#ifdef CONFIG_TASKS_RCU_GENERIC
 155
 156# ifdef CONFIG_TASKS_RCU
 157# define rcu_tasks_classic_qs(t, preempt)                               \
 158        do {                                                            \
 159                if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))    \
 160                        WRITE_ONCE((t)->rcu_tasks_holdout, false);      \
 161        } while (0)
 162void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
 163void synchronize_rcu_tasks(void);
 164# else
 165# define rcu_tasks_classic_qs(t, preempt) do { } while (0)
 166# define call_rcu_tasks call_rcu
 167# define synchronize_rcu_tasks synchronize_rcu
 168# endif
 169
 170# ifdef CONFIG_TASKS_TRACE_RCU
 171# define rcu_tasks_trace_qs(t)                                          \
 172        do {                                                            \
 173                if (!likely(READ_ONCE((t)->trc_reader_checked)) &&      \
 174                    !unlikely(READ_ONCE((t)->trc_reader_nesting))) {    \
 175                        smp_store_release(&(t)->trc_reader_checked, true); \
 176                        smp_mb(); /* Readers partitioned by store. */   \
 177                }                                                       \
 178        } while (0)
 179# else
 180# define rcu_tasks_trace_qs(t) do { } while (0)
 181# endif
 182
 183#define rcu_tasks_qs(t, preempt)                                        \
 184do {                                                                    \
 185        rcu_tasks_classic_qs((t), (preempt));                           \
 186        rcu_tasks_trace_qs((t));                                        \
 187} while (0)
 188
 189# ifdef CONFIG_TASKS_RUDE_RCU
 190void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
 191void synchronize_rcu_tasks_rude(void);
 192# endif
 193
 194#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
 195void exit_tasks_rcu_start(void);
 196void exit_tasks_rcu_finish(void);
 197#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
 198#define rcu_tasks_qs(t, preempt) do { } while (0)
 199#define rcu_note_voluntary_context_switch(t) do { } while (0)
 200#define call_rcu_tasks call_rcu
 201#define synchronize_rcu_tasks synchronize_rcu
 202static inline void exit_tasks_rcu_start(void) { }
 203static inline void exit_tasks_rcu_finish(void) { }
 204#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
 205
 206/**
 207 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
 208 *
 209 * This macro resembles cond_resched(), except that it is defined to
 210 * report potential quiescent states to RCU-tasks even if the cond_resched()
 211 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
 212 */
 213#define cond_resched_tasks_rcu_qs() \
 214do { \
 215        rcu_tasks_qs(current, false); \
 216        cond_resched(); \
 217} while (0)
 218
 219/*
 220 * Infrastructure to implement the synchronize_() primitives in
 221 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 222 */
 223
 224#if defined(CONFIG_TREE_RCU)
 225#include <linux/rcutree.h>
 226#elif defined(CONFIG_TINY_RCU)
 227#include <linux/rcutiny.h>
 228#else
 229#error "Unknown RCU implementation specified to kernel configuration"
 230#endif
 231
 232/*
 233 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
 234 * are needed for dynamic initialization and destruction of rcu_head
 235 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
 236 * dynamic initialization and destruction of statically allocated rcu_head
 237 * structures.  However, rcu_head structures allocated dynamically in the
 238 * heap don't need any initialization.
 239 */
 240#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 241void init_rcu_head(struct rcu_head *head);
 242void destroy_rcu_head(struct rcu_head *head);
 243void init_rcu_head_on_stack(struct rcu_head *head);
 244void destroy_rcu_head_on_stack(struct rcu_head *head);
 245#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 246static inline void init_rcu_head(struct rcu_head *head) { }
 247static inline void destroy_rcu_head(struct rcu_head *head) { }
 248static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
 249static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
 250#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 251
 252#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 253bool rcu_lockdep_current_cpu_online(void);
 254#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 255static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
 256#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 257
 258extern struct lockdep_map rcu_lock_map;
 259extern struct lockdep_map rcu_bh_lock_map;
 260extern struct lockdep_map rcu_sched_lock_map;
 261extern struct lockdep_map rcu_callback_map;
 262
 263#ifdef CONFIG_DEBUG_LOCK_ALLOC
 264
 265static inline void rcu_lock_acquire(struct lockdep_map *map)
 266{
 267        lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 268}
 269
 270static inline void rcu_lock_release(struct lockdep_map *map)
 271{
 272        lock_release(map, _THIS_IP_);
 273}
 274
 275int debug_lockdep_rcu_enabled(void);
 276int rcu_read_lock_held(void);
 277int rcu_read_lock_bh_held(void);
 278int rcu_read_lock_sched_held(void);
 279int rcu_read_lock_any_held(void);
 280
 281#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 282
 283# define rcu_lock_acquire(a)            do { } while (0)
 284# define rcu_lock_release(a)            do { } while (0)
 285
 286static inline int rcu_read_lock_held(void)
 287{
 288        return 1;
 289}
 290
 291static inline int rcu_read_lock_bh_held(void)
 292{
 293        return 1;
 294}
 295
 296static inline int rcu_read_lock_sched_held(void)
 297{
 298        return !preemptible();
 299}
 300
 301static inline int rcu_read_lock_any_held(void)
 302{
 303        return !preemptible();
 304}
 305
 306#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 307
 308#ifdef CONFIG_PROVE_RCU
 309
 310/**
 311 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
 312 * @c: condition to check
 313 * @s: informative message
 314 */
 315#define RCU_LOCKDEP_WARN(c, s)                                          \
 316        do {                                                            \
 317                static bool __section(".data.unlikely") __warned;       \
 318                if ((c) && debug_lockdep_rcu_enabled() && !__warned) {  \
 319                        __warned = true;                                \
 320                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 321                }                                                       \
 322        } while (0)
 323
 324#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 325static inline void rcu_preempt_sleep_check(void)
 326{
 327        RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 328                         "Illegal context switch in RCU read-side critical section");
 329}
 330#else /* #ifdef CONFIG_PROVE_RCU */
 331static inline void rcu_preempt_sleep_check(void) { }
 332#endif /* #else #ifdef CONFIG_PROVE_RCU */
 333
 334#define rcu_sleep_check()                                               \
 335        do {                                                            \
 336                rcu_preempt_sleep_check();                              \
 337                if (!IS_ENABLED(CONFIG_PREEMPT_RT))                     \
 338                    RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),    \
 339                                 "Illegal context switch in RCU-bh read-side critical section"); \
 340                RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),     \
 341                                 "Illegal context switch in RCU-sched read-side critical section"); \
 342        } while (0)
 343
 344#else /* #ifdef CONFIG_PROVE_RCU */
 345
 346#define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
 347#define rcu_sleep_check() do { } while (0)
 348
 349#endif /* #else #ifdef CONFIG_PROVE_RCU */
 350
 351/*
 352 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 353 * and rcu_assign_pointer().  Some of these could be folded into their
 354 * callers, but they are left separate in order to ease introduction of
 355 * multiple pointers markings to match different RCU implementations
 356 * (e.g., __srcu), should this make sense in the future.
 357 */
 358
 359#ifdef __CHECKER__
 360#define rcu_check_sparse(p, space) \
 361        ((void)(((typeof(*p) space *)p) == p))
 362#else /* #ifdef __CHECKER__ */
 363#define rcu_check_sparse(p, space)
 364#endif /* #else #ifdef __CHECKER__ */
 365
 366/**
 367 * unrcu_pointer - mark a pointer as not being RCU protected
 368 * @p: pointer needing to lose its __rcu property
 369 *
 370 * Converts @p from an __rcu pointer to a __kernel pointer.
 371 * This allows an __rcu pointer to be used with xchg() and friends.
 372 */
 373#define unrcu_pointer(p)                                                \
 374({                                                                      \
 375        typeof(*p) *_________p1 = (typeof(*p) *__force)(p);             \
 376        rcu_check_sparse(p, __rcu);                                     \
 377        ((typeof(*p) __force __kernel *)(_________p1));                 \
 378})
 379
 380#define __rcu_access_pointer(p, space) \
 381({ \
 382        typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 383        rcu_check_sparse(p, space); \
 384        ((typeof(*p) __force __kernel *)(_________p1)); \
 385})
 386#define __rcu_dereference_check(p, c, space) \
 387({ \
 388        /* Dependency order vs. p above. */ \
 389        typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 390        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
 391        rcu_check_sparse(p, space); \
 392        ((typeof(*p) __force __kernel *)(________p1)); \
 393})
 394#define __rcu_dereference_protected(p, c, space) \
 395({ \
 396        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
 397        rcu_check_sparse(p, space); \
 398        ((typeof(*p) __force __kernel *)(p)); \
 399})
 400#define rcu_dereference_raw(p) \
 401({ \
 402        /* Dependency order vs. p above. */ \
 403        typeof(p) ________p1 = READ_ONCE(p); \
 404        ((typeof(*p) __force __kernel *)(________p1)); \
 405})
 406
 407/**
 408 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 409 * @v: The value to statically initialize with.
 410 */
 411#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 412
 413/**
 414 * rcu_assign_pointer() - assign to RCU-protected pointer
 415 * @p: pointer to assign to
 416 * @v: value to assign (publish)
 417 *
 418 * Assigns the specified value to the specified RCU-protected
 419 * pointer, ensuring that any concurrent RCU readers will see
 420 * any prior initialization.
 421 *
 422 * Inserts memory barriers on architectures that require them
 423 * (which is most of them), and also prevents the compiler from
 424 * reordering the code that initializes the structure after the pointer
 425 * assignment.  More importantly, this call documents which pointers
 426 * will be dereferenced by RCU read-side code.
 427 *
 428 * In some special cases, you may use RCU_INIT_POINTER() instead
 429 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 430 * to the fact that it does not constrain either the CPU or the compiler.
 431 * That said, using RCU_INIT_POINTER() when you should have used
 432 * rcu_assign_pointer() is a very bad thing that results in
 433 * impossible-to-diagnose memory corruption.  So please be careful.
 434 * See the RCU_INIT_POINTER() comment header for details.
 435 *
 436 * Note that rcu_assign_pointer() evaluates each of its arguments only
 437 * once, appearances notwithstanding.  One of the "extra" evaluations
 438 * is in typeof() and the other visible only to sparse (__CHECKER__),
 439 * neither of which actually execute the argument.  As with most cpp
 440 * macros, this execute-arguments-only-once property is important, so
 441 * please be careful when making changes to rcu_assign_pointer() and the
 442 * other macros that it invokes.
 443 */
 444#define rcu_assign_pointer(p, v)                                              \
 445do {                                                                          \
 446        uintptr_t _r_a_p__v = (uintptr_t)(v);                                 \
 447        rcu_check_sparse(p, __rcu);                                           \
 448                                                                              \
 449        if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)        \
 450                WRITE_ONCE((p), (typeof(p))(_r_a_p__v));                      \
 451        else                                                                  \
 452                smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
 453} while (0)
 454
 455/**
 456 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
 457 * @rcu_ptr: RCU pointer, whose old value is returned
 458 * @ptr: regular pointer
 459 * @c: the lockdep conditions under which the dereference will take place
 460 *
 461 * Perform a replacement, where @rcu_ptr is an RCU-annotated
 462 * pointer and @c is the lockdep argument that is passed to the
 463 * rcu_dereference_protected() call used to read that pointer.  The old
 464 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
 465 */
 466#define rcu_replace_pointer(rcu_ptr, ptr, c)                            \
 467({                                                                      \
 468        typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));  \
 469        rcu_assign_pointer((rcu_ptr), (ptr));                           \
 470        __tmp;                                                          \
 471})
 472
 473/**
 474 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 475 * @p: The pointer to read
 476 *
 477 * Return the value of the specified RCU-protected pointer, but omit the
 478 * lockdep checks for being in an RCU read-side critical section.  This is
 479 * useful when the value of this pointer is accessed, but the pointer is
 480 * not dereferenced, for example, when testing an RCU-protected pointer
 481 * against NULL.  Although rcu_access_pointer() may also be used in cases
 482 * where update-side locks prevent the value of the pointer from changing,
 483 * you should instead use rcu_dereference_protected() for this use case.
 484 *
 485 * It is also permissible to use rcu_access_pointer() when read-side
 486 * access to the pointer was removed at least one grace period ago, as
 487 * is the case in the context of the RCU callback that is freeing up
 488 * the data, or after a synchronize_rcu() returns.  This can be useful
 489 * when tearing down multi-linked structures after a grace period
 490 * has elapsed.
 491 */
 492#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 493
 494/**
 495 * rcu_dereference_check() - rcu_dereference with debug checking
 496 * @p: The pointer to read, prior to dereferencing
 497 * @c: The conditions under which the dereference will take place
 498 *
 499 * Do an rcu_dereference(), but check that the conditions under which the
 500 * dereference will take place are correct.  Typically the conditions
 501 * indicate the various locking conditions that should be held at that
 502 * point.  The check should return true if the conditions are satisfied.
 503 * An implicit check for being in an RCU read-side critical section
 504 * (rcu_read_lock()) is included.
 505 *
 506 * For example:
 507 *
 508 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 509 *
 510 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 511 * if either rcu_read_lock() is held, or that the lock required to replace
 512 * the bar struct at foo->bar is held.
 513 *
 514 * Note that the list of conditions may also include indications of when a lock
 515 * need not be held, for example during initialisation or destruction of the
 516 * target struct:
 517 *
 518 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 519 *                                            atomic_read(&foo->usage) == 0);
 520 *
 521 * Inserts memory barriers on architectures that require them
 522 * (currently only the Alpha), prevents the compiler from refetching
 523 * (and from merging fetches), and, more importantly, documents exactly
 524 * which pointers are protected by RCU and checks that the pointer is
 525 * annotated as __rcu.
 526 */
 527#define rcu_dereference_check(p, c) \
 528        __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
 529
 530/**
 531 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 532 * @p: The pointer to read, prior to dereferencing
 533 * @c: The conditions under which the dereference will take place
 534 *
 535 * This is the RCU-bh counterpart to rcu_dereference_check().  However,
 536 * please note that starting in v5.0 kernels, vanilla RCU grace periods
 537 * wait for local_bh_disable() regions of code in addition to regions of
 538 * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
 539 * that synchronize_rcu(), call_rcu, and friends all take not only
 540 * rcu_read_lock() but also rcu_read_lock_bh() into account.
 541 */
 542#define rcu_dereference_bh_check(p, c) \
 543        __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
 544
 545/**
 546 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 547 * @p: The pointer to read, prior to dereferencing
 548 * @c: The conditions under which the dereference will take place
 549 *
 550 * This is the RCU-sched counterpart to rcu_dereference_check().
 551 * However, please note that starting in v5.0 kernels, vanilla RCU grace
 552 * periods wait for preempt_disable() regions of code in addition to
 553 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
 554 * This means that synchronize_rcu(), call_rcu, and friends all take not
 555 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
 556 */
 557#define rcu_dereference_sched_check(p, c) \
 558        __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
 559                                __rcu)
 560
 561/*
 562 * The tracing infrastructure traces RCU (we want that), but unfortunately
 563 * some of the RCU checks causes tracing to lock up the system.
 564 *
 565 * The no-tracing version of rcu_dereference_raw() must not call
 566 * rcu_read_lock_held().
 567 */
 568#define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
 569
 570/**
 571 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 572 * @p: The pointer to read, prior to dereferencing
 573 * @c: The conditions under which the dereference will take place
 574 *
 575 * Return the value of the specified RCU-protected pointer, but omit
 576 * the READ_ONCE().  This is useful in cases where update-side locks
 577 * prevent the value of the pointer from changing.  Please note that this
 578 * primitive does *not* prevent the compiler from repeating this reference
 579 * or combining it with other references, so it should not be used without
 580 * protection of appropriate locks.
 581 *
 582 * This function is only for update-side use.  Using this function
 583 * when protected only by rcu_read_lock() will result in infrequent
 584 * but very ugly failures.
 585 */
 586#define rcu_dereference_protected(p, c) \
 587        __rcu_dereference_protected((p), (c), __rcu)
 588
 589
 590/**
 591 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 592 * @p: The pointer to read, prior to dereferencing
 593 *
 594 * This is a simple wrapper around rcu_dereference_check().
 595 */
 596#define rcu_dereference(p) rcu_dereference_check(p, 0)
 597
 598/**
 599 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 600 * @p: The pointer to read, prior to dereferencing
 601 *
 602 * Makes rcu_dereference_check() do the dirty work.
 603 */
 604#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 605
 606/**
 607 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 608 * @p: The pointer to read, prior to dereferencing
 609 *
 610 * Makes rcu_dereference_check() do the dirty work.
 611 */
 612#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 613
 614/**
 615 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 616 * @p: The pointer to hand off
 617 *
 618 * This is simply an identity function, but it documents where a pointer
 619 * is handed off from RCU to some other synchronization mechanism, for
 620 * example, reference counting or locking.  In C11, it would map to
 621 * kill_dependency().  It could be used as follows::
 622 *
 623 *      rcu_read_lock();
 624 *      p = rcu_dereference(gp);
 625 *      long_lived = is_long_lived(p);
 626 *      if (long_lived) {
 627 *              if (!atomic_inc_not_zero(p->refcnt))
 628 *                      long_lived = false;
 629 *              else
 630 *                      p = rcu_pointer_handoff(p);
 631 *      }
 632 *      rcu_read_unlock();
 633 */
 634#define rcu_pointer_handoff(p) (p)
 635
 636/**
 637 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 638 *
 639 * When synchronize_rcu() is invoked on one CPU while other CPUs
 640 * are within RCU read-side critical sections, then the
 641 * synchronize_rcu() is guaranteed to block until after all the other
 642 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 643 * on one CPU while other CPUs are within RCU read-side critical
 644 * sections, invocation of the corresponding RCU callback is deferred
 645 * until after the all the other CPUs exit their critical sections.
 646 *
 647 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
 648 * wait for regions of code with preemption disabled, including regions of
 649 * code with interrupts or softirqs disabled.  In pre-v5.0 kernels, which
 650 * define synchronize_sched(), only code enclosed within rcu_read_lock()
 651 * and rcu_read_unlock() are guaranteed to be waited for.
 652 *
 653 * Note, however, that RCU callbacks are permitted to run concurrently
 654 * with new RCU read-side critical sections.  One way that this can happen
 655 * is via the following sequence of events: (1) CPU 0 enters an RCU
 656 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 657 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 658 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 659 * callback is invoked.  This is legal, because the RCU read-side critical
 660 * section that was running concurrently with the call_rcu() (and which
 661 * therefore might be referencing something that the corresponding RCU
 662 * callback would free up) has completed before the corresponding
 663 * RCU callback is invoked.
 664 *
 665 * RCU read-side critical sections may be nested.  Any deferred actions
 666 * will be deferred until the outermost RCU read-side critical section
 667 * completes.
 668 *
 669 * You can avoid reading and understanding the next paragraph by
 670 * following this rule: don't put anything in an rcu_read_lock() RCU
 671 * read-side critical section that would block in a !PREEMPTION kernel.
 672 * But if you want the full story, read on!
 673 *
 674 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
 675 * it is illegal to block while in an RCU read-side critical section.
 676 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
 677 * kernel builds, RCU read-side critical sections may be preempted,
 678 * but explicit blocking is illegal.  Finally, in preemptible RCU
 679 * implementations in real-time (with -rt patchset) kernel builds, RCU
 680 * read-side critical sections may be preempted and they may also block, but
 681 * only when acquiring spinlocks that are subject to priority inheritance.
 682 */
 683static __always_inline void rcu_read_lock(void)
 684{
 685        __rcu_read_lock();
 686        __acquire(RCU);
 687        rcu_lock_acquire(&rcu_lock_map);
 688        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 689                         "rcu_read_lock() used illegally while idle");
 690}
 691
 692/*
 693 * So where is rcu_write_lock()?  It does not exist, as there is no
 694 * way for writers to lock out RCU readers.  This is a feature, not
 695 * a bug -- this property is what provides RCU's performance benefits.
 696 * Of course, writers must coordinate with each other.  The normal
 697 * spinlock primitives work well for this, but any other technique may be
 698 * used as well.  RCU does not care how the writers keep out of each
 699 * others' way, as long as they do so.
 700 */
 701
 702/**
 703 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 704 *
 705 * In almost all situations, rcu_read_unlock() is immune from deadlock.
 706 * In recent kernels that have consolidated synchronize_sched() and
 707 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
 708 * also extends to the scheduler's runqueue and priority-inheritance
 709 * spinlocks, courtesy of the quiescent-state deferral that is carried
 710 * out when rcu_read_unlock() is invoked with interrupts disabled.
 711 *
 712 * See rcu_read_lock() for more information.
 713 */
 714static inline void rcu_read_unlock(void)
 715{
 716        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 717                         "rcu_read_unlock() used illegally while idle");
 718        __release(RCU);
 719        __rcu_read_unlock();
 720        rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
 721}
 722
 723/**
 724 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 725 *
 726 * This is equivalent to rcu_read_lock(), but also disables softirqs.
 727 * Note that anything else that disables softirqs can also serve as an RCU
 728 * read-side critical section.  However, please note that this equivalence
 729 * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
 730 * rcu_read_lock_bh() were unrelated.
 731 *
 732 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 733 * must occur in the same context, for example, it is illegal to invoke
 734 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 735 * was invoked from some other task.
 736 */
 737static inline void rcu_read_lock_bh(void)
 738{
 739        local_bh_disable();
 740        __acquire(RCU_BH);
 741        rcu_lock_acquire(&rcu_bh_lock_map);
 742        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 743                         "rcu_read_lock_bh() used illegally while idle");
 744}
 745
 746/**
 747 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
 748 *
 749 * See rcu_read_lock_bh() for more information.
 750 */
 751static inline void rcu_read_unlock_bh(void)
 752{
 753        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 754                         "rcu_read_unlock_bh() used illegally while idle");
 755        rcu_lock_release(&rcu_bh_lock_map);
 756        __release(RCU_BH);
 757        local_bh_enable();
 758}
 759
 760/**
 761 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 762 *
 763 * This is equivalent to rcu_read_lock(), but also disables preemption.
 764 * Read-side critical sections can also be introduced by anything else that
 765 * disables preemption, including local_irq_disable() and friends.  However,
 766 * please note that the equivalence to rcu_read_lock() applies only to
 767 * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
 768 * were unrelated.
 769 *
 770 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 771 * must occur in the same context, for example, it is illegal to invoke
 772 * rcu_read_unlock_sched() from process context if the matching
 773 * rcu_read_lock_sched() was invoked from an NMI handler.
 774 */
 775static inline void rcu_read_lock_sched(void)
 776{
 777        preempt_disable();
 778        __acquire(RCU_SCHED);
 779        rcu_lock_acquire(&rcu_sched_lock_map);
 780        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 781                         "rcu_read_lock_sched() used illegally while idle");
 782}
 783
 784/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 785static inline notrace void rcu_read_lock_sched_notrace(void)
 786{
 787        preempt_disable_notrace();
 788        __acquire(RCU_SCHED);
 789}
 790
 791/**
 792 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
 793 *
 794 * See rcu_read_lock_sched() for more information.
 795 */
 796static inline void rcu_read_unlock_sched(void)
 797{
 798        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 799                         "rcu_read_unlock_sched() used illegally while idle");
 800        rcu_lock_release(&rcu_sched_lock_map);
 801        __release(RCU_SCHED);
 802        preempt_enable();
 803}
 804
 805/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 806static inline notrace void rcu_read_unlock_sched_notrace(void)
 807{
 808        __release(RCU_SCHED);
 809        preempt_enable_notrace();
 810}
 811
 812/**
 813 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 814 * @p: The pointer to be initialized.
 815 * @v: The value to initialized the pointer to.
 816 *
 817 * Initialize an RCU-protected pointer in special cases where readers
 818 * do not need ordering constraints on the CPU or the compiler.  These
 819 * special cases are:
 820 *
 821 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
 822 * 2.   The caller has taken whatever steps are required to prevent
 823 *      RCU readers from concurrently accessing this pointer *or*
 824 * 3.   The referenced data structure has already been exposed to
 825 *      readers either at compile time or via rcu_assign_pointer() *and*
 826 *
 827 *      a.      You have not made *any* reader-visible changes to
 828 *              this structure since then *or*
 829 *      b.      It is OK for readers accessing this structure from its
 830 *              new location to see the old state of the structure.  (For
 831 *              example, the changes were to statistical counters or to
 832 *              other state where exact synchronization is not required.)
 833 *
 834 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 835 * result in impossible-to-diagnose memory corruption.  As in the structures
 836 * will look OK in crash dumps, but any concurrent RCU readers might
 837 * see pre-initialized values of the referenced data structure.  So
 838 * please be very careful how you use RCU_INIT_POINTER()!!!
 839 *
 840 * If you are creating an RCU-protected linked structure that is accessed
 841 * by a single external-to-structure RCU-protected pointer, then you may
 842 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 843 * pointers, but you must use rcu_assign_pointer() to initialize the
 844 * external-to-structure pointer *after* you have completely initialized
 845 * the reader-accessible portions of the linked structure.
 846 *
 847 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
 848 * ordering guarantees for either the CPU or the compiler.
 849 */
 850#define RCU_INIT_POINTER(p, v) \
 851        do { \
 852                rcu_check_sparse(p, __rcu); \
 853                WRITE_ONCE(p, RCU_INITIALIZER(v)); \
 854        } while (0)
 855
 856/**
 857 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
 858 * @p: The pointer to be initialized.
 859 * @v: The value to initialized the pointer to.
 860 *
 861 * GCC-style initialization for an RCU-protected pointer in a structure field.
 862 */
 863#define RCU_POINTER_INITIALIZER(p, v) \
 864                .p = RCU_INITIALIZER(v)
 865
 866/*
 867 * Does the specified offset indicate that the corresponding rcu_head
 868 * structure can be handled by kvfree_rcu()?
 869 */
 870#define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
 871
 872/**
 873 * kfree_rcu() - kfree an object after a grace period.
 874 * @ptr: pointer to kfree for both single- and double-argument invocations.
 875 * @rhf: the name of the struct rcu_head within the type of @ptr,
 876 *       but only for double-argument invocations.
 877 *
 878 * Many rcu callbacks functions just call kfree() on the base structure.
 879 * These functions are trivial, but their size adds up, and furthermore
 880 * when they are used in a kernel module, that module must invoke the
 881 * high-latency rcu_barrier() function at module-unload time.
 882 *
 883 * The kfree_rcu() function handles this issue.  Rather than encoding a
 884 * function address in the embedded rcu_head structure, kfree_rcu() instead
 885 * encodes the offset of the rcu_head structure within the base structure.
 886 * Because the functions are not allowed in the low-order 4096 bytes of
 887 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 888 * If the offset is larger than 4095 bytes, a compile-time error will
 889 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
 890 * either fall back to use of call_rcu() or rearrange the structure to
 891 * position the rcu_head structure into the first 4096 bytes.
 892 *
 893 * Note that the allowable offset might decrease in the future, for example,
 894 * to allow something like kmem_cache_free_rcu().
 895 *
 896 * The BUILD_BUG_ON check must not involve any function calls, hence the
 897 * checks are done in macros here.
 898 */
 899#define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf)
 900
 901/**
 902 * kvfree_rcu() - kvfree an object after a grace period.
 903 *
 904 * This macro consists of one or two arguments and it is
 905 * based on whether an object is head-less or not. If it
 906 * has a head then a semantic stays the same as it used
 907 * to be before:
 908 *
 909 *     kvfree_rcu(ptr, rhf);
 910 *
 911 * where @ptr is a pointer to kvfree(), @rhf is the name
 912 * of the rcu_head structure within the type of @ptr.
 913 *
 914 * When it comes to head-less variant, only one argument
 915 * is passed and that is just a pointer which has to be
 916 * freed after a grace period. Therefore the semantic is
 917 *
 918 *     kvfree_rcu(ptr);
 919 *
 920 * where @ptr is a pointer to kvfree().
 921 *
 922 * Please note, head-less way of freeing is permitted to
 923 * use from a context that has to follow might_sleep()
 924 * annotation. Otherwise, please switch and embed the
 925 * rcu_head structure within the type of @ptr.
 926 */
 927#define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__,           \
 928        kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
 929
 930#define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
 931#define kvfree_rcu_arg_2(ptr, rhf)                                      \
 932do {                                                                    \
 933        typeof (ptr) ___p = (ptr);                                      \
 934                                                                        \
 935        if (___p) {                                                                     \
 936                BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));   \
 937                kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long)         \
 938                        (offsetof(typeof(*(ptr)), rhf)));                               \
 939        }                                                                               \
 940} while (0)
 941
 942#define kvfree_rcu_arg_1(ptr)                                   \
 943do {                                                            \
 944        typeof(ptr) ___p = (ptr);                               \
 945                                                                \
 946        if (___p)                                               \
 947                kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
 948} while (0)
 949
 950/*
 951 * Place this after a lock-acquisition primitive to guarantee that
 952 * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
 953 * if the UNLOCK and LOCK are executed by the same CPU or if the
 954 * UNLOCK and LOCK operate on the same lock variable.
 955 */
 956#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
 957#define smp_mb__after_unlock_lock()     smp_mb()  /* Full ordering for lock. */
 958#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 959#define smp_mb__after_unlock_lock()     do { } while (0)
 960#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 961
 962
 963/* Has the specified rcu_head structure been handed to call_rcu()? */
 964
 965/**
 966 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
 967 * @rhp: The rcu_head structure to initialize.
 968 *
 969 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
 970 * given rcu_head structure has already been passed to call_rcu(), then
 971 * you must also invoke this rcu_head_init() function on it just after
 972 * allocating that structure.  Calls to this function must not race with
 973 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
 974 */
 975static inline void rcu_head_init(struct rcu_head *rhp)
 976{
 977        rhp->func = (rcu_callback_t)~0L;
 978}
 979
 980/**
 981 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
 982 * @rhp: The rcu_head structure to test.
 983 * @f: The function passed to call_rcu() along with @rhp.
 984 *
 985 * Returns @true if the @rhp has been passed to call_rcu() with @func,
 986 * and @false otherwise.  Emits a warning in any other case, including
 987 * the case where @rhp has already been invoked after a grace period.
 988 * Calls to this function must not race with callback invocation.  One way
 989 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
 990 * in an RCU read-side critical section that includes a read-side fetch
 991 * of the pointer to the structure containing @rhp.
 992 */
 993static inline bool
 994rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
 995{
 996        rcu_callback_t func = READ_ONCE(rhp->func);
 997
 998        if (func == f)
 999                return true;
1000        WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1001        return false;
1002}
1003
1004/* kernel/ksysfs.c definitions */
1005extern int rcu_expedited;
1006extern int rcu_normal;
1007
1008#endif /* __LINUX_RCUPDATE_H */
1009