linux/include/net/tls.h
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#ifndef _TLS_OFFLOAD_H
  35#define _TLS_OFFLOAD_H
  36
  37#include <linux/types.h>
  38#include <asm/byteorder.h>
  39#include <linux/crypto.h>
  40#include <linux/socket.h>
  41#include <linux/tcp.h>
  42#include <linux/skmsg.h>
  43#include <linux/mutex.h>
  44#include <linux/netdevice.h>
  45#include <linux/rcupdate.h>
  46
  47#include <net/net_namespace.h>
  48#include <net/tcp.h>
  49#include <net/strparser.h>
  50#include <crypto/aead.h>
  51#include <uapi/linux/tls.h>
  52
  53
  54/* Maximum data size carried in a TLS record */
  55#define TLS_MAX_PAYLOAD_SIZE            ((size_t)1 << 14)
  56
  57#define TLS_HEADER_SIZE                 5
  58#define TLS_NONCE_OFFSET                TLS_HEADER_SIZE
  59
  60#define TLS_CRYPTO_INFO_READY(info)     ((info)->cipher_type)
  61
  62#define TLS_RECORD_TYPE_DATA            0x17
  63
  64#define TLS_AAD_SPACE_SIZE              13
  65
  66#define MAX_IV_SIZE                     16
  67#define TLS_MAX_REC_SEQ_SIZE            8
  68
  69/* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
  70 *
  71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
  72 *
  73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
  74 * Hence b0 contains (3 - 1) = 2.
  75 */
  76#define TLS_AES_CCM_IV_B0_BYTE          2
  77
  78#define __TLS_INC_STATS(net, field)                             \
  79        __SNMP_INC_STATS((net)->mib.tls_statistics, field)
  80#define TLS_INC_STATS(net, field)                               \
  81        SNMP_INC_STATS((net)->mib.tls_statistics, field)
  82#define TLS_DEC_STATS(net, field)                               \
  83        SNMP_DEC_STATS((net)->mib.tls_statistics, field)
  84
  85enum {
  86        TLS_BASE,
  87        TLS_SW,
  88        TLS_HW,
  89        TLS_HW_RECORD,
  90        TLS_NUM_CONFIG,
  91};
  92
  93/* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
  94 * allocated or mapped for each TLS record. After encryption, the records are
  95 * stores in a linked list.
  96 */
  97struct tls_rec {
  98        struct list_head list;
  99        int tx_ready;
 100        int tx_flags;
 101
 102        struct sk_msg msg_plaintext;
 103        struct sk_msg msg_encrypted;
 104
 105        /* AAD | msg_plaintext.sg.data | sg_tag */
 106        struct scatterlist sg_aead_in[2];
 107        /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
 108        struct scatterlist sg_aead_out[2];
 109
 110        char content_type;
 111        struct scatterlist sg_content_type;
 112
 113        char aad_space[TLS_AAD_SPACE_SIZE];
 114        u8 iv_data[MAX_IV_SIZE];
 115        struct aead_request aead_req;
 116        u8 aead_req_ctx[];
 117};
 118
 119struct tls_msg {
 120        struct strp_msg rxm;
 121        u8 control;
 122};
 123
 124struct tx_work {
 125        struct delayed_work work;
 126        struct sock *sk;
 127};
 128
 129struct tls_sw_context_tx {
 130        struct crypto_aead *aead_send;
 131        struct crypto_wait async_wait;
 132        struct tx_work tx_work;
 133        struct tls_rec *open_rec;
 134        struct list_head tx_list;
 135        atomic_t encrypt_pending;
 136        /* protect crypto_wait with encrypt_pending */
 137        spinlock_t encrypt_compl_lock;
 138        int async_notify;
 139        u8 async_capable:1;
 140
 141#define BIT_TX_SCHEDULED        0
 142#define BIT_TX_CLOSING          1
 143        unsigned long tx_bitmask;
 144};
 145
 146struct tls_sw_context_rx {
 147        struct crypto_aead *aead_recv;
 148        struct crypto_wait async_wait;
 149        struct strparser strp;
 150        struct sk_buff_head rx_list;    /* list of decrypted 'data' records */
 151        void (*saved_data_ready)(struct sock *sk);
 152
 153        struct sk_buff *recv_pkt;
 154        u8 control;
 155        u8 async_capable:1;
 156        u8 decrypted:1;
 157        atomic_t decrypt_pending;
 158        /* protect crypto_wait with decrypt_pending*/
 159        spinlock_t decrypt_compl_lock;
 160        bool async_notify;
 161};
 162
 163struct tls_record_info {
 164        struct list_head list;
 165        u32 end_seq;
 166        int len;
 167        int num_frags;
 168        skb_frag_t frags[MAX_SKB_FRAGS];
 169};
 170
 171struct tls_offload_context_tx {
 172        struct crypto_aead *aead_send;
 173        spinlock_t lock;        /* protects records list */
 174        struct list_head records_list;
 175        struct tls_record_info *open_record;
 176        struct tls_record_info *retransmit_hint;
 177        u64 hint_record_sn;
 178        u64 unacked_record_sn;
 179
 180        struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
 181        void (*sk_destruct)(struct sock *sk);
 182        u8 driver_state[] __aligned(8);
 183        /* The TLS layer reserves room for driver specific state
 184         * Currently the belief is that there is not enough
 185         * driver specific state to justify another layer of indirection
 186         */
 187#define TLS_DRIVER_STATE_SIZE_TX        16
 188};
 189
 190#define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
 191        (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
 192
 193enum tls_context_flags {
 194        /* tls_device_down was called after the netdev went down, device state
 195         * was released, and kTLS works in software, even though rx_conf is
 196         * still TLS_HW (needed for transition).
 197         */
 198        TLS_RX_DEV_DEGRADED = 0,
 199        /* Unlike RX where resync is driven entirely by the core in TX only
 200         * the driver knows when things went out of sync, so we need the flag
 201         * to be atomic.
 202         */
 203        TLS_TX_SYNC_SCHED = 1,
 204        /* tls_dev_del was called for the RX side, device state was released,
 205         * but tls_ctx->netdev might still be kept, because TX-side driver
 206         * resources might not be released yet. Used to prevent the second
 207         * tls_dev_del call in tls_device_down if it happens simultaneously.
 208         */
 209        TLS_RX_DEV_CLOSED = 2,
 210};
 211
 212struct cipher_context {
 213        char *iv;
 214        char *rec_seq;
 215};
 216
 217union tls_crypto_context {
 218        struct tls_crypto_info info;
 219        union {
 220                struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
 221                struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
 222                struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
 223        };
 224};
 225
 226struct tls_prot_info {
 227        u16 version;
 228        u16 cipher_type;
 229        u16 prepend_size;
 230        u16 tag_size;
 231        u16 overhead_size;
 232        u16 iv_size;
 233        u16 salt_size;
 234        u16 rec_seq_size;
 235        u16 aad_size;
 236        u16 tail_size;
 237};
 238
 239struct tls_context {
 240        /* read-only cache line */
 241        struct tls_prot_info prot_info;
 242
 243        u8 tx_conf:3;
 244        u8 rx_conf:3;
 245
 246        int (*push_pending_record)(struct sock *sk, int flags);
 247        void (*sk_write_space)(struct sock *sk);
 248
 249        void *priv_ctx_tx;
 250        void *priv_ctx_rx;
 251
 252        struct net_device *netdev;
 253
 254        /* rw cache line */
 255        struct cipher_context tx;
 256        struct cipher_context rx;
 257
 258        struct scatterlist *partially_sent_record;
 259        u16 partially_sent_offset;
 260
 261        bool in_tcp_sendpages;
 262        bool pending_open_record_frags;
 263
 264        struct mutex tx_lock; /* protects partially_sent_* fields and
 265                               * per-type TX fields
 266                               */
 267        unsigned long flags;
 268
 269        /* cache cold stuff */
 270        struct proto *sk_proto;
 271        struct sock *sk;
 272
 273        void (*sk_destruct)(struct sock *sk);
 274
 275        union tls_crypto_context crypto_send;
 276        union tls_crypto_context crypto_recv;
 277
 278        struct list_head list;
 279        refcount_t refcount;
 280        struct rcu_head rcu;
 281};
 282
 283enum tls_offload_ctx_dir {
 284        TLS_OFFLOAD_CTX_DIR_RX,
 285        TLS_OFFLOAD_CTX_DIR_TX,
 286};
 287
 288struct tlsdev_ops {
 289        int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
 290                           enum tls_offload_ctx_dir direction,
 291                           struct tls_crypto_info *crypto_info,
 292                           u32 start_offload_tcp_sn);
 293        void (*tls_dev_del)(struct net_device *netdev,
 294                            struct tls_context *ctx,
 295                            enum tls_offload_ctx_dir direction);
 296        int (*tls_dev_resync)(struct net_device *netdev,
 297                              struct sock *sk, u32 seq, u8 *rcd_sn,
 298                              enum tls_offload_ctx_dir direction);
 299};
 300
 301enum tls_offload_sync_type {
 302        TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
 303        TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
 304        TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
 305};
 306
 307#define TLS_DEVICE_RESYNC_NH_START_IVAL         2
 308#define TLS_DEVICE_RESYNC_NH_MAX_IVAL           128
 309
 310#define TLS_DEVICE_RESYNC_ASYNC_LOGMAX          13
 311struct tls_offload_resync_async {
 312        atomic64_t req;
 313        u16 loglen;
 314        u16 rcd_delta;
 315        u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
 316};
 317
 318struct tls_offload_context_rx {
 319        /* sw must be the first member of tls_offload_context_rx */
 320        struct tls_sw_context_rx sw;
 321        enum tls_offload_sync_type resync_type;
 322        /* this member is set regardless of resync_type, to avoid branches */
 323        u8 resync_nh_reset:1;
 324        /* CORE_NEXT_HINT-only member, but use the hole here */
 325        u8 resync_nh_do_now:1;
 326        union {
 327                /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
 328                struct {
 329                        atomic64_t resync_req;
 330                };
 331                /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
 332                struct {
 333                        u32 decrypted_failed;
 334                        u32 decrypted_tgt;
 335                } resync_nh;
 336                /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
 337                struct {
 338                        struct tls_offload_resync_async *resync_async;
 339                };
 340        };
 341        u8 driver_state[] __aligned(8);
 342        /* The TLS layer reserves room for driver specific state
 343         * Currently the belief is that there is not enough
 344         * driver specific state to justify another layer of indirection
 345         */
 346#define TLS_DRIVER_STATE_SIZE_RX        8
 347};
 348
 349#define TLS_OFFLOAD_CONTEXT_SIZE_RX                                     \
 350        (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
 351
 352struct tls_context *tls_ctx_create(struct sock *sk);
 353void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
 354void update_sk_prot(struct sock *sk, struct tls_context *ctx);
 355
 356int wait_on_pending_writer(struct sock *sk, long *timeo);
 357int tls_sk_query(struct sock *sk, int optname, char __user *optval,
 358                int __user *optlen);
 359int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
 360                  unsigned int optlen);
 361void tls_err_abort(struct sock *sk, int err);
 362
 363int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
 364void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
 365void tls_sw_strparser_done(struct tls_context *tls_ctx);
 366int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 367int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
 368                           int offset, size_t size, int flags);
 369int tls_sw_sendpage(struct sock *sk, struct page *page,
 370                    int offset, size_t size, int flags);
 371void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
 372void tls_sw_release_resources_tx(struct sock *sk);
 373void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
 374void tls_sw_free_resources_rx(struct sock *sk);
 375void tls_sw_release_resources_rx(struct sock *sk);
 376void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
 377int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
 378                   int nonblock, int flags, int *addr_len);
 379bool tls_sw_sock_is_readable(struct sock *sk);
 380ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
 381                           struct pipe_inode_info *pipe,
 382                           size_t len, unsigned int flags);
 383
 384int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 385int tls_device_sendpage(struct sock *sk, struct page *page,
 386                        int offset, size_t size, int flags);
 387int tls_tx_records(struct sock *sk, int flags);
 388
 389struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
 390                                       u32 seq, u64 *p_record_sn);
 391
 392static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
 393{
 394        return rec->len == 0;
 395}
 396
 397static inline u32 tls_record_start_seq(struct tls_record_info *rec)
 398{
 399        return rec->end_seq - rec->len;
 400}
 401
 402int tls_push_sg(struct sock *sk, struct tls_context *ctx,
 403                struct scatterlist *sg, u16 first_offset,
 404                int flags);
 405int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
 406                            int flags);
 407void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
 408
 409static inline struct tls_msg *tls_msg(struct sk_buff *skb)
 410{
 411        return (struct tls_msg *)strp_msg(skb);
 412}
 413
 414static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
 415{
 416        return !!ctx->partially_sent_record;
 417}
 418
 419static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
 420{
 421        return tls_ctx->pending_open_record_frags;
 422}
 423
 424static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
 425{
 426        struct tls_rec *rec;
 427
 428        rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
 429        if (!rec)
 430                return false;
 431
 432        return READ_ONCE(rec->tx_ready);
 433}
 434
 435static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
 436{
 437        u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
 438
 439        switch (config) {
 440        case TLS_BASE:
 441                return TLS_CONF_BASE;
 442        case TLS_SW:
 443                return TLS_CONF_SW;
 444        case TLS_HW:
 445                return TLS_CONF_HW;
 446        case TLS_HW_RECORD:
 447                return TLS_CONF_HW_RECORD;
 448        }
 449        return 0;
 450}
 451
 452struct sk_buff *
 453tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
 454                      struct sk_buff *skb);
 455struct sk_buff *
 456tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
 457                         struct sk_buff *skb);
 458
 459static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
 460{
 461#ifdef CONFIG_SOCK_VALIDATE_XMIT
 462        return sk_fullsock(sk) &&
 463               (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
 464               &tls_validate_xmit_skb);
 465#else
 466        return false;
 467#endif
 468}
 469
 470static inline bool tls_bigint_increment(unsigned char *seq, int len)
 471{
 472        int i;
 473
 474        for (i = len - 1; i >= 0; i--) {
 475                ++seq[i];
 476                if (seq[i] != 0)
 477                        break;
 478        }
 479
 480        return (i == -1);
 481}
 482
 483static inline void tls_bigint_subtract(unsigned char *seq, int  n)
 484{
 485        u64 rcd_sn;
 486        __be64 *p;
 487
 488        BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
 489
 490        p = (__be64 *)seq;
 491        rcd_sn = be64_to_cpu(*p);
 492        *p = cpu_to_be64(rcd_sn - n);
 493}
 494
 495static inline struct tls_context *tls_get_ctx(const struct sock *sk)
 496{
 497        struct inet_connection_sock *icsk = inet_csk(sk);
 498
 499        /* Use RCU on icsk_ulp_data only for sock diag code,
 500         * TLS data path doesn't need rcu_dereference().
 501         */
 502        return (__force void *)icsk->icsk_ulp_data;
 503}
 504
 505static inline void tls_advance_record_sn(struct sock *sk,
 506                                         struct tls_prot_info *prot,
 507                                         struct cipher_context *ctx)
 508{
 509        if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
 510                tls_err_abort(sk, -EBADMSG);
 511
 512        if (prot->version != TLS_1_3_VERSION &&
 513            prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
 514                tls_bigint_increment(ctx->iv + prot->salt_size,
 515                                     prot->iv_size);
 516}
 517
 518static inline void tls_fill_prepend(struct tls_context *ctx,
 519                             char *buf,
 520                             size_t plaintext_len,
 521                             unsigned char record_type)
 522{
 523        struct tls_prot_info *prot = &ctx->prot_info;
 524        size_t pkt_len, iv_size = prot->iv_size;
 525
 526        pkt_len = plaintext_len + prot->tag_size;
 527        if (prot->version != TLS_1_3_VERSION &&
 528            prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
 529                pkt_len += iv_size;
 530
 531                memcpy(buf + TLS_NONCE_OFFSET,
 532                       ctx->tx.iv + prot->salt_size, iv_size);
 533        }
 534
 535        /* we cover nonce explicit here as well, so buf should be of
 536         * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
 537         */
 538        buf[0] = prot->version == TLS_1_3_VERSION ?
 539                   TLS_RECORD_TYPE_DATA : record_type;
 540        /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
 541        buf[1] = TLS_1_2_VERSION_MINOR;
 542        buf[2] = TLS_1_2_VERSION_MAJOR;
 543        /* we can use IV for nonce explicit according to spec */
 544        buf[3] = pkt_len >> 8;
 545        buf[4] = pkt_len & 0xFF;
 546}
 547
 548static inline void tls_make_aad(char *buf,
 549                                size_t size,
 550                                char *record_sequence,
 551                                unsigned char record_type,
 552                                struct tls_prot_info *prot)
 553{
 554        if (prot->version != TLS_1_3_VERSION) {
 555                memcpy(buf, record_sequence, prot->rec_seq_size);
 556                buf += 8;
 557        } else {
 558                size += prot->tag_size;
 559        }
 560
 561        buf[0] = prot->version == TLS_1_3_VERSION ?
 562                  TLS_RECORD_TYPE_DATA : record_type;
 563        buf[1] = TLS_1_2_VERSION_MAJOR;
 564        buf[2] = TLS_1_2_VERSION_MINOR;
 565        buf[3] = size >> 8;
 566        buf[4] = size & 0xFF;
 567}
 568
 569static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
 570{
 571        int i;
 572
 573        if (prot->version == TLS_1_3_VERSION ||
 574            prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
 575                for (i = 0; i < 8; i++)
 576                        iv[i + 4] ^= seq[i];
 577        }
 578}
 579
 580
 581static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
 582                const struct tls_context *tls_ctx)
 583{
 584        return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
 585}
 586
 587static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
 588                const struct tls_context *tls_ctx)
 589{
 590        return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
 591}
 592
 593static inline struct tls_offload_context_tx *
 594tls_offload_ctx_tx(const struct tls_context *tls_ctx)
 595{
 596        return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
 597}
 598
 599static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
 600{
 601        struct tls_context *ctx = tls_get_ctx(sk);
 602
 603        if (!ctx)
 604                return false;
 605        return !!tls_sw_ctx_tx(ctx);
 606}
 607
 608static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
 609{
 610        struct tls_context *ctx = tls_get_ctx(sk);
 611
 612        if (!ctx)
 613                return false;
 614        return !!tls_sw_ctx_rx(ctx);
 615}
 616
 617void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
 618void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
 619
 620static inline struct tls_offload_context_rx *
 621tls_offload_ctx_rx(const struct tls_context *tls_ctx)
 622{
 623        return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
 624}
 625
 626#if IS_ENABLED(CONFIG_TLS_DEVICE)
 627static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
 628                                     enum tls_offload_ctx_dir direction)
 629{
 630        if (direction == TLS_OFFLOAD_CTX_DIR_TX)
 631                return tls_offload_ctx_tx(tls_ctx)->driver_state;
 632        else
 633                return tls_offload_ctx_rx(tls_ctx)->driver_state;
 634}
 635
 636static inline void *
 637tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
 638{
 639        return __tls_driver_ctx(tls_get_ctx(sk), direction);
 640}
 641#endif
 642
 643#define RESYNC_REQ BIT(0)
 644#define RESYNC_REQ_ASYNC BIT(1)
 645/* The TLS context is valid until sk_destruct is called */
 646static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
 647{
 648        struct tls_context *tls_ctx = tls_get_ctx(sk);
 649        struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
 650
 651        atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
 652}
 653
 654/* Log all TLS record header TCP sequences in [seq, seq+len] */
 655static inline void
 656tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
 657{
 658        struct tls_context *tls_ctx = tls_get_ctx(sk);
 659        struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
 660
 661        atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
 662                     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
 663        rx_ctx->resync_async->loglen = 0;
 664        rx_ctx->resync_async->rcd_delta = 0;
 665}
 666
 667static inline void
 668tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
 669{
 670        struct tls_context *tls_ctx = tls_get_ctx(sk);
 671        struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
 672
 673        atomic64_set(&rx_ctx->resync_async->req,
 674                     ((u64)ntohl(seq) << 32) | RESYNC_REQ);
 675}
 676
 677static inline void
 678tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
 679{
 680        struct tls_context *tls_ctx = tls_get_ctx(sk);
 681
 682        tls_offload_ctx_rx(tls_ctx)->resync_type = type;
 683}
 684
 685/* Driver's seq tracking has to be disabled until resync succeeded */
 686static inline bool tls_offload_tx_resync_pending(struct sock *sk)
 687{
 688        struct tls_context *tls_ctx = tls_get_ctx(sk);
 689        bool ret;
 690
 691        ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
 692        smp_mb__after_atomic();
 693        return ret;
 694}
 695
 696int __net_init tls_proc_init(struct net *net);
 697void __net_exit tls_proc_fini(struct net *net);
 698
 699int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
 700                      unsigned char *record_type);
 701int decrypt_skb(struct sock *sk, struct sk_buff *skb,
 702                struct scatterlist *sgout);
 703struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
 704
 705int tls_sw_fallback_init(struct sock *sk,
 706                         struct tls_offload_context_tx *offload_ctx,
 707                         struct tls_crypto_info *crypto_info);
 708
 709#ifdef CONFIG_TLS_DEVICE
 710void tls_device_init(void);
 711void tls_device_cleanup(void);
 712void tls_device_sk_destruct(struct sock *sk);
 713int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
 714void tls_device_free_resources_tx(struct sock *sk);
 715int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
 716void tls_device_offload_cleanup_rx(struct sock *sk);
 717void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
 718void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
 719int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
 720                         struct sk_buff *skb, struct strp_msg *rxm);
 721
 722static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
 723{
 724        if (!sk_fullsock(sk) ||
 725            smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
 726                return false;
 727        return tls_get_ctx(sk)->rx_conf == TLS_HW;
 728}
 729#else
 730static inline void tls_device_init(void) {}
 731static inline void tls_device_cleanup(void) {}
 732
 733static inline int
 734tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
 735{
 736        return -EOPNOTSUPP;
 737}
 738
 739static inline void tls_device_free_resources_tx(struct sock *sk) {}
 740
 741static inline int
 742tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
 743{
 744        return -EOPNOTSUPP;
 745}
 746
 747static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
 748static inline void
 749tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
 750
 751static inline int
 752tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
 753                     struct sk_buff *skb, struct strp_msg *rxm)
 754{
 755        return 0;
 756}
 757#endif
 758#endif /* _TLS_OFFLOAD_H */
 759