linux/include/net/tcp.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Definitions for the TCP module.
   8 *
   9 * Version:     @(#)tcp.h       1.0.5   05/23/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/inet_ecn.h>
  41#include <net/dst.h>
  42#include <net/mptcp.h>
  43
  44#include <linux/seq_file.h>
  45#include <linux/memcontrol.h>
  46#include <linux/bpf-cgroup.h>
  47#include <linux/siphash.h>
  48
  49extern struct inet_hashinfo tcp_hashinfo;
  50
  51extern struct percpu_counter tcp_orphan_count;
  52void tcp_time_wait(struct sock *sk, int state, int timeo);
  53
  54#define MAX_TCP_HEADER  L1_CACHE_ALIGN(128 + MAX_HEADER)
  55#define MAX_TCP_OPTION_SPACE 40
  56#define TCP_MIN_SND_MSS         48
  57#define TCP_MIN_GSO_SIZE        (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  58
  59/*
  60 * Never offer a window over 32767 without using window scaling. Some
  61 * poor stacks do signed 16bit maths!
  62 */
  63#define MAX_TCP_WINDOW          32767U
  64
  65/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  66#define TCP_MIN_MSS             88U
  67
  68/* The initial MTU to use for probing */
  69#define TCP_BASE_MSS            1024
  70
  71/* probing interval, default to 10 minutes as per RFC4821 */
  72#define TCP_PROBE_INTERVAL      600
  73
  74/* Specify interval when tcp mtu probing will stop */
  75#define TCP_PROBE_THRESHOLD     8
  76
  77/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  78#define TCP_FASTRETRANS_THRESH 3
  79
  80/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  81#define TCP_MAX_QUICKACKS       16U
  82
  83/* Maximal number of window scale according to RFC1323 */
  84#define TCP_MAX_WSCALE          14U
  85
  86/* urg_data states */
  87#define TCP_URG_VALID   0x0100
  88#define TCP_URG_NOTYET  0x0200
  89#define TCP_URG_READ    0x0400
  90
  91#define TCP_RETR1       3       /*
  92                                 * This is how many retries it does before it
  93                                 * tries to figure out if the gateway is
  94                                 * down. Minimal RFC value is 3; it corresponds
  95                                 * to ~3sec-8min depending on RTO.
  96                                 */
  97
  98#define TCP_RETR2       15      /*
  99                                 * This should take at least
 100                                 * 90 minutes to time out.
 101                                 * RFC1122 says that the limit is 100 sec.
 102                                 * 15 is ~13-30min depending on RTO.
 103                                 */
 104
 105#define TCP_SYN_RETRIES  6      /* This is how many retries are done
 106                                 * when active opening a connection.
 107                                 * RFC1122 says the minimum retry MUST
 108                                 * be at least 180secs.  Nevertheless
 109                                 * this value is corresponding to
 110                                 * 63secs of retransmission with the
 111                                 * current initial RTO.
 112                                 */
 113
 114#define TCP_SYNACK_RETRIES 5    /* This is how may retries are done
 115                                 * when passive opening a connection.
 116                                 * This is corresponding to 31secs of
 117                                 * retransmission with the current
 118                                 * initial RTO.
 119                                 */
 120
 121#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 122                                  * state, about 60 seconds     */
 123#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
 124                                 /* BSD style FIN_WAIT2 deadlock breaker.
 125                                  * It used to be 3min, new value is 60sec,
 126                                  * to combine FIN-WAIT-2 timeout with
 127                                  * TIME-WAIT timer.
 128                                  */
 129#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 130
 131#define TCP_DELACK_MAX  ((unsigned)(HZ/5))      /* maximal time to delay before sending an ACK */
 132#if HZ >= 100
 133#define TCP_DELACK_MIN  ((unsigned)(HZ/25))     /* minimal time to delay before sending an ACK */
 134#define TCP_ATO_MIN     ((unsigned)(HZ/25))
 135#else
 136#define TCP_DELACK_MIN  4U
 137#define TCP_ATO_MIN     4U
 138#endif
 139#define TCP_RTO_MAX     ((unsigned)(120*HZ))
 140#define TCP_RTO_MIN     ((unsigned)(HZ/5))
 141#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
 142#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))     /* RFC6298 2.1 initial RTO value        */
 143#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
 144                                                 * used as a fallback RTO for the
 145                                                 * initial data transmission if no
 146                                                 * valid RTT sample has been acquired,
 147                                                 * most likely due to retrans in 3WHS.
 148                                                 */
 149
 150#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 151                                                         * for local resources.
 152                                                         */
 153#define TCP_KEEPALIVE_TIME      (120*60*HZ)     /* two hours */
 154#define TCP_KEEPALIVE_PROBES    9               /* Max of 9 keepalive probes    */
 155#define TCP_KEEPALIVE_INTVL     (75*HZ)
 156
 157#define MAX_TCP_KEEPIDLE        32767
 158#define MAX_TCP_KEEPINTVL       32767
 159#define MAX_TCP_KEEPCNT         127
 160#define MAX_TCP_SYNCNT          127
 161
 162#define TCP_SYNQ_INTERVAL       (HZ/5)  /* Period of SYNACK timer */
 163
 164#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
 165#define TCP_PAWS_MSL    60              /* Per-host timestamps are invalidated
 166                                         * after this time. It should be equal
 167                                         * (or greater than) TCP_TIMEWAIT_LEN
 168                                         * to provide reliability equal to one
 169                                         * provided by timewait state.
 170                                         */
 171#define TCP_PAWS_WINDOW 1               /* Replay window for per-host
 172                                         * timestamps. It must be less than
 173                                         * minimal timewait lifetime.
 174                                         */
 175/*
 176 *      TCP option
 177 */
 178
 179#define TCPOPT_NOP              1       /* Padding */
 180#define TCPOPT_EOL              0       /* End of options */
 181#define TCPOPT_MSS              2       /* Segment size negotiating */
 182#define TCPOPT_WINDOW           3       /* Window scaling */
 183#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 184#define TCPOPT_SACK             5       /* SACK Block */
 185#define TCPOPT_TIMESTAMP        8       /* Better RTT estimations/PAWS */
 186#define TCPOPT_MD5SIG           19      /* MD5 Signature (RFC2385) */
 187#define TCPOPT_MPTCP            30      /* Multipath TCP (RFC6824) */
 188#define TCPOPT_FASTOPEN         34      /* Fast open (RFC7413) */
 189#define TCPOPT_EXP              254     /* Experimental */
 190/* Magic number to be after the option value for sharing TCP
 191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 192 */
 193#define TCPOPT_FASTOPEN_MAGIC   0xF989
 194#define TCPOPT_SMC_MAGIC        0xE2D4C3D9
 195
 196/*
 197 *     TCP option lengths
 198 */
 199
 200#define TCPOLEN_MSS            4
 201#define TCPOLEN_WINDOW         3
 202#define TCPOLEN_SACK_PERM      2
 203#define TCPOLEN_TIMESTAMP      10
 204#define TCPOLEN_MD5SIG         18
 205#define TCPOLEN_FASTOPEN_BASE  2
 206#define TCPOLEN_EXP_FASTOPEN_BASE  4
 207#define TCPOLEN_EXP_SMC_BASE   6
 208
 209/* But this is what stacks really send out. */
 210#define TCPOLEN_TSTAMP_ALIGNED          12
 211#define TCPOLEN_WSCALE_ALIGNED          4
 212#define TCPOLEN_SACKPERM_ALIGNED        4
 213#define TCPOLEN_SACK_BASE               2
 214#define TCPOLEN_SACK_BASE_ALIGNED       4
 215#define TCPOLEN_SACK_PERBLOCK           8
 216#define TCPOLEN_MD5SIG_ALIGNED          20
 217#define TCPOLEN_MSS_ALIGNED             4
 218#define TCPOLEN_EXP_SMC_BASE_ALIGNED    8
 219
 220/* Flags in tp->nonagle */
 221#define TCP_NAGLE_OFF           1       /* Nagle's algo is disabled */
 222#define TCP_NAGLE_CORK          2       /* Socket is corked         */
 223#define TCP_NAGLE_PUSH          4       /* Cork is overridden for already queued data */
 224
 225/* TCP thin-stream limits */
 226#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 227
 228/* TCP initial congestion window as per rfc6928 */
 229#define TCP_INIT_CWND           10
 230
 231/* Bit Flags for sysctl_tcp_fastopen */
 232#define TFO_CLIENT_ENABLE       1
 233#define TFO_SERVER_ENABLE       2
 234#define TFO_CLIENT_NO_COOKIE    4       /* Data in SYN w/o cookie option */
 235
 236/* Accept SYN data w/o any cookie option */
 237#define TFO_SERVER_COOKIE_NOT_REQD      0x200
 238
 239/* Force enable TFO on all listeners, i.e., not requiring the
 240 * TCP_FASTOPEN socket option.
 241 */
 242#define TFO_SERVER_WO_SOCKOPT1  0x400
 243
 244
 245/* sysctl variables for tcp */
 246extern int sysctl_tcp_max_orphans;
 247extern long sysctl_tcp_mem[3];
 248
 249#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 250#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 251#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 252
 253extern atomic_long_t tcp_memory_allocated;
 254extern struct percpu_counter tcp_sockets_allocated;
 255extern unsigned long tcp_memory_pressure;
 256
 257/* optimized version of sk_under_memory_pressure() for TCP sockets */
 258static inline bool tcp_under_memory_pressure(const struct sock *sk)
 259{
 260        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 261            mem_cgroup_under_socket_pressure(sk->sk_memcg))
 262                return true;
 263
 264        return READ_ONCE(tcp_memory_pressure);
 265}
 266/*
 267 * The next routines deal with comparing 32 bit unsigned ints
 268 * and worry about wraparound (automatic with unsigned arithmetic).
 269 */
 270
 271static inline bool before(__u32 seq1, __u32 seq2)
 272{
 273        return (__s32)(seq1-seq2) < 0;
 274}
 275#define after(seq2, seq1)       before(seq1, seq2)
 276
 277/* is s2<=s1<=s3 ? */
 278static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 279{
 280        return seq3 - seq2 >= seq1 - seq2;
 281}
 282
 283static inline bool tcp_out_of_memory(struct sock *sk)
 284{
 285        if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 286            sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 287                return true;
 288        return false;
 289}
 290
 291void sk_forced_mem_schedule(struct sock *sk, int size);
 292
 293static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 294{
 295        struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 296        int orphans = percpu_counter_read_positive(ocp);
 297
 298        if (orphans << shift > sysctl_tcp_max_orphans) {
 299                orphans = percpu_counter_sum_positive(ocp);
 300                if (orphans << shift > sysctl_tcp_max_orphans)
 301                        return true;
 302        }
 303        return false;
 304}
 305
 306bool tcp_check_oom(struct sock *sk, int shift);
 307
 308
 309extern struct proto tcp_prot;
 310
 311#define TCP_INC_STATS(net, field)       SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 312#define __TCP_INC_STATS(net, field)     __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 313#define TCP_DEC_STATS(net, field)       SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 314#define TCP_ADD_STATS(net, field, val)  SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 315
 316void tcp_tasklet_init(void);
 317
 318int tcp_v4_err(struct sk_buff *skb, u32);
 319
 320void tcp_shutdown(struct sock *sk, int how);
 321
 322int tcp_v4_early_demux(struct sk_buff *skb);
 323int tcp_v4_rcv(struct sk_buff *skb);
 324
 325void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
 326int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 327int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 328int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 329int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 330                 int flags);
 331int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 332                        size_t size, int flags);
 333struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
 334                               struct page *page, int offset, size_t *size);
 335ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 336                 size_t size, int flags);
 337int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 338void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 339              int size_goal);
 340void tcp_release_cb(struct sock *sk);
 341void tcp_wfree(struct sk_buff *skb);
 342void tcp_write_timer_handler(struct sock *sk);
 343void tcp_delack_timer_handler(struct sock *sk);
 344int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 345int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 346void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 347void tcp_rcv_space_adjust(struct sock *sk);
 348int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 349void tcp_twsk_destructor(struct sock *sk);
 350ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 351                        struct pipe_inode_info *pipe, size_t len,
 352                        unsigned int flags);
 353
 354void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
 355static inline void tcp_dec_quickack_mode(struct sock *sk,
 356                                         const unsigned int pkts)
 357{
 358        struct inet_connection_sock *icsk = inet_csk(sk);
 359
 360        if (icsk->icsk_ack.quick) {
 361                if (pkts >= icsk->icsk_ack.quick) {
 362                        icsk->icsk_ack.quick = 0;
 363                        /* Leaving quickack mode we deflate ATO. */
 364                        icsk->icsk_ack.ato   = TCP_ATO_MIN;
 365                } else
 366                        icsk->icsk_ack.quick -= pkts;
 367        }
 368}
 369
 370#define TCP_ECN_OK              1
 371#define TCP_ECN_QUEUE_CWR       2
 372#define TCP_ECN_DEMAND_CWR      4
 373#define TCP_ECN_SEEN            8
 374
 375enum tcp_tw_status {
 376        TCP_TW_SUCCESS = 0,
 377        TCP_TW_RST = 1,
 378        TCP_TW_ACK = 2,
 379        TCP_TW_SYN = 3
 380};
 381
 382
 383enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 384                                              struct sk_buff *skb,
 385                                              const struct tcphdr *th);
 386struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 387                           struct request_sock *req, bool fastopen,
 388                           bool *lost_race);
 389int tcp_child_process(struct sock *parent, struct sock *child,
 390                      struct sk_buff *skb);
 391void tcp_enter_loss(struct sock *sk);
 392void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
 393void tcp_clear_retrans(struct tcp_sock *tp);
 394void tcp_update_metrics(struct sock *sk);
 395void tcp_init_metrics(struct sock *sk);
 396void tcp_metrics_init(void);
 397bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 398void __tcp_close(struct sock *sk, long timeout);
 399void tcp_close(struct sock *sk, long timeout);
 400void tcp_init_sock(struct sock *sk);
 401void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
 402__poll_t tcp_poll(struct file *file, struct socket *sock,
 403                      struct poll_table_struct *wait);
 404int tcp_getsockopt(struct sock *sk, int level, int optname,
 405                   char __user *optval, int __user *optlen);
 406bool tcp_bpf_bypass_getsockopt(int level, int optname);
 407int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 408                   unsigned int optlen);
 409void tcp_set_keepalive(struct sock *sk, int val);
 410void tcp_syn_ack_timeout(const struct request_sock *req);
 411int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 412                int flags, int *addr_len);
 413int tcp_set_rcvlowat(struct sock *sk, int val);
 414int tcp_set_window_clamp(struct sock *sk, int val);
 415void tcp_update_recv_tstamps(struct sk_buff *skb,
 416                             struct scm_timestamping_internal *tss);
 417void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
 418                        struct scm_timestamping_internal *tss);
 419void tcp_data_ready(struct sock *sk);
 420#ifdef CONFIG_MMU
 421int tcp_mmap(struct file *file, struct socket *sock,
 422             struct vm_area_struct *vma);
 423#endif
 424void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 425                       struct tcp_options_received *opt_rx,
 426                       int estab, struct tcp_fastopen_cookie *foc);
 427const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 428
 429/*
 430 *      BPF SKB-less helpers
 431 */
 432u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 433                         struct tcphdr *th, u32 *cookie);
 434u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 435                         struct tcphdr *th, u32 *cookie);
 436u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 437                          const struct tcp_request_sock_ops *af_ops,
 438                          struct sock *sk, struct tcphdr *th);
 439/*
 440 *      TCP v4 functions exported for the inet6 API
 441 */
 442
 443void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 444void tcp_v4_mtu_reduced(struct sock *sk);
 445void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 446void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 447int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 448struct sock *tcp_create_openreq_child(const struct sock *sk,
 449                                      struct request_sock *req,
 450                                      struct sk_buff *skb);
 451void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 452struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 453                                  struct request_sock *req,
 454                                  struct dst_entry *dst,
 455                                  struct request_sock *req_unhash,
 456                                  bool *own_req);
 457int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 458int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 459int tcp_connect(struct sock *sk);
 460enum tcp_synack_type {
 461        TCP_SYNACK_NORMAL,
 462        TCP_SYNACK_FASTOPEN,
 463        TCP_SYNACK_COOKIE,
 464};
 465struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 466                                struct request_sock *req,
 467                                struct tcp_fastopen_cookie *foc,
 468                                enum tcp_synack_type synack_type,
 469                                struct sk_buff *syn_skb);
 470int tcp_disconnect(struct sock *sk, int flags);
 471
 472void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 473int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 474void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 475
 476/* From syncookies.c */
 477struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 478                                 struct request_sock *req,
 479                                 struct dst_entry *dst, u32 tsoff);
 480int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 481                      u32 cookie);
 482struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 483struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 484                                            struct sock *sk, struct sk_buff *skb);
 485#ifdef CONFIG_SYN_COOKIES
 486
 487/* Syncookies use a monotonic timer which increments every 60 seconds.
 488 * This counter is used both as a hash input and partially encoded into
 489 * the cookie value.  A cookie is only validated further if the delta
 490 * between the current counter value and the encoded one is less than this,
 491 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 492 * the counter advances immediately after a cookie is generated).
 493 */
 494#define MAX_SYNCOOKIE_AGE       2
 495#define TCP_SYNCOOKIE_PERIOD    (60 * HZ)
 496#define TCP_SYNCOOKIE_VALID     (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 497
 498/* syncookies: remember time of last synqueue overflow
 499 * But do not dirty this field too often (once per second is enough)
 500 * It is racy as we do not hold a lock, but race is very minor.
 501 */
 502static inline void tcp_synq_overflow(const struct sock *sk)
 503{
 504        unsigned int last_overflow;
 505        unsigned int now = jiffies;
 506
 507        if (sk->sk_reuseport) {
 508                struct sock_reuseport *reuse;
 509
 510                reuse = rcu_dereference(sk->sk_reuseport_cb);
 511                if (likely(reuse)) {
 512                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 513                        if (!time_between32(now, last_overflow,
 514                                            last_overflow + HZ))
 515                                WRITE_ONCE(reuse->synq_overflow_ts, now);
 516                        return;
 517                }
 518        }
 519
 520        last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 521        if (!time_between32(now, last_overflow, last_overflow + HZ))
 522                WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
 523}
 524
 525/* syncookies: no recent synqueue overflow on this listening socket? */
 526static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 527{
 528        unsigned int last_overflow;
 529        unsigned int now = jiffies;
 530
 531        if (sk->sk_reuseport) {
 532                struct sock_reuseport *reuse;
 533
 534                reuse = rcu_dereference(sk->sk_reuseport_cb);
 535                if (likely(reuse)) {
 536                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 537                        return !time_between32(now, last_overflow - HZ,
 538                                               last_overflow +
 539                                               TCP_SYNCOOKIE_VALID);
 540                }
 541        }
 542
 543        last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 544
 545        /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 546         * then we're under synflood. However, we have to use
 547         * 'last_overflow - HZ' as lower bound. That's because a concurrent
 548         * tcp_synq_overflow() could update .ts_recent_stamp after we read
 549         * jiffies but before we store .ts_recent_stamp into last_overflow,
 550         * which could lead to rejecting a valid syncookie.
 551         */
 552        return !time_between32(now, last_overflow - HZ,
 553                               last_overflow + TCP_SYNCOOKIE_VALID);
 554}
 555
 556static inline u32 tcp_cookie_time(void)
 557{
 558        u64 val = get_jiffies_64();
 559
 560        do_div(val, TCP_SYNCOOKIE_PERIOD);
 561        return val;
 562}
 563
 564u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 565                              u16 *mssp);
 566__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 567u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 568bool cookie_timestamp_decode(const struct net *net,
 569                             struct tcp_options_received *opt);
 570bool cookie_ecn_ok(const struct tcp_options_received *opt,
 571                   const struct net *net, const struct dst_entry *dst);
 572
 573/* From net/ipv6/syncookies.c */
 574int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 575                      u32 cookie);
 576struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 577
 578u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 579                              const struct tcphdr *th, u16 *mssp);
 580__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 581#endif
 582/* tcp_output.c */
 583
 584void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 585                               int nonagle);
 586int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 587int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 588void tcp_retransmit_timer(struct sock *sk);
 589void tcp_xmit_retransmit_queue(struct sock *);
 590void tcp_simple_retransmit(struct sock *);
 591void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 592int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 593enum tcp_queue {
 594        TCP_FRAG_IN_WRITE_QUEUE,
 595        TCP_FRAG_IN_RTX_QUEUE,
 596};
 597int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 598                 struct sk_buff *skb, u32 len,
 599                 unsigned int mss_now, gfp_t gfp);
 600
 601void tcp_send_probe0(struct sock *);
 602void tcp_send_partial(struct sock *);
 603int tcp_write_wakeup(struct sock *, int mib);
 604void tcp_send_fin(struct sock *sk);
 605void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 606int tcp_send_synack(struct sock *);
 607void tcp_push_one(struct sock *, unsigned int mss_now);
 608void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 609void tcp_send_ack(struct sock *sk);
 610void tcp_send_delayed_ack(struct sock *sk);
 611void tcp_send_loss_probe(struct sock *sk);
 612bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 613void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 614                             const struct sk_buff *next_skb);
 615
 616/* tcp_input.c */
 617void tcp_rearm_rto(struct sock *sk);
 618void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 619void tcp_reset(struct sock *sk, struct sk_buff *skb);
 620void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 621void tcp_fin(struct sock *sk);
 622
 623/* tcp_timer.c */
 624void tcp_init_xmit_timers(struct sock *);
 625static inline void tcp_clear_xmit_timers(struct sock *sk)
 626{
 627        if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 628                __sock_put(sk);
 629
 630        if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 631                __sock_put(sk);
 632
 633        inet_csk_clear_xmit_timers(sk);
 634}
 635
 636unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 637unsigned int tcp_current_mss(struct sock *sk);
 638u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
 639
 640/* Bound MSS / TSO packet size with the half of the window */
 641static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 642{
 643        int cutoff;
 644
 645        /* When peer uses tiny windows, there is no use in packetizing
 646         * to sub-MSS pieces for the sake of SWS or making sure there
 647         * are enough packets in the pipe for fast recovery.
 648         *
 649         * On the other hand, for extremely large MSS devices, handling
 650         * smaller than MSS windows in this way does make sense.
 651         */
 652        if (tp->max_window > TCP_MSS_DEFAULT)
 653                cutoff = (tp->max_window >> 1);
 654        else
 655                cutoff = tp->max_window;
 656
 657        if (cutoff && pktsize > cutoff)
 658                return max_t(int, cutoff, 68U - tp->tcp_header_len);
 659        else
 660                return pktsize;
 661}
 662
 663/* tcp.c */
 664void tcp_get_info(struct sock *, struct tcp_info *);
 665
 666/* Read 'sendfile()'-style from a TCP socket */
 667int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 668                  sk_read_actor_t recv_actor);
 669
 670void tcp_initialize_rcv_mss(struct sock *sk);
 671
 672int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 673int tcp_mss_to_mtu(struct sock *sk, int mss);
 674void tcp_mtup_init(struct sock *sk);
 675
 676static inline void tcp_bound_rto(const struct sock *sk)
 677{
 678        if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 679                inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 680}
 681
 682static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 683{
 684        return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 685}
 686
 687static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 688{
 689        /* mptcp hooks are only on the slow path */
 690        if (sk_is_mptcp((struct sock *)tp))
 691                return;
 692
 693        tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 694                               ntohl(TCP_FLAG_ACK) |
 695                               snd_wnd);
 696}
 697
 698static inline void tcp_fast_path_on(struct tcp_sock *tp)
 699{
 700        __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 701}
 702
 703static inline void tcp_fast_path_check(struct sock *sk)
 704{
 705        struct tcp_sock *tp = tcp_sk(sk);
 706
 707        if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 708            tp->rcv_wnd &&
 709            atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 710            !tp->urg_data)
 711                tcp_fast_path_on(tp);
 712}
 713
 714/* Compute the actual rto_min value */
 715static inline u32 tcp_rto_min(struct sock *sk)
 716{
 717        const struct dst_entry *dst = __sk_dst_get(sk);
 718        u32 rto_min = inet_csk(sk)->icsk_rto_min;
 719
 720        if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 721                rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 722        return rto_min;
 723}
 724
 725static inline u32 tcp_rto_min_us(struct sock *sk)
 726{
 727        return jiffies_to_usecs(tcp_rto_min(sk));
 728}
 729
 730static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 731{
 732        return dst_metric_locked(dst, RTAX_CC_ALGO);
 733}
 734
 735/* Minimum RTT in usec. ~0 means not available. */
 736static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 737{
 738        return minmax_get(&tp->rtt_min);
 739}
 740
 741/* Compute the actual receive window we are currently advertising.
 742 * Rcv_nxt can be after the window if our peer push more data
 743 * than the offered window.
 744 */
 745static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 746{
 747        s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 748
 749        if (win < 0)
 750                win = 0;
 751        return (u32) win;
 752}
 753
 754/* Choose a new window, without checks for shrinking, and without
 755 * scaling applied to the result.  The caller does these things
 756 * if necessary.  This is a "raw" window selection.
 757 */
 758u32 __tcp_select_window(struct sock *sk);
 759
 760void tcp_send_window_probe(struct sock *sk);
 761
 762/* TCP uses 32bit jiffies to save some space.
 763 * Note that this is different from tcp_time_stamp, which
 764 * historically has been the same until linux-4.13.
 765 */
 766#define tcp_jiffies32 ((u32)jiffies)
 767
 768/*
 769 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 770 * It is no longer tied to jiffies, but to 1 ms clock.
 771 * Note: double check if you want to use tcp_jiffies32 instead of this.
 772 */
 773#define TCP_TS_HZ       1000
 774
 775static inline u64 tcp_clock_ns(void)
 776{
 777        return ktime_get_ns();
 778}
 779
 780static inline u64 tcp_clock_us(void)
 781{
 782        return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 783}
 784
 785/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 786static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 787{
 788        return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 789}
 790
 791/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
 792static inline u32 tcp_ns_to_ts(u64 ns)
 793{
 794        return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
 795}
 796
 797/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 798static inline u32 tcp_time_stamp_raw(void)
 799{
 800        return tcp_ns_to_ts(tcp_clock_ns());
 801}
 802
 803void tcp_mstamp_refresh(struct tcp_sock *tp);
 804
 805static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 806{
 807        return max_t(s64, t1 - t0, 0);
 808}
 809
 810static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 811{
 812        return tcp_ns_to_ts(skb->skb_mstamp_ns);
 813}
 814
 815/* provide the departure time in us unit */
 816static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 817{
 818        return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 819}
 820
 821
 822#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 823
 824#define TCPHDR_FIN 0x01
 825#define TCPHDR_SYN 0x02
 826#define TCPHDR_RST 0x04
 827#define TCPHDR_PSH 0x08
 828#define TCPHDR_ACK 0x10
 829#define TCPHDR_URG 0x20
 830#define TCPHDR_ECE 0x40
 831#define TCPHDR_CWR 0x80
 832
 833#define TCPHDR_SYN_ECN  (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 834
 835/* This is what the send packet queuing engine uses to pass
 836 * TCP per-packet control information to the transmission code.
 837 * We also store the host-order sequence numbers in here too.
 838 * This is 44 bytes if IPV6 is enabled.
 839 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 840 */
 841struct tcp_skb_cb {
 842        __u32           seq;            /* Starting sequence number     */
 843        __u32           end_seq;        /* SEQ + FIN + SYN + datalen    */
 844        union {
 845                /* Note : tcp_tw_isn is used in input path only
 846                 *        (isn chosen by tcp_timewait_state_process())
 847                 *
 848                 *        tcp_gso_segs/size are used in write queue only,
 849                 *        cf tcp_skb_pcount()/tcp_skb_mss()
 850                 */
 851                __u32           tcp_tw_isn;
 852                struct {
 853                        u16     tcp_gso_segs;
 854                        u16     tcp_gso_size;
 855                };
 856        };
 857        __u8            tcp_flags;      /* TCP header flags. (tcp[13])  */
 858
 859        __u8            sacked;         /* State flags for SACK.        */
 860#define TCPCB_SACKED_ACKED      0x01    /* SKB ACK'd by a SACK block    */
 861#define TCPCB_SACKED_RETRANS    0x02    /* SKB retransmitted            */
 862#define TCPCB_LOST              0x04    /* SKB is lost                  */
 863#define TCPCB_TAGBITS           0x07    /* All tag bits                 */
 864#define TCPCB_REPAIRED          0x10    /* SKB repaired (no skb_mstamp_ns)      */
 865#define TCPCB_EVER_RETRANS      0x80    /* Ever retransmitted frame     */
 866#define TCPCB_RETRANS           (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 867                                TCPCB_REPAIRED)
 868
 869        __u8            ip_dsfield;     /* IPv4 tos or IPv6 dsfield     */
 870        __u8            txstamp_ack:1,  /* Record TX timestamp for ack? */
 871                        eor:1,          /* Is skb MSG_EOR marked? */
 872                        has_rxtstamp:1, /* SKB has a RX timestamp       */
 873                        unused:5;
 874        __u32           ack_seq;        /* Sequence number ACK'd        */
 875        union {
 876                struct {
 877                        /* There is space for up to 24 bytes */
 878                        __u32 in_flight:30,/* Bytes in flight at transmit */
 879                              is_app_limited:1, /* cwnd not fully used? */
 880                              unused:1;
 881                        /* pkts S/ACKed so far upon tx of skb, incl retrans: */
 882                        __u32 delivered;
 883                        /* start of send pipeline phase */
 884                        u64 first_tx_mstamp;
 885                        /* when we reached the "delivered" count */
 886                        u64 delivered_mstamp;
 887                } tx;   /* only used for outgoing skbs */
 888                union {
 889                        struct inet_skb_parm    h4;
 890#if IS_ENABLED(CONFIG_IPV6)
 891                        struct inet6_skb_parm   h6;
 892#endif
 893                } header;       /* For incoming skbs */
 894        };
 895};
 896
 897#define TCP_SKB_CB(__skb)       ((struct tcp_skb_cb *)&((__skb)->cb[0]))
 898
 899extern const struct inet_connection_sock_af_ops ipv4_specific;
 900
 901#if IS_ENABLED(CONFIG_IPV6)
 902/* This is the variant of inet6_iif() that must be used by TCP,
 903 * as TCP moves IP6CB into a different location in skb->cb[]
 904 */
 905static inline int tcp_v6_iif(const struct sk_buff *skb)
 906{
 907        return TCP_SKB_CB(skb)->header.h6.iif;
 908}
 909
 910static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 911{
 912        bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 913
 914        return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 915}
 916
 917/* TCP_SKB_CB reference means this can not be used from early demux */
 918static inline int tcp_v6_sdif(const struct sk_buff *skb)
 919{
 920#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 921        if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 922                return TCP_SKB_CB(skb)->header.h6.iif;
 923#endif
 924        return 0;
 925}
 926
 927extern const struct inet_connection_sock_af_ops ipv6_specific;
 928
 929INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
 930INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
 931INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
 932
 933#endif
 934
 935/* TCP_SKB_CB reference means this can not be used from early demux */
 936static inline int tcp_v4_sdif(struct sk_buff *skb)
 937{
 938#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 939        if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 940                return TCP_SKB_CB(skb)->header.h4.iif;
 941#endif
 942        return 0;
 943}
 944
 945/* Due to TSO, an SKB can be composed of multiple actual
 946 * packets.  To keep these tracked properly, we use this.
 947 */
 948static inline int tcp_skb_pcount(const struct sk_buff *skb)
 949{
 950        return TCP_SKB_CB(skb)->tcp_gso_segs;
 951}
 952
 953static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 954{
 955        TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 956}
 957
 958static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 959{
 960        TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 961}
 962
 963/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 964static inline int tcp_skb_mss(const struct sk_buff *skb)
 965{
 966        return TCP_SKB_CB(skb)->tcp_gso_size;
 967}
 968
 969static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 970{
 971        return likely(!TCP_SKB_CB(skb)->eor);
 972}
 973
 974static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
 975                                        const struct sk_buff *from)
 976{
 977        return likely(tcp_skb_can_collapse_to(to) &&
 978                      mptcp_skb_can_collapse(to, from));
 979}
 980
 981/* Events passed to congestion control interface */
 982enum tcp_ca_event {
 983        CA_EVENT_TX_START,      /* first transmit when no packets in flight */
 984        CA_EVENT_CWND_RESTART,  /* congestion window restart */
 985        CA_EVENT_COMPLETE_CWR,  /* end of congestion recovery */
 986        CA_EVENT_LOSS,          /* loss timeout */
 987        CA_EVENT_ECN_NO_CE,     /* ECT set, but not CE marked */
 988        CA_EVENT_ECN_IS_CE,     /* received CE marked IP packet */
 989};
 990
 991/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
 992enum tcp_ca_ack_event_flags {
 993        CA_ACK_SLOWPATH         = (1 << 0),     /* In slow path processing */
 994        CA_ACK_WIN_UPDATE       = (1 << 1),     /* ACK updated window */
 995        CA_ACK_ECE              = (1 << 2),     /* ECE bit is set on ack */
 996};
 997
 998/*
 999 * Interface for adding new TCP congestion control handlers
1000 */
1001#define TCP_CA_NAME_MAX 16
1002#define TCP_CA_MAX      128
1003#define TCP_CA_BUF_MAX  (TCP_CA_NAME_MAX*TCP_CA_MAX)
1004
1005#define TCP_CA_UNSPEC   0
1006
1007/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1008#define TCP_CONG_NON_RESTRICTED 0x1
1009/* Requires ECN/ECT set on all packets */
1010#define TCP_CONG_NEEDS_ECN      0x2
1011#define TCP_CONG_MASK   (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1012
1013union tcp_cc_info;
1014
1015struct ack_sample {
1016        u32 pkts_acked;
1017        s32 rtt_us;
1018        u32 in_flight;
1019};
1020
1021/* A rate sample measures the number of (original/retransmitted) data
1022 * packets delivered "delivered" over an interval of time "interval_us".
1023 * The tcp_rate.c code fills in the rate sample, and congestion
1024 * control modules that define a cong_control function to run at the end
1025 * of ACK processing can optionally chose to consult this sample when
1026 * setting cwnd and pacing rate.
1027 * A sample is invalid if "delivered" or "interval_us" is negative.
1028 */
1029struct rate_sample {
1030        u64  prior_mstamp; /* starting timestamp for interval */
1031        u32  prior_delivered;   /* tp->delivered at "prior_mstamp" */
1032        s32  delivered;         /* number of packets delivered over interval */
1033        long interval_us;       /* time for tp->delivered to incr "delivered" */
1034        u32 snd_interval_us;    /* snd interval for delivered packets */
1035        u32 rcv_interval_us;    /* rcv interval for delivered packets */
1036        long rtt_us;            /* RTT of last (S)ACKed packet (or -1) */
1037        int  losses;            /* number of packets marked lost upon ACK */
1038        u32  acked_sacked;      /* number of packets newly (S)ACKed upon ACK */
1039        u32  prior_in_flight;   /* in flight before this ACK */
1040        bool is_app_limited;    /* is sample from packet with bubble in pipe? */
1041        bool is_retrans;        /* is sample from retransmission? */
1042        bool is_ack_delayed;    /* is this (likely) a delayed ACK? */
1043};
1044
1045struct tcp_congestion_ops {
1046/* fast path fields are put first to fill one cache line */
1047
1048        /* return slow start threshold (required) */
1049        u32 (*ssthresh)(struct sock *sk);
1050
1051        /* do new cwnd calculation (required) */
1052        void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1053
1054        /* call before changing ca_state (optional) */
1055        void (*set_state)(struct sock *sk, u8 new_state);
1056
1057        /* call when cwnd event occurs (optional) */
1058        void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1059
1060        /* call when ack arrives (optional) */
1061        void (*in_ack_event)(struct sock *sk, u32 flags);
1062
1063        /* hook for packet ack accounting (optional) */
1064        void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1065
1066        /* override sysctl_tcp_min_tso_segs */
1067        u32 (*min_tso_segs)(struct sock *sk);
1068
1069        /* call when packets are delivered to update cwnd and pacing rate,
1070         * after all the ca_state processing. (optional)
1071         */
1072        void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1073
1074
1075        /* new value of cwnd after loss (required) */
1076        u32  (*undo_cwnd)(struct sock *sk);
1077        /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1078        u32 (*sndbuf_expand)(struct sock *sk);
1079
1080/* control/slow paths put last */
1081        /* get info for inet_diag (optional) */
1082        size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1083                           union tcp_cc_info *info);
1084
1085        char                    name[TCP_CA_NAME_MAX];
1086        struct module           *owner;
1087        struct list_head        list;
1088        u32                     key;
1089        u32                     flags;
1090
1091        /* initialize private data (optional) */
1092        void (*init)(struct sock *sk);
1093        /* cleanup private data  (optional) */
1094        void (*release)(struct sock *sk);
1095} ____cacheline_aligned_in_smp;
1096
1097int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1098void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1099
1100void tcp_assign_congestion_control(struct sock *sk);
1101void tcp_init_congestion_control(struct sock *sk);
1102void tcp_cleanup_congestion_control(struct sock *sk);
1103int tcp_set_default_congestion_control(struct net *net, const char *name);
1104void tcp_get_default_congestion_control(struct net *net, char *name);
1105void tcp_get_available_congestion_control(char *buf, size_t len);
1106void tcp_get_allowed_congestion_control(char *buf, size_t len);
1107int tcp_set_allowed_congestion_control(char *allowed);
1108int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1109                               bool cap_net_admin);
1110u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1111void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1112
1113u32 tcp_reno_ssthresh(struct sock *sk);
1114u32 tcp_reno_undo_cwnd(struct sock *sk);
1115void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1116extern struct tcp_congestion_ops tcp_reno;
1117
1118struct tcp_congestion_ops *tcp_ca_find(const char *name);
1119struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1120u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1121#ifdef CONFIG_INET
1122char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1123#else
1124static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1125{
1126        return NULL;
1127}
1128#endif
1129
1130static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1131{
1132        const struct inet_connection_sock *icsk = inet_csk(sk);
1133
1134        return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1135}
1136
1137static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1138{
1139        struct inet_connection_sock *icsk = inet_csk(sk);
1140
1141        if (icsk->icsk_ca_ops->set_state)
1142                icsk->icsk_ca_ops->set_state(sk, ca_state);
1143        icsk->icsk_ca_state = ca_state;
1144}
1145
1146static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1147{
1148        const struct inet_connection_sock *icsk = inet_csk(sk);
1149
1150        if (icsk->icsk_ca_ops->cwnd_event)
1151                icsk->icsk_ca_ops->cwnd_event(sk, event);
1152}
1153
1154/* From tcp_rate.c */
1155void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1156void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1157                            struct rate_sample *rs);
1158void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1159                  bool is_sack_reneg, struct rate_sample *rs);
1160void tcp_rate_check_app_limited(struct sock *sk);
1161
1162/* These functions determine how the current flow behaves in respect of SACK
1163 * handling. SACK is negotiated with the peer, and therefore it can vary
1164 * between different flows.
1165 *
1166 * tcp_is_sack - SACK enabled
1167 * tcp_is_reno - No SACK
1168 */
1169static inline int tcp_is_sack(const struct tcp_sock *tp)
1170{
1171        return likely(tp->rx_opt.sack_ok);
1172}
1173
1174static inline bool tcp_is_reno(const struct tcp_sock *tp)
1175{
1176        return !tcp_is_sack(tp);
1177}
1178
1179static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1180{
1181        return tp->sacked_out + tp->lost_out;
1182}
1183
1184/* This determines how many packets are "in the network" to the best
1185 * of our knowledge.  In many cases it is conservative, but where
1186 * detailed information is available from the receiver (via SACK
1187 * blocks etc.) we can make more aggressive calculations.
1188 *
1189 * Use this for decisions involving congestion control, use just
1190 * tp->packets_out to determine if the send queue is empty or not.
1191 *
1192 * Read this equation as:
1193 *
1194 *      "Packets sent once on transmission queue" MINUS
1195 *      "Packets left network, but not honestly ACKed yet" PLUS
1196 *      "Packets fast retransmitted"
1197 */
1198static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1199{
1200        return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1201}
1202
1203#define TCP_INFINITE_SSTHRESH   0x7fffffff
1204
1205static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1206{
1207        return tp->snd_cwnd < tp->snd_ssthresh;
1208}
1209
1210static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1211{
1212        return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1213}
1214
1215static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1216{
1217        return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1218               (1 << inet_csk(sk)->icsk_ca_state);
1219}
1220
1221/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1222 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1223 * ssthresh.
1224 */
1225static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1226{
1227        const struct tcp_sock *tp = tcp_sk(sk);
1228
1229        if (tcp_in_cwnd_reduction(sk))
1230                return tp->snd_ssthresh;
1231        else
1232                return max(tp->snd_ssthresh,
1233                           ((tp->snd_cwnd >> 1) +
1234                            (tp->snd_cwnd >> 2)));
1235}
1236
1237/* Use define here intentionally to get WARN_ON location shown at the caller */
1238#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1239
1240void tcp_enter_cwr(struct sock *sk);
1241__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1242
1243/* The maximum number of MSS of available cwnd for which TSO defers
1244 * sending if not using sysctl_tcp_tso_win_divisor.
1245 */
1246static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1247{
1248        return 3;
1249}
1250
1251/* Returns end sequence number of the receiver's advertised window */
1252static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1253{
1254        return tp->snd_una + tp->snd_wnd;
1255}
1256
1257/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1258 * flexible approach. The RFC suggests cwnd should not be raised unless
1259 * it was fully used previously. And that's exactly what we do in
1260 * congestion avoidance mode. But in slow start we allow cwnd to grow
1261 * as long as the application has used half the cwnd.
1262 * Example :
1263 *    cwnd is 10 (IW10), but application sends 9 frames.
1264 *    We allow cwnd to reach 18 when all frames are ACKed.
1265 * This check is safe because it's as aggressive as slow start which already
1266 * risks 100% overshoot. The advantage is that we discourage application to
1267 * either send more filler packets or data to artificially blow up the cwnd
1268 * usage, and allow application-limited process to probe bw more aggressively.
1269 */
1270static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1271{
1272        const struct tcp_sock *tp = tcp_sk(sk);
1273
1274        /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1275        if (tcp_in_slow_start(tp))
1276                return tp->snd_cwnd < 2 * tp->max_packets_out;
1277
1278        return tp->is_cwnd_limited;
1279}
1280
1281/* BBR congestion control needs pacing.
1282 * Same remark for SO_MAX_PACING_RATE.
1283 * sch_fq packet scheduler is efficiently handling pacing,
1284 * but is not always installed/used.
1285 * Return true if TCP stack should pace packets itself.
1286 */
1287static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1288{
1289        return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1290}
1291
1292/* Estimates in how many jiffies next packet for this flow can be sent.
1293 * Scheduling a retransmit timer too early would be silly.
1294 */
1295static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1296{
1297        s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1298
1299        return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1300}
1301
1302static inline void tcp_reset_xmit_timer(struct sock *sk,
1303                                        const int what,
1304                                        unsigned long when,
1305                                        const unsigned long max_when)
1306{
1307        inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1308                                  max_when);
1309}
1310
1311/* Something is really bad, we could not queue an additional packet,
1312 * because qdisc is full or receiver sent a 0 window, or we are paced.
1313 * We do not want to add fuel to the fire, or abort too early,
1314 * so make sure the timer we arm now is at least 200ms in the future,
1315 * regardless of current icsk_rto value (as it could be ~2ms)
1316 */
1317static inline unsigned long tcp_probe0_base(const struct sock *sk)
1318{
1319        return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1320}
1321
1322/* Variant of inet_csk_rto_backoff() used for zero window probes */
1323static inline unsigned long tcp_probe0_when(const struct sock *sk,
1324                                            unsigned long max_when)
1325{
1326        u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1327                           inet_csk(sk)->icsk_backoff);
1328        u64 when = (u64)tcp_probe0_base(sk) << backoff;
1329
1330        return (unsigned long)min_t(u64, when, max_when);
1331}
1332
1333static inline void tcp_check_probe_timer(struct sock *sk)
1334{
1335        if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1336                tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1337                                     tcp_probe0_base(sk), TCP_RTO_MAX);
1338}
1339
1340static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1341{
1342        tp->snd_wl1 = seq;
1343}
1344
1345static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1346{
1347        tp->snd_wl1 = seq;
1348}
1349
1350/*
1351 * Calculate(/check) TCP checksum
1352 */
1353static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1354                                   __be32 daddr, __wsum base)
1355{
1356        return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1357}
1358
1359static inline bool tcp_checksum_complete(struct sk_buff *skb)
1360{
1361        return !skb_csum_unnecessary(skb) &&
1362                __skb_checksum_complete(skb);
1363}
1364
1365bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1366int tcp_filter(struct sock *sk, struct sk_buff *skb);
1367void tcp_set_state(struct sock *sk, int state);
1368void tcp_done(struct sock *sk);
1369int tcp_abort(struct sock *sk, int err);
1370
1371static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1372{
1373        rx_opt->dsack = 0;
1374        rx_opt->num_sacks = 0;
1375}
1376
1377void tcp_cwnd_restart(struct sock *sk, s32 delta);
1378
1379static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1380{
1381        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1382        struct tcp_sock *tp = tcp_sk(sk);
1383        s32 delta;
1384
1385        if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1386            ca_ops->cong_control)
1387                return;
1388        delta = tcp_jiffies32 - tp->lsndtime;
1389        if (delta > inet_csk(sk)->icsk_rto)
1390                tcp_cwnd_restart(sk, delta);
1391}
1392
1393/* Determine a window scaling and initial window to offer. */
1394void tcp_select_initial_window(const struct sock *sk, int __space,
1395                               __u32 mss, __u32 *rcv_wnd,
1396                               __u32 *window_clamp, int wscale_ok,
1397                               __u8 *rcv_wscale, __u32 init_rcv_wnd);
1398
1399static inline int tcp_win_from_space(const struct sock *sk, int space)
1400{
1401        int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1402
1403        return tcp_adv_win_scale <= 0 ?
1404                (space>>(-tcp_adv_win_scale)) :
1405                space - (space>>tcp_adv_win_scale);
1406}
1407
1408/* Note: caller must be prepared to deal with negative returns */
1409static inline int tcp_space(const struct sock *sk)
1410{
1411        return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1412                                  READ_ONCE(sk->sk_backlog.len) -
1413                                  atomic_read(&sk->sk_rmem_alloc));
1414}
1415
1416static inline int tcp_full_space(const struct sock *sk)
1417{
1418        return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1419}
1420
1421void tcp_cleanup_rbuf(struct sock *sk, int copied);
1422
1423/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1424 * If 87.5 % (7/8) of the space has been consumed, we want to override
1425 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1426 * len/truesize ratio.
1427 */
1428static inline bool tcp_rmem_pressure(const struct sock *sk)
1429{
1430        int rcvbuf, threshold;
1431
1432        if (tcp_under_memory_pressure(sk))
1433                return true;
1434
1435        rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1436        threshold = rcvbuf - (rcvbuf >> 3);
1437
1438        return atomic_read(&sk->sk_rmem_alloc) > threshold;
1439}
1440
1441static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1442{
1443        const struct tcp_sock *tp = tcp_sk(sk);
1444        int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1445
1446        if (avail <= 0)
1447                return false;
1448
1449        return (avail >= target) || tcp_rmem_pressure(sk) ||
1450               (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1451}
1452
1453extern void tcp_openreq_init_rwin(struct request_sock *req,
1454                                  const struct sock *sk_listener,
1455                                  const struct dst_entry *dst);
1456
1457void tcp_enter_memory_pressure(struct sock *sk);
1458void tcp_leave_memory_pressure(struct sock *sk);
1459
1460static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1461{
1462        struct net *net = sock_net((struct sock *)tp);
1463
1464        return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1465}
1466
1467static inline int keepalive_time_when(const struct tcp_sock *tp)
1468{
1469        struct net *net = sock_net((struct sock *)tp);
1470
1471        return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1472}
1473
1474static inline int keepalive_probes(const struct tcp_sock *tp)
1475{
1476        struct net *net = sock_net((struct sock *)tp);
1477
1478        return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1479}
1480
1481static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1482{
1483        const struct inet_connection_sock *icsk = &tp->inet_conn;
1484
1485        return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1486                          tcp_jiffies32 - tp->rcv_tstamp);
1487}
1488
1489static inline int tcp_fin_time(const struct sock *sk)
1490{
1491        int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1492        const int rto = inet_csk(sk)->icsk_rto;
1493
1494        if (fin_timeout < (rto << 2) - (rto >> 1))
1495                fin_timeout = (rto << 2) - (rto >> 1);
1496
1497        return fin_timeout;
1498}
1499
1500static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1501                                  int paws_win)
1502{
1503        if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1504                return true;
1505        if (unlikely(!time_before32(ktime_get_seconds(),
1506                                    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1507                return true;
1508        /*
1509         * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1510         * then following tcp messages have valid values. Ignore 0 value,
1511         * or else 'negative' tsval might forbid us to accept their packets.
1512         */
1513        if (!rx_opt->ts_recent)
1514                return true;
1515        return false;
1516}
1517
1518static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1519                                   int rst)
1520{
1521        if (tcp_paws_check(rx_opt, 0))
1522                return false;
1523
1524        /* RST segments are not recommended to carry timestamp,
1525           and, if they do, it is recommended to ignore PAWS because
1526           "their cleanup function should take precedence over timestamps."
1527           Certainly, it is mistake. It is necessary to understand the reasons
1528           of this constraint to relax it: if peer reboots, clock may go
1529           out-of-sync and half-open connections will not be reset.
1530           Actually, the problem would be not existing if all
1531           the implementations followed draft about maintaining clock
1532           via reboots. Linux-2.2 DOES NOT!
1533
1534           However, we can relax time bounds for RST segments to MSL.
1535         */
1536        if (rst && !time_before32(ktime_get_seconds(),
1537                                  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1538                return false;
1539        return true;
1540}
1541
1542bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1543                          int mib_idx, u32 *last_oow_ack_time);
1544
1545static inline void tcp_mib_init(struct net *net)
1546{
1547        /* See RFC 2012 */
1548        TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1549        TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1550        TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1551        TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1552}
1553
1554/* from STCP */
1555static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1556{
1557        tp->lost_skb_hint = NULL;
1558}
1559
1560static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1561{
1562        tcp_clear_retrans_hints_partial(tp);
1563        tp->retransmit_skb_hint = NULL;
1564}
1565
1566union tcp_md5_addr {
1567        struct in_addr  a4;
1568#if IS_ENABLED(CONFIG_IPV6)
1569        struct in6_addr a6;
1570#endif
1571};
1572
1573/* - key database */
1574struct tcp_md5sig_key {
1575        struct hlist_node       node;
1576        u8                      keylen;
1577        u8                      family; /* AF_INET or AF_INET6 */
1578        u8                      prefixlen;
1579        u8                      flags;
1580        union tcp_md5_addr      addr;
1581        int                     l3index; /* set if key added with L3 scope */
1582        u8                      key[TCP_MD5SIG_MAXKEYLEN];
1583        struct rcu_head         rcu;
1584};
1585
1586/* - sock block */
1587struct tcp_md5sig_info {
1588        struct hlist_head       head;
1589        struct rcu_head         rcu;
1590};
1591
1592/* - pseudo header */
1593struct tcp4_pseudohdr {
1594        __be32          saddr;
1595        __be32          daddr;
1596        __u8            pad;
1597        __u8            protocol;
1598        __be16          len;
1599};
1600
1601struct tcp6_pseudohdr {
1602        struct in6_addr saddr;
1603        struct in6_addr daddr;
1604        __be32          len;
1605        __be32          protocol;       /* including padding */
1606};
1607
1608union tcp_md5sum_block {
1609        struct tcp4_pseudohdr ip4;
1610#if IS_ENABLED(CONFIG_IPV6)
1611        struct tcp6_pseudohdr ip6;
1612#endif
1613};
1614
1615/* - pool: digest algorithm, hash description and scratch buffer */
1616struct tcp_md5sig_pool {
1617        struct ahash_request    *md5_req;
1618        void                    *scratch;
1619};
1620
1621/* - functions */
1622int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1623                        const struct sock *sk, const struct sk_buff *skb);
1624int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1625                   int family, u8 prefixlen, int l3index, u8 flags,
1626                   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1627int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1628                   int family, u8 prefixlen, int l3index, u8 flags);
1629struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1630                                         const struct sock *addr_sk);
1631
1632#ifdef CONFIG_TCP_MD5SIG
1633#include <linux/jump_label.h>
1634extern struct static_key_false tcp_md5_needed;
1635struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1636                                           const union tcp_md5_addr *addr,
1637                                           int family);
1638static inline struct tcp_md5sig_key *
1639tcp_md5_do_lookup(const struct sock *sk, int l3index,
1640                  const union tcp_md5_addr *addr, int family)
1641{
1642        if (!static_branch_unlikely(&tcp_md5_needed))
1643                return NULL;
1644        return __tcp_md5_do_lookup(sk, l3index, addr, family);
1645}
1646
1647#define tcp_twsk_md5_key(twsk)  ((twsk)->tw_md5_key)
1648#else
1649static inline struct tcp_md5sig_key *
1650tcp_md5_do_lookup(const struct sock *sk, int l3index,
1651                  const union tcp_md5_addr *addr, int family)
1652{
1653        return NULL;
1654}
1655#define tcp_twsk_md5_key(twsk)  NULL
1656#endif
1657
1658bool tcp_alloc_md5sig_pool(void);
1659
1660struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1661static inline void tcp_put_md5sig_pool(void)
1662{
1663        local_bh_enable();
1664}
1665
1666int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1667                          unsigned int header_len);
1668int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1669                     const struct tcp_md5sig_key *key);
1670
1671/* From tcp_fastopen.c */
1672void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1673                            struct tcp_fastopen_cookie *cookie);
1674void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1675                            struct tcp_fastopen_cookie *cookie, bool syn_lost,
1676                            u16 try_exp);
1677struct tcp_fastopen_request {
1678        /* Fast Open cookie. Size 0 means a cookie request */
1679        struct tcp_fastopen_cookie      cookie;
1680        struct msghdr                   *data;  /* data in MSG_FASTOPEN */
1681        size_t                          size;
1682        int                             copied; /* queued in tcp_connect() */
1683        struct ubuf_info                *uarg;
1684};
1685void tcp_free_fastopen_req(struct tcp_sock *tp);
1686void tcp_fastopen_destroy_cipher(struct sock *sk);
1687void tcp_fastopen_ctx_destroy(struct net *net);
1688int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1689                              void *primary_key, void *backup_key);
1690int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1691                            u64 *key);
1692void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1693struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1694                              struct request_sock *req,
1695                              struct tcp_fastopen_cookie *foc,
1696                              const struct dst_entry *dst);
1697void tcp_fastopen_init_key_once(struct net *net);
1698bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1699                             struct tcp_fastopen_cookie *cookie);
1700bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1701#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1702#define TCP_FASTOPEN_KEY_MAX 2
1703#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1704        (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1705
1706/* Fastopen key context */
1707struct tcp_fastopen_context {
1708        siphash_key_t   key[TCP_FASTOPEN_KEY_MAX];
1709        int             num;
1710        struct rcu_head rcu;
1711};
1712
1713void tcp_fastopen_active_disable(struct sock *sk);
1714bool tcp_fastopen_active_should_disable(struct sock *sk);
1715void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1716void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1717
1718/* Caller needs to wrap with rcu_read_(un)lock() */
1719static inline
1720struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1721{
1722        struct tcp_fastopen_context *ctx;
1723
1724        ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1725        if (!ctx)
1726                ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1727        return ctx;
1728}
1729
1730static inline
1731bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1732                               const struct tcp_fastopen_cookie *orig)
1733{
1734        if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1735            orig->len == foc->len &&
1736            !memcmp(orig->val, foc->val, foc->len))
1737                return true;
1738        return false;
1739}
1740
1741static inline
1742int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1743{
1744        return ctx->num;
1745}
1746
1747/* Latencies incurred by various limits for a sender. They are
1748 * chronograph-like stats that are mutually exclusive.
1749 */
1750enum tcp_chrono {
1751        TCP_CHRONO_UNSPEC,
1752        TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1753        TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1754        TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1755        __TCP_CHRONO_MAX,
1756};
1757
1758void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1759void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1760
1761/* This helper is needed, because skb->tcp_tsorted_anchor uses
1762 * the same memory storage than skb->destructor/_skb_refdst
1763 */
1764static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1765{
1766        skb->destructor = NULL;
1767        skb->_skb_refdst = 0UL;
1768}
1769
1770#define tcp_skb_tsorted_save(skb) {             \
1771        unsigned long _save = skb->_skb_refdst; \
1772        skb->_skb_refdst = 0UL;
1773
1774#define tcp_skb_tsorted_restore(skb)            \
1775        skb->_skb_refdst = _save;               \
1776}
1777
1778void tcp_write_queue_purge(struct sock *sk);
1779
1780static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1781{
1782        return skb_rb_first(&sk->tcp_rtx_queue);
1783}
1784
1785static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1786{
1787        return skb_rb_last(&sk->tcp_rtx_queue);
1788}
1789
1790static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1791{
1792        return skb_peek(&sk->sk_write_queue);
1793}
1794
1795static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1796{
1797        return skb_peek_tail(&sk->sk_write_queue);
1798}
1799
1800#define tcp_for_write_queue_from_safe(skb, tmp, sk)                     \
1801        skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1802
1803static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1804{
1805        return skb_peek(&sk->sk_write_queue);
1806}
1807
1808static inline bool tcp_skb_is_last(const struct sock *sk,
1809                                   const struct sk_buff *skb)
1810{
1811        return skb_queue_is_last(&sk->sk_write_queue, skb);
1812}
1813
1814/**
1815 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1816 * @sk: socket
1817 *
1818 * Since the write queue can have a temporary empty skb in it,
1819 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1820 */
1821static inline bool tcp_write_queue_empty(const struct sock *sk)
1822{
1823        const struct tcp_sock *tp = tcp_sk(sk);
1824
1825        return tp->write_seq == tp->snd_nxt;
1826}
1827
1828static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1829{
1830        return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1831}
1832
1833static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1834{
1835        return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1836}
1837
1838static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1839{
1840        __skb_queue_tail(&sk->sk_write_queue, skb);
1841
1842        /* Queue it, remembering where we must start sending. */
1843        if (sk->sk_write_queue.next == skb)
1844                tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1845}
1846
1847/* Insert new before skb on the write queue of sk.  */
1848static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1849                                                  struct sk_buff *skb,
1850                                                  struct sock *sk)
1851{
1852        __skb_queue_before(&sk->sk_write_queue, skb, new);
1853}
1854
1855static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1856{
1857        tcp_skb_tsorted_anchor_cleanup(skb);
1858        __skb_unlink(skb, &sk->sk_write_queue);
1859}
1860
1861void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1862
1863static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1864{
1865        tcp_skb_tsorted_anchor_cleanup(skb);
1866        rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1867}
1868
1869static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1870{
1871        list_del(&skb->tcp_tsorted_anchor);
1872        tcp_rtx_queue_unlink(skb, sk);
1873        sk_wmem_free_skb(sk, skb);
1874}
1875
1876static inline void tcp_push_pending_frames(struct sock *sk)
1877{
1878        if (tcp_send_head(sk)) {
1879                struct tcp_sock *tp = tcp_sk(sk);
1880
1881                __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1882        }
1883}
1884
1885/* Start sequence of the skb just after the highest skb with SACKed
1886 * bit, valid only if sacked_out > 0 or when the caller has ensured
1887 * validity by itself.
1888 */
1889static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1890{
1891        if (!tp->sacked_out)
1892                return tp->snd_una;
1893
1894        if (tp->highest_sack == NULL)
1895                return tp->snd_nxt;
1896
1897        return TCP_SKB_CB(tp->highest_sack)->seq;
1898}
1899
1900static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1901{
1902        tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1903}
1904
1905static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1906{
1907        return tcp_sk(sk)->highest_sack;
1908}
1909
1910static inline void tcp_highest_sack_reset(struct sock *sk)
1911{
1912        tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1913}
1914
1915/* Called when old skb is about to be deleted and replaced by new skb */
1916static inline void tcp_highest_sack_replace(struct sock *sk,
1917                                            struct sk_buff *old,
1918                                            struct sk_buff *new)
1919{
1920        if (old == tcp_highest_sack(sk))
1921                tcp_sk(sk)->highest_sack = new;
1922}
1923
1924/* This helper checks if socket has IP_TRANSPARENT set */
1925static inline bool inet_sk_transparent(const struct sock *sk)
1926{
1927        switch (sk->sk_state) {
1928        case TCP_TIME_WAIT:
1929                return inet_twsk(sk)->tw_transparent;
1930        case TCP_NEW_SYN_RECV:
1931                return inet_rsk(inet_reqsk(sk))->no_srccheck;
1932        }
1933        return inet_sk(sk)->transparent;
1934}
1935
1936/* Determines whether this is a thin stream (which may suffer from
1937 * increased latency). Used to trigger latency-reducing mechanisms.
1938 */
1939static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1940{
1941        return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1942}
1943
1944/* /proc */
1945enum tcp_seq_states {
1946        TCP_SEQ_STATE_LISTENING,
1947        TCP_SEQ_STATE_ESTABLISHED,
1948};
1949
1950void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1951void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1952void tcp_seq_stop(struct seq_file *seq, void *v);
1953
1954struct tcp_seq_afinfo {
1955        sa_family_t                     family;
1956};
1957
1958struct tcp_iter_state {
1959        struct seq_net_private  p;
1960        enum tcp_seq_states     state;
1961        struct sock             *syn_wait_sk;
1962        int                     bucket, offset, sbucket, num;
1963        loff_t                  last_pos;
1964};
1965
1966extern struct request_sock_ops tcp_request_sock_ops;
1967extern struct request_sock_ops tcp6_request_sock_ops;
1968
1969void tcp_v4_destroy_sock(struct sock *sk);
1970
1971struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1972                                netdev_features_t features);
1973struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1974INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1975INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1976INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1977INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1978int tcp_gro_complete(struct sk_buff *skb);
1979
1980void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1981
1982static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1983{
1984        struct net *net = sock_net((struct sock *)tp);
1985        return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1986}
1987
1988bool tcp_stream_memory_free(const struct sock *sk, int wake);
1989
1990#ifdef CONFIG_PROC_FS
1991int tcp4_proc_init(void);
1992void tcp4_proc_exit(void);
1993#endif
1994
1995int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1996int tcp_conn_request(struct request_sock_ops *rsk_ops,
1997                     const struct tcp_request_sock_ops *af_ops,
1998                     struct sock *sk, struct sk_buff *skb);
1999
2000/* TCP af-specific functions */
2001struct tcp_sock_af_ops {
2002#ifdef CONFIG_TCP_MD5SIG
2003        struct tcp_md5sig_key   *(*md5_lookup) (const struct sock *sk,
2004                                                const struct sock *addr_sk);
2005        int             (*calc_md5_hash)(char *location,
2006                                         const struct tcp_md5sig_key *md5,
2007                                         const struct sock *sk,
2008                                         const struct sk_buff *skb);
2009        int             (*md5_parse)(struct sock *sk,
2010                                     int optname,
2011                                     sockptr_t optval,
2012                                     int optlen);
2013#endif
2014};
2015
2016struct tcp_request_sock_ops {
2017        u16 mss_clamp;
2018#ifdef CONFIG_TCP_MD5SIG
2019        struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2020                                                 const struct sock *addr_sk);
2021        int             (*calc_md5_hash) (char *location,
2022                                          const struct tcp_md5sig_key *md5,
2023                                          const struct sock *sk,
2024                                          const struct sk_buff *skb);
2025#endif
2026#ifdef CONFIG_SYN_COOKIES
2027        __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2028                                 __u16 *mss);
2029#endif
2030        struct dst_entry *(*route_req)(const struct sock *sk,
2031                                       struct sk_buff *skb,
2032                                       struct flowi *fl,
2033                                       struct request_sock *req);
2034        u32 (*init_seq)(const struct sk_buff *skb);
2035        u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2036        int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2037                           struct flowi *fl, struct request_sock *req,
2038                           struct tcp_fastopen_cookie *foc,
2039                           enum tcp_synack_type synack_type,
2040                           struct sk_buff *syn_skb);
2041};
2042
2043extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2044#if IS_ENABLED(CONFIG_IPV6)
2045extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2046#endif
2047
2048#ifdef CONFIG_SYN_COOKIES
2049static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2050                                         const struct sock *sk, struct sk_buff *skb,
2051                                         __u16 *mss)
2052{
2053        tcp_synq_overflow(sk);
2054        __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2055        return ops->cookie_init_seq(skb, mss);
2056}
2057#else
2058static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2059                                         const struct sock *sk, struct sk_buff *skb,
2060                                         __u16 *mss)
2061{
2062        return 0;
2063}
2064#endif
2065
2066int tcpv4_offload_init(void);
2067
2068void tcp_v4_init(void);
2069void tcp_init(void);
2070
2071/* tcp_recovery.c */
2072void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2073void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2074extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2075                                u32 reo_wnd);
2076extern bool tcp_rack_mark_lost(struct sock *sk);
2077extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2078                             u64 xmit_time);
2079extern void tcp_rack_reo_timeout(struct sock *sk);
2080extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2081
2082/* At how many usecs into the future should the RTO fire? */
2083static inline s64 tcp_rto_delta_us(const struct sock *sk)
2084{
2085        const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2086        u32 rto = inet_csk(sk)->icsk_rto;
2087        u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2088
2089        return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2090}
2091
2092/*
2093 * Save and compile IPv4 options, return a pointer to it
2094 */
2095static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2096                                                         struct sk_buff *skb)
2097{
2098        const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2099        struct ip_options_rcu *dopt = NULL;
2100
2101        if (opt->optlen) {
2102                int opt_size = sizeof(*dopt) + opt->optlen;
2103
2104                dopt = kmalloc(opt_size, GFP_ATOMIC);
2105                if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2106                        kfree(dopt);
2107                        dopt = NULL;
2108                }
2109        }
2110        return dopt;
2111}
2112
2113/* locally generated TCP pure ACKs have skb->truesize == 2
2114 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2115 * This is much faster than dissecting the packet to find out.
2116 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2117 */
2118static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2119{
2120        return skb->truesize == 2;
2121}
2122
2123static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2124{
2125        skb->truesize = 2;
2126}
2127
2128static inline int tcp_inq(struct sock *sk)
2129{
2130        struct tcp_sock *tp = tcp_sk(sk);
2131        int answ;
2132
2133        if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2134                answ = 0;
2135        } else if (sock_flag(sk, SOCK_URGINLINE) ||
2136                   !tp->urg_data ||
2137                   before(tp->urg_seq, tp->copied_seq) ||
2138                   !before(tp->urg_seq, tp->rcv_nxt)) {
2139
2140                answ = tp->rcv_nxt - tp->copied_seq;
2141
2142                /* Subtract 1, if FIN was received */
2143                if (answ && sock_flag(sk, SOCK_DONE))
2144                        answ--;
2145        } else {
2146                answ = tp->urg_seq - tp->copied_seq;
2147        }
2148
2149        return answ;
2150}
2151
2152int tcp_peek_len(struct socket *sock);
2153
2154static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2155{
2156        u16 segs_in;
2157
2158        segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2159        tp->segs_in += segs_in;
2160        if (skb->len > tcp_hdrlen(skb))
2161                tp->data_segs_in += segs_in;
2162}
2163
2164/*
2165 * TCP listen path runs lockless.
2166 * We forced "struct sock" to be const qualified to make sure
2167 * we don't modify one of its field by mistake.
2168 * Here, we increment sk_drops which is an atomic_t, so we can safely
2169 * make sock writable again.
2170 */
2171static inline void tcp_listendrop(const struct sock *sk)
2172{
2173        atomic_inc(&((struct sock *)sk)->sk_drops);
2174        __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2175}
2176
2177enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2178
2179/*
2180 * Interface for adding Upper Level Protocols over TCP
2181 */
2182
2183#define TCP_ULP_NAME_MAX        16
2184#define TCP_ULP_MAX             128
2185#define TCP_ULP_BUF_MAX         (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2186
2187struct tcp_ulp_ops {
2188        struct list_head        list;
2189
2190        /* initialize ulp */
2191        int (*init)(struct sock *sk);
2192        /* update ulp */
2193        void (*update)(struct sock *sk, struct proto *p,
2194                       void (*write_space)(struct sock *sk));
2195        /* cleanup ulp */
2196        void (*release)(struct sock *sk);
2197        /* diagnostic */
2198        int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2199        size_t (*get_info_size)(const struct sock *sk);
2200        /* clone ulp */
2201        void (*clone)(const struct request_sock *req, struct sock *newsk,
2202                      const gfp_t priority);
2203
2204        char            name[TCP_ULP_NAME_MAX];
2205        struct module   *owner;
2206};
2207int tcp_register_ulp(struct tcp_ulp_ops *type);
2208void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2209int tcp_set_ulp(struct sock *sk, const char *name);
2210void tcp_get_available_ulp(char *buf, size_t len);
2211void tcp_cleanup_ulp(struct sock *sk);
2212void tcp_update_ulp(struct sock *sk, struct proto *p,
2213                    void (*write_space)(struct sock *sk));
2214
2215#define MODULE_ALIAS_TCP_ULP(name)                              \
2216        __MODULE_INFO(alias, alias_userspace, name);            \
2217        __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2218
2219#ifdef CONFIG_NET_SOCK_MSG
2220struct sk_msg;
2221struct sk_psock;
2222
2223#ifdef CONFIG_BPF_SYSCALL
2224struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2225int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2226void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2227#endif /* CONFIG_BPF_SYSCALL */
2228
2229int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2230                          int flags);
2231#endif /* CONFIG_NET_SOCK_MSG */
2232
2233#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2234static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2235{
2236}
2237#endif
2238
2239#ifdef CONFIG_CGROUP_BPF
2240static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2241                                      struct sk_buff *skb,
2242                                      unsigned int end_offset)
2243{
2244        skops->skb = skb;
2245        skops->skb_data_end = skb->data + end_offset;
2246}
2247#else
2248static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2249                                      struct sk_buff *skb,
2250                                      unsigned int end_offset)
2251{
2252}
2253#endif
2254
2255/* Call BPF_SOCK_OPS program that returns an int. If the return value
2256 * is < 0, then the BPF op failed (for example if the loaded BPF
2257 * program does not support the chosen operation or there is no BPF
2258 * program loaded).
2259 */
2260#ifdef CONFIG_BPF
2261static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2262{
2263        struct bpf_sock_ops_kern sock_ops;
2264        int ret;
2265
2266        memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2267        if (sk_fullsock(sk)) {
2268                sock_ops.is_fullsock = 1;
2269                sock_owned_by_me(sk);
2270        }
2271
2272        sock_ops.sk = sk;
2273        sock_ops.op = op;
2274        if (nargs > 0)
2275                memcpy(sock_ops.args, args, nargs * sizeof(*args));
2276
2277        ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2278        if (ret == 0)
2279                ret = sock_ops.reply;
2280        else
2281                ret = -1;
2282        return ret;
2283}
2284
2285static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2286{
2287        u32 args[2] = {arg1, arg2};
2288
2289        return tcp_call_bpf(sk, op, 2, args);
2290}
2291
2292static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2293                                    u32 arg3)
2294{
2295        u32 args[3] = {arg1, arg2, arg3};
2296
2297        return tcp_call_bpf(sk, op, 3, args);
2298}
2299
2300#else
2301static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2302{
2303        return -EPERM;
2304}
2305
2306static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2307{
2308        return -EPERM;
2309}
2310
2311static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2312                                    u32 arg3)
2313{
2314        return -EPERM;
2315}
2316
2317#endif
2318
2319static inline u32 tcp_timeout_init(struct sock *sk)
2320{
2321        int timeout;
2322
2323        timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2324
2325        if (timeout <= 0)
2326                timeout = TCP_TIMEOUT_INIT;
2327        return timeout;
2328}
2329
2330static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2331{
2332        int rwnd;
2333
2334        rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2335
2336        if (rwnd < 0)
2337                rwnd = 0;
2338        return rwnd;
2339}
2340
2341static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2342{
2343        return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2344}
2345
2346static inline void tcp_bpf_rtt(struct sock *sk)
2347{
2348        if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2349                tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2350}
2351
2352#if IS_ENABLED(CONFIG_SMC)
2353extern struct static_key_false tcp_have_smc;
2354#endif
2355
2356#if IS_ENABLED(CONFIG_TLS_DEVICE)
2357void clean_acked_data_enable(struct inet_connection_sock *icsk,
2358                             void (*cad)(struct sock *sk, u32 ack_seq));
2359void clean_acked_data_disable(struct inet_connection_sock *icsk);
2360void clean_acked_data_flush(void);
2361#endif
2362
2363DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2364static inline void tcp_add_tx_delay(struct sk_buff *skb,
2365                                    const struct tcp_sock *tp)
2366{
2367        if (static_branch_unlikely(&tcp_tx_delay_enabled))
2368                skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2369}
2370
2371/* Compute Earliest Departure Time for some control packets
2372 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2373 */
2374static inline u64 tcp_transmit_time(const struct sock *sk)
2375{
2376        if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2377                u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2378                        tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2379
2380                return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2381        }
2382        return 0;
2383}
2384
2385#endif  /* _TCP_H */
2386