linux/include/linux/skbuff.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 *      Definitions for the 'struct sk_buff' memory handlers.
   4 *
   5 *      Authors:
   6 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   7 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   8 */
   9
  10#ifndef _LINUX_SKBUFF_H
  11#define _LINUX_SKBUFF_H
  12
  13#include <linux/kernel.h>
  14#include <linux/compiler.h>
  15#include <linux/time.h>
  16#include <linux/bug.h>
  17#include <linux/bvec.h>
  18#include <linux/cache.h>
  19#include <linux/rbtree.h>
  20#include <linux/socket.h>
  21#include <linux/refcount.h>
  22
  23#include <linux/atomic.h>
  24#include <asm/types.h>
  25#include <linux/spinlock.h>
  26#include <linux/net.h>
  27#include <linux/textsearch.h>
  28#include <net/checksum.h>
  29#include <linux/rcupdate.h>
  30#include <linux/hrtimer.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/netdev_features.h>
  33#include <linux/sched.h>
  34#include <linux/sched/clock.h>
  35#include <net/flow_dissector.h>
  36#include <linux/splice.h>
  37#include <linux/in6.h>
  38#include <linux/if_packet.h>
  39#include <net/flow.h>
  40#include <net/page_pool.h>
  41#if IS_ENABLED(CONFIG_NF_CONNTRACK)
  42#include <linux/netfilter/nf_conntrack_common.h>
  43#endif
  44
  45/* The interface for checksum offload between the stack and networking drivers
  46 * is as follows...
  47 *
  48 * A. IP checksum related features
  49 *
  50 * Drivers advertise checksum offload capabilities in the features of a device.
  51 * From the stack's point of view these are capabilities offered by the driver.
  52 * A driver typically only advertises features that it is capable of offloading
  53 * to its device.
  54 *
  55 * The checksum related features are:
  56 *
  57 *      NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
  58 *                        IP (one's complement) checksum for any combination
  59 *                        of protocols or protocol layering. The checksum is
  60 *                        computed and set in a packet per the CHECKSUM_PARTIAL
  61 *                        interface (see below).
  62 *
  63 *      NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
  64 *                        TCP or UDP packets over IPv4. These are specifically
  65 *                        unencapsulated packets of the form IPv4|TCP or
  66 *                        IPv4|UDP where the Protocol field in the IPv4 header
  67 *                        is TCP or UDP. The IPv4 header may contain IP options.
  68 *                        This feature cannot be set in features for a device
  69 *                        with NETIF_F_HW_CSUM also set. This feature is being
  70 *                        DEPRECATED (see below).
  71 *
  72 *      NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
  73 *                        TCP or UDP packets over IPv6. These are specifically
  74 *                        unencapsulated packets of the form IPv6|TCP or
  75 *                        IPv6|UDP where the Next Header field in the IPv6
  76 *                        header is either TCP or UDP. IPv6 extension headers
  77 *                        are not supported with this feature. This feature
  78 *                        cannot be set in features for a device with
  79 *                        NETIF_F_HW_CSUM also set. This feature is being
  80 *                        DEPRECATED (see below).
  81 *
  82 *      NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
  83 *                       This flag is only used to disable the RX checksum
  84 *                       feature for a device. The stack will accept receive
  85 *                       checksum indication in packets received on a device
  86 *                       regardless of whether NETIF_F_RXCSUM is set.
  87 *
  88 * B. Checksumming of received packets by device. Indication of checksum
  89 *    verification is set in skb->ip_summed. Possible values are:
  90 *
  91 * CHECKSUM_NONE:
  92 *
  93 *   Device did not checksum this packet e.g. due to lack of capabilities.
  94 *   The packet contains full (though not verified) checksum in packet but
  95 *   not in skb->csum. Thus, skb->csum is undefined in this case.
  96 *
  97 * CHECKSUM_UNNECESSARY:
  98 *
  99 *   The hardware you're dealing with doesn't calculate the full checksum
 100 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
 101 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 102 *   if their checksums are okay. skb->csum is still undefined in this case
 103 *   though. A driver or device must never modify the checksum field in the
 104 *   packet even if checksum is verified.
 105 *
 106 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 107 *     TCP: IPv6 and IPv4.
 108 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 109 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 110 *       may perform further validation in this case.
 111 *     GRE: only if the checksum is present in the header.
 112 *     SCTP: indicates the CRC in SCTP header has been validated.
 113 *     FCOE: indicates the CRC in FC frame has been validated.
 114 *
 115 *   skb->csum_level indicates the number of consecutive checksums found in
 116 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 117 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 118 *   and a device is able to verify the checksums for UDP (possibly zero),
 119 *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
 120 *   two. If the device were only able to verify the UDP checksum and not
 121 *   GRE, either because it doesn't support GRE checksum or because GRE
 122 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 123 *   not considered in this case).
 124 *
 125 * CHECKSUM_COMPLETE:
 126 *
 127 *   This is the most generic way. The device supplied checksum of the _whole_
 128 *   packet as seen by netif_rx() and fills in skb->csum. This means the
 129 *   hardware doesn't need to parse L3/L4 headers to implement this.
 130 *
 131 *   Notes:
 132 *   - Even if device supports only some protocols, but is able to produce
 133 *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 134 *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
 135 *
 136 * CHECKSUM_PARTIAL:
 137 *
 138 *   A checksum is set up to be offloaded to a device as described in the
 139 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
 140 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
 141 *   on the same host, or it may be set in the input path in GRO or remote
 142 *   checksum offload. For the purposes of checksum verification, the checksum
 143 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 144 *   checksums in the packet are considered verified. Any checksums in the
 145 *   packet that are after the checksum being offloaded are not considered to
 146 *   be verified.
 147 *
 148 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 149 *    in the skb->ip_summed for a packet. Values are:
 150 *
 151 * CHECKSUM_PARTIAL:
 152 *
 153 *   The driver is required to checksum the packet as seen by hard_start_xmit()
 154 *   from skb->csum_start up to the end, and to record/write the checksum at
 155 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 156 *   csum_start and csum_offset values are valid values given the length and
 157 *   offset of the packet, but it should not attempt to validate that the
 158 *   checksum refers to a legitimate transport layer checksum -- it is the
 159 *   purview of the stack to validate that csum_start and csum_offset are set
 160 *   correctly.
 161 *
 162 *   When the stack requests checksum offload for a packet, the driver MUST
 163 *   ensure that the checksum is set correctly. A driver can either offload the
 164 *   checksum calculation to the device, or call skb_checksum_help (in the case
 165 *   that the device does not support offload for a particular checksum).
 166 *
 167 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 168 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
 169 *   checksum offload capability.
 170 *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
 171 *   on network device checksumming capabilities: if a packet does not match
 172 *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
 173 *   csum_not_inet, see item D.) is called to resolve the checksum.
 174 *
 175 * CHECKSUM_NONE:
 176 *
 177 *   The skb was already checksummed by the protocol, or a checksum is not
 178 *   required.
 179 *
 180 * CHECKSUM_UNNECESSARY:
 181 *
 182 *   This has the same meaning as CHECKSUM_NONE for checksum offload on
 183 *   output.
 184 *
 185 * CHECKSUM_COMPLETE:
 186 *   Not used in checksum output. If a driver observes a packet with this value
 187 *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
 188 *
 189 * D. Non-IP checksum (CRC) offloads
 190 *
 191 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 192 *     offloading the SCTP CRC in a packet. To perform this offload the stack
 193 *     will set csum_start and csum_offset accordingly, set ip_summed to
 194 *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
 195 *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
 196 *     A driver that supports both IP checksum offload and SCTP CRC32c offload
 197 *     must verify which offload is configured for a packet by testing the
 198 *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
 199 *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
 200 *
 201 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 202 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 203 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 204 *     accordingly. Note that there is no indication in the skbuff that the
 205 *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
 206 *     both IP checksum offload and FCOE CRC offload must verify which offload
 207 *     is configured for a packet, presumably by inspecting packet headers.
 208 *
 209 * E. Checksumming on output with GSO.
 210 *
 211 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 212 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 213 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 214 * part of the GSO operation is implied. If a checksum is being offloaded
 215 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
 216 * csum_offset are set to refer to the outermost checksum being offloaded
 217 * (two offloaded checksums are possible with UDP encapsulation).
 218 */
 219
 220/* Don't change this without changing skb_csum_unnecessary! */
 221#define CHECKSUM_NONE           0
 222#define CHECKSUM_UNNECESSARY    1
 223#define CHECKSUM_COMPLETE       2
 224#define CHECKSUM_PARTIAL        3
 225
 226/* Maximum value in skb->csum_level */
 227#define SKB_MAX_CSUM_LEVEL      3
 228
 229#define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
 230#define SKB_WITH_OVERHEAD(X)    \
 231        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 232#define SKB_MAX_ORDER(X, ORDER) \
 233        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
 234#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
 235#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
 236
 237/* return minimum truesize of one skb containing X bytes of data */
 238#define SKB_TRUESIZE(X) ((X) +                                          \
 239                         SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
 240                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 241
 242struct ahash_request;
 243struct net_device;
 244struct scatterlist;
 245struct pipe_inode_info;
 246struct iov_iter;
 247struct napi_struct;
 248struct bpf_prog;
 249union bpf_attr;
 250struct skb_ext;
 251
 252#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 253struct nf_bridge_info {
 254        enum {
 255                BRNF_PROTO_UNCHANGED,
 256                BRNF_PROTO_8021Q,
 257                BRNF_PROTO_PPPOE
 258        } orig_proto:8;
 259        u8                      pkt_otherhost:1;
 260        u8                      in_prerouting:1;
 261        u8                      bridged_dnat:1;
 262        __u16                   frag_max_size;
 263        struct net_device       *physindev;
 264
 265        /* always valid & non-NULL from FORWARD on, for physdev match */
 266        struct net_device       *physoutdev;
 267        union {
 268                /* prerouting: detect dnat in orig/reply direction */
 269                __be32          ipv4_daddr;
 270                struct in6_addr ipv6_daddr;
 271
 272                /* after prerouting + nat detected: store original source
 273                 * mac since neigh resolution overwrites it, only used while
 274                 * skb is out in neigh layer.
 275                 */
 276                char neigh_header[8];
 277        };
 278};
 279#endif
 280
 281#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
 282/* Chain in tc_skb_ext will be used to share the tc chain with
 283 * ovs recirc_id. It will be set to the current chain by tc
 284 * and read by ovs to recirc_id.
 285 */
 286struct tc_skb_ext {
 287        __u32 chain;
 288        __u16 mru;
 289        bool post_ct;
 290};
 291#endif
 292
 293struct sk_buff_head {
 294        /* These two members must be first. */
 295        struct sk_buff  *next;
 296        struct sk_buff  *prev;
 297
 298        __u32           qlen;
 299        spinlock_t      lock;
 300};
 301
 302struct sk_buff;
 303
 304/* To allow 64K frame to be packed as single skb without frag_list we
 305 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 306 * buffers which do not start on a page boundary.
 307 *
 308 * Since GRO uses frags we allocate at least 16 regardless of page
 309 * size.
 310 */
 311#if (65536/PAGE_SIZE + 1) < 16
 312#define MAX_SKB_FRAGS 16UL
 313#else
 314#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
 315#endif
 316extern int sysctl_max_skb_frags;
 317
 318/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
 319 * segment using its current segmentation instead.
 320 */
 321#define GSO_BY_FRAGS    0xFFFF
 322
 323typedef struct bio_vec skb_frag_t;
 324
 325/**
 326 * skb_frag_size() - Returns the size of a skb fragment
 327 * @frag: skb fragment
 328 */
 329static inline unsigned int skb_frag_size(const skb_frag_t *frag)
 330{
 331        return frag->bv_len;
 332}
 333
 334/**
 335 * skb_frag_size_set() - Sets the size of a skb fragment
 336 * @frag: skb fragment
 337 * @size: size of fragment
 338 */
 339static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
 340{
 341        frag->bv_len = size;
 342}
 343
 344/**
 345 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
 346 * @frag: skb fragment
 347 * @delta: value to add
 348 */
 349static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
 350{
 351        frag->bv_len += delta;
 352}
 353
 354/**
 355 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
 356 * @frag: skb fragment
 357 * @delta: value to subtract
 358 */
 359static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
 360{
 361        frag->bv_len -= delta;
 362}
 363
 364/**
 365 * skb_frag_must_loop - Test if %p is a high memory page
 366 * @p: fragment's page
 367 */
 368static inline bool skb_frag_must_loop(struct page *p)
 369{
 370#if defined(CONFIG_HIGHMEM)
 371        if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
 372                return true;
 373#endif
 374        return false;
 375}
 376
 377/**
 378 *      skb_frag_foreach_page - loop over pages in a fragment
 379 *
 380 *      @f:             skb frag to operate on
 381 *      @f_off:         offset from start of f->bv_page
 382 *      @f_len:         length from f_off to loop over
 383 *      @p:             (temp var) current page
 384 *      @p_off:         (temp var) offset from start of current page,
 385 *                                 non-zero only on first page.
 386 *      @p_len:         (temp var) length in current page,
 387 *                                 < PAGE_SIZE only on first and last page.
 388 *      @copied:        (temp var) length so far, excluding current p_len.
 389 *
 390 *      A fragment can hold a compound page, in which case per-page
 391 *      operations, notably kmap_atomic, must be called for each
 392 *      regular page.
 393 */
 394#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
 395        for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),            \
 396             p_off = (f_off) & (PAGE_SIZE - 1),                         \
 397             p_len = skb_frag_must_loop(p) ?                            \
 398             min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,              \
 399             copied = 0;                                                \
 400             copied < f_len;                                            \
 401             copied += p_len, p++, p_off = 0,                           \
 402             p_len = min_t(u32, f_len - copied, PAGE_SIZE))             \
 403
 404#define HAVE_HW_TIME_STAMP
 405
 406/**
 407 * struct skb_shared_hwtstamps - hardware time stamps
 408 * @hwtstamp:   hardware time stamp transformed into duration
 409 *              since arbitrary point in time
 410 *
 411 * Software time stamps generated by ktime_get_real() are stored in
 412 * skb->tstamp.
 413 *
 414 * hwtstamps can only be compared against other hwtstamps from
 415 * the same device.
 416 *
 417 * This structure is attached to packets as part of the
 418 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 419 */
 420struct skb_shared_hwtstamps {
 421        ktime_t hwtstamp;
 422};
 423
 424/* Definitions for tx_flags in struct skb_shared_info */
 425enum {
 426        /* generate hardware time stamp */
 427        SKBTX_HW_TSTAMP = 1 << 0,
 428
 429        /* generate software time stamp when queueing packet to NIC */
 430        SKBTX_SW_TSTAMP = 1 << 1,
 431
 432        /* device driver is going to provide hardware time stamp */
 433        SKBTX_IN_PROGRESS = 1 << 2,
 434
 435        /* generate wifi status information (where possible) */
 436        SKBTX_WIFI_STATUS = 1 << 4,
 437
 438        /* generate software time stamp when entering packet scheduling */
 439        SKBTX_SCHED_TSTAMP = 1 << 6,
 440};
 441
 442#define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
 443                                 SKBTX_SCHED_TSTAMP)
 444#define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
 445
 446/* Definitions for flags in struct skb_shared_info */
 447enum {
 448        /* use zcopy routines */
 449        SKBFL_ZEROCOPY_ENABLE = BIT(0),
 450
 451        /* This indicates at least one fragment might be overwritten
 452         * (as in vmsplice(), sendfile() ...)
 453         * If we need to compute a TX checksum, we'll need to copy
 454         * all frags to avoid possible bad checksum
 455         */
 456        SKBFL_SHARED_FRAG = BIT(1),
 457};
 458
 459#define SKBFL_ZEROCOPY_FRAG     (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
 460
 461/*
 462 * The callback notifies userspace to release buffers when skb DMA is done in
 463 * lower device, the skb last reference should be 0 when calling this.
 464 * The zerocopy_success argument is true if zero copy transmit occurred,
 465 * false on data copy or out of memory error caused by data copy attempt.
 466 * The ctx field is used to track device context.
 467 * The desc field is used to track userspace buffer index.
 468 */
 469struct ubuf_info {
 470        void (*callback)(struct sk_buff *, struct ubuf_info *,
 471                         bool zerocopy_success);
 472        union {
 473                struct {
 474                        unsigned long desc;
 475                        void *ctx;
 476                };
 477                struct {
 478                        u32 id;
 479                        u16 len;
 480                        u16 zerocopy:1;
 481                        u32 bytelen;
 482                };
 483        };
 484        refcount_t refcnt;
 485        u8 flags;
 486
 487        struct mmpin {
 488                struct user_struct *user;
 489                unsigned int num_pg;
 490        } mmp;
 491};
 492
 493#define skb_uarg(SKB)   ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
 494
 495int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
 496void mm_unaccount_pinned_pages(struct mmpin *mmp);
 497
 498struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
 499struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
 500                                       struct ubuf_info *uarg);
 501
 502void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
 503
 504void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
 505                           bool success);
 506
 507int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
 508int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
 509                             struct msghdr *msg, int len,
 510                             struct ubuf_info *uarg);
 511
 512/* This data is invariant across clones and lives at
 513 * the end of the header data, ie. at skb->end.
 514 */
 515struct skb_shared_info {
 516        __u8            flags;
 517        __u8            meta_len;
 518        __u8            nr_frags;
 519        __u8            tx_flags;
 520        unsigned short  gso_size;
 521        /* Warning: this field is not always filled in (UFO)! */
 522        unsigned short  gso_segs;
 523        struct sk_buff  *frag_list;
 524        struct skb_shared_hwtstamps hwtstamps;
 525        unsigned int    gso_type;
 526        u32             tskey;
 527
 528        /*
 529         * Warning : all fields before dataref are cleared in __alloc_skb()
 530         */
 531        atomic_t        dataref;
 532
 533        /* Intermediate layers must ensure that destructor_arg
 534         * remains valid until skb destructor */
 535        void *          destructor_arg;
 536
 537        /* must be last field, see pskb_expand_head() */
 538        skb_frag_t      frags[MAX_SKB_FRAGS];
 539};
 540
 541/* We divide dataref into two halves.  The higher 16 bits hold references
 542 * to the payload part of skb->data.  The lower 16 bits hold references to
 543 * the entire skb->data.  A clone of a headerless skb holds the length of
 544 * the header in skb->hdr_len.
 545 *
 546 * All users must obey the rule that the skb->data reference count must be
 547 * greater than or equal to the payload reference count.
 548 *
 549 * Holding a reference to the payload part means that the user does not
 550 * care about modifications to the header part of skb->data.
 551 */
 552#define SKB_DATAREF_SHIFT 16
 553#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 554
 555
 556enum {
 557        SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
 558        SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
 559        SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
 560};
 561
 562enum {
 563        SKB_GSO_TCPV4 = 1 << 0,
 564
 565        /* This indicates the skb is from an untrusted source. */
 566        SKB_GSO_DODGY = 1 << 1,
 567
 568        /* This indicates the tcp segment has CWR set. */
 569        SKB_GSO_TCP_ECN = 1 << 2,
 570
 571        SKB_GSO_TCP_FIXEDID = 1 << 3,
 572
 573        SKB_GSO_TCPV6 = 1 << 4,
 574
 575        SKB_GSO_FCOE = 1 << 5,
 576
 577        SKB_GSO_GRE = 1 << 6,
 578
 579        SKB_GSO_GRE_CSUM = 1 << 7,
 580
 581        SKB_GSO_IPXIP4 = 1 << 8,
 582
 583        SKB_GSO_IPXIP6 = 1 << 9,
 584
 585        SKB_GSO_UDP_TUNNEL = 1 << 10,
 586
 587        SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
 588
 589        SKB_GSO_PARTIAL = 1 << 12,
 590
 591        SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
 592
 593        SKB_GSO_SCTP = 1 << 14,
 594
 595        SKB_GSO_ESP = 1 << 15,
 596
 597        SKB_GSO_UDP = 1 << 16,
 598
 599        SKB_GSO_UDP_L4 = 1 << 17,
 600
 601        SKB_GSO_FRAGLIST = 1 << 18,
 602};
 603
 604#if BITS_PER_LONG > 32
 605#define NET_SKBUFF_DATA_USES_OFFSET 1
 606#endif
 607
 608#ifdef NET_SKBUFF_DATA_USES_OFFSET
 609typedef unsigned int sk_buff_data_t;
 610#else
 611typedef unsigned char *sk_buff_data_t;
 612#endif
 613
 614/**
 615 *      struct sk_buff - socket buffer
 616 *      @next: Next buffer in list
 617 *      @prev: Previous buffer in list
 618 *      @tstamp: Time we arrived/left
 619 *      @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
 620 *              for retransmit timer
 621 *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
 622 *      @list: queue head
 623 *      @sk: Socket we are owned by
 624 *      @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
 625 *              fragmentation management
 626 *      @dev: Device we arrived on/are leaving by
 627 *      @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
 628 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 629 *      @_skb_refdst: destination entry (with norefcount bit)
 630 *      @sp: the security path, used for xfrm
 631 *      @len: Length of actual data
 632 *      @data_len: Data length
 633 *      @mac_len: Length of link layer header
 634 *      @hdr_len: writable header length of cloned skb
 635 *      @csum: Checksum (must include start/offset pair)
 636 *      @csum_start: Offset from skb->head where checksumming should start
 637 *      @csum_offset: Offset from csum_start where checksum should be stored
 638 *      @priority: Packet queueing priority
 639 *      @ignore_df: allow local fragmentation
 640 *      @cloned: Head may be cloned (check refcnt to be sure)
 641 *      @ip_summed: Driver fed us an IP checksum
 642 *      @nohdr: Payload reference only, must not modify header
 643 *      @pkt_type: Packet class
 644 *      @fclone: skbuff clone status
 645 *      @ipvs_property: skbuff is owned by ipvs
 646 *      @inner_protocol_type: whether the inner protocol is
 647 *              ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
 648 *      @remcsum_offload: remote checksum offload is enabled
 649 *      @offload_fwd_mark: Packet was L2-forwarded in hardware
 650 *      @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
 651 *      @tc_skip_classify: do not classify packet. set by IFB device
 652 *      @tc_at_ingress: used within tc_classify to distinguish in/egress
 653 *      @redirected: packet was redirected by packet classifier
 654 *      @from_ingress: packet was redirected from the ingress path
 655 *      @peeked: this packet has been seen already, so stats have been
 656 *              done for it, don't do them again
 657 *      @nf_trace: netfilter packet trace flag
 658 *      @protocol: Packet protocol from driver
 659 *      @destructor: Destruct function
 660 *      @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
 661 *      @_sk_redir: socket redirection information for skmsg
 662 *      @_nfct: Associated connection, if any (with nfctinfo bits)
 663 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 664 *      @skb_iif: ifindex of device we arrived on
 665 *      @tc_index: Traffic control index
 666 *      @hash: the packet hash
 667 *      @queue_mapping: Queue mapping for multiqueue devices
 668 *      @head_frag: skb was allocated from page fragments,
 669 *              not allocated by kmalloc() or vmalloc().
 670 *      @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
 671 *      @pp_recycle: mark the packet for recycling instead of freeing (implies
 672 *              page_pool support on driver)
 673 *      @active_extensions: active extensions (skb_ext_id types)
 674 *      @ndisc_nodetype: router type (from link layer)
 675 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 676 *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
 677 *              ports.
 678 *      @sw_hash: indicates hash was computed in software stack
 679 *      @wifi_acked_valid: wifi_acked was set
 680 *      @wifi_acked: whether frame was acked on wifi or not
 681 *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
 682 *      @encapsulation: indicates the inner headers in the skbuff are valid
 683 *      @encap_hdr_csum: software checksum is needed
 684 *      @csum_valid: checksum is already valid
 685 *      @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
 686 *      @csum_complete_sw: checksum was completed by software
 687 *      @csum_level: indicates the number of consecutive checksums found in
 688 *              the packet minus one that have been verified as
 689 *              CHECKSUM_UNNECESSARY (max 3)
 690 *      @dst_pending_confirm: need to confirm neighbour
 691 *      @decrypted: Decrypted SKB
 692 *      @slow_gro: state present at GRO time, slower prepare step required
 693 *      @napi_id: id of the NAPI struct this skb came from
 694 *      @sender_cpu: (aka @napi_id) source CPU in XPS
 695 *      @secmark: security marking
 696 *      @mark: Generic packet mark
 697 *      @reserved_tailroom: (aka @mark) number of bytes of free space available
 698 *              at the tail of an sk_buff
 699 *      @vlan_present: VLAN tag is present
 700 *      @vlan_proto: vlan encapsulation protocol
 701 *      @vlan_tci: vlan tag control information
 702 *      @inner_protocol: Protocol (encapsulation)
 703 *      @inner_ipproto: (aka @inner_protocol) stores ipproto when
 704 *              skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
 705 *      @inner_transport_header: Inner transport layer header (encapsulation)
 706 *      @inner_network_header: Network layer header (encapsulation)
 707 *      @inner_mac_header: Link layer header (encapsulation)
 708 *      @transport_header: Transport layer header
 709 *      @network_header: Network layer header
 710 *      @mac_header: Link layer header
 711 *      @kcov_handle: KCOV remote handle for remote coverage collection
 712 *      @tail: Tail pointer
 713 *      @end: End pointer
 714 *      @head: Head of buffer
 715 *      @data: Data head pointer
 716 *      @truesize: Buffer size
 717 *      @users: User count - see {datagram,tcp}.c
 718 *      @extensions: allocated extensions, valid if active_extensions is nonzero
 719 */
 720
 721struct sk_buff {
 722        union {
 723                struct {
 724                        /* These two members must be first. */
 725                        struct sk_buff          *next;
 726                        struct sk_buff          *prev;
 727
 728                        union {
 729                                struct net_device       *dev;
 730                                /* Some protocols might use this space to store information,
 731                                 * while device pointer would be NULL.
 732                                 * UDP receive path is one user.
 733                                 */
 734                                unsigned long           dev_scratch;
 735                        };
 736                };
 737                struct rb_node          rbnode; /* used in netem, ip4 defrag, and tcp stack */
 738                struct list_head        list;
 739        };
 740
 741        union {
 742                struct sock             *sk;
 743                int                     ip_defrag_offset;
 744        };
 745
 746        union {
 747                ktime_t         tstamp;
 748                u64             skb_mstamp_ns; /* earliest departure time */
 749        };
 750        /*
 751         * This is the control buffer. It is free to use for every
 752         * layer. Please put your private variables there. If you
 753         * want to keep them across layers you have to do a skb_clone()
 754         * first. This is owned by whoever has the skb queued ATM.
 755         */
 756        char                    cb[48] __aligned(8);
 757
 758        union {
 759                struct {
 760                        unsigned long   _skb_refdst;
 761                        void            (*destructor)(struct sk_buff *skb);
 762                };
 763                struct list_head        tcp_tsorted_anchor;
 764#ifdef CONFIG_NET_SOCK_MSG
 765                unsigned long           _sk_redir;
 766#endif
 767        };
 768
 769#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 770        unsigned long            _nfct;
 771#endif
 772        unsigned int            len,
 773                                data_len;
 774        __u16                   mac_len,
 775                                hdr_len;
 776
 777        /* Following fields are _not_ copied in __copy_skb_header()
 778         * Note that queue_mapping is here mostly to fill a hole.
 779         */
 780        __u16                   queue_mapping;
 781
 782/* if you move cloned around you also must adapt those constants */
 783#ifdef __BIG_ENDIAN_BITFIELD
 784#define CLONED_MASK     (1 << 7)
 785#else
 786#define CLONED_MASK     1
 787#endif
 788#define CLONED_OFFSET()         offsetof(struct sk_buff, __cloned_offset)
 789
 790        /* private: */
 791        __u8                    __cloned_offset[0];
 792        /* public: */
 793        __u8                    cloned:1,
 794                                nohdr:1,
 795                                fclone:2,
 796                                peeked:1,
 797                                head_frag:1,
 798                                pfmemalloc:1,
 799                                pp_recycle:1; /* page_pool recycle indicator */
 800#ifdef CONFIG_SKB_EXTENSIONS
 801        __u8                    active_extensions;
 802#endif
 803
 804        /* fields enclosed in headers_start/headers_end are copied
 805         * using a single memcpy() in __copy_skb_header()
 806         */
 807        /* private: */
 808        __u32                   headers_start[0];
 809        /* public: */
 810
 811/* if you move pkt_type around you also must adapt those constants */
 812#ifdef __BIG_ENDIAN_BITFIELD
 813#define PKT_TYPE_MAX    (7 << 5)
 814#else
 815#define PKT_TYPE_MAX    7
 816#endif
 817#define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
 818
 819        /* private: */
 820        __u8                    __pkt_type_offset[0];
 821        /* public: */
 822        __u8                    pkt_type:3;
 823        __u8                    ignore_df:1;
 824        __u8                    nf_trace:1;
 825        __u8                    ip_summed:2;
 826        __u8                    ooo_okay:1;
 827
 828        __u8                    l4_hash:1;
 829        __u8                    sw_hash:1;
 830        __u8                    wifi_acked_valid:1;
 831        __u8                    wifi_acked:1;
 832        __u8                    no_fcs:1;
 833        /* Indicates the inner headers are valid in the skbuff. */
 834        __u8                    encapsulation:1;
 835        __u8                    encap_hdr_csum:1;
 836        __u8                    csum_valid:1;
 837
 838#ifdef __BIG_ENDIAN_BITFIELD
 839#define PKT_VLAN_PRESENT_BIT    7
 840#else
 841#define PKT_VLAN_PRESENT_BIT    0
 842#endif
 843#define PKT_VLAN_PRESENT_OFFSET()       offsetof(struct sk_buff, __pkt_vlan_present_offset)
 844        /* private: */
 845        __u8                    __pkt_vlan_present_offset[0];
 846        /* public: */
 847        __u8                    vlan_present:1;
 848        __u8                    csum_complete_sw:1;
 849        __u8                    csum_level:2;
 850        __u8                    csum_not_inet:1;
 851        __u8                    dst_pending_confirm:1;
 852#ifdef CONFIG_IPV6_NDISC_NODETYPE
 853        __u8                    ndisc_nodetype:2;
 854#endif
 855
 856        __u8                    ipvs_property:1;
 857        __u8                    inner_protocol_type:1;
 858        __u8                    remcsum_offload:1;
 859#ifdef CONFIG_NET_SWITCHDEV
 860        __u8                    offload_fwd_mark:1;
 861        __u8                    offload_l3_fwd_mark:1;
 862#endif
 863#ifdef CONFIG_NET_CLS_ACT
 864        __u8                    tc_skip_classify:1;
 865        __u8                    tc_at_ingress:1;
 866#endif
 867        __u8                    redirected:1;
 868#ifdef CONFIG_NET_REDIRECT
 869        __u8                    from_ingress:1;
 870#endif
 871#ifdef CONFIG_TLS_DEVICE
 872        __u8                    decrypted:1;
 873#endif
 874        __u8                    slow_gro:1;
 875
 876#ifdef CONFIG_NET_SCHED
 877        __u16                   tc_index;       /* traffic control index */
 878#endif
 879
 880        union {
 881                __wsum          csum;
 882                struct {
 883                        __u16   csum_start;
 884                        __u16   csum_offset;
 885                };
 886        };
 887        __u32                   priority;
 888        int                     skb_iif;
 889        __u32                   hash;
 890        __be16                  vlan_proto;
 891        __u16                   vlan_tci;
 892#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
 893        union {
 894                unsigned int    napi_id;
 895                unsigned int    sender_cpu;
 896        };
 897#endif
 898#ifdef CONFIG_NETWORK_SECMARK
 899        __u32           secmark;
 900#endif
 901
 902        union {
 903                __u32           mark;
 904                __u32           reserved_tailroom;
 905        };
 906
 907        union {
 908                __be16          inner_protocol;
 909                __u8            inner_ipproto;
 910        };
 911
 912        __u16                   inner_transport_header;
 913        __u16                   inner_network_header;
 914        __u16                   inner_mac_header;
 915
 916        __be16                  protocol;
 917        __u16                   transport_header;
 918        __u16                   network_header;
 919        __u16                   mac_header;
 920
 921#ifdef CONFIG_KCOV
 922        u64                     kcov_handle;
 923#endif
 924
 925        /* private: */
 926        __u32                   headers_end[0];
 927        /* public: */
 928
 929        /* These elements must be at the end, see alloc_skb() for details.  */
 930        sk_buff_data_t          tail;
 931        sk_buff_data_t          end;
 932        unsigned char           *head,
 933                                *data;
 934        unsigned int            truesize;
 935        refcount_t              users;
 936
 937#ifdef CONFIG_SKB_EXTENSIONS
 938        /* only useable after checking ->active_extensions != 0 */
 939        struct skb_ext          *extensions;
 940#endif
 941};
 942
 943#ifdef __KERNEL__
 944/*
 945 *      Handling routines are only of interest to the kernel
 946 */
 947
 948#define SKB_ALLOC_FCLONE        0x01
 949#define SKB_ALLOC_RX            0x02
 950#define SKB_ALLOC_NAPI          0x04
 951
 952/**
 953 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
 954 * @skb: buffer
 955 */
 956static inline bool skb_pfmemalloc(const struct sk_buff *skb)
 957{
 958        return unlikely(skb->pfmemalloc);
 959}
 960
 961/*
 962 * skb might have a dst pointer attached, refcounted or not.
 963 * _skb_refdst low order bit is set if refcount was _not_ taken
 964 */
 965#define SKB_DST_NOREF   1UL
 966#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 967
 968/**
 969 * skb_dst - returns skb dst_entry
 970 * @skb: buffer
 971 *
 972 * Returns skb dst_entry, regardless of reference taken or not.
 973 */
 974static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 975{
 976        /* If refdst was not refcounted, check we still are in a
 977         * rcu_read_lock section
 978         */
 979        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 980                !rcu_read_lock_held() &&
 981                !rcu_read_lock_bh_held());
 982        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 983}
 984
 985/**
 986 * skb_dst_set - sets skb dst
 987 * @skb: buffer
 988 * @dst: dst entry
 989 *
 990 * Sets skb dst, assuming a reference was taken on dst and should
 991 * be released by skb_dst_drop()
 992 */
 993static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 994{
 995        skb->slow_gro |= !!dst;
 996        skb->_skb_refdst = (unsigned long)dst;
 997}
 998
 999/**
1000 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1001 * @skb: buffer
1002 * @dst: dst entry
1003 *
1004 * Sets skb dst, assuming a reference was not taken on dst.
1005 * If dst entry is cached, we do not take reference and dst_release
1006 * will be avoided by refdst_drop. If dst entry is not cached, we take
1007 * reference, so that last dst_release can destroy the dst immediately.
1008 */
1009static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1010{
1011        WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1012        skb->slow_gro |= !!dst;
1013        skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1014}
1015
1016/**
1017 * skb_dst_is_noref - Test if skb dst isn't refcounted
1018 * @skb: buffer
1019 */
1020static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1021{
1022        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1023}
1024
1025/**
1026 * skb_rtable - Returns the skb &rtable
1027 * @skb: buffer
1028 */
1029static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1030{
1031        return (struct rtable *)skb_dst(skb);
1032}
1033
1034/* For mangling skb->pkt_type from user space side from applications
1035 * such as nft, tc, etc, we only allow a conservative subset of
1036 * possible pkt_types to be set.
1037*/
1038static inline bool skb_pkt_type_ok(u32 ptype)
1039{
1040        return ptype <= PACKET_OTHERHOST;
1041}
1042
1043/**
1044 * skb_napi_id - Returns the skb's NAPI id
1045 * @skb: buffer
1046 */
1047static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1048{
1049#ifdef CONFIG_NET_RX_BUSY_POLL
1050        return skb->napi_id;
1051#else
1052        return 0;
1053#endif
1054}
1055
1056/**
1057 * skb_unref - decrement the skb's reference count
1058 * @skb: buffer
1059 *
1060 * Returns true if we can free the skb.
1061 */
1062static inline bool skb_unref(struct sk_buff *skb)
1063{
1064        if (unlikely(!skb))
1065                return false;
1066        if (likely(refcount_read(&skb->users) == 1))
1067                smp_rmb();
1068        else if (likely(!refcount_dec_and_test(&skb->users)))
1069                return false;
1070
1071        return true;
1072}
1073
1074void skb_release_head_state(struct sk_buff *skb);
1075void kfree_skb(struct sk_buff *skb);
1076void kfree_skb_list(struct sk_buff *segs);
1077void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1078void skb_tx_error(struct sk_buff *skb);
1079
1080#ifdef CONFIG_TRACEPOINTS
1081void consume_skb(struct sk_buff *skb);
1082#else
1083static inline void consume_skb(struct sk_buff *skb)
1084{
1085        return kfree_skb(skb);
1086}
1087#endif
1088
1089void __consume_stateless_skb(struct sk_buff *skb);
1090void  __kfree_skb(struct sk_buff *skb);
1091extern struct kmem_cache *skbuff_head_cache;
1092
1093void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1094bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1095                      bool *fragstolen, int *delta_truesize);
1096
1097struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1098                            int node);
1099struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1100struct sk_buff *build_skb(void *data, unsigned int frag_size);
1101struct sk_buff *build_skb_around(struct sk_buff *skb,
1102                                 void *data, unsigned int frag_size);
1103
1104struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1105
1106/**
1107 * alloc_skb - allocate a network buffer
1108 * @size: size to allocate
1109 * @priority: allocation mask
1110 *
1111 * This function is a convenient wrapper around __alloc_skb().
1112 */
1113static inline struct sk_buff *alloc_skb(unsigned int size,
1114                                        gfp_t priority)
1115{
1116        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1117}
1118
1119struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1120                                     unsigned long data_len,
1121                                     int max_page_order,
1122                                     int *errcode,
1123                                     gfp_t gfp_mask);
1124struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1125
1126/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1127struct sk_buff_fclones {
1128        struct sk_buff  skb1;
1129
1130        struct sk_buff  skb2;
1131
1132        refcount_t      fclone_ref;
1133};
1134
1135/**
1136 *      skb_fclone_busy - check if fclone is busy
1137 *      @sk: socket
1138 *      @skb: buffer
1139 *
1140 * Returns true if skb is a fast clone, and its clone is not freed.
1141 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1142 * so we also check that this didnt happen.
1143 */
1144static inline bool skb_fclone_busy(const struct sock *sk,
1145                                   const struct sk_buff *skb)
1146{
1147        const struct sk_buff_fclones *fclones;
1148
1149        fclones = container_of(skb, struct sk_buff_fclones, skb1);
1150
1151        return skb->fclone == SKB_FCLONE_ORIG &&
1152               refcount_read(&fclones->fclone_ref) > 1 &&
1153               READ_ONCE(fclones->skb2.sk) == sk;
1154}
1155
1156/**
1157 * alloc_skb_fclone - allocate a network buffer from fclone cache
1158 * @size: size to allocate
1159 * @priority: allocation mask
1160 *
1161 * This function is a convenient wrapper around __alloc_skb().
1162 */
1163static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1164                                               gfp_t priority)
1165{
1166        return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1167}
1168
1169struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1170void skb_headers_offset_update(struct sk_buff *skb, int off);
1171int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1172struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1173void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1174struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1175struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1176                                   gfp_t gfp_mask, bool fclone);
1177static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1178                                          gfp_t gfp_mask)
1179{
1180        return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1181}
1182
1183int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1184struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1185                                     unsigned int headroom);
1186struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1187struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1188                                int newtailroom, gfp_t priority);
1189int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1190                                     int offset, int len);
1191int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1192                              int offset, int len);
1193int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1194int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1195
1196/**
1197 *      skb_pad                 -       zero pad the tail of an skb
1198 *      @skb: buffer to pad
1199 *      @pad: space to pad
1200 *
1201 *      Ensure that a buffer is followed by a padding area that is zero
1202 *      filled. Used by network drivers which may DMA or transfer data
1203 *      beyond the buffer end onto the wire.
1204 *
1205 *      May return error in out of memory cases. The skb is freed on error.
1206 */
1207static inline int skb_pad(struct sk_buff *skb, int pad)
1208{
1209        return __skb_pad(skb, pad, true);
1210}
1211#define dev_kfree_skb(a)        consume_skb(a)
1212
1213int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1214                         int offset, size_t size);
1215
1216struct skb_seq_state {
1217        __u32           lower_offset;
1218        __u32           upper_offset;
1219        __u32           frag_idx;
1220        __u32           stepped_offset;
1221        struct sk_buff  *root_skb;
1222        struct sk_buff  *cur_skb;
1223        __u8            *frag_data;
1224        __u32           frag_off;
1225};
1226
1227void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1228                          unsigned int to, struct skb_seq_state *st);
1229unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1230                          struct skb_seq_state *st);
1231void skb_abort_seq_read(struct skb_seq_state *st);
1232
1233unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1234                           unsigned int to, struct ts_config *config);
1235
1236/*
1237 * Packet hash types specify the type of hash in skb_set_hash.
1238 *
1239 * Hash types refer to the protocol layer addresses which are used to
1240 * construct a packet's hash. The hashes are used to differentiate or identify
1241 * flows of the protocol layer for the hash type. Hash types are either
1242 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1243 *
1244 * Properties of hashes:
1245 *
1246 * 1) Two packets in different flows have different hash values
1247 * 2) Two packets in the same flow should have the same hash value
1248 *
1249 * A hash at a higher layer is considered to be more specific. A driver should
1250 * set the most specific hash possible.
1251 *
1252 * A driver cannot indicate a more specific hash than the layer at which a hash
1253 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1254 *
1255 * A driver may indicate a hash level which is less specific than the
1256 * actual layer the hash was computed on. For instance, a hash computed
1257 * at L4 may be considered an L3 hash. This should only be done if the
1258 * driver can't unambiguously determine that the HW computed the hash at
1259 * the higher layer. Note that the "should" in the second property above
1260 * permits this.
1261 */
1262enum pkt_hash_types {
1263        PKT_HASH_TYPE_NONE,     /* Undefined type */
1264        PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
1265        PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
1266        PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
1267};
1268
1269static inline void skb_clear_hash(struct sk_buff *skb)
1270{
1271        skb->hash = 0;
1272        skb->sw_hash = 0;
1273        skb->l4_hash = 0;
1274}
1275
1276static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1277{
1278        if (!skb->l4_hash)
1279                skb_clear_hash(skb);
1280}
1281
1282static inline void
1283__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1284{
1285        skb->l4_hash = is_l4;
1286        skb->sw_hash = is_sw;
1287        skb->hash = hash;
1288}
1289
1290static inline void
1291skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1292{
1293        /* Used by drivers to set hash from HW */
1294        __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1295}
1296
1297static inline void
1298__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1299{
1300        __skb_set_hash(skb, hash, true, is_l4);
1301}
1302
1303void __skb_get_hash(struct sk_buff *skb);
1304u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1305u32 skb_get_poff(const struct sk_buff *skb);
1306u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1307                   const struct flow_keys_basic *keys, int hlen);
1308__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1309                            const void *data, int hlen_proto);
1310
1311static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1312                                        int thoff, u8 ip_proto)
1313{
1314        return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1315}
1316
1317void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1318                             const struct flow_dissector_key *key,
1319                             unsigned int key_count);
1320
1321struct bpf_flow_dissector;
1322bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1323                      __be16 proto, int nhoff, int hlen, unsigned int flags);
1324
1325bool __skb_flow_dissect(const struct net *net,
1326                        const struct sk_buff *skb,
1327                        struct flow_dissector *flow_dissector,
1328                        void *target_container, const void *data,
1329                        __be16 proto, int nhoff, int hlen, unsigned int flags);
1330
1331static inline bool skb_flow_dissect(const struct sk_buff *skb,
1332                                    struct flow_dissector *flow_dissector,
1333                                    void *target_container, unsigned int flags)
1334{
1335        return __skb_flow_dissect(NULL, skb, flow_dissector,
1336                                  target_container, NULL, 0, 0, 0, flags);
1337}
1338
1339static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1340                                              struct flow_keys *flow,
1341                                              unsigned int flags)
1342{
1343        memset(flow, 0, sizeof(*flow));
1344        return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1345                                  flow, NULL, 0, 0, 0, flags);
1346}
1347
1348static inline bool
1349skb_flow_dissect_flow_keys_basic(const struct net *net,
1350                                 const struct sk_buff *skb,
1351                                 struct flow_keys_basic *flow,
1352                                 const void *data, __be16 proto,
1353                                 int nhoff, int hlen, unsigned int flags)
1354{
1355        memset(flow, 0, sizeof(*flow));
1356        return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1357                                  data, proto, nhoff, hlen, flags);
1358}
1359
1360void skb_flow_dissect_meta(const struct sk_buff *skb,
1361                           struct flow_dissector *flow_dissector,
1362                           void *target_container);
1363
1364/* Gets a skb connection tracking info, ctinfo map should be a
1365 * map of mapsize to translate enum ip_conntrack_info states
1366 * to user states.
1367 */
1368void
1369skb_flow_dissect_ct(const struct sk_buff *skb,
1370                    struct flow_dissector *flow_dissector,
1371                    void *target_container,
1372                    u16 *ctinfo_map, size_t mapsize,
1373                    bool post_ct);
1374void
1375skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1376                             struct flow_dissector *flow_dissector,
1377                             void *target_container);
1378
1379void skb_flow_dissect_hash(const struct sk_buff *skb,
1380                           struct flow_dissector *flow_dissector,
1381                           void *target_container);
1382
1383static inline __u32 skb_get_hash(struct sk_buff *skb)
1384{
1385        if (!skb->l4_hash && !skb->sw_hash)
1386                __skb_get_hash(skb);
1387
1388        return skb->hash;
1389}
1390
1391static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1392{
1393        if (!skb->l4_hash && !skb->sw_hash) {
1394                struct flow_keys keys;
1395                __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1396
1397                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1398        }
1399
1400        return skb->hash;
1401}
1402
1403__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1404                           const siphash_key_t *perturb);
1405
1406static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1407{
1408        return skb->hash;
1409}
1410
1411static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1412{
1413        to->hash = from->hash;
1414        to->sw_hash = from->sw_hash;
1415        to->l4_hash = from->l4_hash;
1416};
1417
1418static inline void skb_copy_decrypted(struct sk_buff *to,
1419                                      const struct sk_buff *from)
1420{
1421#ifdef CONFIG_TLS_DEVICE
1422        to->decrypted = from->decrypted;
1423#endif
1424}
1425
1426#ifdef NET_SKBUFF_DATA_USES_OFFSET
1427static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1428{
1429        return skb->head + skb->end;
1430}
1431
1432static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1433{
1434        return skb->end;
1435}
1436#else
1437static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1438{
1439        return skb->end;
1440}
1441
1442static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1443{
1444        return skb->end - skb->head;
1445}
1446#endif
1447
1448/* Internal */
1449#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1450
1451static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1452{
1453        return &skb_shinfo(skb)->hwtstamps;
1454}
1455
1456static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1457{
1458        bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1459
1460        return is_zcopy ? skb_uarg(skb) : NULL;
1461}
1462
1463static inline void net_zcopy_get(struct ubuf_info *uarg)
1464{
1465        refcount_inc(&uarg->refcnt);
1466}
1467
1468static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1469{
1470        skb_shinfo(skb)->destructor_arg = uarg;
1471        skb_shinfo(skb)->flags |= uarg->flags;
1472}
1473
1474static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1475                                 bool *have_ref)
1476{
1477        if (skb && uarg && !skb_zcopy(skb)) {
1478                if (unlikely(have_ref && *have_ref))
1479                        *have_ref = false;
1480                else
1481                        net_zcopy_get(uarg);
1482                skb_zcopy_init(skb, uarg);
1483        }
1484}
1485
1486static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1487{
1488        skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1489        skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1490}
1491
1492static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1493{
1494        return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1495}
1496
1497static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1498{
1499        return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1500}
1501
1502static inline void net_zcopy_put(struct ubuf_info *uarg)
1503{
1504        if (uarg)
1505                uarg->callback(NULL, uarg, true);
1506}
1507
1508static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1509{
1510        if (uarg) {
1511                if (uarg->callback == msg_zerocopy_callback)
1512                        msg_zerocopy_put_abort(uarg, have_uref);
1513                else if (have_uref)
1514                        net_zcopy_put(uarg);
1515        }
1516}
1517
1518/* Release a reference on a zerocopy structure */
1519static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1520{
1521        struct ubuf_info *uarg = skb_zcopy(skb);
1522
1523        if (uarg) {
1524                if (!skb_zcopy_is_nouarg(skb))
1525                        uarg->callback(skb, uarg, zerocopy_success);
1526
1527                skb_shinfo(skb)->flags &= ~SKBFL_ZEROCOPY_FRAG;
1528        }
1529}
1530
1531static inline void skb_mark_not_on_list(struct sk_buff *skb)
1532{
1533        skb->next = NULL;
1534}
1535
1536/* Iterate through singly-linked GSO fragments of an skb. */
1537#define skb_list_walk_safe(first, skb, next_skb)                               \
1538        for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1539             (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1540
1541static inline void skb_list_del_init(struct sk_buff *skb)
1542{
1543        __list_del_entry(&skb->list);
1544        skb_mark_not_on_list(skb);
1545}
1546
1547/**
1548 *      skb_queue_empty - check if a queue is empty
1549 *      @list: queue head
1550 *
1551 *      Returns true if the queue is empty, false otherwise.
1552 */
1553static inline int skb_queue_empty(const struct sk_buff_head *list)
1554{
1555        return list->next == (const struct sk_buff *) list;
1556}
1557
1558/**
1559 *      skb_queue_empty_lockless - check if a queue is empty
1560 *      @list: queue head
1561 *
1562 *      Returns true if the queue is empty, false otherwise.
1563 *      This variant can be used in lockless contexts.
1564 */
1565static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1566{
1567        return READ_ONCE(list->next) == (const struct sk_buff *) list;
1568}
1569
1570
1571/**
1572 *      skb_queue_is_last - check if skb is the last entry in the queue
1573 *      @list: queue head
1574 *      @skb: buffer
1575 *
1576 *      Returns true if @skb is the last buffer on the list.
1577 */
1578static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1579                                     const struct sk_buff *skb)
1580{
1581        return skb->next == (const struct sk_buff *) list;
1582}
1583
1584/**
1585 *      skb_queue_is_first - check if skb is the first entry in the queue
1586 *      @list: queue head
1587 *      @skb: buffer
1588 *
1589 *      Returns true if @skb is the first buffer on the list.
1590 */
1591static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1592                                      const struct sk_buff *skb)
1593{
1594        return skb->prev == (const struct sk_buff *) list;
1595}
1596
1597/**
1598 *      skb_queue_next - return the next packet in the queue
1599 *      @list: queue head
1600 *      @skb: current buffer
1601 *
1602 *      Return the next packet in @list after @skb.  It is only valid to
1603 *      call this if skb_queue_is_last() evaluates to false.
1604 */
1605static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1606                                             const struct sk_buff *skb)
1607{
1608        /* This BUG_ON may seem severe, but if we just return then we
1609         * are going to dereference garbage.
1610         */
1611        BUG_ON(skb_queue_is_last(list, skb));
1612        return skb->next;
1613}
1614
1615/**
1616 *      skb_queue_prev - return the prev packet in the queue
1617 *      @list: queue head
1618 *      @skb: current buffer
1619 *
1620 *      Return the prev packet in @list before @skb.  It is only valid to
1621 *      call this if skb_queue_is_first() evaluates to false.
1622 */
1623static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1624                                             const struct sk_buff *skb)
1625{
1626        /* This BUG_ON may seem severe, but if we just return then we
1627         * are going to dereference garbage.
1628         */
1629        BUG_ON(skb_queue_is_first(list, skb));
1630        return skb->prev;
1631}
1632
1633/**
1634 *      skb_get - reference buffer
1635 *      @skb: buffer to reference
1636 *
1637 *      Makes another reference to a socket buffer and returns a pointer
1638 *      to the buffer.
1639 */
1640static inline struct sk_buff *skb_get(struct sk_buff *skb)
1641{
1642        refcount_inc(&skb->users);
1643        return skb;
1644}
1645
1646/*
1647 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1648 */
1649
1650/**
1651 *      skb_cloned - is the buffer a clone
1652 *      @skb: buffer to check
1653 *
1654 *      Returns true if the buffer was generated with skb_clone() and is
1655 *      one of multiple shared copies of the buffer. Cloned buffers are
1656 *      shared data so must not be written to under normal circumstances.
1657 */
1658static inline int skb_cloned(const struct sk_buff *skb)
1659{
1660        return skb->cloned &&
1661               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1662}
1663
1664static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1665{
1666        might_sleep_if(gfpflags_allow_blocking(pri));
1667
1668        if (skb_cloned(skb))
1669                return pskb_expand_head(skb, 0, 0, pri);
1670
1671        return 0;
1672}
1673
1674/**
1675 *      skb_header_cloned - is the header a clone
1676 *      @skb: buffer to check
1677 *
1678 *      Returns true if modifying the header part of the buffer requires
1679 *      the data to be copied.
1680 */
1681static inline int skb_header_cloned(const struct sk_buff *skb)
1682{
1683        int dataref;
1684
1685        if (!skb->cloned)
1686                return 0;
1687
1688        dataref = atomic_read(&skb_shinfo(skb)->dataref);
1689        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1690        return dataref != 1;
1691}
1692
1693static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1694{
1695        might_sleep_if(gfpflags_allow_blocking(pri));
1696
1697        if (skb_header_cloned(skb))
1698                return pskb_expand_head(skb, 0, 0, pri);
1699
1700        return 0;
1701}
1702
1703/**
1704 *      __skb_header_release - release reference to header
1705 *      @skb: buffer to operate on
1706 */
1707static inline void __skb_header_release(struct sk_buff *skb)
1708{
1709        skb->nohdr = 1;
1710        atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1711}
1712
1713
1714/**
1715 *      skb_shared - is the buffer shared
1716 *      @skb: buffer to check
1717 *
1718 *      Returns true if more than one person has a reference to this
1719 *      buffer.
1720 */
1721static inline int skb_shared(const struct sk_buff *skb)
1722{
1723        return refcount_read(&skb->users) != 1;
1724}
1725
1726/**
1727 *      skb_share_check - check if buffer is shared and if so clone it
1728 *      @skb: buffer to check
1729 *      @pri: priority for memory allocation
1730 *
1731 *      If the buffer is shared the buffer is cloned and the old copy
1732 *      drops a reference. A new clone with a single reference is returned.
1733 *      If the buffer is not shared the original buffer is returned. When
1734 *      being called from interrupt status or with spinlocks held pri must
1735 *      be GFP_ATOMIC.
1736 *
1737 *      NULL is returned on a memory allocation failure.
1738 */
1739static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1740{
1741        might_sleep_if(gfpflags_allow_blocking(pri));
1742        if (skb_shared(skb)) {
1743                struct sk_buff *nskb = skb_clone(skb, pri);
1744
1745                if (likely(nskb))
1746                        consume_skb(skb);
1747                else
1748                        kfree_skb(skb);
1749                skb = nskb;
1750        }
1751        return skb;
1752}
1753
1754/*
1755 *      Copy shared buffers into a new sk_buff. We effectively do COW on
1756 *      packets to handle cases where we have a local reader and forward
1757 *      and a couple of other messy ones. The normal one is tcpdumping
1758 *      a packet thats being forwarded.
1759 */
1760
1761/**
1762 *      skb_unshare - make a copy of a shared buffer
1763 *      @skb: buffer to check
1764 *      @pri: priority for memory allocation
1765 *
1766 *      If the socket buffer is a clone then this function creates a new
1767 *      copy of the data, drops a reference count on the old copy and returns
1768 *      the new copy with the reference count at 1. If the buffer is not a clone
1769 *      the original buffer is returned. When called with a spinlock held or
1770 *      from interrupt state @pri must be %GFP_ATOMIC
1771 *
1772 *      %NULL is returned on a memory allocation failure.
1773 */
1774static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1775                                          gfp_t pri)
1776{
1777        might_sleep_if(gfpflags_allow_blocking(pri));
1778        if (skb_cloned(skb)) {
1779                struct sk_buff *nskb = skb_copy(skb, pri);
1780
1781                /* Free our shared copy */
1782                if (likely(nskb))
1783                        consume_skb(skb);
1784                else
1785                        kfree_skb(skb);
1786                skb = nskb;
1787        }
1788        return skb;
1789}
1790
1791/**
1792 *      skb_peek - peek at the head of an &sk_buff_head
1793 *      @list_: list to peek at
1794 *
1795 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1796 *      be careful with this one. A peek leaves the buffer on the
1797 *      list and someone else may run off with it. You must hold
1798 *      the appropriate locks or have a private queue to do this.
1799 *
1800 *      Returns %NULL for an empty list or a pointer to the head element.
1801 *      The reference count is not incremented and the reference is therefore
1802 *      volatile. Use with caution.
1803 */
1804static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1805{
1806        struct sk_buff *skb = list_->next;
1807
1808        if (skb == (struct sk_buff *)list_)
1809                skb = NULL;
1810        return skb;
1811}
1812
1813/**
1814 *      __skb_peek - peek at the head of a non-empty &sk_buff_head
1815 *      @list_: list to peek at
1816 *
1817 *      Like skb_peek(), but the caller knows that the list is not empty.
1818 */
1819static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1820{
1821        return list_->next;
1822}
1823
1824/**
1825 *      skb_peek_next - peek skb following the given one from a queue
1826 *      @skb: skb to start from
1827 *      @list_: list to peek at
1828 *
1829 *      Returns %NULL when the end of the list is met or a pointer to the
1830 *      next element. The reference count is not incremented and the
1831 *      reference is therefore volatile. Use with caution.
1832 */
1833static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1834                const struct sk_buff_head *list_)
1835{
1836        struct sk_buff *next = skb->next;
1837
1838        if (next == (struct sk_buff *)list_)
1839                next = NULL;
1840        return next;
1841}
1842
1843/**
1844 *      skb_peek_tail - peek at the tail of an &sk_buff_head
1845 *      @list_: list to peek at
1846 *
1847 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1848 *      be careful with this one. A peek leaves the buffer on the
1849 *      list and someone else may run off with it. You must hold
1850 *      the appropriate locks or have a private queue to do this.
1851 *
1852 *      Returns %NULL for an empty list or a pointer to the tail element.
1853 *      The reference count is not incremented and the reference is therefore
1854 *      volatile. Use with caution.
1855 */
1856static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1857{
1858        struct sk_buff *skb = READ_ONCE(list_->prev);
1859
1860        if (skb == (struct sk_buff *)list_)
1861                skb = NULL;
1862        return skb;
1863
1864}
1865
1866/**
1867 *      skb_queue_len   - get queue length
1868 *      @list_: list to measure
1869 *
1870 *      Return the length of an &sk_buff queue.
1871 */
1872static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1873{
1874        return list_->qlen;
1875}
1876
1877/**
1878 *      skb_queue_len_lockless  - get queue length
1879 *      @list_: list to measure
1880 *
1881 *      Return the length of an &sk_buff queue.
1882 *      This variant can be used in lockless contexts.
1883 */
1884static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1885{
1886        return READ_ONCE(list_->qlen);
1887}
1888
1889/**
1890 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1891 *      @list: queue to initialize
1892 *
1893 *      This initializes only the list and queue length aspects of
1894 *      an sk_buff_head object.  This allows to initialize the list
1895 *      aspects of an sk_buff_head without reinitializing things like
1896 *      the spinlock.  It can also be used for on-stack sk_buff_head
1897 *      objects where the spinlock is known to not be used.
1898 */
1899static inline void __skb_queue_head_init(struct sk_buff_head *list)
1900{
1901        list->prev = list->next = (struct sk_buff *)list;
1902        list->qlen = 0;
1903}
1904
1905/*
1906 * This function creates a split out lock class for each invocation;
1907 * this is needed for now since a whole lot of users of the skb-queue
1908 * infrastructure in drivers have different locking usage (in hardirq)
1909 * than the networking core (in softirq only). In the long run either the
1910 * network layer or drivers should need annotation to consolidate the
1911 * main types of usage into 3 classes.
1912 */
1913static inline void skb_queue_head_init(struct sk_buff_head *list)
1914{
1915        spin_lock_init(&list->lock);
1916        __skb_queue_head_init(list);
1917}
1918
1919static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1920                struct lock_class_key *class)
1921{
1922        skb_queue_head_init(list);
1923        lockdep_set_class(&list->lock, class);
1924}
1925
1926/*
1927 *      Insert an sk_buff on a list.
1928 *
1929 *      The "__skb_xxxx()" functions are the non-atomic ones that
1930 *      can only be called with interrupts disabled.
1931 */
1932static inline void __skb_insert(struct sk_buff *newsk,
1933                                struct sk_buff *prev, struct sk_buff *next,
1934                                struct sk_buff_head *list)
1935{
1936        /* See skb_queue_empty_lockless() and skb_peek_tail()
1937         * for the opposite READ_ONCE()
1938         */
1939        WRITE_ONCE(newsk->next, next);
1940        WRITE_ONCE(newsk->prev, prev);
1941        WRITE_ONCE(next->prev, newsk);
1942        WRITE_ONCE(prev->next, newsk);
1943        WRITE_ONCE(list->qlen, list->qlen + 1);
1944}
1945
1946static inline void __skb_queue_splice(const struct sk_buff_head *list,
1947                                      struct sk_buff *prev,
1948                                      struct sk_buff *next)
1949{
1950        struct sk_buff *first = list->next;
1951        struct sk_buff *last = list->prev;
1952
1953        WRITE_ONCE(first->prev, prev);
1954        WRITE_ONCE(prev->next, first);
1955
1956        WRITE_ONCE(last->next, next);
1957        WRITE_ONCE(next->prev, last);
1958}
1959
1960/**
1961 *      skb_queue_splice - join two skb lists, this is designed for stacks
1962 *      @list: the new list to add
1963 *      @head: the place to add it in the first list
1964 */
1965static inline void skb_queue_splice(const struct sk_buff_head *list,
1966                                    struct sk_buff_head *head)
1967{
1968        if (!skb_queue_empty(list)) {
1969                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1970                head->qlen += list->qlen;
1971        }
1972}
1973
1974/**
1975 *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1976 *      @list: the new list to add
1977 *      @head: the place to add it in the first list
1978 *
1979 *      The list at @list is reinitialised
1980 */
1981static inline void skb_queue_splice_init(struct sk_buff_head *list,
1982                                         struct sk_buff_head *head)
1983{
1984        if (!skb_queue_empty(list)) {
1985                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1986                head->qlen += list->qlen;
1987                __skb_queue_head_init(list);
1988        }
1989}
1990
1991/**
1992 *      skb_queue_splice_tail - join two skb lists, each list being a queue
1993 *      @list: the new list to add
1994 *      @head: the place to add it in the first list
1995 */
1996static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1997                                         struct sk_buff_head *head)
1998{
1999        if (!skb_queue_empty(list)) {
2000                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2001                head->qlen += list->qlen;
2002        }
2003}
2004
2005/**
2006 *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2007 *      @list: the new list to add
2008 *      @head: the place to add it in the first list
2009 *
2010 *      Each of the lists is a queue.
2011 *      The list at @list is reinitialised
2012 */
2013static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2014                                              struct sk_buff_head *head)
2015{
2016        if (!skb_queue_empty(list)) {
2017                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2018                head->qlen += list->qlen;
2019                __skb_queue_head_init(list);
2020        }
2021}
2022
2023/**
2024 *      __skb_queue_after - queue a buffer at the list head
2025 *      @list: list to use
2026 *      @prev: place after this buffer
2027 *      @newsk: buffer to queue
2028 *
2029 *      Queue a buffer int the middle of a list. This function takes no locks
2030 *      and you must therefore hold required locks before calling it.
2031 *
2032 *      A buffer cannot be placed on two lists at the same time.
2033 */
2034static inline void __skb_queue_after(struct sk_buff_head *list,
2035                                     struct sk_buff *prev,
2036                                     struct sk_buff *newsk)
2037{
2038        __skb_insert(newsk, prev, prev->next, list);
2039}
2040
2041void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2042                struct sk_buff_head *list);
2043
2044static inline void __skb_queue_before(struct sk_buff_head *list,
2045                                      struct sk_buff *next,
2046                                      struct sk_buff *newsk)
2047{
2048        __skb_insert(newsk, next->prev, next, list);
2049}
2050
2051/**
2052 *      __skb_queue_head - queue a buffer at the list head
2053 *      @list: list to use
2054 *      @newsk: buffer to queue
2055 *
2056 *      Queue a buffer at the start of a list. This function takes no locks
2057 *      and you must therefore hold required locks before calling it.
2058 *
2059 *      A buffer cannot be placed on two lists at the same time.
2060 */
2061static inline void __skb_queue_head(struct sk_buff_head *list,
2062                                    struct sk_buff *newsk)
2063{
2064        __skb_queue_after(list, (struct sk_buff *)list, newsk);
2065}
2066void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2067
2068/**
2069 *      __skb_queue_tail - queue a buffer at the list tail
2070 *      @list: list to use
2071 *      @newsk: buffer to queue
2072 *
2073 *      Queue a buffer at the end of a list. This function takes no locks
2074 *      and you must therefore hold required locks before calling it.
2075 *
2076 *      A buffer cannot be placed on two lists at the same time.
2077 */
2078static inline void __skb_queue_tail(struct sk_buff_head *list,
2079                                   struct sk_buff *newsk)
2080{
2081        __skb_queue_before(list, (struct sk_buff *)list, newsk);
2082}
2083void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2084
2085/*
2086 * remove sk_buff from list. _Must_ be called atomically, and with
2087 * the list known..
2088 */
2089void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2090static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2091{
2092        struct sk_buff *next, *prev;
2093
2094        WRITE_ONCE(list->qlen, list->qlen - 1);
2095        next       = skb->next;
2096        prev       = skb->prev;
2097        skb->next  = skb->prev = NULL;
2098        WRITE_ONCE(next->prev, prev);
2099        WRITE_ONCE(prev->next, next);
2100}
2101
2102/**
2103 *      __skb_dequeue - remove from the head of the queue
2104 *      @list: list to dequeue from
2105 *
2106 *      Remove the head of the list. This function does not take any locks
2107 *      so must be used with appropriate locks held only. The head item is
2108 *      returned or %NULL if the list is empty.
2109 */
2110static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2111{
2112        struct sk_buff *skb = skb_peek(list);
2113        if (skb)
2114                __skb_unlink(skb, list);
2115        return skb;
2116}
2117struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2118
2119/**
2120 *      __skb_dequeue_tail - remove from the tail of the queue
2121 *      @list: list to dequeue from
2122 *
2123 *      Remove the tail of the list. This function does not take any locks
2124 *      so must be used with appropriate locks held only. The tail item is
2125 *      returned or %NULL if the list is empty.
2126 */
2127static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2128{
2129        struct sk_buff *skb = skb_peek_tail(list);
2130        if (skb)
2131                __skb_unlink(skb, list);
2132        return skb;
2133}
2134struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2135
2136
2137static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2138{
2139        return skb->data_len;
2140}
2141
2142static inline unsigned int skb_headlen(const struct sk_buff *skb)
2143{
2144        return skb->len - skb->data_len;
2145}
2146
2147static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2148{
2149        unsigned int i, len = 0;
2150
2151        for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2152                len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2153        return len;
2154}
2155
2156static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2157{
2158        return skb_headlen(skb) + __skb_pagelen(skb);
2159}
2160
2161/**
2162 * __skb_fill_page_desc - initialise a paged fragment in an skb
2163 * @skb: buffer containing fragment to be initialised
2164 * @i: paged fragment index to initialise
2165 * @page: the page to use for this fragment
2166 * @off: the offset to the data with @page
2167 * @size: the length of the data
2168 *
2169 * Initialises the @i'th fragment of @skb to point to &size bytes at
2170 * offset @off within @page.
2171 *
2172 * Does not take any additional reference on the fragment.
2173 */
2174static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2175                                        struct page *page, int off, int size)
2176{
2177        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2178
2179        /*
2180         * Propagate page pfmemalloc to the skb if we can. The problem is
2181         * that not all callers have unique ownership of the page but rely
2182         * on page_is_pfmemalloc doing the right thing(tm).
2183         */
2184        frag->bv_page             = page;
2185        frag->bv_offset           = off;
2186        skb_frag_size_set(frag, size);
2187
2188        page = compound_head(page);
2189        if (page_is_pfmemalloc(page))
2190                skb->pfmemalloc = true;
2191}
2192
2193/**
2194 * skb_fill_page_desc - initialise a paged fragment in an skb
2195 * @skb: buffer containing fragment to be initialised
2196 * @i: paged fragment index to initialise
2197 * @page: the page to use for this fragment
2198 * @off: the offset to the data with @page
2199 * @size: the length of the data
2200 *
2201 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2202 * @skb to point to @size bytes at offset @off within @page. In
2203 * addition updates @skb such that @i is the last fragment.
2204 *
2205 * Does not take any additional reference on the fragment.
2206 */
2207static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2208                                      struct page *page, int off, int size)
2209{
2210        __skb_fill_page_desc(skb, i, page, off, size);
2211        skb_shinfo(skb)->nr_frags = i + 1;
2212}
2213
2214void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2215                     int size, unsigned int truesize);
2216
2217void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2218                          unsigned int truesize);
2219
2220#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2221
2222#ifdef NET_SKBUFF_DATA_USES_OFFSET
2223static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2224{
2225        return skb->head + skb->tail;
2226}
2227
2228static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2229{
2230        skb->tail = skb->data - skb->head;
2231}
2232
2233static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2234{
2235        skb_reset_tail_pointer(skb);
2236        skb->tail += offset;
2237}
2238
2239#else /* NET_SKBUFF_DATA_USES_OFFSET */
2240static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2241{
2242        return skb->tail;
2243}
2244
2245static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2246{
2247        skb->tail = skb->data;
2248}
2249
2250static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2251{
2252        skb->tail = skb->data + offset;
2253}
2254
2255#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2256
2257/*
2258 *      Add data to an sk_buff
2259 */
2260void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2261void *skb_put(struct sk_buff *skb, unsigned int len);
2262static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2263{
2264        void *tmp = skb_tail_pointer(skb);
2265        SKB_LINEAR_ASSERT(skb);
2266        skb->tail += len;
2267        skb->len  += len;
2268        return tmp;
2269}
2270
2271static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2272{
2273        void *tmp = __skb_put(skb, len);
2274
2275        memset(tmp, 0, len);
2276        return tmp;
2277}
2278
2279static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2280                                   unsigned int len)
2281{
2282        void *tmp = __skb_put(skb, len);
2283
2284        memcpy(tmp, data, len);
2285        return tmp;
2286}
2287
2288static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2289{
2290        *(u8 *)__skb_put(skb, 1) = val;
2291}
2292
2293static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2294{
2295        void *tmp = skb_put(skb, len);
2296
2297        memset(tmp, 0, len);
2298
2299        return tmp;
2300}
2301
2302static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2303                                 unsigned int len)
2304{
2305        void *tmp = skb_put(skb, len);
2306
2307        memcpy(tmp, data, len);
2308
2309        return tmp;
2310}
2311
2312static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2313{
2314        *(u8 *)skb_put(skb, 1) = val;
2315}
2316
2317void *skb_push(struct sk_buff *skb, unsigned int len);
2318static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2319{
2320        skb->data -= len;
2321        skb->len  += len;
2322        return skb->data;
2323}
2324
2325void *skb_pull(struct sk_buff *skb, unsigned int len);
2326static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2327{
2328        skb->len -= len;
2329        BUG_ON(skb->len < skb->data_len);
2330        return skb->data += len;
2331}
2332
2333static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2334{
2335        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2336}
2337
2338void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2339
2340static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2341{
2342        if (len > skb_headlen(skb) &&
2343            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2344                return NULL;
2345        skb->len -= len;
2346        return skb->data += len;
2347}
2348
2349static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2350{
2351        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2352}
2353
2354static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2355{
2356        if (likely(len <= skb_headlen(skb)))
2357                return true;
2358        if (unlikely(len > skb->len))
2359                return false;
2360        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2361}
2362
2363void skb_condense(struct sk_buff *skb);
2364
2365/**
2366 *      skb_headroom - bytes at buffer head
2367 *      @skb: buffer to check
2368 *
2369 *      Return the number of bytes of free space at the head of an &sk_buff.
2370 */
2371static inline unsigned int skb_headroom(const struct sk_buff *skb)
2372{
2373        return skb->data - skb->head;
2374}
2375
2376/**
2377 *      skb_tailroom - bytes at buffer end
2378 *      @skb: buffer to check
2379 *
2380 *      Return the number of bytes of free space at the tail of an sk_buff
2381 */
2382static inline int skb_tailroom(const struct sk_buff *skb)
2383{
2384        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2385}
2386
2387/**
2388 *      skb_availroom - bytes at buffer end
2389 *      @skb: buffer to check
2390 *
2391 *      Return the number of bytes of free space at the tail of an sk_buff
2392 *      allocated by sk_stream_alloc()
2393 */
2394static inline int skb_availroom(const struct sk_buff *skb)
2395{
2396        if (skb_is_nonlinear(skb))
2397                return 0;
2398
2399        return skb->end - skb->tail - skb->reserved_tailroom;
2400}
2401
2402/**
2403 *      skb_reserve - adjust headroom
2404 *      @skb: buffer to alter
2405 *      @len: bytes to move
2406 *
2407 *      Increase the headroom of an empty &sk_buff by reducing the tail
2408 *      room. This is only allowed for an empty buffer.
2409 */
2410static inline void skb_reserve(struct sk_buff *skb, int len)
2411{
2412        skb->data += len;
2413        skb->tail += len;
2414}
2415
2416/**
2417 *      skb_tailroom_reserve - adjust reserved_tailroom
2418 *      @skb: buffer to alter
2419 *      @mtu: maximum amount of headlen permitted
2420 *      @needed_tailroom: minimum amount of reserved_tailroom
2421 *
2422 *      Set reserved_tailroom so that headlen can be as large as possible but
2423 *      not larger than mtu and tailroom cannot be smaller than
2424 *      needed_tailroom.
2425 *      The required headroom should already have been reserved before using
2426 *      this function.
2427 */
2428static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2429                                        unsigned int needed_tailroom)
2430{
2431        SKB_LINEAR_ASSERT(skb);
2432        if (mtu < skb_tailroom(skb) - needed_tailroom)
2433                /* use at most mtu */
2434                skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2435        else
2436                /* use up to all available space */
2437                skb->reserved_tailroom = needed_tailroom;
2438}
2439
2440#define ENCAP_TYPE_ETHER        0
2441#define ENCAP_TYPE_IPPROTO      1
2442
2443static inline void skb_set_inner_protocol(struct sk_buff *skb,
2444                                          __be16 protocol)
2445{
2446        skb->inner_protocol = protocol;
2447        skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2448}
2449
2450static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2451                                         __u8 ipproto)
2452{
2453        skb->inner_ipproto = ipproto;
2454        skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2455}
2456
2457static inline void skb_reset_inner_headers(struct sk_buff *skb)
2458{
2459        skb->inner_mac_header = skb->mac_header;
2460        skb->inner_network_header = skb->network_header;
2461        skb->inner_transport_header = skb->transport_header;
2462}
2463
2464static inline void skb_reset_mac_len(struct sk_buff *skb)
2465{
2466        skb->mac_len = skb->network_header - skb->mac_header;
2467}
2468
2469static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2470                                                        *skb)
2471{
2472        return skb->head + skb->inner_transport_header;
2473}
2474
2475static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2476{
2477        return skb_inner_transport_header(skb) - skb->data;
2478}
2479
2480static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2481{
2482        skb->inner_transport_header = skb->data - skb->head;
2483}
2484
2485static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2486                                                   const int offset)
2487{
2488        skb_reset_inner_transport_header(skb);
2489        skb->inner_transport_header += offset;
2490}
2491
2492static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2493{
2494        return skb->head + skb->inner_network_header;
2495}
2496
2497static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2498{
2499        skb->inner_network_header = skb->data - skb->head;
2500}
2501
2502static inline void skb_set_inner_network_header(struct sk_buff *skb,
2503                                                const int offset)
2504{
2505        skb_reset_inner_network_header(skb);
2506        skb->inner_network_header += offset;
2507}
2508
2509static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2510{
2511        return skb->head + skb->inner_mac_header;
2512}
2513
2514static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2515{
2516        skb->inner_mac_header = skb->data - skb->head;
2517}
2518
2519static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2520                                            const int offset)
2521{
2522        skb_reset_inner_mac_header(skb);
2523        skb->inner_mac_header += offset;
2524}
2525static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2526{
2527        return skb->transport_header != (typeof(skb->transport_header))~0U;
2528}
2529
2530static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2531{
2532        return skb->head + skb->transport_header;
2533}
2534
2535static inline void skb_reset_transport_header(struct sk_buff *skb)
2536{
2537        skb->transport_header = skb->data - skb->head;
2538}
2539
2540static inline void skb_set_transport_header(struct sk_buff *skb,
2541                                            const int offset)
2542{
2543        skb_reset_transport_header(skb);
2544        skb->transport_header += offset;
2545}
2546
2547static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2548{
2549        return skb->head + skb->network_header;
2550}
2551
2552static inline void skb_reset_network_header(struct sk_buff *skb)
2553{
2554        skb->network_header = skb->data - skb->head;
2555}
2556
2557static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2558{
2559        skb_reset_network_header(skb);
2560        skb->network_header += offset;
2561}
2562
2563static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2564{
2565        return skb->head + skb->mac_header;
2566}
2567
2568static inline int skb_mac_offset(const struct sk_buff *skb)
2569{
2570        return skb_mac_header(skb) - skb->data;
2571}
2572
2573static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2574{
2575        return skb->network_header - skb->mac_header;
2576}
2577
2578static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2579{
2580        return skb->mac_header != (typeof(skb->mac_header))~0U;
2581}
2582
2583static inline void skb_unset_mac_header(struct sk_buff *skb)
2584{
2585        skb->mac_header = (typeof(skb->mac_header))~0U;
2586}
2587
2588static inline void skb_reset_mac_header(struct sk_buff *skb)
2589{
2590        skb->mac_header = skb->data - skb->head;
2591}
2592
2593static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2594{
2595        skb_reset_mac_header(skb);
2596        skb->mac_header += offset;
2597}
2598
2599static inline void skb_pop_mac_header(struct sk_buff *skb)
2600{
2601        skb->mac_header = skb->network_header;
2602}
2603
2604static inline void skb_probe_transport_header(struct sk_buff *skb)
2605{
2606        struct flow_keys_basic keys;
2607
2608        if (skb_transport_header_was_set(skb))
2609                return;
2610
2611        if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2612                                             NULL, 0, 0, 0, 0))
2613                skb_set_transport_header(skb, keys.control.thoff);
2614}
2615
2616static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2617{
2618        if (skb_mac_header_was_set(skb)) {
2619                const unsigned char *old_mac = skb_mac_header(skb);
2620
2621                skb_set_mac_header(skb, -skb->mac_len);
2622                memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2623        }
2624}
2625
2626static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2627{
2628        return skb->csum_start - skb_headroom(skb);
2629}
2630
2631static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2632{
2633        return skb->head + skb->csum_start;
2634}
2635
2636static inline int skb_transport_offset(const struct sk_buff *skb)
2637{
2638        return skb_transport_header(skb) - skb->data;
2639}
2640
2641static inline u32 skb_network_header_len(const struct sk_buff *skb)
2642{
2643        return skb->transport_header - skb->network_header;
2644}
2645
2646static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2647{
2648        return skb->inner_transport_header - skb->inner_network_header;
2649}
2650
2651static inline int skb_network_offset(const struct sk_buff *skb)
2652{
2653        return skb_network_header(skb) - skb->data;
2654}
2655
2656static inline int skb_inner_network_offset(const struct sk_buff *skb)
2657{
2658        return skb_inner_network_header(skb) - skb->data;
2659}
2660
2661static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2662{
2663        return pskb_may_pull(skb, skb_network_offset(skb) + len);
2664}
2665
2666/*
2667 * CPUs often take a performance hit when accessing unaligned memory
2668 * locations. The actual performance hit varies, it can be small if the
2669 * hardware handles it or large if we have to take an exception and fix it
2670 * in software.
2671 *
2672 * Since an ethernet header is 14 bytes network drivers often end up with
2673 * the IP header at an unaligned offset. The IP header can be aligned by
2674 * shifting the start of the packet by 2 bytes. Drivers should do this
2675 * with:
2676 *
2677 * skb_reserve(skb, NET_IP_ALIGN);
2678 *
2679 * The downside to this alignment of the IP header is that the DMA is now
2680 * unaligned. On some architectures the cost of an unaligned DMA is high
2681 * and this cost outweighs the gains made by aligning the IP header.
2682 *
2683 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2684 * to be overridden.
2685 */
2686#ifndef NET_IP_ALIGN
2687#define NET_IP_ALIGN    2
2688#endif
2689
2690/*
2691 * The networking layer reserves some headroom in skb data (via
2692 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2693 * the header has to grow. In the default case, if the header has to grow
2694 * 32 bytes or less we avoid the reallocation.
2695 *
2696 * Unfortunately this headroom changes the DMA alignment of the resulting
2697 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2698 * on some architectures. An architecture can override this value,
2699 * perhaps setting it to a cacheline in size (since that will maintain
2700 * cacheline alignment of the DMA). It must be a power of 2.
2701 *
2702 * Various parts of the networking layer expect at least 32 bytes of
2703 * headroom, you should not reduce this.
2704 *
2705 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2706 * to reduce average number of cache lines per packet.
2707 * get_rps_cpu() for example only access one 64 bytes aligned block :
2708 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2709 */
2710#ifndef NET_SKB_PAD
2711#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
2712#endif
2713
2714int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2715
2716static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2717{
2718        if (WARN_ON(skb_is_nonlinear(skb)))
2719                return;
2720        skb->len = len;
2721        skb_set_tail_pointer(skb, len);
2722}
2723
2724static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2725{
2726        __skb_set_length(skb, len);
2727}
2728
2729void skb_trim(struct sk_buff *skb, unsigned int len);
2730
2731static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2732{
2733        if (skb->data_len)
2734                return ___pskb_trim(skb, len);
2735        __skb_trim(skb, len);
2736        return 0;
2737}
2738
2739static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2740{
2741        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2742}
2743
2744/**
2745 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2746 *      @skb: buffer to alter
2747 *      @len: new length
2748 *
2749 *      This is identical to pskb_trim except that the caller knows that
2750 *      the skb is not cloned so we should never get an error due to out-
2751 *      of-memory.
2752 */
2753static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2754{
2755        int err = pskb_trim(skb, len);
2756        BUG_ON(err);
2757}
2758
2759static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2760{
2761        unsigned int diff = len - skb->len;
2762
2763        if (skb_tailroom(skb) < diff) {
2764                int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2765                                           GFP_ATOMIC);
2766                if (ret)
2767                        return ret;
2768        }
2769        __skb_set_length(skb, len);
2770        return 0;
2771}
2772
2773/**
2774 *      skb_orphan - orphan a buffer
2775 *      @skb: buffer to orphan
2776 *
2777 *      If a buffer currently has an owner then we call the owner's
2778 *      destructor function and make the @skb unowned. The buffer continues
2779 *      to exist but is no longer charged to its former owner.
2780 */
2781static inline void skb_orphan(struct sk_buff *skb)
2782{
2783        if (skb->destructor) {
2784                skb->destructor(skb);
2785                skb->destructor = NULL;
2786                skb->sk         = NULL;
2787        } else {
2788                BUG_ON(skb->sk);
2789        }
2790}
2791
2792/**
2793 *      skb_orphan_frags - orphan the frags contained in a buffer
2794 *      @skb: buffer to orphan frags from
2795 *      @gfp_mask: allocation mask for replacement pages
2796 *
2797 *      For each frag in the SKB which needs a destructor (i.e. has an
2798 *      owner) create a copy of that frag and release the original
2799 *      page by calling the destructor.
2800 */
2801static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2802{
2803        if (likely(!skb_zcopy(skb)))
2804                return 0;
2805        if (!skb_zcopy_is_nouarg(skb) &&
2806            skb_uarg(skb)->callback == msg_zerocopy_callback)
2807                return 0;
2808        return skb_copy_ubufs(skb, gfp_mask);
2809}
2810
2811/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2812static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2813{
2814        if (likely(!skb_zcopy(skb)))
2815                return 0;
2816        return skb_copy_ubufs(skb, gfp_mask);
2817}
2818
2819/**
2820 *      __skb_queue_purge - empty a list
2821 *      @list: list to empty
2822 *
2823 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2824 *      the list and one reference dropped. This function does not take the
2825 *      list lock and the caller must hold the relevant locks to use it.
2826 */
2827static inline void __skb_queue_purge(struct sk_buff_head *list)
2828{
2829        struct sk_buff *skb;
2830        while ((skb = __skb_dequeue(list)) != NULL)
2831                kfree_skb(skb);
2832}
2833void skb_queue_purge(struct sk_buff_head *list);
2834
2835unsigned int skb_rbtree_purge(struct rb_root *root);
2836
2837void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2838
2839/**
2840 * netdev_alloc_frag - allocate a page fragment
2841 * @fragsz: fragment size
2842 *
2843 * Allocates a frag from a page for receive buffer.
2844 * Uses GFP_ATOMIC allocations.
2845 */
2846static inline void *netdev_alloc_frag(unsigned int fragsz)
2847{
2848        return __netdev_alloc_frag_align(fragsz, ~0u);
2849}
2850
2851static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2852                                            unsigned int align)
2853{
2854        WARN_ON_ONCE(!is_power_of_2(align));
2855        return __netdev_alloc_frag_align(fragsz, -align);
2856}
2857
2858struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2859                                   gfp_t gfp_mask);
2860
2861/**
2862 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
2863 *      @dev: network device to receive on
2864 *      @length: length to allocate
2865 *
2866 *      Allocate a new &sk_buff and assign it a usage count of one. The
2867 *      buffer has unspecified headroom built in. Users should allocate
2868 *      the headroom they think they need without accounting for the
2869 *      built in space. The built in space is used for optimisations.
2870 *
2871 *      %NULL is returned if there is no free memory. Although this function
2872 *      allocates memory it can be called from an interrupt.
2873 */
2874static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2875                                               unsigned int length)
2876{
2877        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2878}
2879
2880/* legacy helper around __netdev_alloc_skb() */
2881static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2882                                              gfp_t gfp_mask)
2883{
2884        return __netdev_alloc_skb(NULL, length, gfp_mask);
2885}
2886
2887/* legacy helper around netdev_alloc_skb() */
2888static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2889{
2890        return netdev_alloc_skb(NULL, length);
2891}
2892
2893
2894static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2895                unsigned int length, gfp_t gfp)
2896{
2897        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2898
2899        if (NET_IP_ALIGN && skb)
2900                skb_reserve(skb, NET_IP_ALIGN);
2901        return skb;
2902}
2903
2904static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2905                unsigned int length)
2906{
2907        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2908}
2909
2910static inline void skb_free_frag(void *addr)
2911{
2912        page_frag_free(addr);
2913}
2914
2915void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2916
2917static inline void *napi_alloc_frag(unsigned int fragsz)
2918{
2919        return __napi_alloc_frag_align(fragsz, ~0u);
2920}
2921
2922static inline void *napi_alloc_frag_align(unsigned int fragsz,
2923                                          unsigned int align)
2924{
2925        WARN_ON_ONCE(!is_power_of_2(align));
2926        return __napi_alloc_frag_align(fragsz, -align);
2927}
2928
2929struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2930                                 unsigned int length, gfp_t gfp_mask);
2931static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2932                                             unsigned int length)
2933{
2934        return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2935}
2936void napi_consume_skb(struct sk_buff *skb, int budget);
2937
2938void napi_skb_free_stolen_head(struct sk_buff *skb);
2939void __kfree_skb_defer(struct sk_buff *skb);
2940
2941/**
2942 * __dev_alloc_pages - allocate page for network Rx
2943 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2944 * @order: size of the allocation
2945 *
2946 * Allocate a new page.
2947 *
2948 * %NULL is returned if there is no free memory.
2949*/
2950static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2951                                             unsigned int order)
2952{
2953        /* This piece of code contains several assumptions.
2954         * 1.  This is for device Rx, therefor a cold page is preferred.
2955         * 2.  The expectation is the user wants a compound page.
2956         * 3.  If requesting a order 0 page it will not be compound
2957         *     due to the check to see if order has a value in prep_new_page
2958         * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2959         *     code in gfp_to_alloc_flags that should be enforcing this.
2960         */
2961        gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2962
2963        return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2964}
2965
2966static inline struct page *dev_alloc_pages(unsigned int order)
2967{
2968        return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2969}
2970
2971/**
2972 * __dev_alloc_page - allocate a page for network Rx
2973 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2974 *
2975 * Allocate a new page.
2976 *
2977 * %NULL is returned if there is no free memory.
2978 */
2979static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2980{
2981        return __dev_alloc_pages(gfp_mask, 0);
2982}
2983
2984static inline struct page *dev_alloc_page(void)
2985{
2986        return dev_alloc_pages(0);
2987}
2988
2989/**
2990 * dev_page_is_reusable - check whether a page can be reused for network Rx
2991 * @page: the page to test
2992 *
2993 * A page shouldn't be considered for reusing/recycling if it was allocated
2994 * under memory pressure or at a distant memory node.
2995 *
2996 * Returns false if this page should be returned to page allocator, true
2997 * otherwise.
2998 */
2999static inline bool dev_page_is_reusable(const struct page *page)
3000{
3001        return likely(page_to_nid(page) == numa_mem_id() &&
3002                      !page_is_pfmemalloc(page));
3003}
3004
3005/**
3006 *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3007 *      @page: The page that was allocated from skb_alloc_page
3008 *      @skb: The skb that may need pfmemalloc set
3009 */
3010static inline void skb_propagate_pfmemalloc(const struct page *page,
3011                                            struct sk_buff *skb)
3012{
3013        if (page_is_pfmemalloc(page))
3014                skb->pfmemalloc = true;
3015}
3016
3017/**
3018 * skb_frag_off() - Returns the offset of a skb fragment
3019 * @frag: the paged fragment
3020 */
3021static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3022{
3023        return frag->bv_offset;
3024}
3025
3026/**
3027 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3028 * @frag: skb fragment
3029 * @delta: value to add
3030 */
3031static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3032{
3033        frag->bv_offset += delta;
3034}
3035
3036/**
3037 * skb_frag_off_set() - Sets the offset of a skb fragment
3038 * @frag: skb fragment
3039 * @offset: offset of fragment
3040 */
3041static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3042{
3043        frag->bv_offset = offset;
3044}
3045
3046/**
3047 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3048 * @fragto: skb fragment where offset is set
3049 * @fragfrom: skb fragment offset is copied from
3050 */
3051static inline void skb_frag_off_copy(skb_frag_t *fragto,
3052                                     const skb_frag_t *fragfrom)
3053{
3054        fragto->bv_offset = fragfrom->bv_offset;
3055}
3056
3057/**
3058 * skb_frag_page - retrieve the page referred to by a paged fragment
3059 * @frag: the paged fragment
3060 *
3061 * Returns the &struct page associated with @frag.
3062 */
3063static inline struct page *skb_frag_page(const skb_frag_t *frag)
3064{
3065        return frag->bv_page;
3066}
3067
3068/**
3069 * __skb_frag_ref - take an addition reference on a paged fragment.
3070 * @frag: the paged fragment
3071 *
3072 * Takes an additional reference on the paged fragment @frag.
3073 */
3074static inline void __skb_frag_ref(skb_frag_t *frag)
3075{
3076        get_page(skb_frag_page(frag));
3077}
3078
3079/**
3080 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3081 * @skb: the buffer
3082 * @f: the fragment offset.
3083 *
3084 * Takes an additional reference on the @f'th paged fragment of @skb.
3085 */
3086static inline void skb_frag_ref(struct sk_buff *skb, int f)
3087{
3088        __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3089}
3090
3091/**
3092 * __skb_frag_unref - release a reference on a paged fragment.
3093 * @frag: the paged fragment
3094 * @recycle: recycle the page if allocated via page_pool
3095 *
3096 * Releases a reference on the paged fragment @frag
3097 * or recycles the page via the page_pool API.
3098 */
3099static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3100{
3101        struct page *page = skb_frag_page(frag);
3102
3103#ifdef CONFIG_PAGE_POOL
3104        if (recycle && page_pool_return_skb_page(page))
3105                return;
3106#endif
3107        put_page(page);
3108}
3109
3110/**
3111 * skb_frag_unref - release a reference on a paged fragment of an skb.
3112 * @skb: the buffer
3113 * @f: the fragment offset
3114 *
3115 * Releases a reference on the @f'th paged fragment of @skb.
3116 */
3117static inline void skb_frag_unref(struct sk_buff *skb, int f)
3118{
3119        __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3120}
3121
3122/**
3123 * skb_frag_address - gets the address of the data contained in a paged fragment
3124 * @frag: the paged fragment buffer
3125 *
3126 * Returns the address of the data within @frag. The page must already
3127 * be mapped.
3128 */
3129static inline void *skb_frag_address(const skb_frag_t *frag)
3130{
3131        return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3132}
3133
3134/**
3135 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3136 * @frag: the paged fragment buffer
3137 *
3138 * Returns the address of the data within @frag. Checks that the page
3139 * is mapped and returns %NULL otherwise.
3140 */
3141static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3142{
3143        void *ptr = page_address(skb_frag_page(frag));
3144        if (unlikely(!ptr))
3145                return NULL;
3146
3147        return ptr + skb_frag_off(frag);
3148}
3149
3150/**
3151 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3152 * @fragto: skb fragment where page is set
3153 * @fragfrom: skb fragment page is copied from
3154 */
3155static inline void skb_frag_page_copy(skb_frag_t *fragto,
3156                                      const skb_frag_t *fragfrom)
3157{
3158        fragto->bv_page = fragfrom->bv_page;
3159}
3160
3161/**
3162 * __skb_frag_set_page - sets the page contained in a paged fragment
3163 * @frag: the paged fragment
3164 * @page: the page to set
3165 *
3166 * Sets the fragment @frag to contain @page.
3167 */
3168static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3169{
3170        frag->bv_page = page;
3171}
3172
3173/**
3174 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3175 * @skb: the buffer
3176 * @f: the fragment offset
3177 * @page: the page to set
3178 *
3179 * Sets the @f'th fragment of @skb to contain @page.
3180 */
3181static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3182                                     struct page *page)
3183{
3184        __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3185}
3186
3187bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3188
3189/**
3190 * skb_frag_dma_map - maps a paged fragment via the DMA API
3191 * @dev: the device to map the fragment to
3192 * @frag: the paged fragment to map
3193 * @offset: the offset within the fragment (starting at the
3194 *          fragment's own offset)
3195 * @size: the number of bytes to map
3196 * @dir: the direction of the mapping (``PCI_DMA_*``)
3197 *
3198 * Maps the page associated with @frag to @device.
3199 */
3200static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3201                                          const skb_frag_t *frag,
3202                                          size_t offset, size_t size,
3203                                          enum dma_data_direction dir)
3204{
3205        return dma_map_page(dev, skb_frag_page(frag),
3206                            skb_frag_off(frag) + offset, size, dir);
3207}
3208
3209static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3210                                        gfp_t gfp_mask)
3211{
3212        return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3213}
3214
3215
3216static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3217                                                  gfp_t gfp_mask)
3218{
3219        return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3220}
3221
3222
3223/**
3224 *      skb_clone_writable - is the header of a clone writable
3225 *      @skb: buffer to check
3226 *      @len: length up to which to write
3227 *
3228 *      Returns true if modifying the header part of the cloned buffer
3229 *      does not requires the data to be copied.
3230 */
3231static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3232{
3233        return !skb_header_cloned(skb) &&
3234               skb_headroom(skb) + len <= skb->hdr_len;
3235}
3236
3237static inline int skb_try_make_writable(struct sk_buff *skb,
3238                                        unsigned int write_len)
3239{
3240        return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3241               pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3242}
3243
3244static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3245                            int cloned)
3246{
3247        int delta = 0;
3248
3249        if (headroom > skb_headroom(skb))
3250                delta = headroom - skb_headroom(skb);
3251
3252        if (delta || cloned)
3253                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3254                                        GFP_ATOMIC);
3255        return 0;
3256}
3257
3258/**
3259 *      skb_cow - copy header of skb when it is required
3260 *      @skb: buffer to cow
3261 *      @headroom: needed headroom
3262 *
3263 *      If the skb passed lacks sufficient headroom or its data part
3264 *      is shared, data is reallocated. If reallocation fails, an error
3265 *      is returned and original skb is not changed.
3266 *
3267 *      The result is skb with writable area skb->head...skb->tail
3268 *      and at least @headroom of space at head.
3269 */
3270static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3271{
3272        return __skb_cow(skb, headroom, skb_cloned(skb));
3273}
3274
3275/**
3276 *      skb_cow_head - skb_cow but only making the head writable
3277 *      @skb: buffer to cow
3278 *      @headroom: needed headroom
3279 *
3280 *      This function is identical to skb_cow except that we replace the
3281 *      skb_cloned check by skb_header_cloned.  It should be used when
3282 *      you only need to push on some header and do not need to modify
3283 *      the data.
3284 */
3285static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3286{
3287        return __skb_cow(skb, headroom, skb_header_cloned(skb));
3288}
3289
3290/**
3291 *      skb_padto       - pad an skbuff up to a minimal size
3292 *      @skb: buffer to pad
3293 *      @len: minimal length
3294 *
3295 *      Pads up a buffer to ensure the trailing bytes exist and are
3296 *      blanked. If the buffer already contains sufficient data it
3297 *      is untouched. Otherwise it is extended. Returns zero on
3298 *      success. The skb is freed on error.
3299 */
3300static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3301{
3302        unsigned int size = skb->len;
3303        if (likely(size >= len))
3304                return 0;
3305        return skb_pad(skb, len - size);
3306}
3307
3308/**
3309 *      __skb_put_padto - increase size and pad an skbuff up to a minimal size
3310 *      @skb: buffer to pad
3311 *      @len: minimal length
3312 *      @free_on_error: free buffer on error
3313 *
3314 *      Pads up a buffer to ensure the trailing bytes exist and are
3315 *      blanked. If the buffer already contains sufficient data it
3316 *      is untouched. Otherwise it is extended. Returns zero on
3317 *      success. The skb is freed on error if @free_on_error is true.
3318 */
3319static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3320                                               unsigned int len,
3321                                               bool free_on_error)
3322{
3323        unsigned int size = skb->len;
3324
3325        if (unlikely(size < len)) {
3326                len -= size;
3327                if (__skb_pad(skb, len, free_on_error))
3328                        return -ENOMEM;
3329                __skb_put(skb, len);
3330        }
3331        return 0;
3332}
3333
3334/**
3335 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
3336 *      @skb: buffer to pad
3337 *      @len: minimal length
3338 *
3339 *      Pads up a buffer to ensure the trailing bytes exist and are
3340 *      blanked. If the buffer already contains sufficient data it
3341 *      is untouched. Otherwise it is extended. Returns zero on
3342 *      success. The skb is freed on error.
3343 */
3344static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3345{
3346        return __skb_put_padto(skb, len, true);
3347}
3348
3349static inline int skb_add_data(struct sk_buff *skb,
3350                               struct iov_iter *from, int copy)
3351{
3352        const int off = skb->len;
3353
3354        if (skb->ip_summed == CHECKSUM_NONE) {
3355                __wsum csum = 0;
3356                if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3357                                                 &csum, from)) {
3358                        skb->csum = csum_block_add(skb->csum, csum, off);
3359                        return 0;
3360                }
3361        } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3362                return 0;
3363
3364        __skb_trim(skb, off);
3365        return -EFAULT;
3366}
3367
3368static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3369                                    const struct page *page, int off)
3370{
3371        if (skb_zcopy(skb))
3372                return false;
3373        if (i) {
3374                const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3375
3376                return page == skb_frag_page(frag) &&
3377                       off == skb_frag_off(frag) + skb_frag_size(frag);
3378        }
3379        return false;
3380}
3381
3382static inline int __skb_linearize(struct sk_buff *skb)
3383{
3384        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3385}
3386
3387/**
3388 *      skb_linearize - convert paged skb to linear one
3389 *      @skb: buffer to linarize
3390 *
3391 *      If there is no free memory -ENOMEM is returned, otherwise zero
3392 *      is returned and the old skb data released.
3393 */
3394static inline int skb_linearize(struct sk_buff *skb)
3395{
3396        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3397}
3398
3399/**
3400 * skb_has_shared_frag - can any frag be overwritten
3401 * @skb: buffer to test
3402 *
3403 * Return true if the skb has at least one frag that might be modified
3404 * by an external entity (as in vmsplice()/sendfile())
3405 */
3406static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3407{
3408        return skb_is_nonlinear(skb) &&
3409               skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3410}
3411
3412/**
3413 *      skb_linearize_cow - make sure skb is linear and writable
3414 *      @skb: buffer to process
3415 *
3416 *      If there is no free memory -ENOMEM is returned, otherwise zero
3417 *      is returned and the old skb data released.
3418 */
3419static inline int skb_linearize_cow(struct sk_buff *skb)
3420{
3421        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3422               __skb_linearize(skb) : 0;
3423}
3424
3425static __always_inline void
3426__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3427                     unsigned int off)
3428{
3429        if (skb->ip_summed == CHECKSUM_COMPLETE)
3430                skb->csum = csum_block_sub(skb->csum,
3431                                           csum_partial(start, len, 0), off);
3432        else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3433                 skb_checksum_start_offset(skb) < 0)
3434                skb->ip_summed = CHECKSUM_NONE;
3435}
3436
3437/**
3438 *      skb_postpull_rcsum - update checksum for received skb after pull
3439 *      @skb: buffer to update
3440 *      @start: start of data before pull
3441 *      @len: length of data pulled
3442 *
3443 *      After doing a pull on a received packet, you need to call this to
3444 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3445 *      CHECKSUM_NONE so that it can be recomputed from scratch.
3446 */
3447static inline void skb_postpull_rcsum(struct sk_buff *skb,
3448                                      const void *start, unsigned int len)
3449{
3450        __skb_postpull_rcsum(skb, start, len, 0);
3451}
3452
3453static __always_inline void
3454__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3455                     unsigned int off)
3456{
3457        if (skb->ip_summed == CHECKSUM_COMPLETE)
3458                skb->csum = csum_block_add(skb->csum,
3459                                           csum_partial(start, len, 0), off);
3460}
3461
3462/**
3463 *      skb_postpush_rcsum - update checksum for received skb after push
3464 *      @skb: buffer to update
3465 *      @start: start of data after push
3466 *      @len: length of data pushed
3467 *
3468 *      After doing a push on a received packet, you need to call this to
3469 *      update the CHECKSUM_COMPLETE checksum.
3470 */
3471static inline void skb_postpush_rcsum(struct sk_buff *skb,
3472                                      const void *start, unsigned int len)
3473{
3474        __skb_postpush_rcsum(skb, start, len, 0);
3475}
3476
3477void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3478
3479/**
3480 *      skb_push_rcsum - push skb and update receive checksum
3481 *      @skb: buffer to update
3482 *      @len: length of data pulled
3483 *
3484 *      This function performs an skb_push on the packet and updates
3485 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3486 *      receive path processing instead of skb_push unless you know
3487 *      that the checksum difference is zero (e.g., a valid IP header)
3488 *      or you are setting ip_summed to CHECKSUM_NONE.
3489 */
3490static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3491{
3492        skb_push(skb, len);
3493        skb_postpush_rcsum(skb, skb->data, len);
3494        return skb->data;
3495}
3496
3497int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3498/**
3499 *      pskb_trim_rcsum - trim received skb and update checksum
3500 *      @skb: buffer to trim
3501 *      @len: new length
3502 *
3503 *      This is exactly the same as pskb_trim except that it ensures the
3504 *      checksum of received packets are still valid after the operation.
3505 *      It can change skb pointers.
3506 */
3507
3508static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3509{
3510        if (likely(len >= skb->len))
3511                return 0;
3512        return pskb_trim_rcsum_slow(skb, len);
3513}
3514
3515static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3516{
3517        if (skb->ip_summed == CHECKSUM_COMPLETE)
3518                skb->ip_summed = CHECKSUM_NONE;
3519        __skb_trim(skb, len);
3520        return 0;
3521}
3522
3523static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3524{
3525        if (skb->ip_summed == CHECKSUM_COMPLETE)
3526                skb->ip_summed = CHECKSUM_NONE;
3527        return __skb_grow(skb, len);
3528}
3529
3530#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3531#define skb_rb_first(root) rb_to_skb(rb_first(root))
3532#define skb_rb_last(root)  rb_to_skb(rb_last(root))
3533#define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3534#define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3535
3536#define skb_queue_walk(queue, skb) \
3537                for (skb = (queue)->next;                                       \
3538                     skb != (struct sk_buff *)(queue);                          \
3539                     skb = skb->next)
3540
3541#define skb_queue_walk_safe(queue, skb, tmp)                                    \
3542                for (skb = (queue)->next, tmp = skb->next;                      \
3543                     skb != (struct sk_buff *)(queue);                          \
3544                     skb = tmp, tmp = skb->next)
3545
3546#define skb_queue_walk_from(queue, skb)                                         \
3547                for (; skb != (struct sk_buff *)(queue);                        \
3548                     skb = skb->next)
3549
3550#define skb_rbtree_walk(skb, root)                                              \
3551                for (skb = skb_rb_first(root); skb != NULL;                     \
3552                     skb = skb_rb_next(skb))
3553
3554#define skb_rbtree_walk_from(skb)                                               \
3555                for (; skb != NULL;                                             \
3556                     skb = skb_rb_next(skb))
3557
3558#define skb_rbtree_walk_from_safe(skb, tmp)                                     \
3559                for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);      \
3560                     skb = tmp)
3561
3562#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
3563                for (tmp = skb->next;                                           \
3564                     skb != (struct sk_buff *)(queue);                          \
3565                     skb = tmp, tmp = skb->next)
3566
3567#define skb_queue_reverse_walk(queue, skb) \
3568                for (skb = (queue)->prev;                                       \
3569                     skb != (struct sk_buff *)(queue);                          \
3570                     skb = skb->prev)
3571
3572#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
3573                for (skb = (queue)->prev, tmp = skb->prev;                      \
3574                     skb != (struct sk_buff *)(queue);                          \
3575                     skb = tmp, tmp = skb->prev)
3576
3577#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
3578                for (tmp = skb->prev;                                           \
3579                     skb != (struct sk_buff *)(queue);                          \
3580                     skb = tmp, tmp = skb->prev)
3581
3582static inline bool skb_has_frag_list(const struct sk_buff *skb)
3583{
3584        return skb_shinfo(skb)->frag_list != NULL;
3585}
3586
3587static inline void skb_frag_list_init(struct sk_buff *skb)
3588{
3589        skb_shinfo(skb)->frag_list = NULL;
3590}
3591
3592#define skb_walk_frags(skb, iter)       \
3593        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3594
3595
3596int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3597                                int *err, long *timeo_p,
3598                                const struct sk_buff *skb);
3599struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3600                                          struct sk_buff_head *queue,
3601                                          unsigned int flags,
3602                                          int *off, int *err,
3603                                          struct sk_buff **last);
3604struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3605                                        struct sk_buff_head *queue,
3606                                        unsigned int flags, int *off, int *err,
3607                                        struct sk_buff **last);
3608struct sk_buff *__skb_recv_datagram(struct sock *sk,
3609                                    struct sk_buff_head *sk_queue,
3610                                    unsigned int flags, int *off, int *err);
3611struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3612                                  int *err);
3613__poll_t datagram_poll(struct file *file, struct socket *sock,
3614                           struct poll_table_struct *wait);
3615int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3616                           struct iov_iter *to, int size);
3617static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3618                                        struct msghdr *msg, int size)
3619{
3620        return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3621}
3622int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3623                                   struct msghdr *msg);
3624int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3625                           struct iov_iter *to, int len,
3626                           struct ahash_request *hash);
3627int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3628                                 struct iov_iter *from, int len);
3629int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3630void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3631void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3632static inline void skb_free_datagram_locked(struct sock *sk,
3633                                            struct sk_buff *skb)
3634{
3635        __skb_free_datagram_locked(sk, skb, 0);
3636}
3637int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3638int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3639int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3640__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3641                              int len);
3642int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3643                    struct pipe_inode_info *pipe, unsigned int len,
3644                    unsigned int flags);
3645int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3646                         int len);
3647int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3648void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3649unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3650int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3651                 int len, int hlen);
3652void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3653int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3654void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3655bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3656bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3657struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3658struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3659                                 unsigned int offset);
3660struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3661int skb_ensure_writable(struct sk_buff *skb, int write_len);
3662int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3663int skb_vlan_pop(struct sk_buff *skb);
3664int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3665int skb_eth_pop(struct sk_buff *skb);
3666int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3667                 const unsigned char *src);
3668int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3669                  int mac_len, bool ethernet);
3670int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3671                 bool ethernet);
3672int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3673int skb_mpls_dec_ttl(struct sk_buff *skb);
3674struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3675                             gfp_t gfp);
3676
3677static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3678{
3679        return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3680}
3681
3682static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3683{
3684        return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3685}
3686
3687struct skb_checksum_ops {
3688        __wsum (*update)(const void *mem, int len, __wsum wsum);
3689        __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3690};
3691
3692extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3693
3694__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3695                      __wsum csum, const struct skb_checksum_ops *ops);
3696__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3697                    __wsum csum);
3698
3699static inline void * __must_check
3700__skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3701                     const void *data, int hlen, void *buffer)
3702{
3703        if (likely(hlen - offset >= len))
3704                return (void *)data + offset;
3705
3706        if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3707                return NULL;
3708
3709        return buffer;
3710}
3711
3712static inline void * __must_check
3713skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3714{
3715        return __skb_header_pointer(skb, offset, len, skb->data,
3716                                    skb_headlen(skb), buffer);
3717}
3718
3719/**
3720 *      skb_needs_linearize - check if we need to linearize a given skb
3721 *                            depending on the given device features.
3722 *      @skb: socket buffer to check
3723 *      @features: net device features
3724 *
3725 *      Returns true if either:
3726 *      1. skb has frag_list and the device doesn't support FRAGLIST, or
3727 *      2. skb is fragmented and the device does not support SG.
3728 */
3729static inline bool skb_needs_linearize(struct sk_buff *skb,
3730                                       netdev_features_t features)
3731{
3732        return skb_is_nonlinear(skb) &&
3733               ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3734                (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3735}
3736
3737static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3738                                             void *to,
3739                                             const unsigned int len)
3740{
3741        memcpy(to, skb->data, len);
3742}
3743
3744static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3745                                                    const int offset, void *to,
3746                                                    const unsigned int len)
3747{
3748        memcpy(to, skb->data + offset, len);
3749}
3750
3751static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3752                                           const void *from,
3753                                           const unsigned int len)
3754{
3755        memcpy(skb->data, from, len);
3756}
3757
3758static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3759                                                  const int offset,
3760                                                  const void *from,
3761                                                  const unsigned int len)
3762{
3763        memcpy(skb->data + offset, from, len);
3764}
3765
3766void skb_init(void);
3767
3768static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3769{
3770        return skb->tstamp;
3771}
3772
3773/**
3774 *      skb_get_timestamp - get timestamp from a skb
3775 *      @skb: skb to get stamp from
3776 *      @stamp: pointer to struct __kernel_old_timeval to store stamp in
3777 *
3778 *      Timestamps are stored in the skb as offsets to a base timestamp.
3779 *      This function converts the offset back to a struct timeval and stores
3780 *      it in stamp.
3781 */
3782static inline void skb_get_timestamp(const struct sk_buff *skb,
3783                                     struct __kernel_old_timeval *stamp)
3784{
3785        *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3786}
3787
3788static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3789                                         struct __kernel_sock_timeval *stamp)
3790{
3791        struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3792
3793        stamp->tv_sec = ts.tv_sec;
3794        stamp->tv_usec = ts.tv_nsec / 1000;
3795}
3796
3797static inline void skb_get_timestampns(const struct sk_buff *skb,
3798                                       struct __kernel_old_timespec *stamp)
3799{
3800        struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3801
3802        stamp->tv_sec = ts.tv_sec;
3803        stamp->tv_nsec = ts.tv_nsec;
3804}
3805
3806static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3807                                           struct __kernel_timespec *stamp)
3808{
3809        struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3810
3811        stamp->tv_sec = ts.tv_sec;
3812        stamp->tv_nsec = ts.tv_nsec;
3813}
3814
3815static inline void __net_timestamp(struct sk_buff *skb)
3816{
3817        skb->tstamp = ktime_get_real();
3818}
3819
3820static inline ktime_t net_timedelta(ktime_t t)
3821{
3822        return ktime_sub(ktime_get_real(), t);
3823}
3824
3825static inline ktime_t net_invalid_timestamp(void)
3826{
3827        return 0;
3828}
3829
3830static inline u8 skb_metadata_len(const struct sk_buff *skb)
3831{
3832        return skb_shinfo(skb)->meta_len;
3833}
3834
3835static inline void *skb_metadata_end(const struct sk_buff *skb)
3836{
3837        return skb_mac_header(skb);
3838}
3839
3840static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3841                                          const struct sk_buff *skb_b,
3842                                          u8 meta_len)
3843{
3844        const void *a = skb_metadata_end(skb_a);
3845        const void *b = skb_metadata_end(skb_b);
3846        /* Using more efficient varaiant than plain call to memcmp(). */
3847#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3848        u64 diffs = 0;
3849
3850        switch (meta_len) {
3851#define __it(x, op) (x -= sizeof(u##op))
3852#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3853        case 32: diffs |= __it_diff(a, b, 64);
3854                fallthrough;
3855        case 24: diffs |= __it_diff(a, b, 64);
3856                fallthrough;
3857        case 16: diffs |= __it_diff(a, b, 64);
3858                fallthrough;
3859        case  8: diffs |= __it_diff(a, b, 64);
3860                break;
3861        case 28: diffs |= __it_diff(a, b, 64);
3862                fallthrough;
3863        case 20: diffs |= __it_diff(a, b, 64);
3864                fallthrough;
3865        case 12: diffs |= __it_diff(a, b, 64);
3866                fallthrough;
3867        case  4: diffs |= __it_diff(a, b, 32);
3868                break;
3869        }
3870        return diffs;
3871#else
3872        return memcmp(a - meta_len, b - meta_len, meta_len);
3873#endif
3874}
3875
3876static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3877                                        const struct sk_buff *skb_b)
3878{
3879        u8 len_a = skb_metadata_len(skb_a);
3880        u8 len_b = skb_metadata_len(skb_b);
3881
3882        if (!(len_a | len_b))
3883                return false;
3884
3885        return len_a != len_b ?
3886               true : __skb_metadata_differs(skb_a, skb_b, len_a);
3887}
3888
3889static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3890{
3891        skb_shinfo(skb)->meta_len = meta_len;
3892}
3893
3894static inline void skb_metadata_clear(struct sk_buff *skb)
3895{
3896        skb_metadata_set(skb, 0);
3897}
3898
3899struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3900
3901#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3902
3903void skb_clone_tx_timestamp(struct sk_buff *skb);
3904bool skb_defer_rx_timestamp(struct sk_buff *skb);
3905
3906#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3907
3908static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3909{
3910}
3911
3912static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3913{
3914        return false;
3915}
3916
3917#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3918
3919/**
3920 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3921 *
3922 * PHY drivers may accept clones of transmitted packets for
3923 * timestamping via their phy_driver.txtstamp method. These drivers
3924 * must call this function to return the skb back to the stack with a
3925 * timestamp.
3926 *
3927 * @skb: clone of the original outgoing packet
3928 * @hwtstamps: hardware time stamps
3929 *
3930 */
3931void skb_complete_tx_timestamp(struct sk_buff *skb,
3932                               struct skb_shared_hwtstamps *hwtstamps);
3933
3934void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
3935                     struct skb_shared_hwtstamps *hwtstamps,
3936                     struct sock *sk, int tstype);
3937
3938/**
3939 * skb_tstamp_tx - queue clone of skb with send time stamps
3940 * @orig_skb:   the original outgoing packet
3941 * @hwtstamps:  hardware time stamps, may be NULL if not available
3942 *
3943 * If the skb has a socket associated, then this function clones the
3944 * skb (thus sharing the actual data and optional structures), stores
3945 * the optional hardware time stamping information (if non NULL) or
3946 * generates a software time stamp (otherwise), then queues the clone
3947 * to the error queue of the socket.  Errors are silently ignored.
3948 */
3949void skb_tstamp_tx(struct sk_buff *orig_skb,
3950                   struct skb_shared_hwtstamps *hwtstamps);
3951
3952/**
3953 * skb_tx_timestamp() - Driver hook for transmit timestamping
3954 *
3955 * Ethernet MAC Drivers should call this function in their hard_xmit()
3956 * function immediately before giving the sk_buff to the MAC hardware.
3957 *
3958 * Specifically, one should make absolutely sure that this function is
3959 * called before TX completion of this packet can trigger.  Otherwise
3960 * the packet could potentially already be freed.
3961 *
3962 * @skb: A socket buffer.
3963 */
3964static inline void skb_tx_timestamp(struct sk_buff *skb)
3965{
3966        skb_clone_tx_timestamp(skb);
3967        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3968                skb_tstamp_tx(skb, NULL);
3969}
3970
3971/**
3972 * skb_complete_wifi_ack - deliver skb with wifi status
3973 *
3974 * @skb: the original outgoing packet
3975 * @acked: ack status
3976 *
3977 */
3978void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3979
3980__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3981__sum16 __skb_checksum_complete(struct sk_buff *skb);
3982
3983static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3984{
3985        return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3986                skb->csum_valid ||
3987                (skb->ip_summed == CHECKSUM_PARTIAL &&
3988                 skb_checksum_start_offset(skb) >= 0));
3989}
3990
3991/**
3992 *      skb_checksum_complete - Calculate checksum of an entire packet
3993 *      @skb: packet to process
3994 *
3995 *      This function calculates the checksum over the entire packet plus
3996 *      the value of skb->csum.  The latter can be used to supply the
3997 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
3998 *      checksum.
3999 *
4000 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
4001 *      this function can be used to verify that checksum on received
4002 *      packets.  In that case the function should return zero if the
4003 *      checksum is correct.  In particular, this function will return zero
4004 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4005 *      hardware has already verified the correctness of the checksum.
4006 */
4007static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4008{
4009        return skb_csum_unnecessary(skb) ?
4010               0 : __skb_checksum_complete(skb);
4011}
4012
4013static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4014{
4015        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4016                if (skb->csum_level == 0)
4017                        skb->ip_summed = CHECKSUM_NONE;
4018                else
4019                        skb->csum_level--;
4020        }
4021}
4022
4023static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4024{
4025        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4026                if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4027                        skb->csum_level++;
4028        } else if (skb->ip_summed == CHECKSUM_NONE) {
4029                skb->ip_summed = CHECKSUM_UNNECESSARY;
4030                skb->csum_level = 0;
4031        }
4032}
4033
4034static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4035{
4036        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4037                skb->ip_summed = CHECKSUM_NONE;
4038                skb->csum_level = 0;
4039        }
4040}
4041
4042/* Check if we need to perform checksum complete validation.
4043 *
4044 * Returns true if checksum complete is needed, false otherwise
4045 * (either checksum is unnecessary or zero checksum is allowed).
4046 */
4047static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4048                                                  bool zero_okay,
4049                                                  __sum16 check)
4050{
4051        if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4052                skb->csum_valid = 1;
4053                __skb_decr_checksum_unnecessary(skb);
4054                return false;
4055        }
4056
4057        return true;
4058}
4059
4060/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4061 * in checksum_init.
4062 */
4063#define CHECKSUM_BREAK 76
4064
4065/* Unset checksum-complete
4066 *
4067 * Unset checksum complete can be done when packet is being modified
4068 * (uncompressed for instance) and checksum-complete value is
4069 * invalidated.
4070 */
4071static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4072{
4073        if (skb->ip_summed == CHECKSUM_COMPLETE)
4074                skb->ip_summed = CHECKSUM_NONE;
4075}
4076
4077/* Validate (init) checksum based on checksum complete.
4078 *
4079 * Return values:
4080 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4081 *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4082 *      checksum is stored in skb->csum for use in __skb_checksum_complete
4083 *   non-zero: value of invalid checksum
4084 *
4085 */
4086static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4087                                                       bool complete,
4088                                                       __wsum psum)
4089{
4090        if (skb->ip_summed == CHECKSUM_COMPLETE) {
4091                if (!csum_fold(csum_add(psum, skb->csum))) {
4092                        skb->csum_valid = 1;
4093                        return 0;
4094                }
4095        }
4096
4097        skb->csum = psum;
4098
4099        if (complete || skb->len <= CHECKSUM_BREAK) {
4100                __sum16 csum;
4101
4102                csum = __skb_checksum_complete(skb);
4103                skb->csum_valid = !csum;
4104                return csum;
4105        }
4106
4107        return 0;
4108}
4109
4110static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4111{
4112        return 0;
4113}
4114
4115/* Perform checksum validate (init). Note that this is a macro since we only
4116 * want to calculate the pseudo header which is an input function if necessary.
4117 * First we try to validate without any computation (checksum unnecessary) and
4118 * then calculate based on checksum complete calling the function to compute
4119 * pseudo header.
4120 *
4121 * Return values:
4122 *   0: checksum is validated or try to in skb_checksum_complete
4123 *   non-zero: value of invalid checksum
4124 */
4125#define __skb_checksum_validate(skb, proto, complete,                   \
4126                                zero_okay, check, compute_pseudo)       \
4127({                                                                      \
4128        __sum16 __ret = 0;                                              \
4129        skb->csum_valid = 0;                                            \
4130        if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
4131                __ret = __skb_checksum_validate_complete(skb,           \
4132                                complete, compute_pseudo(skb, proto));  \
4133        __ret;                                                          \
4134})
4135
4136#define skb_checksum_init(skb, proto, compute_pseudo)                   \
4137        __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4138
4139#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4140        __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4141
4142#define skb_checksum_validate(skb, proto, compute_pseudo)               \
4143        __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4144
4145#define skb_checksum_validate_zero_check(skb, proto, check,             \
4146                                         compute_pseudo)                \
4147        __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4148
4149#define skb_checksum_simple_validate(skb)                               \
4150        __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4151
4152static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4153{
4154        return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4155}
4156
4157static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4158{
4159        skb->csum = ~pseudo;
4160        skb->ip_summed = CHECKSUM_COMPLETE;
4161}
4162
4163#define skb_checksum_try_convert(skb, proto, compute_pseudo)    \
4164do {                                                                    \
4165        if (__skb_checksum_convert_check(skb))                          \
4166                __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4167} while (0)
4168
4169static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4170                                              u16 start, u16 offset)
4171{
4172        skb->ip_summed = CHECKSUM_PARTIAL;
4173        skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4174        skb->csum_offset = offset - start;
4175}
4176
4177/* Update skbuf and packet to reflect the remote checksum offload operation.
4178 * When called, ptr indicates the starting point for skb->csum when
4179 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4180 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4181 */
4182static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4183                                       int start, int offset, bool nopartial)
4184{
4185        __wsum delta;
4186
4187        if (!nopartial) {
4188                skb_remcsum_adjust_partial(skb, ptr, start, offset);
4189                return;
4190        }
4191
4192         if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4193                __skb_checksum_complete(skb);
4194                skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4195        }
4196
4197        delta = remcsum_adjust(ptr, skb->csum, start, offset);
4198
4199        /* Adjust skb->csum since we changed the packet */
4200        skb->csum = csum_add(skb->csum, delta);
4201}
4202
4203static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4204{
4205#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4206        return (void *)(skb->_nfct & NFCT_PTRMASK);
4207#else
4208        return NULL;
4209#endif
4210}
4211
4212static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4213{
4214#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4215        return skb->_nfct;
4216#else
4217        return 0UL;
4218#endif
4219}
4220
4221static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4222{
4223#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4224        skb->slow_gro |= !!nfct;
4225        skb->_nfct = nfct;
4226#endif
4227}
4228
4229#ifdef CONFIG_SKB_EXTENSIONS
4230enum skb_ext_id {
4231#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4232        SKB_EXT_BRIDGE_NF,
4233#endif
4234#ifdef CONFIG_XFRM
4235        SKB_EXT_SEC_PATH,
4236#endif
4237#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4238        TC_SKB_EXT,
4239#endif
4240#if IS_ENABLED(CONFIG_MPTCP)
4241        SKB_EXT_MPTCP,
4242#endif
4243        SKB_EXT_NUM, /* must be last */
4244};
4245
4246/**
4247 *      struct skb_ext - sk_buff extensions
4248 *      @refcnt: 1 on allocation, deallocated on 0
4249 *      @offset: offset to add to @data to obtain extension address
4250 *      @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4251 *      @data: start of extension data, variable sized
4252 *
4253 *      Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4254 *      to use 'u8' types while allowing up to 2kb worth of extension data.
4255 */
4256struct skb_ext {
4257        refcount_t refcnt;
4258        u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4259        u8 chunks;              /* same */
4260        char data[] __aligned(8);
4261};
4262
4263struct skb_ext *__skb_ext_alloc(gfp_t flags);
4264void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4265                    struct skb_ext *ext);
4266void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4267void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4268void __skb_ext_put(struct skb_ext *ext);
4269
4270static inline void skb_ext_put(struct sk_buff *skb)
4271{
4272        if (skb->active_extensions)
4273                __skb_ext_put(skb->extensions);
4274}
4275
4276static inline void __skb_ext_copy(struct sk_buff *dst,
4277                                  const struct sk_buff *src)
4278{
4279        dst->active_extensions = src->active_extensions;
4280
4281        if (src->active_extensions) {
4282                struct skb_ext *ext = src->extensions;
4283
4284                refcount_inc(&ext->refcnt);
4285                dst->extensions = ext;
4286        }
4287}
4288
4289static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4290{
4291        skb_ext_put(dst);
4292        __skb_ext_copy(dst, src);
4293}
4294
4295static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4296{
4297        return !!ext->offset[i];
4298}
4299
4300static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4301{
4302        return skb->active_extensions & (1 << id);
4303}
4304
4305static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4306{
4307        if (skb_ext_exist(skb, id))
4308                __skb_ext_del(skb, id);
4309}
4310
4311static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4312{
4313        if (skb_ext_exist(skb, id)) {
4314                struct skb_ext *ext = skb->extensions;
4315
4316                return (void *)ext + (ext->offset[id] << 3);
4317        }
4318
4319        return NULL;
4320}
4321
4322static inline void skb_ext_reset(struct sk_buff *skb)
4323{
4324        if (unlikely(skb->active_extensions)) {
4325                __skb_ext_put(skb->extensions);
4326                skb->active_extensions = 0;
4327        }
4328}
4329
4330static inline bool skb_has_extensions(struct sk_buff *skb)
4331{
4332        return unlikely(skb->active_extensions);
4333}
4334#else
4335static inline void skb_ext_put(struct sk_buff *skb) {}
4336static inline void skb_ext_reset(struct sk_buff *skb) {}
4337static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4338static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4339static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4340static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4341#endif /* CONFIG_SKB_EXTENSIONS */
4342
4343static inline void nf_reset_ct(struct sk_buff *skb)
4344{
4345#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4346        nf_conntrack_put(skb_nfct(skb));
4347        skb->_nfct = 0;
4348#endif
4349}
4350
4351static inline void nf_reset_trace(struct sk_buff *skb)
4352{
4353#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4354        skb->nf_trace = 0;
4355#endif
4356}
4357
4358static inline void ipvs_reset(struct sk_buff *skb)
4359{
4360#if IS_ENABLED(CONFIG_IP_VS)
4361        skb->ipvs_property = 0;
4362#endif
4363}
4364
4365/* Note: This doesn't put any conntrack info in dst. */
4366static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4367                             bool copy)
4368{
4369#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4370        dst->_nfct = src->_nfct;
4371        nf_conntrack_get(skb_nfct(src));
4372#endif
4373#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4374        if (copy)
4375                dst->nf_trace = src->nf_trace;
4376#endif
4377}
4378
4379static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4380{
4381#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4382        nf_conntrack_put(skb_nfct(dst));
4383#endif
4384        dst->slow_gro = src->slow_gro;
4385        __nf_copy(dst, src, true);
4386}
4387
4388#ifdef CONFIG_NETWORK_SECMARK
4389static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4390{
4391        to->secmark = from->secmark;
4392}
4393
4394static inline void skb_init_secmark(struct sk_buff *skb)
4395{
4396        skb->secmark = 0;
4397}
4398#else
4399static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4400{ }
4401
4402static inline void skb_init_secmark(struct sk_buff *skb)
4403{ }
4404#endif
4405
4406static inline int secpath_exists(const struct sk_buff *skb)
4407{
4408#ifdef CONFIG_XFRM
4409        return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4410#else
4411        return 0;
4412#endif
4413}
4414
4415static inline bool skb_irq_freeable(const struct sk_buff *skb)
4416{
4417        return !skb->destructor &&
4418                !secpath_exists(skb) &&
4419                !skb_nfct(skb) &&
4420                !skb->_skb_refdst &&
4421                !skb_has_frag_list(skb);
4422}
4423
4424static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4425{
4426        skb->queue_mapping = queue_mapping;
4427}
4428
4429static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4430{
4431        return skb->queue_mapping;
4432}
4433
4434static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4435{
4436        to->queue_mapping = from->queue_mapping;
4437}
4438
4439static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4440{
4441        skb->queue_mapping = rx_queue + 1;
4442}
4443
4444static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4445{
4446        return skb->queue_mapping - 1;
4447}
4448
4449static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4450{
4451        return skb->queue_mapping != 0;
4452}
4453
4454static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4455{
4456        skb->dst_pending_confirm = val;
4457}
4458
4459static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4460{
4461        return skb->dst_pending_confirm != 0;
4462}
4463
4464static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4465{
4466#ifdef CONFIG_XFRM
4467        return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4468#else
4469        return NULL;
4470#endif
4471}
4472
4473/* Keeps track of mac header offset relative to skb->head.
4474 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4475 * For non-tunnel skb it points to skb_mac_header() and for
4476 * tunnel skb it points to outer mac header.
4477 * Keeps track of level of encapsulation of network headers.
4478 */
4479struct skb_gso_cb {
4480        union {
4481                int     mac_offset;
4482                int     data_offset;
4483        };
4484        int     encap_level;
4485        __wsum  csum;
4486        __u16   csum_start;
4487};
4488#define SKB_GSO_CB_OFFSET       32
4489#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4490
4491static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4492{
4493        return (skb_mac_header(inner_skb) - inner_skb->head) -
4494                SKB_GSO_CB(inner_skb)->mac_offset;
4495}
4496
4497static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4498{
4499        int new_headroom, headroom;
4500        int ret;
4501
4502        headroom = skb_headroom(skb);
4503        ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4504        if (ret)
4505                return ret;
4506
4507        new_headroom = skb_headroom(skb);
4508        SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4509        return 0;
4510}
4511
4512static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4513{
4514        /* Do not update partial checksums if remote checksum is enabled. */
4515        if (skb->remcsum_offload)
4516                return;
4517
4518        SKB_GSO_CB(skb)->csum = res;
4519        SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4520}
4521
4522/* Compute the checksum for a gso segment. First compute the checksum value
4523 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4524 * then add in skb->csum (checksum from csum_start to end of packet).
4525 * skb->csum and csum_start are then updated to reflect the checksum of the
4526 * resultant packet starting from the transport header-- the resultant checksum
4527 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4528 * header.
4529 */
4530static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4531{
4532        unsigned char *csum_start = skb_transport_header(skb);
4533        int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4534        __wsum partial = SKB_GSO_CB(skb)->csum;
4535
4536        SKB_GSO_CB(skb)->csum = res;
4537        SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4538
4539        return csum_fold(csum_partial(csum_start, plen, partial));
4540}
4541
4542static inline bool skb_is_gso(const struct sk_buff *skb)
4543{
4544        return skb_shinfo(skb)->gso_size;
4545}
4546
4547/* Note: Should be called only if skb_is_gso(skb) is true */
4548static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4549{
4550        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4551}
4552
4553/* Note: Should be called only if skb_is_gso(skb) is true */
4554static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4555{
4556        return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4557}
4558
4559/* Note: Should be called only if skb_is_gso(skb) is true */
4560static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4561{
4562        return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4563}
4564
4565static inline void skb_gso_reset(struct sk_buff *skb)
4566{
4567        skb_shinfo(skb)->gso_size = 0;
4568        skb_shinfo(skb)->gso_segs = 0;
4569        skb_shinfo(skb)->gso_type = 0;
4570}
4571
4572static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4573                                         u16 increment)
4574{
4575        if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4576                return;
4577        shinfo->gso_size += increment;
4578}
4579
4580static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4581                                         u16 decrement)
4582{
4583        if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4584                return;
4585        shinfo->gso_size -= decrement;
4586}
4587
4588void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4589
4590static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4591{
4592        /* LRO sets gso_size but not gso_type, whereas if GSO is really
4593         * wanted then gso_type will be set. */
4594        const struct skb_shared_info *shinfo = skb_shinfo(skb);
4595
4596        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4597            unlikely(shinfo->gso_type == 0)) {
4598                __skb_warn_lro_forwarding(skb);
4599                return true;
4600        }
4601        return false;
4602}
4603
4604static inline void skb_forward_csum(struct sk_buff *skb)
4605{
4606        /* Unfortunately we don't support this one.  Any brave souls? */
4607        if (skb->ip_summed == CHECKSUM_COMPLETE)
4608                skb->ip_summed = CHECKSUM_NONE;
4609}
4610
4611/**
4612 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4613 * @skb: skb to check
4614 *
4615 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4616 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4617 * use this helper, to document places where we make this assertion.
4618 */
4619static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4620{
4621#ifdef DEBUG
4622        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4623#endif
4624}
4625
4626bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4627
4628int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4629struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4630                                     unsigned int transport_len,
4631                                     __sum16(*skb_chkf)(struct sk_buff *skb));
4632
4633/**
4634 * skb_head_is_locked - Determine if the skb->head is locked down
4635 * @skb: skb to check
4636 *
4637 * The head on skbs build around a head frag can be removed if they are
4638 * not cloned.  This function returns true if the skb head is locked down
4639 * due to either being allocated via kmalloc, or by being a clone with
4640 * multiple references to the head.
4641 */
4642static inline bool skb_head_is_locked(const struct sk_buff *skb)
4643{
4644        return !skb->head_frag || skb_cloned(skb);
4645}
4646
4647/* Local Checksum Offload.
4648 * Compute outer checksum based on the assumption that the
4649 * inner checksum will be offloaded later.
4650 * See Documentation/networking/checksum-offloads.rst for
4651 * explanation of how this works.
4652 * Fill in outer checksum adjustment (e.g. with sum of outer
4653 * pseudo-header) before calling.
4654 * Also ensure that inner checksum is in linear data area.
4655 */
4656static inline __wsum lco_csum(struct sk_buff *skb)
4657{
4658        unsigned char *csum_start = skb_checksum_start(skb);
4659        unsigned char *l4_hdr = skb_transport_header(skb);
4660        __wsum partial;
4661
4662        /* Start with complement of inner checksum adjustment */
4663        partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4664                                                    skb->csum_offset));
4665
4666        /* Add in checksum of our headers (incl. outer checksum
4667         * adjustment filled in by caller) and return result.
4668         */
4669        return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4670}
4671
4672static inline bool skb_is_redirected(const struct sk_buff *skb)
4673{
4674        return skb->redirected;
4675}
4676
4677static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4678{
4679        skb->redirected = 1;
4680#ifdef CONFIG_NET_REDIRECT
4681        skb->from_ingress = from_ingress;
4682        if (skb->from_ingress)
4683                skb->tstamp = 0;
4684#endif
4685}
4686
4687static inline void skb_reset_redirect(struct sk_buff *skb)
4688{
4689        skb->redirected = 0;
4690}
4691
4692static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4693{
4694        return skb->csum_not_inet;
4695}
4696
4697static inline void skb_set_kcov_handle(struct sk_buff *skb,
4698                                       const u64 kcov_handle)
4699{
4700#ifdef CONFIG_KCOV
4701        skb->kcov_handle = kcov_handle;
4702#endif
4703}
4704
4705static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4706{
4707#ifdef CONFIG_KCOV
4708        return skb->kcov_handle;
4709#else
4710        return 0;
4711#endif
4712}
4713
4714#ifdef CONFIG_PAGE_POOL
4715static inline void skb_mark_for_recycle(struct sk_buff *skb)
4716{
4717        skb->pp_recycle = 1;
4718}
4719#endif
4720
4721static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4722{
4723        if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4724                return false;
4725        return page_pool_return_skb_page(virt_to_page(data));
4726}
4727
4728#endif  /* __KERNEL__ */
4729#endif  /* _LINUX_SKBUFF_H */
4730