linux/include/net/udp.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Definitions for the UDP module.
   8 *
   9 * Version:     @(#)udp.h       1.0.2   05/07/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *
  14 * Fixes:
  15 *              Alan Cox        : Turned on udp checksums. I don't want to
  16 *                                chase 'memory corruption' bugs that aren't!
  17 */
  18#ifndef _UDP_H
  19#define _UDP_H
  20
  21#include <linux/list.h>
  22#include <linux/bug.h>
  23#include <net/inet_sock.h>
  24#include <net/sock.h>
  25#include <net/snmp.h>
  26#include <net/ip.h>
  27#include <linux/ipv6.h>
  28#include <linux/seq_file.h>
  29#include <linux/poll.h>
  30#include <linux/indirect_call_wrapper.h>
  31
  32/**
  33 *      struct udp_skb_cb  -  UDP(-Lite) private variables
  34 *
  35 *      @header:      private variables used by IPv4/IPv6
  36 *      @cscov:       checksum coverage length (UDP-Lite only)
  37 *      @partial_cov: if set indicates partial csum coverage
  38 */
  39struct udp_skb_cb {
  40        union {
  41                struct inet_skb_parm    h4;
  42#if IS_ENABLED(CONFIG_IPV6)
  43                struct inet6_skb_parm   h6;
  44#endif
  45        } header;
  46        __u16           cscov;
  47        __u8            partial_cov;
  48};
  49#define UDP_SKB_CB(__skb)       ((struct udp_skb_cb *)((__skb)->cb))
  50
  51/**
  52 *      struct udp_hslot - UDP hash slot
  53 *
  54 *      @head:  head of list of sockets
  55 *      @count: number of sockets in 'head' list
  56 *      @lock:  spinlock protecting changes to head/count
  57 */
  58struct udp_hslot {
  59        struct hlist_head       head;
  60        int                     count;
  61        spinlock_t              lock;
  62} __attribute__((aligned(2 * sizeof(long))));
  63
  64/**
  65 *      struct udp_table - UDP table
  66 *
  67 *      @hash:  hash table, sockets are hashed on (local port)
  68 *      @hash2: hash table, sockets are hashed on (local port, local address)
  69 *      @mask:  number of slots in hash tables, minus 1
  70 *      @log:   log2(number of slots in hash table)
  71 */
  72struct udp_table {
  73        struct udp_hslot        *hash;
  74        struct udp_hslot        *hash2;
  75        unsigned int            mask;
  76        unsigned int            log;
  77};
  78extern struct udp_table udp_table;
  79void udp_table_init(struct udp_table *, const char *);
  80static inline struct udp_hslot *udp_hashslot(struct udp_table *table,
  81                                             struct net *net, unsigned int num)
  82{
  83        return &table->hash[udp_hashfn(net, num, table->mask)];
  84}
  85/*
  86 * For secondary hash, net_hash_mix() is performed before calling
  87 * udp_hashslot2(), this explains difference with udp_hashslot()
  88 */
  89static inline struct udp_hslot *udp_hashslot2(struct udp_table *table,
  90                                              unsigned int hash)
  91{
  92        return &table->hash2[hash & table->mask];
  93}
  94
  95extern struct proto udp_prot;
  96
  97extern atomic_long_t udp_memory_allocated;
  98
  99/* sysctl variables for udp */
 100extern long sysctl_udp_mem[3];
 101extern int sysctl_udp_rmem_min;
 102extern int sysctl_udp_wmem_min;
 103
 104struct sk_buff;
 105
 106/*
 107 *      Generic checksumming routines for UDP(-Lite) v4 and v6
 108 */
 109static inline __sum16 __udp_lib_checksum_complete(struct sk_buff *skb)
 110{
 111        return (UDP_SKB_CB(skb)->cscov == skb->len ?
 112                __skb_checksum_complete(skb) :
 113                __skb_checksum_complete_head(skb, UDP_SKB_CB(skb)->cscov));
 114}
 115
 116static inline int udp_lib_checksum_complete(struct sk_buff *skb)
 117{
 118        return !skb_csum_unnecessary(skb) &&
 119                __udp_lib_checksum_complete(skb);
 120}
 121
 122/**
 123 *      udp_csum_outgoing  -  compute UDPv4/v6 checksum over fragments
 124 *      @sk:    socket we are writing to
 125 *      @skb:   sk_buff containing the filled-in UDP header
 126 *              (checksum field must be zeroed out)
 127 */
 128static inline __wsum udp_csum_outgoing(struct sock *sk, struct sk_buff *skb)
 129{
 130        __wsum csum = csum_partial(skb_transport_header(skb),
 131                                   sizeof(struct udphdr), 0);
 132        skb_queue_walk(&sk->sk_write_queue, skb) {
 133                csum = csum_add(csum, skb->csum);
 134        }
 135        return csum;
 136}
 137
 138static inline __wsum udp_csum(struct sk_buff *skb)
 139{
 140        __wsum csum = csum_partial(skb_transport_header(skb),
 141                                   sizeof(struct udphdr), skb->csum);
 142
 143        for (skb = skb_shinfo(skb)->frag_list; skb; skb = skb->next) {
 144                csum = csum_add(csum, skb->csum);
 145        }
 146        return csum;
 147}
 148
 149static inline __sum16 udp_v4_check(int len, __be32 saddr,
 150                                   __be32 daddr, __wsum base)
 151{
 152        return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, base);
 153}
 154
 155void udp_set_csum(bool nocheck, struct sk_buff *skb,
 156                  __be32 saddr, __be32 daddr, int len);
 157
 158static inline void udp_csum_pull_header(struct sk_buff *skb)
 159{
 160        if (!skb->csum_valid && skb->ip_summed == CHECKSUM_NONE)
 161                skb->csum = csum_partial(skb->data, sizeof(struct udphdr),
 162                                         skb->csum);
 163        skb_pull_rcsum(skb, sizeof(struct udphdr));
 164        UDP_SKB_CB(skb)->cscov -= sizeof(struct udphdr);
 165}
 166
 167typedef struct sock *(*udp_lookup_t)(const struct sk_buff *skb, __be16 sport,
 168                                     __be16 dport);
 169
 170INDIRECT_CALLABLE_DECLARE(struct sk_buff *udp4_gro_receive(struct list_head *,
 171                                                           struct sk_buff *));
 172INDIRECT_CALLABLE_DECLARE(int udp4_gro_complete(struct sk_buff *, int));
 173INDIRECT_CALLABLE_DECLARE(struct sk_buff *udp6_gro_receive(struct list_head *,
 174                                                           struct sk_buff *));
 175INDIRECT_CALLABLE_DECLARE(int udp6_gro_complete(struct sk_buff *, int));
 176INDIRECT_CALLABLE_DECLARE(void udp_v6_early_demux(struct sk_buff *));
 177INDIRECT_CALLABLE_DECLARE(int udpv6_rcv(struct sk_buff *));
 178
 179struct sk_buff *udp_gro_receive(struct list_head *head, struct sk_buff *skb,
 180                                struct udphdr *uh, struct sock *sk);
 181int udp_gro_complete(struct sk_buff *skb, int nhoff, udp_lookup_t lookup);
 182
 183struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb,
 184                                  netdev_features_t features, bool is_ipv6);
 185
 186static inline struct udphdr *udp_gro_udphdr(struct sk_buff *skb)
 187{
 188        struct udphdr *uh;
 189        unsigned int hlen, off;
 190
 191        off  = skb_gro_offset(skb);
 192        hlen = off + sizeof(*uh);
 193        uh   = skb_gro_header_fast(skb, off);
 194        if (skb_gro_header_hard(skb, hlen))
 195                uh = skb_gro_header_slow(skb, hlen, off);
 196
 197        return uh;
 198}
 199
 200/* hash routines shared between UDPv4/6 and UDP-Litev4/6 */
 201static inline int udp_lib_hash(struct sock *sk)
 202{
 203        BUG();
 204        return 0;
 205}
 206
 207void udp_lib_unhash(struct sock *sk);
 208void udp_lib_rehash(struct sock *sk, u16 new_hash);
 209
 210static inline void udp_lib_close(struct sock *sk, long timeout)
 211{
 212        sk_common_release(sk);
 213}
 214
 215int udp_lib_get_port(struct sock *sk, unsigned short snum,
 216                     unsigned int hash2_nulladdr);
 217
 218u32 udp_flow_hashrnd(void);
 219
 220static inline __be16 udp_flow_src_port(struct net *net, struct sk_buff *skb,
 221                                       int min, int max, bool use_eth)
 222{
 223        u32 hash;
 224
 225        if (min >= max) {
 226                /* Use default range */
 227                inet_get_local_port_range(net, &min, &max);
 228        }
 229
 230        hash = skb_get_hash(skb);
 231        if (unlikely(!hash)) {
 232                if (use_eth) {
 233                        /* Can't find a normal hash, caller has indicated an
 234                         * Ethernet packet so use that to compute a hash.
 235                         */
 236                        hash = jhash(skb->data, 2 * ETH_ALEN,
 237                                     (__force u32) skb->protocol);
 238                } else {
 239                        /* Can't derive any sort of hash for the packet, set
 240                         * to some consistent random value.
 241                         */
 242                        hash = udp_flow_hashrnd();
 243                }
 244        }
 245
 246        /* Since this is being sent on the wire obfuscate hash a bit
 247         * to minimize possbility that any useful information to an
 248         * attacker is leaked. Only upper 16 bits are relevant in the
 249         * computation for 16 bit port value.
 250         */
 251        hash ^= hash << 16;
 252
 253        return htons((((u64) hash * (max - min)) >> 32) + min);
 254}
 255
 256static inline int udp_rqueue_get(struct sock *sk)
 257{
 258        return sk_rmem_alloc_get(sk) - READ_ONCE(udp_sk(sk)->forward_deficit);
 259}
 260
 261static inline bool udp_sk_bound_dev_eq(struct net *net, int bound_dev_if,
 262                                       int dif, int sdif)
 263{
 264#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 265        return inet_bound_dev_eq(!!net->ipv4.sysctl_udp_l3mdev_accept,
 266                                 bound_dev_if, dif, sdif);
 267#else
 268        return inet_bound_dev_eq(true, bound_dev_if, dif, sdif);
 269#endif
 270}
 271
 272/* net/ipv4/udp.c */
 273void udp_destruct_sock(struct sock *sk);
 274void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len);
 275int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb);
 276void udp_skb_destructor(struct sock *sk, struct sk_buff *skb);
 277struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
 278                               int noblock, int *off, int *err);
 279static inline struct sk_buff *skb_recv_udp(struct sock *sk, unsigned int flags,
 280                                           int noblock, int *err)
 281{
 282        int off = 0;
 283
 284        return __skb_recv_udp(sk, flags, noblock, &off, err);
 285}
 286
 287int udp_v4_early_demux(struct sk_buff *skb);
 288bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst);
 289int udp_get_port(struct sock *sk, unsigned short snum,
 290                 int (*saddr_cmp)(const struct sock *,
 291                                  const struct sock *));
 292int udp_err(struct sk_buff *, u32);
 293int udp_abort(struct sock *sk, int err);
 294int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len);
 295int udp_push_pending_frames(struct sock *sk);
 296void udp_flush_pending_frames(struct sock *sk);
 297int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size);
 298void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst);
 299int udp_rcv(struct sk_buff *skb);
 300int udp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 301int udp_init_sock(struct sock *sk);
 302int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 303int __udp_disconnect(struct sock *sk, int flags);
 304int udp_disconnect(struct sock *sk, int flags);
 305__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait);
 306struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
 307                                       netdev_features_t features,
 308                                       bool is_ipv6);
 309int udp_lib_getsockopt(struct sock *sk, int level, int optname,
 310                       char __user *optval, int __user *optlen);
 311int udp_lib_setsockopt(struct sock *sk, int level, int optname,
 312                       sockptr_t optval, unsigned int optlen,
 313                       int (*push_pending_frames)(struct sock *));
 314struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 315                             __be32 daddr, __be16 dport, int dif);
 316struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 317                               __be32 daddr, __be16 dport, int dif, int sdif,
 318                               struct udp_table *tbl, struct sk_buff *skb);
 319struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
 320                                 __be16 sport, __be16 dport);
 321struct sock *udp6_lib_lookup(struct net *net,
 322                             const struct in6_addr *saddr, __be16 sport,
 323                             const struct in6_addr *daddr, __be16 dport,
 324                             int dif);
 325struct sock *__udp6_lib_lookup(struct net *net,
 326                               const struct in6_addr *saddr, __be16 sport,
 327                               const struct in6_addr *daddr, __be16 dport,
 328                               int dif, int sdif, struct udp_table *tbl,
 329                               struct sk_buff *skb);
 330struct sock *udp6_lib_lookup_skb(const struct sk_buff *skb,
 331                                 __be16 sport, __be16 dport);
 332int udp_read_sock(struct sock *sk, read_descriptor_t *desc,
 333                  sk_read_actor_t recv_actor);
 334
 335/* UDP uses skb->dev_scratch to cache as much information as possible and avoid
 336 * possibly multiple cache miss on dequeue()
 337 */
 338struct udp_dev_scratch {
 339        /* skb->truesize and the stateless bit are embedded in a single field;
 340         * do not use a bitfield since the compiler emits better/smaller code
 341         * this way
 342         */
 343        u32 _tsize_state;
 344
 345#if BITS_PER_LONG == 64
 346        /* len and the bit needed to compute skb_csum_unnecessary
 347         * will be on cold cache lines at recvmsg time.
 348         * skb->len can be stored on 16 bits since the udp header has been
 349         * already validated and pulled.
 350         */
 351        u16 len;
 352        bool is_linear;
 353        bool csum_unnecessary;
 354#endif
 355};
 356
 357static inline struct udp_dev_scratch *udp_skb_scratch(struct sk_buff *skb)
 358{
 359        return (struct udp_dev_scratch *)&skb->dev_scratch;
 360}
 361
 362#if BITS_PER_LONG == 64
 363static inline unsigned int udp_skb_len(struct sk_buff *skb)
 364{
 365        return udp_skb_scratch(skb)->len;
 366}
 367
 368static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
 369{
 370        return udp_skb_scratch(skb)->csum_unnecessary;
 371}
 372
 373static inline bool udp_skb_is_linear(struct sk_buff *skb)
 374{
 375        return udp_skb_scratch(skb)->is_linear;
 376}
 377
 378#else
 379static inline unsigned int udp_skb_len(struct sk_buff *skb)
 380{
 381        return skb->len;
 382}
 383
 384static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
 385{
 386        return skb_csum_unnecessary(skb);
 387}
 388
 389static inline bool udp_skb_is_linear(struct sk_buff *skb)
 390{
 391        return !skb_is_nonlinear(skb);
 392}
 393#endif
 394
 395static inline int copy_linear_skb(struct sk_buff *skb, int len, int off,
 396                                  struct iov_iter *to)
 397{
 398        int n;
 399
 400        n = copy_to_iter(skb->data + off, len, to);
 401        if (n == len)
 402                return 0;
 403
 404        iov_iter_revert(to, n);
 405        return -EFAULT;
 406}
 407
 408/*
 409 *      SNMP statistics for UDP and UDP-Lite
 410 */
 411#define UDP_INC_STATS(net, field, is_udplite)                 do { \
 412        if (is_udplite) SNMP_INC_STATS((net)->mib.udplite_statistics, field);       \
 413        else            SNMP_INC_STATS((net)->mib.udp_statistics, field);  }  while(0)
 414#define __UDP_INC_STATS(net, field, is_udplite)               do { \
 415        if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_statistics, field);         \
 416        else            __SNMP_INC_STATS((net)->mib.udp_statistics, field);    }  while(0)
 417
 418#define __UDP6_INC_STATS(net, field, is_udplite)            do { \
 419        if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);\
 420        else            __SNMP_INC_STATS((net)->mib.udp_stats_in6, field);  \
 421} while(0)
 422#define UDP6_INC_STATS(net, field, __lite)                  do { \
 423        if (__lite) SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);  \
 424        else        SNMP_INC_STATS((net)->mib.udp_stats_in6, field);      \
 425} while(0)
 426
 427#if IS_ENABLED(CONFIG_IPV6)
 428#define __UDPX_MIB(sk, ipv4)                                            \
 429({                                                                      \
 430        ipv4 ? (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics : \
 431                                 sock_net(sk)->mib.udp_statistics) :    \
 432                (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_stats_in6 : \
 433                                 sock_net(sk)->mib.udp_stats_in6);      \
 434})
 435#else
 436#define __UDPX_MIB(sk, ipv4)                                            \
 437({                                                                      \
 438        IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics :         \
 439                         sock_net(sk)->mib.udp_statistics;              \
 440})
 441#endif
 442
 443#define __UDPX_INC_STATS(sk, field) \
 444        __SNMP_INC_STATS(__UDPX_MIB(sk, (sk)->sk_family == AF_INET), field)
 445
 446#ifdef CONFIG_PROC_FS
 447struct udp_seq_afinfo {
 448        sa_family_t                     family;
 449        struct udp_table                *udp_table;
 450};
 451
 452struct udp_iter_state {
 453        struct seq_net_private  p;
 454        int                     bucket;
 455        struct udp_seq_afinfo   *bpf_seq_afinfo;
 456};
 457
 458void *udp_seq_start(struct seq_file *seq, loff_t *pos);
 459void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
 460void udp_seq_stop(struct seq_file *seq, void *v);
 461
 462extern const struct seq_operations udp_seq_ops;
 463extern const struct seq_operations udp6_seq_ops;
 464
 465int udp4_proc_init(void);
 466void udp4_proc_exit(void);
 467#endif /* CONFIG_PROC_FS */
 468
 469int udpv4_offload_init(void);
 470
 471void udp_init(void);
 472
 473DECLARE_STATIC_KEY_FALSE(udp_encap_needed_key);
 474void udp_encap_enable(void);
 475void udp_encap_disable(void);
 476#if IS_ENABLED(CONFIG_IPV6)
 477DECLARE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
 478void udpv6_encap_enable(void);
 479#endif
 480
 481static inline struct sk_buff *udp_rcv_segment(struct sock *sk,
 482                                              struct sk_buff *skb, bool ipv4)
 483{
 484        netdev_features_t features = NETIF_F_SG;
 485        struct sk_buff *segs;
 486
 487        /* Avoid csum recalculation by skb_segment unless userspace explicitly
 488         * asks for the final checksum values
 489         */
 490        if (!inet_get_convert_csum(sk))
 491                features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
 492
 493        /* UDP segmentation expects packets of type CHECKSUM_PARTIAL or
 494         * CHECKSUM_NONE in __udp_gso_segment. UDP GRO indeed builds partial
 495         * packets in udp_gro_complete_segment. As does UDP GSO, verified by
 496         * udp_send_skb. But when those packets are looped in dev_loopback_xmit
 497         * their ip_summed CHECKSUM_NONE is changed to CHECKSUM_UNNECESSARY.
 498         * Reset in this specific case, where PARTIAL is both correct and
 499         * required.
 500         */
 501        if (skb->pkt_type == PACKET_LOOPBACK)
 502                skb->ip_summed = CHECKSUM_PARTIAL;
 503
 504        /* the GSO CB lays after the UDP one, no need to save and restore any
 505         * CB fragment
 506         */
 507        segs = __skb_gso_segment(skb, features, false);
 508        if (IS_ERR_OR_NULL(segs)) {
 509                int segs_nr = skb_shinfo(skb)->gso_segs;
 510
 511                atomic_add(segs_nr, &sk->sk_drops);
 512                SNMP_ADD_STATS(__UDPX_MIB(sk, ipv4), UDP_MIB_INERRORS, segs_nr);
 513                kfree_skb(skb);
 514                return NULL;
 515        }
 516
 517        consume_skb(skb);
 518        return segs;
 519}
 520
 521static inline void udp_post_segment_fix_csum(struct sk_buff *skb)
 522{
 523        /* UDP-lite can't land here - no GRO */
 524        WARN_ON_ONCE(UDP_SKB_CB(skb)->partial_cov);
 525
 526        /* UDP packets generated with UDP_SEGMENT and traversing:
 527         *
 528         * UDP tunnel(xmit) -> veth (segmentation) -> veth (gro) -> UDP tunnel (rx)
 529         *
 530         * can reach an UDP socket with CHECKSUM_NONE, because
 531         * __iptunnel_pull_header() converts CHECKSUM_PARTIAL into NONE.
 532         * SKB_GSO_UDP_L4 or SKB_GSO_FRAGLIST packets with no UDP tunnel will
 533         * have a valid checksum, as the GRO engine validates the UDP csum
 534         * before the aggregation and nobody strips such info in between.
 535         * Instead of adding another check in the tunnel fastpath, we can force
 536         * a valid csum after the segmentation.
 537         * Additionally fixup the UDP CB.
 538         */
 539        UDP_SKB_CB(skb)->cscov = skb->len;
 540        if (skb->ip_summed == CHECKSUM_NONE && !skb->csum_valid)
 541                skb->csum_valid = 1;
 542}
 543
 544#ifdef CONFIG_BPF_SYSCALL
 545struct sk_psock;
 546struct proto *udp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
 547int udp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
 548#endif
 549
 550#endif  /* _UDP_H */
 551