linux/include/linux/writeback.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * include/linux/writeback.h
   4 */
   5#ifndef WRITEBACK_H
   6#define WRITEBACK_H
   7
   8#include <linux/sched.h>
   9#include <linux/workqueue.h>
  10#include <linux/fs.h>
  11#include <linux/flex_proportions.h>
  12#include <linux/backing-dev-defs.h>
  13#include <linux/blk_types.h>
  14#include <linux/blk-cgroup.h>
  15
  16struct bio;
  17
  18DECLARE_PER_CPU(int, dirty_throttle_leaks);
  19
  20/*
  21 * The 1/4 region under the global dirty thresh is for smooth dirty throttling:
  22 *
  23 *      (thresh - thresh/DIRTY_FULL_SCOPE, thresh)
  24 *
  25 * Further beyond, all dirtier tasks will enter a loop waiting (possibly long
  26 * time) for the dirty pages to drop, unless written enough pages.
  27 *
  28 * The global dirty threshold is normally equal to the global dirty limit,
  29 * except when the system suddenly allocates a lot of anonymous memory and
  30 * knocks down the global dirty threshold quickly, in which case the global
  31 * dirty limit will follow down slowly to prevent livelocking all dirtier tasks.
  32 */
  33#define DIRTY_SCOPE             8
  34#define DIRTY_FULL_SCOPE        (DIRTY_SCOPE / 2)
  35
  36struct backing_dev_info;
  37
  38/*
  39 * fs/fs-writeback.c
  40 */
  41enum writeback_sync_modes {
  42        WB_SYNC_NONE,   /* Don't wait on anything */
  43        WB_SYNC_ALL,    /* Wait on every mapping */
  44};
  45
  46/*
  47 * A control structure which tells the writeback code what to do.  These are
  48 * always on the stack, and hence need no locking.  They are always initialised
  49 * in a manner such that unspecified fields are set to zero.
  50 */
  51struct writeback_control {
  52        long nr_to_write;               /* Write this many pages, and decrement
  53                                           this for each page written */
  54        long pages_skipped;             /* Pages which were not written */
  55
  56        /*
  57         * For a_ops->writepages(): if start or end are non-zero then this is
  58         * a hint that the filesystem need only write out the pages inside that
  59         * byterange.  The byte at `end' is included in the writeout request.
  60         */
  61        loff_t range_start;
  62        loff_t range_end;
  63
  64        enum writeback_sync_modes sync_mode;
  65
  66        unsigned for_kupdate:1;         /* A kupdate writeback */
  67        unsigned for_background:1;      /* A background writeback */
  68        unsigned tagged_writepages:1;   /* tag-and-write to avoid livelock */
  69        unsigned for_reclaim:1;         /* Invoked from the page allocator */
  70        unsigned range_cyclic:1;        /* range_start is cyclic */
  71        unsigned for_sync:1;            /* sync(2) WB_SYNC_ALL writeback */
  72
  73        /*
  74         * When writeback IOs are bounced through async layers, only the
  75         * initial synchronous phase should be accounted towards inode
  76         * cgroup ownership arbitration to avoid confusion.  Later stages
  77         * can set the following flag to disable the accounting.
  78         */
  79        unsigned no_cgroup_owner:1;
  80
  81        unsigned punt_to_cgroup:1;      /* cgrp punting, see __REQ_CGROUP_PUNT */
  82
  83#ifdef CONFIG_CGROUP_WRITEBACK
  84        struct bdi_writeback *wb;       /* wb this writeback is issued under */
  85        struct inode *inode;            /* inode being written out */
  86
  87        /* foreign inode detection, see wbc_detach_inode() */
  88        int wb_id;                      /* current wb id */
  89        int wb_lcand_id;                /* last foreign candidate wb id */
  90        int wb_tcand_id;                /* this foreign candidate wb id */
  91        size_t wb_bytes;                /* bytes written by current wb */
  92        size_t wb_lcand_bytes;          /* bytes written by last candidate */
  93        size_t wb_tcand_bytes;          /* bytes written by this candidate */
  94#endif
  95};
  96
  97static inline int wbc_to_write_flags(struct writeback_control *wbc)
  98{
  99        int flags = 0;
 100
 101        if (wbc->punt_to_cgroup)
 102                flags = REQ_CGROUP_PUNT;
 103
 104        if (wbc->sync_mode == WB_SYNC_ALL)
 105                flags |= REQ_SYNC;
 106        else if (wbc->for_kupdate || wbc->for_background)
 107                flags |= REQ_BACKGROUND;
 108
 109        return flags;
 110}
 111
 112static inline struct cgroup_subsys_state *
 113wbc_blkcg_css(struct writeback_control *wbc)
 114{
 115#ifdef CONFIG_CGROUP_WRITEBACK
 116        if (wbc->wb)
 117                return wbc->wb->blkcg_css;
 118#endif
 119        return blkcg_root_css;
 120}
 121
 122/*
 123 * A wb_domain represents a domain that wb's (bdi_writeback's) belong to
 124 * and are measured against each other in.  There always is one global
 125 * domain, global_wb_domain, that every wb in the system is a member of.
 126 * This allows measuring the relative bandwidth of each wb to distribute
 127 * dirtyable memory accordingly.
 128 */
 129struct wb_domain {
 130        spinlock_t lock;
 131
 132        /*
 133         * Scale the writeback cache size proportional to the relative
 134         * writeout speed.
 135         *
 136         * We do this by keeping a floating proportion between BDIs, based
 137         * on page writeback completions [end_page_writeback()]. Those
 138         * devices that write out pages fastest will get the larger share,
 139         * while the slower will get a smaller share.
 140         *
 141         * We use page writeout completions because we are interested in
 142         * getting rid of dirty pages. Having them written out is the
 143         * primary goal.
 144         *
 145         * We introduce a concept of time, a period over which we measure
 146         * these events, because demand can/will vary over time. The length
 147         * of this period itself is measured in page writeback completions.
 148         */
 149        struct fprop_global completions;
 150        struct timer_list period_timer; /* timer for aging of completions */
 151        unsigned long period_time;
 152
 153        /*
 154         * The dirtyable memory and dirty threshold could be suddenly
 155         * knocked down by a large amount (eg. on the startup of KVM in a
 156         * swapless system). This may throw the system into deep dirty
 157         * exceeded state and throttle heavy/light dirtiers alike. To
 158         * retain good responsiveness, maintain global_dirty_limit for
 159         * tracking slowly down to the knocked down dirty threshold.
 160         *
 161         * Both fields are protected by ->lock.
 162         */
 163        unsigned long dirty_limit_tstamp;
 164        unsigned long dirty_limit;
 165};
 166
 167/**
 168 * wb_domain_size_changed - memory available to a wb_domain has changed
 169 * @dom: wb_domain of interest
 170 *
 171 * This function should be called when the amount of memory available to
 172 * @dom has changed.  It resets @dom's dirty limit parameters to prevent
 173 * the past values which don't match the current configuration from skewing
 174 * dirty throttling.  Without this, when memory size of a wb_domain is
 175 * greatly reduced, the dirty throttling logic may allow too many pages to
 176 * be dirtied leading to consecutive unnecessary OOMs and may get stuck in
 177 * that situation.
 178 */
 179static inline void wb_domain_size_changed(struct wb_domain *dom)
 180{
 181        spin_lock(&dom->lock);
 182        dom->dirty_limit_tstamp = jiffies;
 183        dom->dirty_limit = 0;
 184        spin_unlock(&dom->lock);
 185}
 186
 187/*
 188 * fs/fs-writeback.c
 189 */     
 190struct bdi_writeback;
 191void writeback_inodes_sb(struct super_block *, enum wb_reason reason);
 192void writeback_inodes_sb_nr(struct super_block *, unsigned long nr,
 193                                                        enum wb_reason reason);
 194void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason);
 195void sync_inodes_sb(struct super_block *);
 196void wakeup_flusher_threads(enum wb_reason reason);
 197void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
 198                                enum wb_reason reason);
 199void inode_wait_for_writeback(struct inode *inode);
 200void inode_io_list_del(struct inode *inode);
 201
 202/* writeback.h requires fs.h; it, too, is not included from here. */
 203static inline void wait_on_inode(struct inode *inode)
 204{
 205        might_sleep();
 206        wait_on_bit(&inode->i_state, __I_NEW, TASK_UNINTERRUPTIBLE);
 207}
 208
 209#ifdef CONFIG_CGROUP_WRITEBACK
 210
 211#include <linux/cgroup.h>
 212#include <linux/bio.h>
 213
 214void __inode_attach_wb(struct inode *inode, struct page *page);
 215void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 216                                 struct inode *inode)
 217        __releases(&inode->i_lock);
 218void wbc_detach_inode(struct writeback_control *wbc);
 219void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
 220                              size_t bytes);
 221int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
 222                           enum wb_reason reason, struct wb_completion *done);
 223void cgroup_writeback_umount(void);
 224bool cleanup_offline_cgwb(struct bdi_writeback *wb);
 225
 226/**
 227 * inode_attach_wb - associate an inode with its wb
 228 * @inode: inode of interest
 229 * @page: page being dirtied (may be NULL)
 230 *
 231 * If @inode doesn't have its wb, associate it with the wb matching the
 232 * memcg of @page or, if @page is NULL, %current.  May be called w/ or w/o
 233 * @inode->i_lock.
 234 */
 235static inline void inode_attach_wb(struct inode *inode, struct page *page)
 236{
 237        if (!inode->i_wb)
 238                __inode_attach_wb(inode, page);
 239}
 240
 241/**
 242 * inode_detach_wb - disassociate an inode from its wb
 243 * @inode: inode of interest
 244 *
 245 * @inode is being freed.  Detach from its wb.
 246 */
 247static inline void inode_detach_wb(struct inode *inode)
 248{
 249        if (inode->i_wb) {
 250                WARN_ON_ONCE(!(inode->i_state & I_CLEAR));
 251                wb_put(inode->i_wb);
 252                inode->i_wb = NULL;
 253        }
 254}
 255
 256/**
 257 * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
 258 * @wbc: writeback_control of interest
 259 * @inode: target inode
 260 *
 261 * This function is to be used by __filemap_fdatawrite_range(), which is an
 262 * alternative entry point into writeback code, and first ensures @inode is
 263 * associated with a bdi_writeback and attaches it to @wbc.
 264 */
 265static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
 266                                               struct inode *inode)
 267{
 268        spin_lock(&inode->i_lock);
 269        inode_attach_wb(inode, NULL);
 270        wbc_attach_and_unlock_inode(wbc, inode);
 271}
 272
 273/**
 274 * wbc_init_bio - writeback specific initializtion of bio
 275 * @wbc: writeback_control for the writeback in progress
 276 * @bio: bio to be initialized
 277 *
 278 * @bio is a part of the writeback in progress controlled by @wbc.  Perform
 279 * writeback specific initialization.  This is used to apply the cgroup
 280 * writeback context.  Must be called after the bio has been associated with
 281 * a device.
 282 */
 283static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio)
 284{
 285        /*
 286         * pageout() path doesn't attach @wbc to the inode being written
 287         * out.  This is intentional as we don't want the function to block
 288         * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 289         * regular writeback instead of writing things out itself.
 290         */
 291        if (wbc->wb)
 292                bio_associate_blkg_from_css(bio, wbc->wb->blkcg_css);
 293}
 294
 295#else   /* CONFIG_CGROUP_WRITEBACK */
 296
 297static inline void inode_attach_wb(struct inode *inode, struct page *page)
 298{
 299}
 300
 301static inline void inode_detach_wb(struct inode *inode)
 302{
 303}
 304
 305static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 306                                               struct inode *inode)
 307        __releases(&inode->i_lock)
 308{
 309        spin_unlock(&inode->i_lock);
 310}
 311
 312static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
 313                                               struct inode *inode)
 314{
 315}
 316
 317static inline void wbc_detach_inode(struct writeback_control *wbc)
 318{
 319}
 320
 321static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio)
 322{
 323}
 324
 325static inline void wbc_account_cgroup_owner(struct writeback_control *wbc,
 326                                            struct page *page, size_t bytes)
 327{
 328}
 329
 330static inline void cgroup_writeback_umount(void)
 331{
 332}
 333
 334#endif  /* CONFIG_CGROUP_WRITEBACK */
 335
 336/*
 337 * mm/page-writeback.c
 338 */
 339void laptop_io_completion(struct backing_dev_info *info);
 340void laptop_sync_completion(void);
 341void laptop_mode_timer_fn(struct timer_list *t);
 342bool node_dirty_ok(struct pglist_data *pgdat);
 343int wb_domain_init(struct wb_domain *dom, gfp_t gfp);
 344#ifdef CONFIG_CGROUP_WRITEBACK
 345void wb_domain_exit(struct wb_domain *dom);
 346#endif
 347
 348extern struct wb_domain global_wb_domain;
 349
 350/* These are exported to sysctl. */
 351extern int dirty_background_ratio;
 352extern unsigned long dirty_background_bytes;
 353extern int vm_dirty_ratio;
 354extern unsigned long vm_dirty_bytes;
 355extern unsigned int dirty_writeback_interval;
 356extern unsigned int dirty_expire_interval;
 357extern unsigned int dirtytime_expire_interval;
 358extern int vm_highmem_is_dirtyable;
 359extern int laptop_mode;
 360
 361int dirty_background_ratio_handler(struct ctl_table *table, int write,
 362                void *buffer, size_t *lenp, loff_t *ppos);
 363int dirty_background_bytes_handler(struct ctl_table *table, int write,
 364                void *buffer, size_t *lenp, loff_t *ppos);
 365int dirty_ratio_handler(struct ctl_table *table, int write,
 366                void *buffer, size_t *lenp, loff_t *ppos);
 367int dirty_bytes_handler(struct ctl_table *table, int write,
 368                void *buffer, size_t *lenp, loff_t *ppos);
 369int dirtytime_interval_handler(struct ctl_table *table, int write,
 370                void *buffer, size_t *lenp, loff_t *ppos);
 371int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
 372                void *buffer, size_t *lenp, loff_t *ppos);
 373
 374void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty);
 375unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh);
 376
 377void wb_update_bandwidth(struct bdi_writeback *wb);
 378void balance_dirty_pages_ratelimited(struct address_space *mapping);
 379bool wb_over_bg_thresh(struct bdi_writeback *wb);
 380
 381typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
 382                                void *data);
 383
 384int generic_writepages(struct address_space *mapping,
 385                       struct writeback_control *wbc);
 386void tag_pages_for_writeback(struct address_space *mapping,
 387                             pgoff_t start, pgoff_t end);
 388int write_cache_pages(struct address_space *mapping,
 389                      struct writeback_control *wbc, writepage_t writepage,
 390                      void *data);
 391int do_writepages(struct address_space *mapping, struct writeback_control *wbc);
 392void writeback_set_ratelimit(void);
 393void tag_pages_for_writeback(struct address_space *mapping,
 394                             pgoff_t start, pgoff_t end);
 395
 396void account_page_redirty(struct page *page);
 397
 398void sb_mark_inode_writeback(struct inode *inode);
 399void sb_clear_inode_writeback(struct inode *inode);
 400
 401#endif          /* WRITEBACK_H */
 402