linux/include/linux/workqueue.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * workqueue.h --- work queue handling for Linux.
   4 */
   5
   6#ifndef _LINUX_WORKQUEUE_H
   7#define _LINUX_WORKQUEUE_H
   8
   9#include <linux/timer.h>
  10#include <linux/linkage.h>
  11#include <linux/bitops.h>
  12#include <linux/lockdep.h>
  13#include <linux/threads.h>
  14#include <linux/atomic.h>
  15#include <linux/cpumask.h>
  16#include <linux/rcupdate.h>
  17
  18struct workqueue_struct;
  19
  20struct work_struct;
  21typedef void (*work_func_t)(struct work_struct *work);
  22void delayed_work_timer_fn(struct timer_list *t);
  23
  24/*
  25 * The first word is the work queue pointer and the flags rolled into
  26 * one
  27 */
  28#define work_data_bits(work) ((unsigned long *)(&(work)->data))
  29
  30enum {
  31        WORK_STRUCT_PENDING_BIT = 0,    /* work item is pending execution */
  32        WORK_STRUCT_INACTIVE_BIT= 1,    /* work item is inactive */
  33        WORK_STRUCT_PWQ_BIT     = 2,    /* data points to pwq */
  34        WORK_STRUCT_LINKED_BIT  = 3,    /* next work is linked to this one */
  35#ifdef CONFIG_DEBUG_OBJECTS_WORK
  36        WORK_STRUCT_STATIC_BIT  = 4,    /* static initializer (debugobjects) */
  37        WORK_STRUCT_COLOR_SHIFT = 5,    /* color for workqueue flushing */
  38#else
  39        WORK_STRUCT_COLOR_SHIFT = 4,    /* color for workqueue flushing */
  40#endif
  41
  42        WORK_STRUCT_COLOR_BITS  = 4,
  43
  44        WORK_STRUCT_PENDING     = 1 << WORK_STRUCT_PENDING_BIT,
  45        WORK_STRUCT_INACTIVE    = 1 << WORK_STRUCT_INACTIVE_BIT,
  46        WORK_STRUCT_PWQ         = 1 << WORK_STRUCT_PWQ_BIT,
  47        WORK_STRUCT_LINKED      = 1 << WORK_STRUCT_LINKED_BIT,
  48#ifdef CONFIG_DEBUG_OBJECTS_WORK
  49        WORK_STRUCT_STATIC      = 1 << WORK_STRUCT_STATIC_BIT,
  50#else
  51        WORK_STRUCT_STATIC      = 0,
  52#endif
  53
  54        WORK_NR_COLORS          = (1 << WORK_STRUCT_COLOR_BITS),
  55
  56        /* not bound to any CPU, prefer the local CPU */
  57        WORK_CPU_UNBOUND        = NR_CPUS,
  58
  59        /*
  60         * Reserve 8 bits off of pwq pointer w/ debugobjects turned off.
  61         * This makes pwqs aligned to 256 bytes and allows 16 workqueue
  62         * flush colors.
  63         */
  64        WORK_STRUCT_FLAG_BITS   = WORK_STRUCT_COLOR_SHIFT +
  65                                  WORK_STRUCT_COLOR_BITS,
  66
  67        /* data contains off-queue information when !WORK_STRUCT_PWQ */
  68        WORK_OFFQ_FLAG_BASE     = WORK_STRUCT_COLOR_SHIFT,
  69
  70        __WORK_OFFQ_CANCELING   = WORK_OFFQ_FLAG_BASE,
  71        WORK_OFFQ_CANCELING     = (1 << __WORK_OFFQ_CANCELING),
  72
  73        /*
  74         * When a work item is off queue, its high bits point to the last
  75         * pool it was on.  Cap at 31 bits and use the highest number to
  76         * indicate that no pool is associated.
  77         */
  78        WORK_OFFQ_FLAG_BITS     = 1,
  79        WORK_OFFQ_POOL_SHIFT    = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS,
  80        WORK_OFFQ_LEFT          = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT,
  81        WORK_OFFQ_POOL_BITS     = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31,
  82        WORK_OFFQ_POOL_NONE     = (1LU << WORK_OFFQ_POOL_BITS) - 1,
  83
  84        /* convenience constants */
  85        WORK_STRUCT_FLAG_MASK   = (1UL << WORK_STRUCT_FLAG_BITS) - 1,
  86        WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK,
  87        WORK_STRUCT_NO_POOL     = (unsigned long)WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT,
  88
  89        /* bit mask for work_busy() return values */
  90        WORK_BUSY_PENDING       = 1 << 0,
  91        WORK_BUSY_RUNNING       = 1 << 1,
  92
  93        /* maximum string length for set_worker_desc() */
  94        WORKER_DESC_LEN         = 24,
  95};
  96
  97struct work_struct {
  98        atomic_long_t data;
  99        struct list_head entry;
 100        work_func_t func;
 101#ifdef CONFIG_LOCKDEP
 102        struct lockdep_map lockdep_map;
 103#endif
 104};
 105
 106#define WORK_DATA_INIT()        ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL)
 107#define WORK_DATA_STATIC_INIT() \
 108        ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC))
 109
 110struct delayed_work {
 111        struct work_struct work;
 112        struct timer_list timer;
 113
 114        /* target workqueue and CPU ->timer uses to queue ->work */
 115        struct workqueue_struct *wq;
 116        int cpu;
 117};
 118
 119struct rcu_work {
 120        struct work_struct work;
 121        struct rcu_head rcu;
 122
 123        /* target workqueue ->rcu uses to queue ->work */
 124        struct workqueue_struct *wq;
 125};
 126
 127/**
 128 * struct workqueue_attrs - A struct for workqueue attributes.
 129 *
 130 * This can be used to change attributes of an unbound workqueue.
 131 */
 132struct workqueue_attrs {
 133        /**
 134         * @nice: nice level
 135         */
 136        int nice;
 137
 138        /**
 139         * @cpumask: allowed CPUs
 140         */
 141        cpumask_var_t cpumask;
 142
 143        /**
 144         * @no_numa: disable NUMA affinity
 145         *
 146         * Unlike other fields, ``no_numa`` isn't a property of a worker_pool. It
 147         * only modifies how :c:func:`apply_workqueue_attrs` select pools and thus
 148         * doesn't participate in pool hash calculations or equality comparisons.
 149         */
 150        bool no_numa;
 151};
 152
 153static inline struct delayed_work *to_delayed_work(struct work_struct *work)
 154{
 155        return container_of(work, struct delayed_work, work);
 156}
 157
 158static inline struct rcu_work *to_rcu_work(struct work_struct *work)
 159{
 160        return container_of(work, struct rcu_work, work);
 161}
 162
 163struct execute_work {
 164        struct work_struct work;
 165};
 166
 167#ifdef CONFIG_LOCKDEP
 168/*
 169 * NB: because we have to copy the lockdep_map, setting _key
 170 * here is required, otherwise it could get initialised to the
 171 * copy of the lockdep_map!
 172 */
 173#define __WORK_INIT_LOCKDEP_MAP(n, k) \
 174        .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
 175#else
 176#define __WORK_INIT_LOCKDEP_MAP(n, k)
 177#endif
 178
 179#define __WORK_INITIALIZER(n, f) {                                      \
 180        .data = WORK_DATA_STATIC_INIT(),                                \
 181        .entry  = { &(n).entry, &(n).entry },                           \
 182        .func = (f),                                                    \
 183        __WORK_INIT_LOCKDEP_MAP(#n, &(n))                               \
 184        }
 185
 186#define __DELAYED_WORK_INITIALIZER(n, f, tflags) {                      \
 187        .work = __WORK_INITIALIZER((n).work, (f)),                      \
 188        .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\
 189                                     (tflags) | TIMER_IRQSAFE),         \
 190        }
 191
 192#define DECLARE_WORK(n, f)                                              \
 193        struct work_struct n = __WORK_INITIALIZER(n, f)
 194
 195#define DECLARE_DELAYED_WORK(n, f)                                      \
 196        struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
 197
 198#define DECLARE_DEFERRABLE_WORK(n, f)                                   \
 199        struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
 200
 201#ifdef CONFIG_DEBUG_OBJECTS_WORK
 202extern void __init_work(struct work_struct *work, int onstack);
 203extern void destroy_work_on_stack(struct work_struct *work);
 204extern void destroy_delayed_work_on_stack(struct delayed_work *work);
 205static inline unsigned int work_static(struct work_struct *work)
 206{
 207        return *work_data_bits(work) & WORK_STRUCT_STATIC;
 208}
 209#else
 210static inline void __init_work(struct work_struct *work, int onstack) { }
 211static inline void destroy_work_on_stack(struct work_struct *work) { }
 212static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { }
 213static inline unsigned int work_static(struct work_struct *work) { return 0; }
 214#endif
 215
 216/*
 217 * initialize all of a work item in one go
 218 *
 219 * NOTE! No point in using "atomic_long_set()": using a direct
 220 * assignment of the work data initializer allows the compiler
 221 * to generate better code.
 222 */
 223#ifdef CONFIG_LOCKDEP
 224#define __INIT_WORK(_work, _func, _onstack)                             \
 225        do {                                                            \
 226                static struct lock_class_key __key;                     \
 227                                                                        \
 228                __init_work((_work), _onstack);                         \
 229                (_work)->data = (atomic_long_t) WORK_DATA_INIT();       \
 230                lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \
 231                INIT_LIST_HEAD(&(_work)->entry);                        \
 232                (_work)->func = (_func);                                \
 233        } while (0)
 234#else
 235#define __INIT_WORK(_work, _func, _onstack)                             \
 236        do {                                                            \
 237                __init_work((_work), _onstack);                         \
 238                (_work)->data = (atomic_long_t) WORK_DATA_INIT();       \
 239                INIT_LIST_HEAD(&(_work)->entry);                        \
 240                (_work)->func = (_func);                                \
 241        } while (0)
 242#endif
 243
 244#define INIT_WORK(_work, _func)                                         \
 245        __INIT_WORK((_work), (_func), 0)
 246
 247#define INIT_WORK_ONSTACK(_work, _func)                                 \
 248        __INIT_WORK((_work), (_func), 1)
 249
 250#define __INIT_DELAYED_WORK(_work, _func, _tflags)                      \
 251        do {                                                            \
 252                INIT_WORK(&(_work)->work, (_func));                     \
 253                __init_timer(&(_work)->timer,                           \
 254                             delayed_work_timer_fn,                     \
 255                             (_tflags) | TIMER_IRQSAFE);                \
 256        } while (0)
 257
 258#define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags)              \
 259        do {                                                            \
 260                INIT_WORK_ONSTACK(&(_work)->work, (_func));             \
 261                __init_timer_on_stack(&(_work)->timer,                  \
 262                                      delayed_work_timer_fn,            \
 263                                      (_tflags) | TIMER_IRQSAFE);       \
 264        } while (0)
 265
 266#define INIT_DELAYED_WORK(_work, _func)                                 \
 267        __INIT_DELAYED_WORK(_work, _func, 0)
 268
 269#define INIT_DELAYED_WORK_ONSTACK(_work, _func)                         \
 270        __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
 271
 272#define INIT_DEFERRABLE_WORK(_work, _func)                              \
 273        __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
 274
 275#define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func)                      \
 276        __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
 277
 278#define INIT_RCU_WORK(_work, _func)                                     \
 279        INIT_WORK(&(_work)->work, (_func))
 280
 281#define INIT_RCU_WORK_ONSTACK(_work, _func)                             \
 282        INIT_WORK_ONSTACK(&(_work)->work, (_func))
 283
 284/**
 285 * work_pending - Find out whether a work item is currently pending
 286 * @work: The work item in question
 287 */
 288#define work_pending(work) \
 289        test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
 290
 291/**
 292 * delayed_work_pending - Find out whether a delayable work item is currently
 293 * pending
 294 * @w: The work item in question
 295 */
 296#define delayed_work_pending(w) \
 297        work_pending(&(w)->work)
 298
 299/*
 300 * Workqueue flags and constants.  For details, please refer to
 301 * Documentation/core-api/workqueue.rst.
 302 */
 303enum {
 304        WQ_UNBOUND              = 1 << 1, /* not bound to any cpu */
 305        WQ_FREEZABLE            = 1 << 2, /* freeze during suspend */
 306        WQ_MEM_RECLAIM          = 1 << 3, /* may be used for memory reclaim */
 307        WQ_HIGHPRI              = 1 << 4, /* high priority */
 308        WQ_CPU_INTENSIVE        = 1 << 5, /* cpu intensive workqueue */
 309        WQ_SYSFS                = 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */
 310
 311        /*
 312         * Per-cpu workqueues are generally preferred because they tend to
 313         * show better performance thanks to cache locality.  Per-cpu
 314         * workqueues exclude the scheduler from choosing the CPU to
 315         * execute the worker threads, which has an unfortunate side effect
 316         * of increasing power consumption.
 317         *
 318         * The scheduler considers a CPU idle if it doesn't have any task
 319         * to execute and tries to keep idle cores idle to conserve power;
 320         * however, for example, a per-cpu work item scheduled from an
 321         * interrupt handler on an idle CPU will force the scheduler to
 322         * execute the work item on that CPU breaking the idleness, which in
 323         * turn may lead to more scheduling choices which are sub-optimal
 324         * in terms of power consumption.
 325         *
 326         * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default
 327         * but become unbound if workqueue.power_efficient kernel param is
 328         * specified.  Per-cpu workqueues which are identified to
 329         * contribute significantly to power-consumption are identified and
 330         * marked with this flag and enabling the power_efficient mode
 331         * leads to noticeable power saving at the cost of small
 332         * performance disadvantage.
 333         *
 334         * http://thread.gmane.org/gmane.linux.kernel/1480396
 335         */
 336        WQ_POWER_EFFICIENT      = 1 << 7,
 337
 338        __WQ_DRAINING           = 1 << 16, /* internal: workqueue is draining */
 339        __WQ_ORDERED            = 1 << 17, /* internal: workqueue is ordered */
 340        __WQ_LEGACY             = 1 << 18, /* internal: create*_workqueue() */
 341        __WQ_ORDERED_EXPLICIT   = 1 << 19, /* internal: alloc_ordered_workqueue() */
 342
 343        WQ_MAX_ACTIVE           = 512,    /* I like 512, better ideas? */
 344        WQ_MAX_UNBOUND_PER_CPU  = 4,      /* 4 * #cpus for unbound wq */
 345        WQ_DFL_ACTIVE           = WQ_MAX_ACTIVE / 2,
 346};
 347
 348/* unbound wq's aren't per-cpu, scale max_active according to #cpus */
 349#define WQ_UNBOUND_MAX_ACTIVE   \
 350        max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU)
 351
 352/*
 353 * System-wide workqueues which are always present.
 354 *
 355 * system_wq is the one used by schedule[_delayed]_work[_on]().
 356 * Multi-CPU multi-threaded.  There are users which expect relatively
 357 * short queue flush time.  Don't queue works which can run for too
 358 * long.
 359 *
 360 * system_highpri_wq is similar to system_wq but for work items which
 361 * require WQ_HIGHPRI.
 362 *
 363 * system_long_wq is similar to system_wq but may host long running
 364 * works.  Queue flushing might take relatively long.
 365 *
 366 * system_unbound_wq is unbound workqueue.  Workers are not bound to
 367 * any specific CPU, not concurrency managed, and all queued works are
 368 * executed immediately as long as max_active limit is not reached and
 369 * resources are available.
 370 *
 371 * system_freezable_wq is equivalent to system_wq except that it's
 372 * freezable.
 373 *
 374 * *_power_efficient_wq are inclined towards saving power and converted
 375 * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise,
 376 * they are same as their non-power-efficient counterparts - e.g.
 377 * system_power_efficient_wq is identical to system_wq if
 378 * 'wq_power_efficient' is disabled.  See WQ_POWER_EFFICIENT for more info.
 379 */
 380extern struct workqueue_struct *system_wq;
 381extern struct workqueue_struct *system_highpri_wq;
 382extern struct workqueue_struct *system_long_wq;
 383extern struct workqueue_struct *system_unbound_wq;
 384extern struct workqueue_struct *system_freezable_wq;
 385extern struct workqueue_struct *system_power_efficient_wq;
 386extern struct workqueue_struct *system_freezable_power_efficient_wq;
 387
 388/**
 389 * alloc_workqueue - allocate a workqueue
 390 * @fmt: printf format for the name of the workqueue
 391 * @flags: WQ_* flags
 392 * @max_active: max in-flight work items, 0 for default
 393 * remaining args: args for @fmt
 394 *
 395 * Allocate a workqueue with the specified parameters.  For detailed
 396 * information on WQ_* flags, please refer to
 397 * Documentation/core-api/workqueue.rst.
 398 *
 399 * RETURNS:
 400 * Pointer to the allocated workqueue on success, %NULL on failure.
 401 */
 402__printf(1, 4) struct workqueue_struct *
 403alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...);
 404
 405/**
 406 * alloc_ordered_workqueue - allocate an ordered workqueue
 407 * @fmt: printf format for the name of the workqueue
 408 * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
 409 * @args...: args for @fmt
 410 *
 411 * Allocate an ordered workqueue.  An ordered workqueue executes at
 412 * most one work item at any given time in the queued order.  They are
 413 * implemented as unbound workqueues with @max_active of one.
 414 *
 415 * RETURNS:
 416 * Pointer to the allocated workqueue on success, %NULL on failure.
 417 */
 418#define alloc_ordered_workqueue(fmt, flags, args...)                    \
 419        alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED |                \
 420                        __WQ_ORDERED_EXPLICIT | (flags), 1, ##args)
 421
 422#define create_workqueue(name)                                          \
 423        alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name))
 424#define create_freezable_workqueue(name)                                \
 425        alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \
 426                        WQ_MEM_RECLAIM, 1, (name))
 427#define create_singlethread_workqueue(name)                             \
 428        alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name)
 429
 430extern void destroy_workqueue(struct workqueue_struct *wq);
 431
 432struct workqueue_attrs *alloc_workqueue_attrs(void);
 433void free_workqueue_attrs(struct workqueue_attrs *attrs);
 434int apply_workqueue_attrs(struct workqueue_struct *wq,
 435                          const struct workqueue_attrs *attrs);
 436int workqueue_set_unbound_cpumask(cpumask_var_t cpumask);
 437
 438extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
 439                        struct work_struct *work);
 440extern bool queue_work_node(int node, struct workqueue_struct *wq,
 441                            struct work_struct *work);
 442extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
 443                        struct delayed_work *work, unsigned long delay);
 444extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
 445                        struct delayed_work *dwork, unsigned long delay);
 446extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork);
 447
 448extern void flush_workqueue(struct workqueue_struct *wq);
 449extern void drain_workqueue(struct workqueue_struct *wq);
 450
 451extern int schedule_on_each_cpu(work_func_t func);
 452
 453int execute_in_process_context(work_func_t fn, struct execute_work *);
 454
 455extern bool flush_work(struct work_struct *work);
 456extern bool cancel_work_sync(struct work_struct *work);
 457
 458extern bool flush_delayed_work(struct delayed_work *dwork);
 459extern bool cancel_delayed_work(struct delayed_work *dwork);
 460extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
 461
 462extern bool flush_rcu_work(struct rcu_work *rwork);
 463
 464extern void workqueue_set_max_active(struct workqueue_struct *wq,
 465                                     int max_active);
 466extern struct work_struct *current_work(void);
 467extern bool current_is_workqueue_rescuer(void);
 468extern bool workqueue_congested(int cpu, struct workqueue_struct *wq);
 469extern unsigned int work_busy(struct work_struct *work);
 470extern __printf(1, 2) void set_worker_desc(const char *fmt, ...);
 471extern void print_worker_info(const char *log_lvl, struct task_struct *task);
 472extern void show_workqueue_state(void);
 473extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task);
 474
 475/**
 476 * queue_work - queue work on a workqueue
 477 * @wq: workqueue to use
 478 * @work: work to queue
 479 *
 480 * Returns %false if @work was already on a queue, %true otherwise.
 481 *
 482 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 483 * it can be processed by another CPU.
 484 *
 485 * Memory-ordering properties:  If it returns %true, guarantees that all stores
 486 * preceding the call to queue_work() in the program order will be visible from
 487 * the CPU which will execute @work by the time such work executes, e.g.,
 488 *
 489 * { x is initially 0 }
 490 *
 491 *   CPU0                               CPU1
 492 *
 493 *   WRITE_ONCE(x, 1);                  [ @work is being executed ]
 494 *   r0 = queue_work(wq, work);           r1 = READ_ONCE(x);
 495 *
 496 * Forbids: r0 == true && r1 == 0
 497 */
 498static inline bool queue_work(struct workqueue_struct *wq,
 499                              struct work_struct *work)
 500{
 501        return queue_work_on(WORK_CPU_UNBOUND, wq, work);
 502}
 503
 504/**
 505 * queue_delayed_work - queue work on a workqueue after delay
 506 * @wq: workqueue to use
 507 * @dwork: delayable work to queue
 508 * @delay: number of jiffies to wait before queueing
 509 *
 510 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
 511 */
 512static inline bool queue_delayed_work(struct workqueue_struct *wq,
 513                                      struct delayed_work *dwork,
 514                                      unsigned long delay)
 515{
 516        return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
 517}
 518
 519/**
 520 * mod_delayed_work - modify delay of or queue a delayed work
 521 * @wq: workqueue to use
 522 * @dwork: work to queue
 523 * @delay: number of jiffies to wait before queueing
 524 *
 525 * mod_delayed_work_on() on local CPU.
 526 */
 527static inline bool mod_delayed_work(struct workqueue_struct *wq,
 528                                    struct delayed_work *dwork,
 529                                    unsigned long delay)
 530{
 531        return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
 532}
 533
 534/**
 535 * schedule_work_on - put work task on a specific cpu
 536 * @cpu: cpu to put the work task on
 537 * @work: job to be done
 538 *
 539 * This puts a job on a specific cpu
 540 */
 541static inline bool schedule_work_on(int cpu, struct work_struct *work)
 542{
 543        return queue_work_on(cpu, system_wq, work);
 544}
 545
 546/**
 547 * schedule_work - put work task in global workqueue
 548 * @work: job to be done
 549 *
 550 * Returns %false if @work was already on the kernel-global workqueue and
 551 * %true otherwise.
 552 *
 553 * This puts a job in the kernel-global workqueue if it was not already
 554 * queued and leaves it in the same position on the kernel-global
 555 * workqueue otherwise.
 556 *
 557 * Shares the same memory-ordering properties of queue_work(), cf. the
 558 * DocBook header of queue_work().
 559 */
 560static inline bool schedule_work(struct work_struct *work)
 561{
 562        return queue_work(system_wq, work);
 563}
 564
 565/**
 566 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 567 *
 568 * Forces execution of the kernel-global workqueue and blocks until its
 569 * completion.
 570 *
 571 * Think twice before calling this function!  It's very easy to get into
 572 * trouble if you don't take great care.  Either of the following situations
 573 * will lead to deadlock:
 574 *
 575 *      One of the work items currently on the workqueue needs to acquire
 576 *      a lock held by your code or its caller.
 577 *
 578 *      Your code is running in the context of a work routine.
 579 *
 580 * They will be detected by lockdep when they occur, but the first might not
 581 * occur very often.  It depends on what work items are on the workqueue and
 582 * what locks they need, which you have no control over.
 583 *
 584 * In most situations flushing the entire workqueue is overkill; you merely
 585 * need to know that a particular work item isn't queued and isn't running.
 586 * In such cases you should use cancel_delayed_work_sync() or
 587 * cancel_work_sync() instead.
 588 */
 589static inline void flush_scheduled_work(void)
 590{
 591        flush_workqueue(system_wq);
 592}
 593
 594/**
 595 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 596 * @cpu: cpu to use
 597 * @dwork: job to be done
 598 * @delay: number of jiffies to wait
 599 *
 600 * After waiting for a given time this puts a job in the kernel-global
 601 * workqueue on the specified CPU.
 602 */
 603static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
 604                                            unsigned long delay)
 605{
 606        return queue_delayed_work_on(cpu, system_wq, dwork, delay);
 607}
 608
 609/**
 610 * schedule_delayed_work - put work task in global workqueue after delay
 611 * @dwork: job to be done
 612 * @delay: number of jiffies to wait or 0 for immediate execution
 613 *
 614 * After waiting for a given time this puts a job in the kernel-global
 615 * workqueue.
 616 */
 617static inline bool schedule_delayed_work(struct delayed_work *dwork,
 618                                         unsigned long delay)
 619{
 620        return queue_delayed_work(system_wq, dwork, delay);
 621}
 622
 623#ifndef CONFIG_SMP
 624static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
 625{
 626        return fn(arg);
 627}
 628static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
 629{
 630        return fn(arg);
 631}
 632#else
 633long work_on_cpu(int cpu, long (*fn)(void *), void *arg);
 634long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg);
 635#endif /* CONFIG_SMP */
 636
 637#ifdef CONFIG_FREEZER
 638extern void freeze_workqueues_begin(void);
 639extern bool freeze_workqueues_busy(void);
 640extern void thaw_workqueues(void);
 641#endif /* CONFIG_FREEZER */
 642
 643#ifdef CONFIG_SYSFS
 644int workqueue_sysfs_register(struct workqueue_struct *wq);
 645#else   /* CONFIG_SYSFS */
 646static inline int workqueue_sysfs_register(struct workqueue_struct *wq)
 647{ return 0; }
 648#endif  /* CONFIG_SYSFS */
 649
 650#ifdef CONFIG_WQ_WATCHDOG
 651void wq_watchdog_touch(int cpu);
 652#else   /* CONFIG_WQ_WATCHDOG */
 653static inline void wq_watchdog_touch(int cpu) { }
 654#endif  /* CONFIG_WQ_WATCHDOG */
 655
 656#ifdef CONFIG_SMP
 657int workqueue_prepare_cpu(unsigned int cpu);
 658int workqueue_online_cpu(unsigned int cpu);
 659int workqueue_offline_cpu(unsigned int cpu);
 660#endif
 661
 662void __init workqueue_init_early(void);
 663void __init workqueue_init(void);
 664
 665#endif
 666