linux/include/rdma/ib_verbs.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
   2/*
   3 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   4 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   5 * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   7 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   9 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
  10 */
  11
  12#ifndef IB_VERBS_H
  13#define IB_VERBS_H
  14
  15#include <linux/ethtool.h>
  16#include <linux/types.h>
  17#include <linux/device.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/kref.h>
  20#include <linux/list.h>
  21#include <linux/rwsem.h>
  22#include <linux/workqueue.h>
  23#include <linux/irq_poll.h>
  24#include <uapi/linux/if_ether.h>
  25#include <net/ipv6.h>
  26#include <net/ip.h>
  27#include <linux/string.h>
  28#include <linux/slab.h>
  29#include <linux/netdevice.h>
  30#include <linux/refcount.h>
  31#include <linux/if_link.h>
  32#include <linux/atomic.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/uaccess.h>
  35#include <linux/cgroup_rdma.h>
  36#include <linux/irqflags.h>
  37#include <linux/preempt.h>
  38#include <linux/dim.h>
  39#include <uapi/rdma/ib_user_verbs.h>
  40#include <rdma/rdma_counter.h>
  41#include <rdma/restrack.h>
  42#include <rdma/signature.h>
  43#include <uapi/rdma/rdma_user_ioctl.h>
  44#include <uapi/rdma/ib_user_ioctl_verbs.h>
  45
  46#define IB_FW_VERSION_NAME_MAX  ETHTOOL_FWVERS_LEN
  47
  48struct ib_umem_odp;
  49struct ib_uqp_object;
  50struct ib_usrq_object;
  51struct ib_uwq_object;
  52struct rdma_cm_id;
  53struct ib_port;
  54struct hw_stats_device_data;
  55
  56extern struct workqueue_struct *ib_wq;
  57extern struct workqueue_struct *ib_comp_wq;
  58extern struct workqueue_struct *ib_comp_unbound_wq;
  59
  60struct ib_ucq_object;
  61
  62__printf(3, 4) __cold
  63void ibdev_printk(const char *level, const struct ib_device *ibdev,
  64                  const char *format, ...);
  65__printf(2, 3) __cold
  66void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
  67__printf(2, 3) __cold
  68void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
  69__printf(2, 3) __cold
  70void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
  71__printf(2, 3) __cold
  72void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
  73__printf(2, 3) __cold
  74void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
  75__printf(2, 3) __cold
  76void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
  77__printf(2, 3) __cold
  78void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
  79
  80#if defined(CONFIG_DYNAMIC_DEBUG) || \
  81        (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
  82#define ibdev_dbg(__dev, format, args...)                       \
  83        dynamic_ibdev_dbg(__dev, format, ##args)
  84#else
  85__printf(2, 3) __cold
  86static inline
  87void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
  88#endif
  89
  90#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
  91do {                                                                    \
  92        static DEFINE_RATELIMIT_STATE(_rs,                              \
  93                                      DEFAULT_RATELIMIT_INTERVAL,       \
  94                                      DEFAULT_RATELIMIT_BURST);         \
  95        if (__ratelimit(&_rs))                                          \
  96                ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
  97} while (0)
  98
  99#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
 100        ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
 101#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
 102        ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
 103#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
 104        ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
 105#define ibdev_err_ratelimited(ibdev, fmt, ...) \
 106        ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
 107#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
 108        ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
 109#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
 110        ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
 111#define ibdev_info_ratelimited(ibdev, fmt, ...) \
 112        ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
 113
 114#if defined(CONFIG_DYNAMIC_DEBUG) || \
 115        (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
 116/* descriptor check is first to prevent flooding with "callbacks suppressed" */
 117#define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
 118do {                                                                    \
 119        static DEFINE_RATELIMIT_STATE(_rs,                              \
 120                                      DEFAULT_RATELIMIT_INTERVAL,       \
 121                                      DEFAULT_RATELIMIT_BURST);         \
 122        DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
 123        if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
 124                __dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
 125                                    ##__VA_ARGS__);                     \
 126} while (0)
 127#else
 128__printf(2, 3) __cold
 129static inline
 130void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
 131#endif
 132
 133union ib_gid {
 134        u8      raw[16];
 135        struct {
 136                __be64  subnet_prefix;
 137                __be64  interface_id;
 138        } global;
 139};
 140
 141extern union ib_gid zgid;
 142
 143enum ib_gid_type {
 144        IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
 145        IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
 146        IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
 147        IB_GID_TYPE_SIZE
 148};
 149
 150#define ROCE_V2_UDP_DPORT      4791
 151struct ib_gid_attr {
 152        struct net_device __rcu *ndev;
 153        struct ib_device        *device;
 154        union ib_gid            gid;
 155        enum ib_gid_type        gid_type;
 156        u16                     index;
 157        u32                     port_num;
 158};
 159
 160enum {
 161        /* set the local administered indication */
 162        IB_SA_WELL_KNOWN_GUID   = BIT_ULL(57) | 2,
 163};
 164
 165enum rdma_transport_type {
 166        RDMA_TRANSPORT_IB,
 167        RDMA_TRANSPORT_IWARP,
 168        RDMA_TRANSPORT_USNIC,
 169        RDMA_TRANSPORT_USNIC_UDP,
 170        RDMA_TRANSPORT_UNSPECIFIED,
 171};
 172
 173enum rdma_protocol_type {
 174        RDMA_PROTOCOL_IB,
 175        RDMA_PROTOCOL_IBOE,
 176        RDMA_PROTOCOL_IWARP,
 177        RDMA_PROTOCOL_USNIC_UDP
 178};
 179
 180__attribute_const__ enum rdma_transport_type
 181rdma_node_get_transport(unsigned int node_type);
 182
 183enum rdma_network_type {
 184        RDMA_NETWORK_IB,
 185        RDMA_NETWORK_ROCE_V1,
 186        RDMA_NETWORK_IPV4,
 187        RDMA_NETWORK_IPV6
 188};
 189
 190static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
 191{
 192        if (network_type == RDMA_NETWORK_IPV4 ||
 193            network_type == RDMA_NETWORK_IPV6)
 194                return IB_GID_TYPE_ROCE_UDP_ENCAP;
 195        else if (network_type == RDMA_NETWORK_ROCE_V1)
 196                return IB_GID_TYPE_ROCE;
 197        else
 198                return IB_GID_TYPE_IB;
 199}
 200
 201static inline enum rdma_network_type
 202rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
 203{
 204        if (attr->gid_type == IB_GID_TYPE_IB)
 205                return RDMA_NETWORK_IB;
 206
 207        if (attr->gid_type == IB_GID_TYPE_ROCE)
 208                return RDMA_NETWORK_ROCE_V1;
 209
 210        if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
 211                return RDMA_NETWORK_IPV4;
 212        else
 213                return RDMA_NETWORK_IPV6;
 214}
 215
 216enum rdma_link_layer {
 217        IB_LINK_LAYER_UNSPECIFIED,
 218        IB_LINK_LAYER_INFINIBAND,
 219        IB_LINK_LAYER_ETHERNET,
 220};
 221
 222enum ib_device_cap_flags {
 223        IB_DEVICE_RESIZE_MAX_WR                 = (1 << 0),
 224        IB_DEVICE_BAD_PKEY_CNTR                 = (1 << 1),
 225        IB_DEVICE_BAD_QKEY_CNTR                 = (1 << 2),
 226        IB_DEVICE_RAW_MULTI                     = (1 << 3),
 227        IB_DEVICE_AUTO_PATH_MIG                 = (1 << 4),
 228        IB_DEVICE_CHANGE_PHY_PORT               = (1 << 5),
 229        IB_DEVICE_UD_AV_PORT_ENFORCE            = (1 << 6),
 230        IB_DEVICE_CURR_QP_STATE_MOD             = (1 << 7),
 231        IB_DEVICE_SHUTDOWN_PORT                 = (1 << 8),
 232        /* Not in use, former INIT_TYPE         = (1 << 9),*/
 233        IB_DEVICE_PORT_ACTIVE_EVENT             = (1 << 10),
 234        IB_DEVICE_SYS_IMAGE_GUID                = (1 << 11),
 235        IB_DEVICE_RC_RNR_NAK_GEN                = (1 << 12),
 236        IB_DEVICE_SRQ_RESIZE                    = (1 << 13),
 237        IB_DEVICE_N_NOTIFY_CQ                   = (1 << 14),
 238
 239        /*
 240         * This device supports a per-device lkey or stag that can be
 241         * used without performing a memory registration for the local
 242         * memory.  Note that ULPs should never check this flag, but
 243         * instead of use the local_dma_lkey flag in the ib_pd structure,
 244         * which will always contain a usable lkey.
 245         */
 246        IB_DEVICE_LOCAL_DMA_LKEY                = (1 << 15),
 247        /* Reserved, old SEND_W_INV             = (1 << 16),*/
 248        IB_DEVICE_MEM_WINDOW                    = (1 << 17),
 249        /*
 250         * Devices should set IB_DEVICE_UD_IP_SUM if they support
 251         * insertion of UDP and TCP checksum on outgoing UD IPoIB
 252         * messages and can verify the validity of checksum for
 253         * incoming messages.  Setting this flag implies that the
 254         * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 255         */
 256        IB_DEVICE_UD_IP_CSUM                    = (1 << 18),
 257        IB_DEVICE_UD_TSO                        = (1 << 19),
 258        IB_DEVICE_XRC                           = (1 << 20),
 259
 260        /*
 261         * This device supports the IB "base memory management extension",
 262         * which includes support for fast registrations (IB_WR_REG_MR,
 263         * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
 264         * also be set by any iWarp device which must support FRs to comply
 265         * to the iWarp verbs spec.  iWarp devices also support the
 266         * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
 267         * stag.
 268         */
 269        IB_DEVICE_MEM_MGT_EXTENSIONS            = (1 << 21),
 270        IB_DEVICE_BLOCK_MULTICAST_LOOPBACK      = (1 << 22),
 271        IB_DEVICE_MEM_WINDOW_TYPE_2A            = (1 << 23),
 272        IB_DEVICE_MEM_WINDOW_TYPE_2B            = (1 << 24),
 273        IB_DEVICE_RC_IP_CSUM                    = (1 << 25),
 274        /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
 275        IB_DEVICE_RAW_IP_CSUM                   = (1 << 26),
 276        /*
 277         * Devices should set IB_DEVICE_CROSS_CHANNEL if they
 278         * support execution of WQEs that involve synchronization
 279         * of I/O operations with single completion queue managed
 280         * by hardware.
 281         */
 282        IB_DEVICE_CROSS_CHANNEL                 = (1 << 27),
 283        IB_DEVICE_MANAGED_FLOW_STEERING         = (1 << 29),
 284        IB_DEVICE_INTEGRITY_HANDOVER            = (1 << 30),
 285        IB_DEVICE_ON_DEMAND_PAGING              = (1ULL << 31),
 286        IB_DEVICE_SG_GAPS_REG                   = (1ULL << 32),
 287        IB_DEVICE_VIRTUAL_FUNCTION              = (1ULL << 33),
 288        /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
 289        IB_DEVICE_RAW_SCATTER_FCS               = (1ULL << 34),
 290        IB_DEVICE_RDMA_NETDEV_OPA               = (1ULL << 35),
 291        /* The device supports padding incoming writes to cacheline. */
 292        IB_DEVICE_PCI_WRITE_END_PADDING         = (1ULL << 36),
 293        IB_DEVICE_ALLOW_USER_UNREG              = (1ULL << 37),
 294};
 295
 296enum ib_atomic_cap {
 297        IB_ATOMIC_NONE,
 298        IB_ATOMIC_HCA,
 299        IB_ATOMIC_GLOB
 300};
 301
 302enum ib_odp_general_cap_bits {
 303        IB_ODP_SUPPORT          = 1 << 0,
 304        IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
 305};
 306
 307enum ib_odp_transport_cap_bits {
 308        IB_ODP_SUPPORT_SEND     = 1 << 0,
 309        IB_ODP_SUPPORT_RECV     = 1 << 1,
 310        IB_ODP_SUPPORT_WRITE    = 1 << 2,
 311        IB_ODP_SUPPORT_READ     = 1 << 3,
 312        IB_ODP_SUPPORT_ATOMIC   = 1 << 4,
 313        IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
 314};
 315
 316struct ib_odp_caps {
 317        uint64_t general_caps;
 318        struct {
 319                uint32_t  rc_odp_caps;
 320                uint32_t  uc_odp_caps;
 321                uint32_t  ud_odp_caps;
 322                uint32_t  xrc_odp_caps;
 323        } per_transport_caps;
 324};
 325
 326struct ib_rss_caps {
 327        /* Corresponding bit will be set if qp type from
 328         * 'enum ib_qp_type' is supported, e.g.
 329         * supported_qpts |= 1 << IB_QPT_UD
 330         */
 331        u32 supported_qpts;
 332        u32 max_rwq_indirection_tables;
 333        u32 max_rwq_indirection_table_size;
 334};
 335
 336enum ib_tm_cap_flags {
 337        /*  Support tag matching with rendezvous offload for RC transport */
 338        IB_TM_CAP_RNDV_RC = 1 << 0,
 339};
 340
 341struct ib_tm_caps {
 342        /* Max size of RNDV header */
 343        u32 max_rndv_hdr_size;
 344        /* Max number of entries in tag matching list */
 345        u32 max_num_tags;
 346        /* From enum ib_tm_cap_flags */
 347        u32 flags;
 348        /* Max number of outstanding list operations */
 349        u32 max_ops;
 350        /* Max number of SGE in tag matching entry */
 351        u32 max_sge;
 352};
 353
 354struct ib_cq_init_attr {
 355        unsigned int    cqe;
 356        u32             comp_vector;
 357        u32             flags;
 358};
 359
 360enum ib_cq_attr_mask {
 361        IB_CQ_MODERATE = 1 << 0,
 362};
 363
 364struct ib_cq_caps {
 365        u16     max_cq_moderation_count;
 366        u16     max_cq_moderation_period;
 367};
 368
 369struct ib_dm_mr_attr {
 370        u64             length;
 371        u64             offset;
 372        u32             access_flags;
 373};
 374
 375struct ib_dm_alloc_attr {
 376        u64     length;
 377        u32     alignment;
 378        u32     flags;
 379};
 380
 381struct ib_device_attr {
 382        u64                     fw_ver;
 383        __be64                  sys_image_guid;
 384        u64                     max_mr_size;
 385        u64                     page_size_cap;
 386        u32                     vendor_id;
 387        u32                     vendor_part_id;
 388        u32                     hw_ver;
 389        int                     max_qp;
 390        int                     max_qp_wr;
 391        u64                     device_cap_flags;
 392        int                     max_send_sge;
 393        int                     max_recv_sge;
 394        int                     max_sge_rd;
 395        int                     max_cq;
 396        int                     max_cqe;
 397        int                     max_mr;
 398        int                     max_pd;
 399        int                     max_qp_rd_atom;
 400        int                     max_ee_rd_atom;
 401        int                     max_res_rd_atom;
 402        int                     max_qp_init_rd_atom;
 403        int                     max_ee_init_rd_atom;
 404        enum ib_atomic_cap      atomic_cap;
 405        enum ib_atomic_cap      masked_atomic_cap;
 406        int                     max_ee;
 407        int                     max_rdd;
 408        int                     max_mw;
 409        int                     max_raw_ipv6_qp;
 410        int                     max_raw_ethy_qp;
 411        int                     max_mcast_grp;
 412        int                     max_mcast_qp_attach;
 413        int                     max_total_mcast_qp_attach;
 414        int                     max_ah;
 415        int                     max_srq;
 416        int                     max_srq_wr;
 417        int                     max_srq_sge;
 418        unsigned int            max_fast_reg_page_list_len;
 419        unsigned int            max_pi_fast_reg_page_list_len;
 420        u16                     max_pkeys;
 421        u8                      local_ca_ack_delay;
 422        int                     sig_prot_cap;
 423        int                     sig_guard_cap;
 424        struct ib_odp_caps      odp_caps;
 425        uint64_t                timestamp_mask;
 426        uint64_t                hca_core_clock; /* in KHZ */
 427        struct ib_rss_caps      rss_caps;
 428        u32                     max_wq_type_rq;
 429        u32                     raw_packet_caps; /* Use ib_raw_packet_caps enum */
 430        struct ib_tm_caps       tm_caps;
 431        struct ib_cq_caps       cq_caps;
 432        u64                     max_dm_size;
 433        /* Max entries for sgl for optimized performance per READ */
 434        u32                     max_sgl_rd;
 435};
 436
 437enum ib_mtu {
 438        IB_MTU_256  = 1,
 439        IB_MTU_512  = 2,
 440        IB_MTU_1024 = 3,
 441        IB_MTU_2048 = 4,
 442        IB_MTU_4096 = 5
 443};
 444
 445enum opa_mtu {
 446        OPA_MTU_8192 = 6,
 447        OPA_MTU_10240 = 7
 448};
 449
 450static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 451{
 452        switch (mtu) {
 453        case IB_MTU_256:  return  256;
 454        case IB_MTU_512:  return  512;
 455        case IB_MTU_1024: return 1024;
 456        case IB_MTU_2048: return 2048;
 457        case IB_MTU_4096: return 4096;
 458        default:          return -1;
 459        }
 460}
 461
 462static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
 463{
 464        if (mtu >= 4096)
 465                return IB_MTU_4096;
 466        else if (mtu >= 2048)
 467                return IB_MTU_2048;
 468        else if (mtu >= 1024)
 469                return IB_MTU_1024;
 470        else if (mtu >= 512)
 471                return IB_MTU_512;
 472        else
 473                return IB_MTU_256;
 474}
 475
 476static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
 477{
 478        switch (mtu) {
 479        case OPA_MTU_8192:
 480                return 8192;
 481        case OPA_MTU_10240:
 482                return 10240;
 483        default:
 484                return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
 485        }
 486}
 487
 488static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
 489{
 490        if (mtu >= 10240)
 491                return OPA_MTU_10240;
 492        else if (mtu >= 8192)
 493                return OPA_MTU_8192;
 494        else
 495                return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
 496}
 497
 498enum ib_port_state {
 499        IB_PORT_NOP             = 0,
 500        IB_PORT_DOWN            = 1,
 501        IB_PORT_INIT            = 2,
 502        IB_PORT_ARMED           = 3,
 503        IB_PORT_ACTIVE          = 4,
 504        IB_PORT_ACTIVE_DEFER    = 5
 505};
 506
 507enum ib_port_phys_state {
 508        IB_PORT_PHYS_STATE_SLEEP = 1,
 509        IB_PORT_PHYS_STATE_POLLING = 2,
 510        IB_PORT_PHYS_STATE_DISABLED = 3,
 511        IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
 512        IB_PORT_PHYS_STATE_LINK_UP = 5,
 513        IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
 514        IB_PORT_PHYS_STATE_PHY_TEST = 7,
 515};
 516
 517enum ib_port_width {
 518        IB_WIDTH_1X     = 1,
 519        IB_WIDTH_2X     = 16,
 520        IB_WIDTH_4X     = 2,
 521        IB_WIDTH_8X     = 4,
 522        IB_WIDTH_12X    = 8
 523};
 524
 525static inline int ib_width_enum_to_int(enum ib_port_width width)
 526{
 527        switch (width) {
 528        case IB_WIDTH_1X:  return  1;
 529        case IB_WIDTH_2X:  return  2;
 530        case IB_WIDTH_4X:  return  4;
 531        case IB_WIDTH_8X:  return  8;
 532        case IB_WIDTH_12X: return 12;
 533        default:          return -1;
 534        }
 535}
 536
 537enum ib_port_speed {
 538        IB_SPEED_SDR    = 1,
 539        IB_SPEED_DDR    = 2,
 540        IB_SPEED_QDR    = 4,
 541        IB_SPEED_FDR10  = 8,
 542        IB_SPEED_FDR    = 16,
 543        IB_SPEED_EDR    = 32,
 544        IB_SPEED_HDR    = 64,
 545        IB_SPEED_NDR    = 128,
 546};
 547
 548/**
 549 * struct rdma_hw_stats
 550 * @lock - Mutex to protect parallel write access to lifespan and values
 551 *    of counters, which are 64bits and not guaranteeed to be written
 552 *    atomicaly on 32bits systems.
 553 * @timestamp - Used by the core code to track when the last update was
 554 * @lifespan - Used by the core code to determine how old the counters
 555 *   should be before being updated again.  Stored in jiffies, defaults
 556 *   to 10 milliseconds, drivers can override the default be specifying
 557 *   their own value during their allocation routine.
 558 * @name - Array of pointers to static names used for the counters in
 559 *   directory.
 560 * @num_counters - How many hardware counters there are.  If name is
 561 *   shorter than this number, a kernel oops will result.  Driver authors
 562 *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
 563 *   in their code to prevent this.
 564 * @value - Array of u64 counters that are accessed by the sysfs code and
 565 *   filled in by the drivers get_stats routine
 566 */
 567struct rdma_hw_stats {
 568        struct mutex    lock; /* Protect lifespan and values[] */
 569        unsigned long   timestamp;
 570        unsigned long   lifespan;
 571        const char * const *names;
 572        int             num_counters;
 573        u64             value[];
 574};
 575
 576#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
 577/**
 578 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
 579 *   for drivers.
 580 * @names - Array of static const char *
 581 * @num_counters - How many elements in array
 582 * @lifespan - How many milliseconds between updates
 583 */
 584static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
 585                const char * const *names, int num_counters,
 586                unsigned long lifespan)
 587{
 588        struct rdma_hw_stats *stats;
 589
 590        stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
 591                        GFP_KERNEL);
 592        if (!stats)
 593                return NULL;
 594        stats->names = names;
 595        stats->num_counters = num_counters;
 596        stats->lifespan = msecs_to_jiffies(lifespan);
 597
 598        return stats;
 599}
 600
 601
 602/* Define bits for the various functionality this port needs to be supported by
 603 * the core.
 604 */
 605/* Management                           0x00000FFF */
 606#define RDMA_CORE_CAP_IB_MAD            0x00000001
 607#define RDMA_CORE_CAP_IB_SMI            0x00000002
 608#define RDMA_CORE_CAP_IB_CM             0x00000004
 609#define RDMA_CORE_CAP_IW_CM             0x00000008
 610#define RDMA_CORE_CAP_IB_SA             0x00000010
 611#define RDMA_CORE_CAP_OPA_MAD           0x00000020
 612
 613/* Address format                       0x000FF000 */
 614#define RDMA_CORE_CAP_AF_IB             0x00001000
 615#define RDMA_CORE_CAP_ETH_AH            0x00002000
 616#define RDMA_CORE_CAP_OPA_AH            0x00004000
 617#define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
 618
 619/* Protocol                             0xFFF00000 */
 620#define RDMA_CORE_CAP_PROT_IB           0x00100000
 621#define RDMA_CORE_CAP_PROT_ROCE         0x00200000
 622#define RDMA_CORE_CAP_PROT_IWARP        0x00400000
 623#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
 624#define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
 625#define RDMA_CORE_CAP_PROT_USNIC        0x02000000
 626
 627#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
 628                                        | RDMA_CORE_CAP_PROT_ROCE     \
 629                                        | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
 630
 631#define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
 632                                        | RDMA_CORE_CAP_IB_MAD \
 633                                        | RDMA_CORE_CAP_IB_SMI \
 634                                        | RDMA_CORE_CAP_IB_CM  \
 635                                        | RDMA_CORE_CAP_IB_SA  \
 636                                        | RDMA_CORE_CAP_AF_IB)
 637#define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
 638                                        | RDMA_CORE_CAP_IB_MAD  \
 639                                        | RDMA_CORE_CAP_IB_CM   \
 640                                        | RDMA_CORE_CAP_AF_IB   \
 641                                        | RDMA_CORE_CAP_ETH_AH)
 642#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP                       \
 643                                        (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
 644                                        | RDMA_CORE_CAP_IB_MAD  \
 645                                        | RDMA_CORE_CAP_IB_CM   \
 646                                        | RDMA_CORE_CAP_AF_IB   \
 647                                        | RDMA_CORE_CAP_ETH_AH)
 648#define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
 649                                        | RDMA_CORE_CAP_IW_CM)
 650#define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
 651                                        | RDMA_CORE_CAP_OPA_MAD)
 652
 653#define RDMA_CORE_PORT_RAW_PACKET       (RDMA_CORE_CAP_PROT_RAW_PACKET)
 654
 655#define RDMA_CORE_PORT_USNIC            (RDMA_CORE_CAP_PROT_USNIC)
 656
 657struct ib_port_attr {
 658        u64                     subnet_prefix;
 659        enum ib_port_state      state;
 660        enum ib_mtu             max_mtu;
 661        enum ib_mtu             active_mtu;
 662        u32                     phys_mtu;
 663        int                     gid_tbl_len;
 664        unsigned int            ip_gids:1;
 665        /* This is the value from PortInfo CapabilityMask, defined by IBA */
 666        u32                     port_cap_flags;
 667        u32                     max_msg_sz;
 668        u32                     bad_pkey_cntr;
 669        u32                     qkey_viol_cntr;
 670        u16                     pkey_tbl_len;
 671        u32                     sm_lid;
 672        u32                     lid;
 673        u8                      lmc;
 674        u8                      max_vl_num;
 675        u8                      sm_sl;
 676        u8                      subnet_timeout;
 677        u8                      init_type_reply;
 678        u8                      active_width;
 679        u16                     active_speed;
 680        u8                      phys_state;
 681        u16                     port_cap_flags2;
 682};
 683
 684enum ib_device_modify_flags {
 685        IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
 686        IB_DEVICE_MODIFY_NODE_DESC      = 1 << 1
 687};
 688
 689#define IB_DEVICE_NODE_DESC_MAX 64
 690
 691struct ib_device_modify {
 692        u64     sys_image_guid;
 693        char    node_desc[IB_DEVICE_NODE_DESC_MAX];
 694};
 695
 696enum ib_port_modify_flags {
 697        IB_PORT_SHUTDOWN                = 1,
 698        IB_PORT_INIT_TYPE               = (1<<2),
 699        IB_PORT_RESET_QKEY_CNTR         = (1<<3),
 700        IB_PORT_OPA_MASK_CHG            = (1<<4)
 701};
 702
 703struct ib_port_modify {
 704        u32     set_port_cap_mask;
 705        u32     clr_port_cap_mask;
 706        u8      init_type;
 707};
 708
 709enum ib_event_type {
 710        IB_EVENT_CQ_ERR,
 711        IB_EVENT_QP_FATAL,
 712        IB_EVENT_QP_REQ_ERR,
 713        IB_EVENT_QP_ACCESS_ERR,
 714        IB_EVENT_COMM_EST,
 715        IB_EVENT_SQ_DRAINED,
 716        IB_EVENT_PATH_MIG,
 717        IB_EVENT_PATH_MIG_ERR,
 718        IB_EVENT_DEVICE_FATAL,
 719        IB_EVENT_PORT_ACTIVE,
 720        IB_EVENT_PORT_ERR,
 721        IB_EVENT_LID_CHANGE,
 722        IB_EVENT_PKEY_CHANGE,
 723        IB_EVENT_SM_CHANGE,
 724        IB_EVENT_SRQ_ERR,
 725        IB_EVENT_SRQ_LIMIT_REACHED,
 726        IB_EVENT_QP_LAST_WQE_REACHED,
 727        IB_EVENT_CLIENT_REREGISTER,
 728        IB_EVENT_GID_CHANGE,
 729        IB_EVENT_WQ_FATAL,
 730};
 731
 732const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
 733
 734struct ib_event {
 735        struct ib_device        *device;
 736        union {
 737                struct ib_cq    *cq;
 738                struct ib_qp    *qp;
 739                struct ib_srq   *srq;
 740                struct ib_wq    *wq;
 741                u32             port_num;
 742        } element;
 743        enum ib_event_type      event;
 744};
 745
 746struct ib_event_handler {
 747        struct ib_device *device;
 748        void            (*handler)(struct ib_event_handler *, struct ib_event *);
 749        struct list_head  list;
 750};
 751
 752#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)          \
 753        do {                                                    \
 754                (_ptr)->device  = _device;                      \
 755                (_ptr)->handler = _handler;                     \
 756                INIT_LIST_HEAD(&(_ptr)->list);                  \
 757        } while (0)
 758
 759struct ib_global_route {
 760        const struct ib_gid_attr *sgid_attr;
 761        union ib_gid    dgid;
 762        u32             flow_label;
 763        u8              sgid_index;
 764        u8              hop_limit;
 765        u8              traffic_class;
 766};
 767
 768struct ib_grh {
 769        __be32          version_tclass_flow;
 770        __be16          paylen;
 771        u8              next_hdr;
 772        u8              hop_limit;
 773        union ib_gid    sgid;
 774        union ib_gid    dgid;
 775};
 776
 777union rdma_network_hdr {
 778        struct ib_grh ibgrh;
 779        struct {
 780                /* The IB spec states that if it's IPv4, the header
 781                 * is located in the last 20 bytes of the header.
 782                 */
 783                u8              reserved[20];
 784                struct iphdr    roce4grh;
 785        };
 786};
 787
 788#define IB_QPN_MASK             0xFFFFFF
 789
 790enum {
 791        IB_MULTICAST_QPN = 0xffffff
 792};
 793
 794#define IB_LID_PERMISSIVE       cpu_to_be16(0xFFFF)
 795#define IB_MULTICAST_LID_BASE   cpu_to_be16(0xC000)
 796
 797enum ib_ah_flags {
 798        IB_AH_GRH       = 1
 799};
 800
 801enum ib_rate {
 802        IB_RATE_PORT_CURRENT = 0,
 803        IB_RATE_2_5_GBPS = 2,
 804        IB_RATE_5_GBPS   = 5,
 805        IB_RATE_10_GBPS  = 3,
 806        IB_RATE_20_GBPS  = 6,
 807        IB_RATE_30_GBPS  = 4,
 808        IB_RATE_40_GBPS  = 7,
 809        IB_RATE_60_GBPS  = 8,
 810        IB_RATE_80_GBPS  = 9,
 811        IB_RATE_120_GBPS = 10,
 812        IB_RATE_14_GBPS  = 11,
 813        IB_RATE_56_GBPS  = 12,
 814        IB_RATE_112_GBPS = 13,
 815        IB_RATE_168_GBPS = 14,
 816        IB_RATE_25_GBPS  = 15,
 817        IB_RATE_100_GBPS = 16,
 818        IB_RATE_200_GBPS = 17,
 819        IB_RATE_300_GBPS = 18,
 820        IB_RATE_28_GBPS  = 19,
 821        IB_RATE_50_GBPS  = 20,
 822        IB_RATE_400_GBPS = 21,
 823        IB_RATE_600_GBPS = 22,
 824};
 825
 826/**
 827 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 828 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 829 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 830 * @rate: rate to convert.
 831 */
 832__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
 833
 834/**
 835 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
 836 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
 837 * @rate: rate to convert.
 838 */
 839__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
 840
 841
 842/**
 843 * enum ib_mr_type - memory region type
 844 * @IB_MR_TYPE_MEM_REG:       memory region that is used for
 845 *                            normal registration
 846 * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
 847 *                            register any arbitrary sg lists (without
 848 *                            the normal mr constraints - see
 849 *                            ib_map_mr_sg)
 850 * @IB_MR_TYPE_DM:            memory region that is used for device
 851 *                            memory registration
 852 * @IB_MR_TYPE_USER:          memory region that is used for the user-space
 853 *                            application
 854 * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
 855 *                            without address translations (VA=PA)
 856 * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
 857 *                            data integrity operations
 858 */
 859enum ib_mr_type {
 860        IB_MR_TYPE_MEM_REG,
 861        IB_MR_TYPE_SG_GAPS,
 862        IB_MR_TYPE_DM,
 863        IB_MR_TYPE_USER,
 864        IB_MR_TYPE_DMA,
 865        IB_MR_TYPE_INTEGRITY,
 866};
 867
 868enum ib_mr_status_check {
 869        IB_MR_CHECK_SIG_STATUS = 1,
 870};
 871
 872/**
 873 * struct ib_mr_status - Memory region status container
 874 *
 875 * @fail_status: Bitmask of MR checks status. For each
 876 *     failed check a corresponding status bit is set.
 877 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
 878 *     failure.
 879 */
 880struct ib_mr_status {
 881        u32                 fail_status;
 882        struct ib_sig_err   sig_err;
 883};
 884
 885/**
 886 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 887 * enum.
 888 * @mult: multiple to convert.
 889 */
 890__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
 891
 892struct rdma_ah_init_attr {
 893        struct rdma_ah_attr *ah_attr;
 894        u32 flags;
 895        struct net_device *xmit_slave;
 896};
 897
 898enum rdma_ah_attr_type {
 899        RDMA_AH_ATTR_TYPE_UNDEFINED,
 900        RDMA_AH_ATTR_TYPE_IB,
 901        RDMA_AH_ATTR_TYPE_ROCE,
 902        RDMA_AH_ATTR_TYPE_OPA,
 903};
 904
 905struct ib_ah_attr {
 906        u16                     dlid;
 907        u8                      src_path_bits;
 908};
 909
 910struct roce_ah_attr {
 911        u8                      dmac[ETH_ALEN];
 912};
 913
 914struct opa_ah_attr {
 915        u32                     dlid;
 916        u8                      src_path_bits;
 917        bool                    make_grd;
 918};
 919
 920struct rdma_ah_attr {
 921        struct ib_global_route  grh;
 922        u8                      sl;
 923        u8                      static_rate;
 924        u32                     port_num;
 925        u8                      ah_flags;
 926        enum rdma_ah_attr_type type;
 927        union {
 928                struct ib_ah_attr ib;
 929                struct roce_ah_attr roce;
 930                struct opa_ah_attr opa;
 931        };
 932};
 933
 934enum ib_wc_status {
 935        IB_WC_SUCCESS,
 936        IB_WC_LOC_LEN_ERR,
 937        IB_WC_LOC_QP_OP_ERR,
 938        IB_WC_LOC_EEC_OP_ERR,
 939        IB_WC_LOC_PROT_ERR,
 940        IB_WC_WR_FLUSH_ERR,
 941        IB_WC_MW_BIND_ERR,
 942        IB_WC_BAD_RESP_ERR,
 943        IB_WC_LOC_ACCESS_ERR,
 944        IB_WC_REM_INV_REQ_ERR,
 945        IB_WC_REM_ACCESS_ERR,
 946        IB_WC_REM_OP_ERR,
 947        IB_WC_RETRY_EXC_ERR,
 948        IB_WC_RNR_RETRY_EXC_ERR,
 949        IB_WC_LOC_RDD_VIOL_ERR,
 950        IB_WC_REM_INV_RD_REQ_ERR,
 951        IB_WC_REM_ABORT_ERR,
 952        IB_WC_INV_EECN_ERR,
 953        IB_WC_INV_EEC_STATE_ERR,
 954        IB_WC_FATAL_ERR,
 955        IB_WC_RESP_TIMEOUT_ERR,
 956        IB_WC_GENERAL_ERR
 957};
 958
 959const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
 960
 961enum ib_wc_opcode {
 962        IB_WC_SEND = IB_UVERBS_WC_SEND,
 963        IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
 964        IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
 965        IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
 966        IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
 967        IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
 968        IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
 969        IB_WC_LSO = IB_UVERBS_WC_TSO,
 970        IB_WC_REG_MR,
 971        IB_WC_MASKED_COMP_SWAP,
 972        IB_WC_MASKED_FETCH_ADD,
 973/*
 974 * Set value of IB_WC_RECV so consumers can test if a completion is a
 975 * receive by testing (opcode & IB_WC_RECV).
 976 */
 977        IB_WC_RECV                      = 1 << 7,
 978        IB_WC_RECV_RDMA_WITH_IMM
 979};
 980
 981enum ib_wc_flags {
 982        IB_WC_GRH               = 1,
 983        IB_WC_WITH_IMM          = (1<<1),
 984        IB_WC_WITH_INVALIDATE   = (1<<2),
 985        IB_WC_IP_CSUM_OK        = (1<<3),
 986        IB_WC_WITH_SMAC         = (1<<4),
 987        IB_WC_WITH_VLAN         = (1<<5),
 988        IB_WC_WITH_NETWORK_HDR_TYPE     = (1<<6),
 989};
 990
 991struct ib_wc {
 992        union {
 993                u64             wr_id;
 994                struct ib_cqe   *wr_cqe;
 995        };
 996        enum ib_wc_status       status;
 997        enum ib_wc_opcode       opcode;
 998        u32                     vendor_err;
 999        u32                     byte_len;
1000        struct ib_qp           *qp;
1001        union {
1002                __be32          imm_data;
1003                u32             invalidate_rkey;
1004        } ex;
1005        u32                     src_qp;
1006        u32                     slid;
1007        int                     wc_flags;
1008        u16                     pkey_index;
1009        u8                      sl;
1010        u8                      dlid_path_bits;
1011        u32 port_num; /* valid only for DR SMPs on switches */
1012        u8                      smac[ETH_ALEN];
1013        u16                     vlan_id;
1014        u8                      network_hdr_type;
1015};
1016
1017enum ib_cq_notify_flags {
1018        IB_CQ_SOLICITED                 = 1 << 0,
1019        IB_CQ_NEXT_COMP                 = 1 << 1,
1020        IB_CQ_SOLICITED_MASK            = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1021        IB_CQ_REPORT_MISSED_EVENTS      = 1 << 2,
1022};
1023
1024enum ib_srq_type {
1025        IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1026        IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1027        IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1028};
1029
1030static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1031{
1032        return srq_type == IB_SRQT_XRC ||
1033               srq_type == IB_SRQT_TM;
1034}
1035
1036enum ib_srq_attr_mask {
1037        IB_SRQ_MAX_WR   = 1 << 0,
1038        IB_SRQ_LIMIT    = 1 << 1,
1039};
1040
1041struct ib_srq_attr {
1042        u32     max_wr;
1043        u32     max_sge;
1044        u32     srq_limit;
1045};
1046
1047struct ib_srq_init_attr {
1048        void                  (*event_handler)(struct ib_event *, void *);
1049        void                   *srq_context;
1050        struct ib_srq_attr      attr;
1051        enum ib_srq_type        srq_type;
1052
1053        struct {
1054                struct ib_cq   *cq;
1055                union {
1056                        struct {
1057                                struct ib_xrcd *xrcd;
1058                        } xrc;
1059
1060                        struct {
1061                                u32             max_num_tags;
1062                        } tag_matching;
1063                };
1064        } ext;
1065};
1066
1067struct ib_qp_cap {
1068        u32     max_send_wr;
1069        u32     max_recv_wr;
1070        u32     max_send_sge;
1071        u32     max_recv_sge;
1072        u32     max_inline_data;
1073
1074        /*
1075         * Maximum number of rdma_rw_ctx structures in flight at a time.
1076         * ib_create_qp() will calculate the right amount of neededed WRs
1077         * and MRs based on this.
1078         */
1079        u32     max_rdma_ctxs;
1080};
1081
1082enum ib_sig_type {
1083        IB_SIGNAL_ALL_WR,
1084        IB_SIGNAL_REQ_WR
1085};
1086
1087enum ib_qp_type {
1088        /*
1089         * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1090         * here (and in that order) since the MAD layer uses them as
1091         * indices into a 2-entry table.
1092         */
1093        IB_QPT_SMI,
1094        IB_QPT_GSI,
1095
1096        IB_QPT_RC = IB_UVERBS_QPT_RC,
1097        IB_QPT_UC = IB_UVERBS_QPT_UC,
1098        IB_QPT_UD = IB_UVERBS_QPT_UD,
1099        IB_QPT_RAW_IPV6,
1100        IB_QPT_RAW_ETHERTYPE,
1101        IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1102        IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1103        IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1104        IB_QPT_MAX,
1105        IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1106        /* Reserve a range for qp types internal to the low level driver.
1107         * These qp types will not be visible at the IB core layer, so the
1108         * IB_QPT_MAX usages should not be affected in the core layer
1109         */
1110        IB_QPT_RESERVED1 = 0x1000,
1111        IB_QPT_RESERVED2,
1112        IB_QPT_RESERVED3,
1113        IB_QPT_RESERVED4,
1114        IB_QPT_RESERVED5,
1115        IB_QPT_RESERVED6,
1116        IB_QPT_RESERVED7,
1117        IB_QPT_RESERVED8,
1118        IB_QPT_RESERVED9,
1119        IB_QPT_RESERVED10,
1120};
1121
1122enum ib_qp_create_flags {
1123        IB_QP_CREATE_IPOIB_UD_LSO               = 1 << 0,
1124        IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK   =
1125                IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1126        IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1127        IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1128        IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1129        IB_QP_CREATE_NETIF_QP                   = 1 << 5,
1130        IB_QP_CREATE_INTEGRITY_EN               = 1 << 6,
1131        IB_QP_CREATE_NETDEV_USE                 = 1 << 7,
1132        IB_QP_CREATE_SCATTER_FCS                =
1133                IB_UVERBS_QP_CREATE_SCATTER_FCS,
1134        IB_QP_CREATE_CVLAN_STRIPPING            =
1135                IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1136        IB_QP_CREATE_SOURCE_QPN                 = 1 << 10,
1137        IB_QP_CREATE_PCI_WRITE_END_PADDING      =
1138                IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1139        /* reserve bits 26-31 for low level drivers' internal use */
1140        IB_QP_CREATE_RESERVED_START             = 1 << 26,
1141        IB_QP_CREATE_RESERVED_END               = 1 << 31,
1142};
1143
1144/*
1145 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1146 * callback to destroy the passed in QP.
1147 */
1148
1149struct ib_qp_init_attr {
1150        /* Consumer's event_handler callback must not block */
1151        void                  (*event_handler)(struct ib_event *, void *);
1152
1153        void                   *qp_context;
1154        struct ib_cq           *send_cq;
1155        struct ib_cq           *recv_cq;
1156        struct ib_srq          *srq;
1157        struct ib_xrcd         *xrcd;     /* XRC TGT QPs only */
1158        struct ib_qp_cap        cap;
1159        enum ib_sig_type        sq_sig_type;
1160        enum ib_qp_type         qp_type;
1161        u32                     create_flags;
1162
1163        /*
1164         * Only needed for special QP types, or when using the RW API.
1165         */
1166        u32                     port_num;
1167        struct ib_rwq_ind_table *rwq_ind_tbl;
1168        u32                     source_qpn;
1169};
1170
1171struct ib_qp_open_attr {
1172        void                  (*event_handler)(struct ib_event *, void *);
1173        void                   *qp_context;
1174        u32                     qp_num;
1175        enum ib_qp_type         qp_type;
1176};
1177
1178enum ib_rnr_timeout {
1179        IB_RNR_TIMER_655_36 =  0,
1180        IB_RNR_TIMER_000_01 =  1,
1181        IB_RNR_TIMER_000_02 =  2,
1182        IB_RNR_TIMER_000_03 =  3,
1183        IB_RNR_TIMER_000_04 =  4,
1184        IB_RNR_TIMER_000_06 =  5,
1185        IB_RNR_TIMER_000_08 =  6,
1186        IB_RNR_TIMER_000_12 =  7,
1187        IB_RNR_TIMER_000_16 =  8,
1188        IB_RNR_TIMER_000_24 =  9,
1189        IB_RNR_TIMER_000_32 = 10,
1190        IB_RNR_TIMER_000_48 = 11,
1191        IB_RNR_TIMER_000_64 = 12,
1192        IB_RNR_TIMER_000_96 = 13,
1193        IB_RNR_TIMER_001_28 = 14,
1194        IB_RNR_TIMER_001_92 = 15,
1195        IB_RNR_TIMER_002_56 = 16,
1196        IB_RNR_TIMER_003_84 = 17,
1197        IB_RNR_TIMER_005_12 = 18,
1198        IB_RNR_TIMER_007_68 = 19,
1199        IB_RNR_TIMER_010_24 = 20,
1200        IB_RNR_TIMER_015_36 = 21,
1201        IB_RNR_TIMER_020_48 = 22,
1202        IB_RNR_TIMER_030_72 = 23,
1203        IB_RNR_TIMER_040_96 = 24,
1204        IB_RNR_TIMER_061_44 = 25,
1205        IB_RNR_TIMER_081_92 = 26,
1206        IB_RNR_TIMER_122_88 = 27,
1207        IB_RNR_TIMER_163_84 = 28,
1208        IB_RNR_TIMER_245_76 = 29,
1209        IB_RNR_TIMER_327_68 = 30,
1210        IB_RNR_TIMER_491_52 = 31
1211};
1212
1213enum ib_qp_attr_mask {
1214        IB_QP_STATE                     = 1,
1215        IB_QP_CUR_STATE                 = (1<<1),
1216        IB_QP_EN_SQD_ASYNC_NOTIFY       = (1<<2),
1217        IB_QP_ACCESS_FLAGS              = (1<<3),
1218        IB_QP_PKEY_INDEX                = (1<<4),
1219        IB_QP_PORT                      = (1<<5),
1220        IB_QP_QKEY                      = (1<<6),
1221        IB_QP_AV                        = (1<<7),
1222        IB_QP_PATH_MTU                  = (1<<8),
1223        IB_QP_TIMEOUT                   = (1<<9),
1224        IB_QP_RETRY_CNT                 = (1<<10),
1225        IB_QP_RNR_RETRY                 = (1<<11),
1226        IB_QP_RQ_PSN                    = (1<<12),
1227        IB_QP_MAX_QP_RD_ATOMIC          = (1<<13),
1228        IB_QP_ALT_PATH                  = (1<<14),
1229        IB_QP_MIN_RNR_TIMER             = (1<<15),
1230        IB_QP_SQ_PSN                    = (1<<16),
1231        IB_QP_MAX_DEST_RD_ATOMIC        = (1<<17),
1232        IB_QP_PATH_MIG_STATE            = (1<<18),
1233        IB_QP_CAP                       = (1<<19),
1234        IB_QP_DEST_QPN                  = (1<<20),
1235        IB_QP_RESERVED1                 = (1<<21),
1236        IB_QP_RESERVED2                 = (1<<22),
1237        IB_QP_RESERVED3                 = (1<<23),
1238        IB_QP_RESERVED4                 = (1<<24),
1239        IB_QP_RATE_LIMIT                = (1<<25),
1240
1241        IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1242};
1243
1244enum ib_qp_state {
1245        IB_QPS_RESET,
1246        IB_QPS_INIT,
1247        IB_QPS_RTR,
1248        IB_QPS_RTS,
1249        IB_QPS_SQD,
1250        IB_QPS_SQE,
1251        IB_QPS_ERR
1252};
1253
1254enum ib_mig_state {
1255        IB_MIG_MIGRATED,
1256        IB_MIG_REARM,
1257        IB_MIG_ARMED
1258};
1259
1260enum ib_mw_type {
1261        IB_MW_TYPE_1 = 1,
1262        IB_MW_TYPE_2 = 2
1263};
1264
1265struct ib_qp_attr {
1266        enum ib_qp_state        qp_state;
1267        enum ib_qp_state        cur_qp_state;
1268        enum ib_mtu             path_mtu;
1269        enum ib_mig_state       path_mig_state;
1270        u32                     qkey;
1271        u32                     rq_psn;
1272        u32                     sq_psn;
1273        u32                     dest_qp_num;
1274        int                     qp_access_flags;
1275        struct ib_qp_cap        cap;
1276        struct rdma_ah_attr     ah_attr;
1277        struct rdma_ah_attr     alt_ah_attr;
1278        u16                     pkey_index;
1279        u16                     alt_pkey_index;
1280        u8                      en_sqd_async_notify;
1281        u8                      sq_draining;
1282        u8                      max_rd_atomic;
1283        u8                      max_dest_rd_atomic;
1284        u8                      min_rnr_timer;
1285        u32                     port_num;
1286        u8                      timeout;
1287        u8                      retry_cnt;
1288        u8                      rnr_retry;
1289        u32                     alt_port_num;
1290        u8                      alt_timeout;
1291        u32                     rate_limit;
1292        struct net_device       *xmit_slave;
1293};
1294
1295enum ib_wr_opcode {
1296        /* These are shared with userspace */
1297        IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1298        IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1299        IB_WR_SEND = IB_UVERBS_WR_SEND,
1300        IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1301        IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1302        IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1303        IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1304        IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1305        IB_WR_LSO = IB_UVERBS_WR_TSO,
1306        IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1307        IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1308        IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1309        IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1310                IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1311        IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1312                IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1313
1314        /* These are kernel only and can not be issued by userspace */
1315        IB_WR_REG_MR = 0x20,
1316        IB_WR_REG_MR_INTEGRITY,
1317
1318        /* reserve values for low level drivers' internal use.
1319         * These values will not be used at all in the ib core layer.
1320         */
1321        IB_WR_RESERVED1 = 0xf0,
1322        IB_WR_RESERVED2,
1323        IB_WR_RESERVED3,
1324        IB_WR_RESERVED4,
1325        IB_WR_RESERVED5,
1326        IB_WR_RESERVED6,
1327        IB_WR_RESERVED7,
1328        IB_WR_RESERVED8,
1329        IB_WR_RESERVED9,
1330        IB_WR_RESERVED10,
1331};
1332
1333enum ib_send_flags {
1334        IB_SEND_FENCE           = 1,
1335        IB_SEND_SIGNALED        = (1<<1),
1336        IB_SEND_SOLICITED       = (1<<2),
1337        IB_SEND_INLINE          = (1<<3),
1338        IB_SEND_IP_CSUM         = (1<<4),
1339
1340        /* reserve bits 26-31 for low level drivers' internal use */
1341        IB_SEND_RESERVED_START  = (1 << 26),
1342        IB_SEND_RESERVED_END    = (1 << 31),
1343};
1344
1345struct ib_sge {
1346        u64     addr;
1347        u32     length;
1348        u32     lkey;
1349};
1350
1351struct ib_cqe {
1352        void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1353};
1354
1355struct ib_send_wr {
1356        struct ib_send_wr      *next;
1357        union {
1358                u64             wr_id;
1359                struct ib_cqe   *wr_cqe;
1360        };
1361        struct ib_sge          *sg_list;
1362        int                     num_sge;
1363        enum ib_wr_opcode       opcode;
1364        int                     send_flags;
1365        union {
1366                __be32          imm_data;
1367                u32             invalidate_rkey;
1368        } ex;
1369};
1370
1371struct ib_rdma_wr {
1372        struct ib_send_wr       wr;
1373        u64                     remote_addr;
1374        u32                     rkey;
1375};
1376
1377static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1378{
1379        return container_of(wr, struct ib_rdma_wr, wr);
1380}
1381
1382struct ib_atomic_wr {
1383        struct ib_send_wr       wr;
1384        u64                     remote_addr;
1385        u64                     compare_add;
1386        u64                     swap;
1387        u64                     compare_add_mask;
1388        u64                     swap_mask;
1389        u32                     rkey;
1390};
1391
1392static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1393{
1394        return container_of(wr, struct ib_atomic_wr, wr);
1395}
1396
1397struct ib_ud_wr {
1398        struct ib_send_wr       wr;
1399        struct ib_ah            *ah;
1400        void                    *header;
1401        int                     hlen;
1402        int                     mss;
1403        u32                     remote_qpn;
1404        u32                     remote_qkey;
1405        u16                     pkey_index; /* valid for GSI only */
1406        u32                     port_num; /* valid for DR SMPs on switch only */
1407};
1408
1409static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1410{
1411        return container_of(wr, struct ib_ud_wr, wr);
1412}
1413
1414struct ib_reg_wr {
1415        struct ib_send_wr       wr;
1416        struct ib_mr            *mr;
1417        u32                     key;
1418        int                     access;
1419};
1420
1421static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1422{
1423        return container_of(wr, struct ib_reg_wr, wr);
1424}
1425
1426struct ib_recv_wr {
1427        struct ib_recv_wr      *next;
1428        union {
1429                u64             wr_id;
1430                struct ib_cqe   *wr_cqe;
1431        };
1432        struct ib_sge          *sg_list;
1433        int                     num_sge;
1434};
1435
1436enum ib_access_flags {
1437        IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1438        IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1439        IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1440        IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1441        IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1442        IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1443        IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1444        IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1445        IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1446
1447        IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1448        IB_ACCESS_SUPPORTED =
1449                ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1450};
1451
1452/*
1453 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1454 * are hidden here instead of a uapi header!
1455 */
1456enum ib_mr_rereg_flags {
1457        IB_MR_REREG_TRANS       = 1,
1458        IB_MR_REREG_PD          = (1<<1),
1459        IB_MR_REREG_ACCESS      = (1<<2),
1460        IB_MR_REREG_SUPPORTED   = ((IB_MR_REREG_ACCESS << 1) - 1)
1461};
1462
1463struct ib_umem;
1464
1465enum rdma_remove_reason {
1466        /*
1467         * Userspace requested uobject deletion or initial try
1468         * to remove uobject via cleanup. Call could fail
1469         */
1470        RDMA_REMOVE_DESTROY,
1471        /* Context deletion. This call should delete the actual object itself */
1472        RDMA_REMOVE_CLOSE,
1473        /* Driver is being hot-unplugged. This call should delete the actual object itself */
1474        RDMA_REMOVE_DRIVER_REMOVE,
1475        /* uobj is being cleaned-up before being committed */
1476        RDMA_REMOVE_ABORT,
1477        /* The driver failed to destroy the uobject and is being disconnected */
1478        RDMA_REMOVE_DRIVER_FAILURE,
1479};
1480
1481struct ib_rdmacg_object {
1482#ifdef CONFIG_CGROUP_RDMA
1483        struct rdma_cgroup      *cg;            /* owner rdma cgroup */
1484#endif
1485};
1486
1487struct ib_ucontext {
1488        struct ib_device       *device;
1489        struct ib_uverbs_file  *ufile;
1490
1491        struct ib_rdmacg_object cg_obj;
1492        /*
1493         * Implementation details of the RDMA core, don't use in drivers:
1494         */
1495        struct rdma_restrack_entry res;
1496        struct xarray mmap_xa;
1497};
1498
1499struct ib_uobject {
1500        u64                     user_handle;    /* handle given to us by userspace */
1501        /* ufile & ucontext owning this object */
1502        struct ib_uverbs_file  *ufile;
1503        /* FIXME, save memory: ufile->context == context */
1504        struct ib_ucontext     *context;        /* associated user context */
1505        void                   *object;         /* containing object */
1506        struct list_head        list;           /* link to context's list */
1507        struct ib_rdmacg_object cg_obj;         /* rdmacg object */
1508        int                     id;             /* index into kernel idr */
1509        struct kref             ref;
1510        atomic_t                usecnt;         /* protects exclusive access */
1511        struct rcu_head         rcu;            /* kfree_rcu() overhead */
1512
1513        const struct uverbs_api_object *uapi_object;
1514};
1515
1516struct ib_udata {
1517        const void __user *inbuf;
1518        void __user *outbuf;
1519        size_t       inlen;
1520        size_t       outlen;
1521};
1522
1523struct ib_pd {
1524        u32                     local_dma_lkey;
1525        u32                     flags;
1526        struct ib_device       *device;
1527        struct ib_uobject      *uobject;
1528        atomic_t                usecnt; /* count all resources */
1529
1530        u32                     unsafe_global_rkey;
1531
1532        /*
1533         * Implementation details of the RDMA core, don't use in drivers:
1534         */
1535        struct ib_mr           *__internal_mr;
1536        struct rdma_restrack_entry res;
1537};
1538
1539struct ib_xrcd {
1540        struct ib_device       *device;
1541        atomic_t                usecnt; /* count all exposed resources */
1542        struct inode           *inode;
1543        struct rw_semaphore     tgt_qps_rwsem;
1544        struct xarray           tgt_qps;
1545};
1546
1547struct ib_ah {
1548        struct ib_device        *device;
1549        struct ib_pd            *pd;
1550        struct ib_uobject       *uobject;
1551        const struct ib_gid_attr *sgid_attr;
1552        enum rdma_ah_attr_type  type;
1553};
1554
1555typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1556
1557enum ib_poll_context {
1558        IB_POLL_SOFTIRQ,           /* poll from softirq context */
1559        IB_POLL_WORKQUEUE,         /* poll from workqueue */
1560        IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1561        IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1562
1563        IB_POLL_DIRECT,            /* caller context, no hw completions */
1564};
1565
1566struct ib_cq {
1567        struct ib_device       *device;
1568        struct ib_ucq_object   *uobject;
1569        ib_comp_handler         comp_handler;
1570        void                  (*event_handler)(struct ib_event *, void *);
1571        void                   *cq_context;
1572        int                     cqe;
1573        unsigned int            cqe_used;
1574        atomic_t                usecnt; /* count number of work queues */
1575        enum ib_poll_context    poll_ctx;
1576        struct ib_wc            *wc;
1577        struct list_head        pool_entry;
1578        union {
1579                struct irq_poll         iop;
1580                struct work_struct      work;
1581        };
1582        struct workqueue_struct *comp_wq;
1583        struct dim *dim;
1584
1585        /* updated only by trace points */
1586        ktime_t timestamp;
1587        u8 interrupt:1;
1588        u8 shared:1;
1589        unsigned int comp_vector;
1590
1591        /*
1592         * Implementation details of the RDMA core, don't use in drivers:
1593         */
1594        struct rdma_restrack_entry res;
1595};
1596
1597struct ib_srq {
1598        struct ib_device       *device;
1599        struct ib_pd           *pd;
1600        struct ib_usrq_object  *uobject;
1601        void                  (*event_handler)(struct ib_event *, void *);
1602        void                   *srq_context;
1603        enum ib_srq_type        srq_type;
1604        atomic_t                usecnt;
1605
1606        struct {
1607                struct ib_cq   *cq;
1608                union {
1609                        struct {
1610                                struct ib_xrcd *xrcd;
1611                                u32             srq_num;
1612                        } xrc;
1613                };
1614        } ext;
1615
1616        /*
1617         * Implementation details of the RDMA core, don't use in drivers:
1618         */
1619        struct rdma_restrack_entry res;
1620};
1621
1622enum ib_raw_packet_caps {
1623        /* Strip cvlan from incoming packet and report it in the matching work
1624         * completion is supported.
1625         */
1626        IB_RAW_PACKET_CAP_CVLAN_STRIPPING       = (1 << 0),
1627        /* Scatter FCS field of an incoming packet to host memory is supported.
1628         */
1629        IB_RAW_PACKET_CAP_SCATTER_FCS           = (1 << 1),
1630        /* Checksum offloads are supported (for both send and receive). */
1631        IB_RAW_PACKET_CAP_IP_CSUM               = (1 << 2),
1632        /* When a packet is received for an RQ with no receive WQEs, the
1633         * packet processing is delayed.
1634         */
1635        IB_RAW_PACKET_CAP_DELAY_DROP            = (1 << 3),
1636};
1637
1638enum ib_wq_type {
1639        IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1640};
1641
1642enum ib_wq_state {
1643        IB_WQS_RESET,
1644        IB_WQS_RDY,
1645        IB_WQS_ERR
1646};
1647
1648struct ib_wq {
1649        struct ib_device       *device;
1650        struct ib_uwq_object   *uobject;
1651        void                *wq_context;
1652        void                (*event_handler)(struct ib_event *, void *);
1653        struct ib_pd           *pd;
1654        struct ib_cq           *cq;
1655        u32             wq_num;
1656        enum ib_wq_state       state;
1657        enum ib_wq_type wq_type;
1658        atomic_t                usecnt;
1659};
1660
1661enum ib_wq_flags {
1662        IB_WQ_FLAGS_CVLAN_STRIPPING     = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1663        IB_WQ_FLAGS_SCATTER_FCS         = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1664        IB_WQ_FLAGS_DELAY_DROP          = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1665        IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1666                                IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1667};
1668
1669struct ib_wq_init_attr {
1670        void                   *wq_context;
1671        enum ib_wq_type wq_type;
1672        u32             max_wr;
1673        u32             max_sge;
1674        struct  ib_cq          *cq;
1675        void                (*event_handler)(struct ib_event *, void *);
1676        u32             create_flags; /* Use enum ib_wq_flags */
1677};
1678
1679enum ib_wq_attr_mask {
1680        IB_WQ_STATE             = 1 << 0,
1681        IB_WQ_CUR_STATE         = 1 << 1,
1682        IB_WQ_FLAGS             = 1 << 2,
1683};
1684
1685struct ib_wq_attr {
1686        enum    ib_wq_state     wq_state;
1687        enum    ib_wq_state     curr_wq_state;
1688        u32                     flags; /* Use enum ib_wq_flags */
1689        u32                     flags_mask; /* Use enum ib_wq_flags */
1690};
1691
1692struct ib_rwq_ind_table {
1693        struct ib_device        *device;
1694        struct ib_uobject      *uobject;
1695        atomic_t                usecnt;
1696        u32             ind_tbl_num;
1697        u32             log_ind_tbl_size;
1698        struct ib_wq    **ind_tbl;
1699};
1700
1701struct ib_rwq_ind_table_init_attr {
1702        u32             log_ind_tbl_size;
1703        /* Each entry is a pointer to Receive Work Queue */
1704        struct ib_wq    **ind_tbl;
1705};
1706
1707enum port_pkey_state {
1708        IB_PORT_PKEY_NOT_VALID = 0,
1709        IB_PORT_PKEY_VALID = 1,
1710        IB_PORT_PKEY_LISTED = 2,
1711};
1712
1713struct ib_qp_security;
1714
1715struct ib_port_pkey {
1716        enum port_pkey_state    state;
1717        u16                     pkey_index;
1718        u32                     port_num;
1719        struct list_head        qp_list;
1720        struct list_head        to_error_list;
1721        struct ib_qp_security  *sec;
1722};
1723
1724struct ib_ports_pkeys {
1725        struct ib_port_pkey     main;
1726        struct ib_port_pkey     alt;
1727};
1728
1729struct ib_qp_security {
1730        struct ib_qp           *qp;
1731        struct ib_device       *dev;
1732        /* Hold this mutex when changing port and pkey settings. */
1733        struct mutex            mutex;
1734        struct ib_ports_pkeys  *ports_pkeys;
1735        /* A list of all open shared QP handles.  Required to enforce security
1736         * properly for all users of a shared QP.
1737         */
1738        struct list_head        shared_qp_list;
1739        void                   *security;
1740        bool                    destroying;
1741        atomic_t                error_list_count;
1742        struct completion       error_complete;
1743        int                     error_comps_pending;
1744};
1745
1746/*
1747 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1748 * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1749 */
1750struct ib_qp {
1751        struct ib_device       *device;
1752        struct ib_pd           *pd;
1753        struct ib_cq           *send_cq;
1754        struct ib_cq           *recv_cq;
1755        spinlock_t              mr_lock;
1756        int                     mrs_used;
1757        struct list_head        rdma_mrs;
1758        struct list_head        sig_mrs;
1759        struct ib_srq          *srq;
1760        struct ib_xrcd         *xrcd; /* XRC TGT QPs only */
1761        struct list_head        xrcd_list;
1762
1763        /* count times opened, mcast attaches, flow attaches */
1764        atomic_t                usecnt;
1765        struct list_head        open_list;
1766        struct ib_qp           *real_qp;
1767        struct ib_uqp_object   *uobject;
1768        void                  (*event_handler)(struct ib_event *, void *);
1769        void                   *qp_context;
1770        /* sgid_attrs associated with the AV's */
1771        const struct ib_gid_attr *av_sgid_attr;
1772        const struct ib_gid_attr *alt_path_sgid_attr;
1773        u32                     qp_num;
1774        u32                     max_write_sge;
1775        u32                     max_read_sge;
1776        enum ib_qp_type         qp_type;
1777        struct ib_rwq_ind_table *rwq_ind_tbl;
1778        struct ib_qp_security  *qp_sec;
1779        u32                     port;
1780
1781        bool                    integrity_en;
1782        /*
1783         * Implementation details of the RDMA core, don't use in drivers:
1784         */
1785        struct rdma_restrack_entry     res;
1786
1787        /* The counter the qp is bind to */
1788        struct rdma_counter    *counter;
1789};
1790
1791struct ib_dm {
1792        struct ib_device  *device;
1793        u32                length;
1794        u32                flags;
1795        struct ib_uobject *uobject;
1796        atomic_t           usecnt;
1797};
1798
1799struct ib_mr {
1800        struct ib_device  *device;
1801        struct ib_pd      *pd;
1802        u32                lkey;
1803        u32                rkey;
1804        u64                iova;
1805        u64                length;
1806        unsigned int       page_size;
1807        enum ib_mr_type    type;
1808        bool               need_inval;
1809        union {
1810                struct ib_uobject       *uobject;       /* user */
1811                struct list_head        qp_entry;       /* FR */
1812        };
1813
1814        struct ib_dm      *dm;
1815        struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1816        /*
1817         * Implementation details of the RDMA core, don't use in drivers:
1818         */
1819        struct rdma_restrack_entry res;
1820};
1821
1822struct ib_mw {
1823        struct ib_device        *device;
1824        struct ib_pd            *pd;
1825        struct ib_uobject       *uobject;
1826        u32                     rkey;
1827        enum ib_mw_type         type;
1828};
1829
1830/* Supported steering options */
1831enum ib_flow_attr_type {
1832        /* steering according to rule specifications */
1833        IB_FLOW_ATTR_NORMAL             = 0x0,
1834        /* default unicast and multicast rule -
1835         * receive all Eth traffic which isn't steered to any QP
1836         */
1837        IB_FLOW_ATTR_ALL_DEFAULT        = 0x1,
1838        /* default multicast rule -
1839         * receive all Eth multicast traffic which isn't steered to any QP
1840         */
1841        IB_FLOW_ATTR_MC_DEFAULT         = 0x2,
1842        /* sniffer rule - receive all port traffic */
1843        IB_FLOW_ATTR_SNIFFER            = 0x3
1844};
1845
1846/* Supported steering header types */
1847enum ib_flow_spec_type {
1848        /* L2 headers*/
1849        IB_FLOW_SPEC_ETH                = 0x20,
1850        IB_FLOW_SPEC_IB                 = 0x22,
1851        /* L3 header*/
1852        IB_FLOW_SPEC_IPV4               = 0x30,
1853        IB_FLOW_SPEC_IPV6               = 0x31,
1854        IB_FLOW_SPEC_ESP                = 0x34,
1855        /* L4 headers*/
1856        IB_FLOW_SPEC_TCP                = 0x40,
1857        IB_FLOW_SPEC_UDP                = 0x41,
1858        IB_FLOW_SPEC_VXLAN_TUNNEL       = 0x50,
1859        IB_FLOW_SPEC_GRE                = 0x51,
1860        IB_FLOW_SPEC_MPLS               = 0x60,
1861        IB_FLOW_SPEC_INNER              = 0x100,
1862        /* Actions */
1863        IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1864        IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1865        IB_FLOW_SPEC_ACTION_HANDLE      = 0x1002,
1866        IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1867};
1868#define IB_FLOW_SPEC_LAYER_MASK 0xF0
1869#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1870
1871enum ib_flow_flags {
1872        IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1873        IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1874        IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1875};
1876
1877struct ib_flow_eth_filter {
1878        u8      dst_mac[6];
1879        u8      src_mac[6];
1880        __be16  ether_type;
1881        __be16  vlan_tag;
1882        /* Must be last */
1883        u8      real_sz[];
1884};
1885
1886struct ib_flow_spec_eth {
1887        u32                       type;
1888        u16                       size;
1889        struct ib_flow_eth_filter val;
1890        struct ib_flow_eth_filter mask;
1891};
1892
1893struct ib_flow_ib_filter {
1894        __be16 dlid;
1895        __u8   sl;
1896        /* Must be last */
1897        u8      real_sz[];
1898};
1899
1900struct ib_flow_spec_ib {
1901        u32                      type;
1902        u16                      size;
1903        struct ib_flow_ib_filter val;
1904        struct ib_flow_ib_filter mask;
1905};
1906
1907/* IPv4 header flags */
1908enum ib_ipv4_flags {
1909        IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1910        IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1911                                    last have this flag set */
1912};
1913
1914struct ib_flow_ipv4_filter {
1915        __be32  src_ip;
1916        __be32  dst_ip;
1917        u8      proto;
1918        u8      tos;
1919        u8      ttl;
1920        u8      flags;
1921        /* Must be last */
1922        u8      real_sz[];
1923};
1924
1925struct ib_flow_spec_ipv4 {
1926        u32                        type;
1927        u16                        size;
1928        struct ib_flow_ipv4_filter val;
1929        struct ib_flow_ipv4_filter mask;
1930};
1931
1932struct ib_flow_ipv6_filter {
1933        u8      src_ip[16];
1934        u8      dst_ip[16];
1935        __be32  flow_label;
1936        u8      next_hdr;
1937        u8      traffic_class;
1938        u8      hop_limit;
1939        /* Must be last */
1940        u8      real_sz[];
1941};
1942
1943struct ib_flow_spec_ipv6 {
1944        u32                        type;
1945        u16                        size;
1946        struct ib_flow_ipv6_filter val;
1947        struct ib_flow_ipv6_filter mask;
1948};
1949
1950struct ib_flow_tcp_udp_filter {
1951        __be16  dst_port;
1952        __be16  src_port;
1953        /* Must be last */
1954        u8      real_sz[];
1955};
1956
1957struct ib_flow_spec_tcp_udp {
1958        u32                           type;
1959        u16                           size;
1960        struct ib_flow_tcp_udp_filter val;
1961        struct ib_flow_tcp_udp_filter mask;
1962};
1963
1964struct ib_flow_tunnel_filter {
1965        __be32  tunnel_id;
1966        u8      real_sz[];
1967};
1968
1969/* ib_flow_spec_tunnel describes the Vxlan tunnel
1970 * the tunnel_id from val has the vni value
1971 */
1972struct ib_flow_spec_tunnel {
1973        u32                           type;
1974        u16                           size;
1975        struct ib_flow_tunnel_filter  val;
1976        struct ib_flow_tunnel_filter  mask;
1977};
1978
1979struct ib_flow_esp_filter {
1980        __be32  spi;
1981        __be32  seq;
1982        /* Must be last */
1983        u8      real_sz[];
1984};
1985
1986struct ib_flow_spec_esp {
1987        u32                           type;
1988        u16                           size;
1989        struct ib_flow_esp_filter     val;
1990        struct ib_flow_esp_filter     mask;
1991};
1992
1993struct ib_flow_gre_filter {
1994        __be16 c_ks_res0_ver;
1995        __be16 protocol;
1996        __be32 key;
1997        /* Must be last */
1998        u8      real_sz[];
1999};
2000
2001struct ib_flow_spec_gre {
2002        u32                           type;
2003        u16                           size;
2004        struct ib_flow_gre_filter     val;
2005        struct ib_flow_gre_filter     mask;
2006};
2007
2008struct ib_flow_mpls_filter {
2009        __be32 tag;
2010        /* Must be last */
2011        u8      real_sz[];
2012};
2013
2014struct ib_flow_spec_mpls {
2015        u32                           type;
2016        u16                           size;
2017        struct ib_flow_mpls_filter     val;
2018        struct ib_flow_mpls_filter     mask;
2019};
2020
2021struct ib_flow_spec_action_tag {
2022        enum ib_flow_spec_type        type;
2023        u16                           size;
2024        u32                           tag_id;
2025};
2026
2027struct ib_flow_spec_action_drop {
2028        enum ib_flow_spec_type        type;
2029        u16                           size;
2030};
2031
2032struct ib_flow_spec_action_handle {
2033        enum ib_flow_spec_type        type;
2034        u16                           size;
2035        struct ib_flow_action        *act;
2036};
2037
2038enum ib_counters_description {
2039        IB_COUNTER_PACKETS,
2040        IB_COUNTER_BYTES,
2041};
2042
2043struct ib_flow_spec_action_count {
2044        enum ib_flow_spec_type type;
2045        u16 size;
2046        struct ib_counters *counters;
2047};
2048
2049union ib_flow_spec {
2050        struct {
2051                u32                     type;
2052                u16                     size;
2053        };
2054        struct ib_flow_spec_eth         eth;
2055        struct ib_flow_spec_ib          ib;
2056        struct ib_flow_spec_ipv4        ipv4;
2057        struct ib_flow_spec_tcp_udp     tcp_udp;
2058        struct ib_flow_spec_ipv6        ipv6;
2059        struct ib_flow_spec_tunnel      tunnel;
2060        struct ib_flow_spec_esp         esp;
2061        struct ib_flow_spec_gre         gre;
2062        struct ib_flow_spec_mpls        mpls;
2063        struct ib_flow_spec_action_tag  flow_tag;
2064        struct ib_flow_spec_action_drop drop;
2065        struct ib_flow_spec_action_handle action;
2066        struct ib_flow_spec_action_count flow_count;
2067};
2068
2069struct ib_flow_attr {
2070        enum ib_flow_attr_type type;
2071        u16          size;
2072        u16          priority;
2073        u32          flags;
2074        u8           num_of_specs;
2075        u32          port;
2076        union ib_flow_spec flows[];
2077};
2078
2079struct ib_flow {
2080        struct ib_qp            *qp;
2081        struct ib_device        *device;
2082        struct ib_uobject       *uobject;
2083};
2084
2085enum ib_flow_action_type {
2086        IB_FLOW_ACTION_UNSPECIFIED,
2087        IB_FLOW_ACTION_ESP = 1,
2088};
2089
2090struct ib_flow_action_attrs_esp_keymats {
2091        enum ib_uverbs_flow_action_esp_keymat                   protocol;
2092        union {
2093                struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2094        } keymat;
2095};
2096
2097struct ib_flow_action_attrs_esp_replays {
2098        enum ib_uverbs_flow_action_esp_replay                   protocol;
2099        union {
2100                struct ib_uverbs_flow_action_esp_replay_bmp     bmp;
2101        } replay;
2102};
2103
2104enum ib_flow_action_attrs_esp_flags {
2105        /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2106         * This is done in order to share the same flags between user-space and
2107         * kernel and spare an unnecessary translation.
2108         */
2109
2110        /* Kernel flags */
2111        IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED  = 1ULL << 32,
2112        IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS  = 1ULL << 33,
2113};
2114
2115struct ib_flow_spec_list {
2116        struct ib_flow_spec_list        *next;
2117        union ib_flow_spec              spec;
2118};
2119
2120struct ib_flow_action_attrs_esp {
2121        struct ib_flow_action_attrs_esp_keymats         *keymat;
2122        struct ib_flow_action_attrs_esp_replays         *replay;
2123        struct ib_flow_spec_list                        *encap;
2124        /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2125         * Value of 0 is a valid value.
2126         */
2127        u32                                             esn;
2128        u32                                             spi;
2129        u32                                             seq;
2130        u32                                             tfc_pad;
2131        /* Use enum ib_flow_action_attrs_esp_flags */
2132        u64                                             flags;
2133        u64                                             hard_limit_pkts;
2134};
2135
2136struct ib_flow_action {
2137        struct ib_device                *device;
2138        struct ib_uobject               *uobject;
2139        enum ib_flow_action_type        type;
2140        atomic_t                        usecnt;
2141};
2142
2143struct ib_mad;
2144
2145enum ib_process_mad_flags {
2146        IB_MAD_IGNORE_MKEY      = 1,
2147        IB_MAD_IGNORE_BKEY      = 2,
2148        IB_MAD_IGNORE_ALL       = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2149};
2150
2151enum ib_mad_result {
2152        IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2153        IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2154        IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2155        IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2156};
2157
2158struct ib_port_cache {
2159        u64                   subnet_prefix;
2160        struct ib_pkey_cache  *pkey;
2161        struct ib_gid_table   *gid;
2162        u8                     lmc;
2163        enum ib_port_state     port_state;
2164};
2165
2166struct ib_port_immutable {
2167        int                           pkey_tbl_len;
2168        int                           gid_tbl_len;
2169        u32                           core_cap_flags;
2170        u32                           max_mad_size;
2171};
2172
2173struct ib_port_data {
2174        struct ib_device *ib_dev;
2175
2176        struct ib_port_immutable immutable;
2177
2178        spinlock_t pkey_list_lock;
2179
2180        spinlock_t netdev_lock;
2181
2182        struct list_head pkey_list;
2183
2184        struct ib_port_cache cache;
2185
2186        struct net_device __rcu *netdev;
2187        struct hlist_node ndev_hash_link;
2188        struct rdma_port_counter port_counter;
2189        struct ib_port *sysfs;
2190};
2191
2192/* rdma netdev type - specifies protocol type */
2193enum rdma_netdev_t {
2194        RDMA_NETDEV_OPA_VNIC,
2195        RDMA_NETDEV_IPOIB,
2196};
2197
2198/**
2199 * struct rdma_netdev - rdma netdev
2200 * For cases where netstack interfacing is required.
2201 */
2202struct rdma_netdev {
2203        void              *clnt_priv;
2204        struct ib_device  *hca;
2205        u32                port_num;
2206        int                mtu;
2207
2208        /*
2209         * cleanup function must be specified.
2210         * FIXME: This is only used for OPA_VNIC and that usage should be
2211         * removed too.
2212         */
2213        void (*free_rdma_netdev)(struct net_device *netdev);
2214
2215        /* control functions */
2216        void (*set_id)(struct net_device *netdev, int id);
2217        /* send packet */
2218        int (*send)(struct net_device *dev, struct sk_buff *skb,
2219                    struct ib_ah *address, u32 dqpn);
2220        /* multicast */
2221        int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2222                            union ib_gid *gid, u16 mlid,
2223                            int set_qkey, u32 qkey);
2224        int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2225                            union ib_gid *gid, u16 mlid);
2226        /* timeout */
2227        void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2228};
2229
2230struct rdma_netdev_alloc_params {
2231        size_t sizeof_priv;
2232        unsigned int txqs;
2233        unsigned int rxqs;
2234        void *param;
2235
2236        int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2237                                      struct net_device *netdev, void *param);
2238};
2239
2240struct ib_odp_counters {
2241        atomic64_t faults;
2242        atomic64_t invalidations;
2243        atomic64_t prefetch;
2244};
2245
2246struct ib_counters {
2247        struct ib_device        *device;
2248        struct ib_uobject       *uobject;
2249        /* num of objects attached */
2250        atomic_t        usecnt;
2251};
2252
2253struct ib_counters_read_attr {
2254        u64     *counters_buff;
2255        u32     ncounters;
2256        u32     flags; /* use enum ib_read_counters_flags */
2257};
2258
2259struct uverbs_attr_bundle;
2260struct iw_cm_id;
2261struct iw_cm_conn_param;
2262
2263#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2264        .size_##ib_struct =                                                    \
2265                (sizeof(struct drv_struct) +                                   \
2266                 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2267                 BUILD_BUG_ON_ZERO(                                            \
2268                         !__same_type(((struct drv_struct *)NULL)->member,     \
2269                                      struct ib_struct)))
2270
2271#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                          \
2272        ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2273                                           gfp, false))
2274
2275#define rdma_zalloc_drv_obj_numa(ib_dev, ib_type)                              \
2276        ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2277                                           GFP_KERNEL, true))
2278
2279#define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2280        rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2281
2282#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2283
2284struct rdma_user_mmap_entry {
2285        struct kref ref;
2286        struct ib_ucontext *ucontext;
2287        unsigned long start_pgoff;
2288        size_t npages;
2289        bool driver_removed;
2290};
2291
2292/* Return the offset (in bytes) the user should pass to libc's mmap() */
2293static inline u64
2294rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2295{
2296        return (u64)entry->start_pgoff << PAGE_SHIFT;
2297}
2298
2299/**
2300 * struct ib_device_ops - InfiniBand device operations
2301 * This structure defines all the InfiniBand device operations, providers will
2302 * need to define the supported operations, otherwise they will be set to null.
2303 */
2304struct ib_device_ops {
2305        struct module *owner;
2306        enum rdma_driver_id driver_id;
2307        u32 uverbs_abi_ver;
2308        unsigned int uverbs_no_driver_id_binding:1;
2309
2310        /*
2311         * NOTE: New drivers should not make use of device_group; instead new
2312         * device parameter should be exposed via netlink command. This
2313         * mechanism exists only for existing drivers.
2314         */
2315        const struct attribute_group *device_group;
2316        const struct attribute_group **port_groups;
2317
2318        int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2319                         const struct ib_send_wr **bad_send_wr);
2320        int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2321                         const struct ib_recv_wr **bad_recv_wr);
2322        void (*drain_rq)(struct ib_qp *qp);
2323        void (*drain_sq)(struct ib_qp *qp);
2324        int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2325        int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2326        int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2327        int (*post_srq_recv)(struct ib_srq *srq,
2328                             const struct ib_recv_wr *recv_wr,
2329                             const struct ib_recv_wr **bad_recv_wr);
2330        int (*process_mad)(struct ib_device *device, int process_mad_flags,
2331                           u32 port_num, const struct ib_wc *in_wc,
2332                           const struct ib_grh *in_grh,
2333                           const struct ib_mad *in_mad, struct ib_mad *out_mad,
2334                           size_t *out_mad_size, u16 *out_mad_pkey_index);
2335        int (*query_device)(struct ib_device *device,
2336                            struct ib_device_attr *device_attr,
2337                            struct ib_udata *udata);
2338        int (*modify_device)(struct ib_device *device, int device_modify_mask,
2339                             struct ib_device_modify *device_modify);
2340        void (*get_dev_fw_str)(struct ib_device *device, char *str);
2341        const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2342                                                     int comp_vector);
2343        int (*query_port)(struct ib_device *device, u32 port_num,
2344                          struct ib_port_attr *port_attr);
2345        int (*modify_port)(struct ib_device *device, u32 port_num,
2346                           int port_modify_mask,
2347                           struct ib_port_modify *port_modify);
2348        /**
2349         * The following mandatory functions are used only at device
2350         * registration.  Keep functions such as these at the end of this
2351         * structure to avoid cache line misses when accessing struct ib_device
2352         * in fast paths.
2353         */
2354        int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2355                                  struct ib_port_immutable *immutable);
2356        enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2357                                               u32 port_num);
2358        /**
2359         * When calling get_netdev, the HW vendor's driver should return the
2360         * net device of device @device at port @port_num or NULL if such
2361         * a net device doesn't exist. The vendor driver should call dev_hold
2362         * on this net device. The HW vendor's device driver must guarantee
2363         * that this function returns NULL before the net device has finished
2364         * NETDEV_UNREGISTER state.
2365         */
2366        struct net_device *(*get_netdev)(struct ib_device *device,
2367                                         u32 port_num);
2368        /**
2369         * rdma netdev operation
2370         *
2371         * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2372         * must return -EOPNOTSUPP if it doesn't support the specified type.
2373         */
2374        struct net_device *(*alloc_rdma_netdev)(
2375                struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2376                const char *name, unsigned char name_assign_type,
2377                void (*setup)(struct net_device *));
2378
2379        int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2380                                      enum rdma_netdev_t type,
2381                                      struct rdma_netdev_alloc_params *params);
2382        /**
2383         * query_gid should be return GID value for @device, when @port_num
2384         * link layer is either IB or iWarp. It is no-op if @port_num port
2385         * is RoCE link layer.
2386         */
2387        int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2388                         union ib_gid *gid);
2389        /**
2390         * When calling add_gid, the HW vendor's driver should add the gid
2391         * of device of port at gid index available at @attr. Meta-info of
2392         * that gid (for example, the network device related to this gid) is
2393         * available at @attr. @context allows the HW vendor driver to store
2394         * extra information together with a GID entry. The HW vendor driver may
2395         * allocate memory to contain this information and store it in @context
2396         * when a new GID entry is written to. Params are consistent until the
2397         * next call of add_gid or delete_gid. The function should return 0 on
2398         * success or error otherwise. The function could be called
2399         * concurrently for different ports. This function is only called when
2400         * roce_gid_table is used.
2401         */
2402        int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2403        /**
2404         * When calling del_gid, the HW vendor's driver should delete the
2405         * gid of device @device at gid index gid_index of port port_num
2406         * available in @attr.
2407         * Upon the deletion of a GID entry, the HW vendor must free any
2408         * allocated memory. The caller will clear @context afterwards.
2409         * This function is only called when roce_gid_table is used.
2410         */
2411        int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2412        int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2413                          u16 *pkey);
2414        int (*alloc_ucontext)(struct ib_ucontext *context,
2415                              struct ib_udata *udata);
2416        void (*dealloc_ucontext)(struct ib_ucontext *context);
2417        int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2418        /**
2419         * This will be called once refcount of an entry in mmap_xa reaches
2420         * zero. The type of the memory that was mapped may differ between
2421         * entries and is opaque to the rdma_user_mmap interface.
2422         * Therefore needs to be implemented by the driver in mmap_free.
2423         */
2424        void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2425        void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2426        int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2427        int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2428        int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2429                         struct ib_udata *udata);
2430        int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2431                              struct ib_udata *udata);
2432        int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2433        int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2434        int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2435        int (*create_srq)(struct ib_srq *srq,
2436                          struct ib_srq_init_attr *srq_init_attr,
2437                          struct ib_udata *udata);
2438        int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2439                          enum ib_srq_attr_mask srq_attr_mask,
2440                          struct ib_udata *udata);
2441        int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2442        int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2443        int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2444                         struct ib_udata *udata);
2445        int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2446                         int qp_attr_mask, struct ib_udata *udata);
2447        int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2448                        int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2449        int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2450        int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2451                         struct ib_udata *udata);
2452        int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2453        int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2454        int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2455        struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2456        struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2457                                     u64 virt_addr, int mr_access_flags,
2458                                     struct ib_udata *udata);
2459        struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2460                                            u64 length, u64 virt_addr, int fd,
2461                                            int mr_access_flags,
2462                                            struct ib_udata *udata);
2463        struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2464                                       u64 length, u64 virt_addr,
2465                                       int mr_access_flags, struct ib_pd *pd,
2466                                       struct ib_udata *udata);
2467        int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2468        struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2469                                  u32 max_num_sg);
2470        struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2471                                            u32 max_num_data_sg,
2472                                            u32 max_num_meta_sg);
2473        int (*advise_mr)(struct ib_pd *pd,
2474                         enum ib_uverbs_advise_mr_advice advice, u32 flags,
2475                         struct ib_sge *sg_list, u32 num_sge,
2476                         struct uverbs_attr_bundle *attrs);
2477
2478        /*
2479         * Kernel users should universally support relaxed ordering (RO), as
2480         * they are designed to read data only after observing the CQE and use
2481         * the DMA API correctly.
2482         *
2483         * Some drivers implicitly enable RO if platform supports it.
2484         */
2485        int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2486                         unsigned int *sg_offset);
2487        int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2488                               struct ib_mr_status *mr_status);
2489        int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2490        int (*dealloc_mw)(struct ib_mw *mw);
2491        int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2492        int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2493        int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2494        int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2495        struct ib_flow *(*create_flow)(struct ib_qp *qp,
2496                                       struct ib_flow_attr *flow_attr,
2497                                       struct ib_udata *udata);
2498        int (*destroy_flow)(struct ib_flow *flow_id);
2499        struct ib_flow_action *(*create_flow_action_esp)(
2500                struct ib_device *device,
2501                const struct ib_flow_action_attrs_esp *attr,
2502                struct uverbs_attr_bundle *attrs);
2503        int (*destroy_flow_action)(struct ib_flow_action *action);
2504        int (*modify_flow_action_esp)(
2505                struct ib_flow_action *action,
2506                const struct ib_flow_action_attrs_esp *attr,
2507                struct uverbs_attr_bundle *attrs);
2508        int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2509                                 int state);
2510        int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2511                             struct ifla_vf_info *ivf);
2512        int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2513                            struct ifla_vf_stats *stats);
2514        int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2515                            struct ifla_vf_guid *node_guid,
2516                            struct ifla_vf_guid *port_guid);
2517        int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2518                           int type);
2519        struct ib_wq *(*create_wq)(struct ib_pd *pd,
2520                                   struct ib_wq_init_attr *init_attr,
2521                                   struct ib_udata *udata);
2522        int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2523        int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2524                         u32 wq_attr_mask, struct ib_udata *udata);
2525        int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2526                                    struct ib_rwq_ind_table_init_attr *init_attr,
2527                                    struct ib_udata *udata);
2528        int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2529        struct ib_dm *(*alloc_dm)(struct ib_device *device,
2530                                  struct ib_ucontext *context,
2531                                  struct ib_dm_alloc_attr *attr,
2532                                  struct uverbs_attr_bundle *attrs);
2533        int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2534        struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2535                                   struct ib_dm_mr_attr *attr,
2536                                   struct uverbs_attr_bundle *attrs);
2537        int (*create_counters)(struct ib_counters *counters,
2538                               struct uverbs_attr_bundle *attrs);
2539        int (*destroy_counters)(struct ib_counters *counters);
2540        int (*read_counters)(struct ib_counters *counters,
2541                             struct ib_counters_read_attr *counters_read_attr,
2542                             struct uverbs_attr_bundle *attrs);
2543        int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2544                            int data_sg_nents, unsigned int *data_sg_offset,
2545                            struct scatterlist *meta_sg, int meta_sg_nents,
2546                            unsigned int *meta_sg_offset);
2547
2548        /**
2549         * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2550         *   fill in the driver initialized data.  The struct is kfree()'ed by
2551         *   the sysfs core when the device is removed.  A lifespan of -1 in the
2552         *   return struct tells the core to set a default lifespan.
2553         */
2554        struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2555        struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2556                                                     u32 port_num);
2557        /**
2558         * get_hw_stats - Fill in the counter value(s) in the stats struct.
2559         * @index - The index in the value array we wish to have updated, or
2560         *   num_counters if we want all stats updated
2561         * Return codes -
2562         *   < 0 - Error, no counters updated
2563         *   index - Updated the single counter pointed to by index
2564         *   num_counters - Updated all counters (will reset the timestamp
2565         *     and prevent further calls for lifespan milliseconds)
2566         * Drivers are allowed to update all counters in leiu of just the
2567         *   one given in index at their option
2568         */
2569        int (*get_hw_stats)(struct ib_device *device,
2570                            struct rdma_hw_stats *stats, u32 port, int index);
2571
2572        /**
2573         * Allows rdma drivers to add their own restrack attributes.
2574         */
2575        int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2576        int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2577        int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2578        int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2579        int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2580        int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2581        int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2582
2583        /* Device lifecycle callbacks */
2584        /*
2585         * Called after the device becomes registered, before clients are
2586         * attached
2587         */
2588        int (*enable_driver)(struct ib_device *dev);
2589        /*
2590         * This is called as part of ib_dealloc_device().
2591         */
2592        void (*dealloc_driver)(struct ib_device *dev);
2593
2594        /* iWarp CM callbacks */
2595        void (*iw_add_ref)(struct ib_qp *qp);
2596        void (*iw_rem_ref)(struct ib_qp *qp);
2597        struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2598        int (*iw_connect)(struct iw_cm_id *cm_id,
2599                          struct iw_cm_conn_param *conn_param);
2600        int (*iw_accept)(struct iw_cm_id *cm_id,
2601                         struct iw_cm_conn_param *conn_param);
2602        int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2603                         u8 pdata_len);
2604        int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2605        int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2606        /**
2607         * counter_bind_qp - Bind a QP to a counter.
2608         * @counter - The counter to be bound. If counter->id is zero then
2609         *   the driver needs to allocate a new counter and set counter->id
2610         */
2611        int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2612        /**
2613         * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2614         *   counter and bind it onto the default one
2615         */
2616        int (*counter_unbind_qp)(struct ib_qp *qp);
2617        /**
2618         * counter_dealloc -De-allocate the hw counter
2619         */
2620        int (*counter_dealloc)(struct rdma_counter *counter);
2621        /**
2622         * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2623         * the driver initialized data.
2624         */
2625        struct rdma_hw_stats *(*counter_alloc_stats)(
2626                struct rdma_counter *counter);
2627        /**
2628         * counter_update_stats - Query the stats value of this counter
2629         */
2630        int (*counter_update_stats)(struct rdma_counter *counter);
2631
2632        /**
2633         * Allows rdma drivers to add their own restrack attributes
2634         * dumped via 'rdma stat' iproute2 command.
2635         */
2636        int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2637
2638        /* query driver for its ucontext properties */
2639        int (*query_ucontext)(struct ib_ucontext *context,
2640                              struct uverbs_attr_bundle *attrs);
2641
2642        /*
2643         * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2644         * Everyone else relies on Linux memory management model.
2645         */
2646        int (*get_numa_node)(struct ib_device *dev);
2647
2648        DECLARE_RDMA_OBJ_SIZE(ib_ah);
2649        DECLARE_RDMA_OBJ_SIZE(ib_counters);
2650        DECLARE_RDMA_OBJ_SIZE(ib_cq);
2651        DECLARE_RDMA_OBJ_SIZE(ib_mw);
2652        DECLARE_RDMA_OBJ_SIZE(ib_pd);
2653        DECLARE_RDMA_OBJ_SIZE(ib_qp);
2654        DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2655        DECLARE_RDMA_OBJ_SIZE(ib_srq);
2656        DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2657        DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2658};
2659
2660struct ib_core_device {
2661        /* device must be the first element in structure until,
2662         * union of ib_core_device and device exists in ib_device.
2663         */
2664        struct device dev;
2665        possible_net_t rdma_net;
2666        struct kobject *ports_kobj;
2667        struct list_head port_list;
2668        struct ib_device *owner; /* reach back to owner ib_device */
2669};
2670
2671struct rdma_restrack_root;
2672struct ib_device {
2673        /* Do not access @dma_device directly from ULP nor from HW drivers. */
2674        struct device                *dma_device;
2675        struct ib_device_ops         ops;
2676        char                          name[IB_DEVICE_NAME_MAX];
2677        struct rcu_head rcu_head;
2678
2679        struct list_head              event_handler_list;
2680        /* Protects event_handler_list */
2681        struct rw_semaphore event_handler_rwsem;
2682
2683        /* Protects QP's event_handler calls and open_qp list */
2684        spinlock_t qp_open_list_lock;
2685
2686        struct rw_semaphore           client_data_rwsem;
2687        struct xarray                 client_data;
2688        struct mutex                  unregistration_lock;
2689
2690        /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2691        rwlock_t cache_lock;
2692        /**
2693         * port_data is indexed by port number
2694         */
2695        struct ib_port_data *port_data;
2696
2697        int                           num_comp_vectors;
2698
2699        union {
2700                struct device           dev;
2701                struct ib_core_device   coredev;
2702        };
2703
2704        /* First group is for device attributes,
2705         * Second group is for driver provided attributes (optional).
2706         * Third group is for the hw_stats
2707         * It is a NULL terminated array.
2708         */
2709        const struct attribute_group    *groups[4];
2710
2711        u64                          uverbs_cmd_mask;
2712
2713        char                         node_desc[IB_DEVICE_NODE_DESC_MAX];
2714        __be64                       node_guid;
2715        u32                          local_dma_lkey;
2716        u16                          is_switch:1;
2717        /* Indicates kernel verbs support, should not be used in drivers */
2718        u16                          kverbs_provider:1;
2719        /* CQ adaptive moderation (RDMA DIM) */
2720        u16                          use_cq_dim:1;
2721        u8                           node_type;
2722        u32                          phys_port_cnt;
2723        struct ib_device_attr        attrs;
2724        struct hw_stats_device_data *hw_stats_data;
2725
2726#ifdef CONFIG_CGROUP_RDMA
2727        struct rdmacg_device         cg_device;
2728#endif
2729
2730        u32                          index;
2731
2732        spinlock_t                   cq_pools_lock;
2733        struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2734
2735        struct rdma_restrack_root *res;
2736
2737        const struct uapi_definition   *driver_def;
2738
2739        /*
2740         * Positive refcount indicates that the device is currently
2741         * registered and cannot be unregistered.
2742         */
2743        refcount_t refcount;
2744        struct completion unreg_completion;
2745        struct work_struct unregistration_work;
2746
2747        const struct rdma_link_ops *link_ops;
2748
2749        /* Protects compat_devs xarray modifications */
2750        struct mutex compat_devs_mutex;
2751        /* Maintains compat devices for each net namespace */
2752        struct xarray compat_devs;
2753
2754        /* Used by iWarp CM */
2755        char iw_ifname[IFNAMSIZ];
2756        u32 iw_driver_flags;
2757        u32 lag_flags;
2758};
2759
2760static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2761                                    gfp_t gfp, bool is_numa_aware)
2762{
2763        if (is_numa_aware && dev->ops.get_numa_node)
2764                return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2765
2766        return kzalloc(size, gfp);
2767}
2768
2769struct ib_client_nl_info;
2770struct ib_client {
2771        const char *name;
2772        int (*add)(struct ib_device *ibdev);
2773        void (*remove)(struct ib_device *, void *client_data);
2774        void (*rename)(struct ib_device *dev, void *client_data);
2775        int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2776                           struct ib_client_nl_info *res);
2777        int (*get_global_nl_info)(struct ib_client_nl_info *res);
2778
2779        /* Returns the net_dev belonging to this ib_client and matching the
2780         * given parameters.
2781         * @dev:         An RDMA device that the net_dev use for communication.
2782         * @port:        A physical port number on the RDMA device.
2783         * @pkey:        P_Key that the net_dev uses if applicable.
2784         * @gid:         A GID that the net_dev uses to communicate.
2785         * @addr:        An IP address the net_dev is configured with.
2786         * @client_data: The device's client data set by ib_set_client_data().
2787         *
2788         * An ib_client that implements a net_dev on top of RDMA devices
2789         * (such as IP over IB) should implement this callback, allowing the
2790         * rdma_cm module to find the right net_dev for a given request.
2791         *
2792         * The caller is responsible for calling dev_put on the returned
2793         * netdev. */
2794        struct net_device *(*get_net_dev_by_params)(
2795                        struct ib_device *dev,
2796                        u32 port,
2797                        u16 pkey,
2798                        const union ib_gid *gid,
2799                        const struct sockaddr *addr,
2800                        void *client_data);
2801
2802        refcount_t uses;
2803        struct completion uses_zero;
2804        u32 client_id;
2805
2806        /* kverbs are not required by the client */
2807        u8 no_kverbs_req:1;
2808};
2809
2810/*
2811 * IB block DMA iterator
2812 *
2813 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2814 * to a HW supported page size.
2815 */
2816struct ib_block_iter {
2817        /* internal states */
2818        struct scatterlist *__sg;       /* sg holding the current aligned block */
2819        dma_addr_t __dma_addr;          /* unaligned DMA address of this block */
2820        unsigned int __sg_nents;        /* number of SG entries */
2821        unsigned int __sg_advance;      /* number of bytes to advance in sg in next step */
2822        unsigned int __pg_bit;          /* alignment of current block */
2823};
2824
2825struct ib_device *_ib_alloc_device(size_t size);
2826#define ib_alloc_device(drv_struct, member)                                    \
2827        container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2828                                      BUILD_BUG_ON_ZERO(offsetof(              \
2829                                              struct drv_struct, member))),    \
2830                     struct drv_struct, member)
2831
2832void ib_dealloc_device(struct ib_device *device);
2833
2834void ib_get_device_fw_str(struct ib_device *device, char *str);
2835
2836int ib_register_device(struct ib_device *device, const char *name,
2837                       struct device *dma_device);
2838void ib_unregister_device(struct ib_device *device);
2839void ib_unregister_driver(enum rdma_driver_id driver_id);
2840void ib_unregister_device_and_put(struct ib_device *device);
2841void ib_unregister_device_queued(struct ib_device *ib_dev);
2842
2843int ib_register_client   (struct ib_client *client);
2844void ib_unregister_client(struct ib_client *client);
2845
2846void __rdma_block_iter_start(struct ib_block_iter *biter,
2847                             struct scatterlist *sglist,
2848                             unsigned int nents,
2849                             unsigned long pgsz);
2850bool __rdma_block_iter_next(struct ib_block_iter *biter);
2851
2852/**
2853 * rdma_block_iter_dma_address - get the aligned dma address of the current
2854 * block held by the block iterator.
2855 * @biter: block iterator holding the memory block
2856 */
2857static inline dma_addr_t
2858rdma_block_iter_dma_address(struct ib_block_iter *biter)
2859{
2860        return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2861}
2862
2863/**
2864 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2865 * @sglist: sglist to iterate over
2866 * @biter: block iterator holding the memory block
2867 * @nents: maximum number of sg entries to iterate over
2868 * @pgsz: best HW supported page size to use
2869 *
2870 * Callers may use rdma_block_iter_dma_address() to get each
2871 * blocks aligned DMA address.
2872 */
2873#define rdma_for_each_block(sglist, biter, nents, pgsz)         \
2874        for (__rdma_block_iter_start(biter, sglist, nents,      \
2875                                     pgsz);                     \
2876             __rdma_block_iter_next(biter);)
2877
2878/**
2879 * ib_get_client_data - Get IB client context
2880 * @device:Device to get context for
2881 * @client:Client to get context for
2882 *
2883 * ib_get_client_data() returns the client context data set with
2884 * ib_set_client_data(). This can only be called while the client is
2885 * registered to the device, once the ib_client remove() callback returns this
2886 * cannot be called.
2887 */
2888static inline void *ib_get_client_data(struct ib_device *device,
2889                                       struct ib_client *client)
2890{
2891        return xa_load(&device->client_data, client->client_id);
2892}
2893void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2894                         void *data);
2895void ib_set_device_ops(struct ib_device *device,
2896                       const struct ib_device_ops *ops);
2897
2898int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2899                      unsigned long pfn, unsigned long size, pgprot_t prot,
2900                      struct rdma_user_mmap_entry *entry);
2901int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2902                                struct rdma_user_mmap_entry *entry,
2903                                size_t length);
2904int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2905                                      struct rdma_user_mmap_entry *entry,
2906                                      size_t length, u32 min_pgoff,
2907                                      u32 max_pgoff);
2908
2909struct rdma_user_mmap_entry *
2910rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2911                               unsigned long pgoff);
2912struct rdma_user_mmap_entry *
2913rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2914                         struct vm_area_struct *vma);
2915void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2916
2917void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2918
2919static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2920{
2921        return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2922}
2923
2924static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2925{
2926        return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2927}
2928
2929static inline bool ib_is_buffer_cleared(const void __user *p,
2930                                        size_t len)
2931{
2932        bool ret;
2933        u8 *buf;
2934
2935        if (len > USHRT_MAX)
2936                return false;
2937
2938        buf = memdup_user(p, len);
2939        if (IS_ERR(buf))
2940                return false;
2941
2942        ret = !memchr_inv(buf, 0, len);
2943        kfree(buf);
2944        return ret;
2945}
2946
2947static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2948                                       size_t offset,
2949                                       size_t len)
2950{
2951        return ib_is_buffer_cleared(udata->inbuf + offset, len);
2952}
2953
2954/**
2955 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2956 * contains all required attributes and no attributes not allowed for
2957 * the given QP state transition.
2958 * @cur_state: Current QP state
2959 * @next_state: Next QP state
2960 * @type: QP type
2961 * @mask: Mask of supplied QP attributes
2962 *
2963 * This function is a helper function that a low-level driver's
2964 * modify_qp method can use to validate the consumer's input.  It
2965 * checks that cur_state and next_state are valid QP states, that a
2966 * transition from cur_state to next_state is allowed by the IB spec,
2967 * and that the attribute mask supplied is allowed for the transition.
2968 */
2969bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2970                        enum ib_qp_type type, enum ib_qp_attr_mask mask);
2971
2972void ib_register_event_handler(struct ib_event_handler *event_handler);
2973void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2974void ib_dispatch_event(const struct ib_event *event);
2975
2976int ib_query_port(struct ib_device *device,
2977                  u32 port_num, struct ib_port_attr *port_attr);
2978
2979enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2980                                               u32 port_num);
2981
2982/**
2983 * rdma_cap_ib_switch - Check if the device is IB switch
2984 * @device: Device to check
2985 *
2986 * Device driver is responsible for setting is_switch bit on
2987 * in ib_device structure at init time.
2988 *
2989 * Return: true if the device is IB switch.
2990 */
2991static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2992{
2993        return device->is_switch;
2994}
2995
2996/**
2997 * rdma_start_port - Return the first valid port number for the device
2998 * specified
2999 *
3000 * @device: Device to be checked
3001 *
3002 * Return start port number
3003 */
3004static inline u32 rdma_start_port(const struct ib_device *device)
3005{
3006        return rdma_cap_ib_switch(device) ? 0 : 1;
3007}
3008
3009/**
3010 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3011 * @device - The struct ib_device * to iterate over
3012 * @iter - The unsigned int to store the port number
3013 */
3014#define rdma_for_each_port(device, iter)                                       \
3015        for (iter = rdma_start_port(device +                                   \
3016                                    BUILD_BUG_ON_ZERO(!__same_type(u32,        \
3017                                                                   iter)));    \
3018             iter <= rdma_end_port(device); iter++)
3019
3020/**
3021 * rdma_end_port - Return the last valid port number for the device
3022 * specified
3023 *
3024 * @device: Device to be checked
3025 *
3026 * Return last port number
3027 */
3028static inline u32 rdma_end_port(const struct ib_device *device)
3029{
3030        return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3031}
3032
3033static inline int rdma_is_port_valid(const struct ib_device *device,
3034                                     unsigned int port)
3035{
3036        return (port >= rdma_start_port(device) &&
3037                port <= rdma_end_port(device));
3038}
3039
3040static inline bool rdma_is_grh_required(const struct ib_device *device,
3041                                        u32 port_num)
3042{
3043        return device->port_data[port_num].immutable.core_cap_flags &
3044               RDMA_CORE_PORT_IB_GRH_REQUIRED;
3045}
3046
3047static inline bool rdma_protocol_ib(const struct ib_device *device,
3048                                    u32 port_num)
3049{
3050        return device->port_data[port_num].immutable.core_cap_flags &
3051               RDMA_CORE_CAP_PROT_IB;
3052}
3053
3054static inline bool rdma_protocol_roce(const struct ib_device *device,
3055                                      u32 port_num)
3056{
3057        return device->port_data[port_num].immutable.core_cap_flags &
3058               (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3059}
3060
3061static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3062                                                u32 port_num)
3063{
3064        return device->port_data[port_num].immutable.core_cap_flags &
3065               RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3066}
3067
3068static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3069                                                u32 port_num)
3070{
3071        return device->port_data[port_num].immutable.core_cap_flags &
3072               RDMA_CORE_CAP_PROT_ROCE;
3073}
3074
3075static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3076                                       u32 port_num)
3077{
3078        return device->port_data[port_num].immutable.core_cap_flags &
3079               RDMA_CORE_CAP_PROT_IWARP;
3080}
3081
3082static inline bool rdma_ib_or_roce(const struct ib_device *device,
3083                                   u32 port_num)
3084{
3085        return rdma_protocol_ib(device, port_num) ||
3086                rdma_protocol_roce(device, port_num);
3087}
3088
3089static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3090                                            u32 port_num)
3091{
3092        return device->port_data[port_num].immutable.core_cap_flags &
3093               RDMA_CORE_CAP_PROT_RAW_PACKET;
3094}
3095
3096static inline bool rdma_protocol_usnic(const struct ib_device *device,
3097                                       u32 port_num)
3098{
3099        return device->port_data[port_num].immutable.core_cap_flags &
3100               RDMA_CORE_CAP_PROT_USNIC;
3101}
3102
3103/**
3104 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3105 * Management Datagrams.
3106 * @device: Device to check
3107 * @port_num: Port number to check
3108 *
3109 * Management Datagrams (MAD) are a required part of the InfiniBand
3110 * specification and are supported on all InfiniBand devices.  A slightly
3111 * extended version are also supported on OPA interfaces.
3112 *
3113 * Return: true if the port supports sending/receiving of MAD packets.
3114 */
3115static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3116{
3117        return device->port_data[port_num].immutable.core_cap_flags &
3118               RDMA_CORE_CAP_IB_MAD;
3119}
3120
3121/**
3122 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3123 * Management Datagrams.
3124 * @device: Device to check
3125 * @port_num: Port number to check
3126 *
3127 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3128 * datagrams with their own versions.  These OPA MADs share many but not all of
3129 * the characteristics of InfiniBand MADs.
3130 *
3131 * OPA MADs differ in the following ways:
3132 *
3133 *    1) MADs are variable size up to 2K
3134 *       IBTA defined MADs remain fixed at 256 bytes
3135 *    2) OPA SMPs must carry valid PKeys
3136 *    3) OPA SMP packets are a different format
3137 *
3138 * Return: true if the port supports OPA MAD packet formats.
3139 */
3140static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3141{
3142        return device->port_data[port_num].immutable.core_cap_flags &
3143                RDMA_CORE_CAP_OPA_MAD;
3144}
3145
3146/**
3147 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3148 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3149 * @device: Device to check
3150 * @port_num: Port number to check
3151 *
3152 * Each InfiniBand node is required to provide a Subnet Management Agent
3153 * that the subnet manager can access.  Prior to the fabric being fully
3154 * configured by the subnet manager, the SMA is accessed via a well known
3155 * interface called the Subnet Management Interface (SMI).  This interface
3156 * uses directed route packets to communicate with the SM to get around the
3157 * chicken and egg problem of the SM needing to know what's on the fabric
3158 * in order to configure the fabric, and needing to configure the fabric in
3159 * order to send packets to the devices on the fabric.  These directed
3160 * route packets do not need the fabric fully configured in order to reach
3161 * their destination.  The SMI is the only method allowed to send
3162 * directed route packets on an InfiniBand fabric.
3163 *
3164 * Return: true if the port provides an SMI.
3165 */
3166static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3167{
3168        return device->port_data[port_num].immutable.core_cap_flags &
3169               RDMA_CORE_CAP_IB_SMI;
3170}
3171
3172/**
3173 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3174 * Communication Manager.
3175 * @device: Device to check
3176 * @port_num: Port number to check
3177 *
3178 * The InfiniBand Communication Manager is one of many pre-defined General
3179 * Service Agents (GSA) that are accessed via the General Service
3180 * Interface (GSI).  It's role is to facilitate establishment of connections
3181 * between nodes as well as other management related tasks for established
3182 * connections.
3183 *
3184 * Return: true if the port supports an IB CM (this does not guarantee that
3185 * a CM is actually running however).
3186 */
3187static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3188{
3189        return device->port_data[port_num].immutable.core_cap_flags &
3190               RDMA_CORE_CAP_IB_CM;
3191}
3192
3193/**
3194 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3195 * Communication Manager.
3196 * @device: Device to check
3197 * @port_num: Port number to check
3198 *
3199 * Similar to above, but specific to iWARP connections which have a different
3200 * managment protocol than InfiniBand.
3201 *
3202 * Return: true if the port supports an iWARP CM (this does not guarantee that
3203 * a CM is actually running however).
3204 */
3205static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3206{
3207        return device->port_data[port_num].immutable.core_cap_flags &
3208               RDMA_CORE_CAP_IW_CM;
3209}
3210
3211/**
3212 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3213 * Subnet Administration.
3214 * @device: Device to check
3215 * @port_num: Port number to check
3216 *
3217 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3218 * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3219 * fabrics, devices should resolve routes to other hosts by contacting the
3220 * SA to query the proper route.
3221 *
3222 * Return: true if the port should act as a client to the fabric Subnet
3223 * Administration interface.  This does not imply that the SA service is
3224 * running locally.
3225 */
3226static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3227{
3228        return device->port_data[port_num].immutable.core_cap_flags &
3229               RDMA_CORE_CAP_IB_SA;
3230}
3231
3232/**
3233 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3234 * Multicast.
3235 * @device: Device to check
3236 * @port_num: Port number to check
3237 *
3238 * InfiniBand multicast registration is more complex than normal IPv4 or
3239 * IPv6 multicast registration.  Each Host Channel Adapter must register
3240 * with the Subnet Manager when it wishes to join a multicast group.  It
3241 * should do so only once regardless of how many queue pairs it subscribes
3242 * to this group.  And it should leave the group only after all queue pairs
3243 * attached to the group have been detached.
3244 *
3245 * Return: true if the port must undertake the additional adminstrative
3246 * overhead of registering/unregistering with the SM and tracking of the
3247 * total number of queue pairs attached to the multicast group.
3248 */
3249static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3250                                     u32 port_num)
3251{
3252        return rdma_cap_ib_sa(device, port_num);
3253}
3254
3255/**
3256 * rdma_cap_af_ib - Check if the port of device has the capability
3257 * Native Infiniband Address.
3258 * @device: Device to check
3259 * @port_num: Port number to check
3260 *
3261 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3262 * GID.  RoCE uses a different mechanism, but still generates a GID via
3263 * a prescribed mechanism and port specific data.
3264 *
3265 * Return: true if the port uses a GID address to identify devices on the
3266 * network.
3267 */
3268static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3269{
3270        return device->port_data[port_num].immutable.core_cap_flags &
3271               RDMA_CORE_CAP_AF_IB;
3272}
3273
3274/**
3275 * rdma_cap_eth_ah - Check if the port of device has the capability
3276 * Ethernet Address Handle.
3277 * @device: Device to check
3278 * @port_num: Port number to check
3279 *
3280 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3281 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3282 * port.  Normally, packet headers are generated by the sending host
3283 * adapter, but when sending connectionless datagrams, we must manually
3284 * inject the proper headers for the fabric we are communicating over.
3285 *
3286 * Return: true if we are running as a RoCE port and must force the
3287 * addition of a Global Route Header built from our Ethernet Address
3288 * Handle into our header list for connectionless packets.
3289 */
3290static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3291{
3292        return device->port_data[port_num].immutable.core_cap_flags &
3293               RDMA_CORE_CAP_ETH_AH;
3294}
3295
3296/**
3297 * rdma_cap_opa_ah - Check if the port of device supports
3298 * OPA Address handles
3299 * @device: Device to check
3300 * @port_num: Port number to check
3301 *
3302 * Return: true if we are running on an OPA device which supports
3303 * the extended OPA addressing.
3304 */
3305static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3306{
3307        return (device->port_data[port_num].immutable.core_cap_flags &
3308                RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3309}
3310
3311/**
3312 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3313 *
3314 * @device: Device
3315 * @port_num: Port number
3316 *
3317 * This MAD size includes the MAD headers and MAD payload.  No other headers
3318 * are included.
3319 *
3320 * Return the max MAD size required by the Port.  Will return 0 if the port
3321 * does not support MADs
3322 */
3323static inline size_t rdma_max_mad_size(const struct ib_device *device,
3324                                       u32 port_num)
3325{
3326        return device->port_data[port_num].immutable.max_mad_size;
3327}
3328
3329/**
3330 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3331 * @device: Device to check
3332 * @port_num: Port number to check
3333 *
3334 * RoCE GID table mechanism manages the various GIDs for a device.
3335 *
3336 * NOTE: if allocating the port's GID table has failed, this call will still
3337 * return true, but any RoCE GID table API will fail.
3338 *
3339 * Return: true if the port uses RoCE GID table mechanism in order to manage
3340 * its GIDs.
3341 */
3342static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3343                                           u32 port_num)
3344{
3345        return rdma_protocol_roce(device, port_num) &&
3346                device->ops.add_gid && device->ops.del_gid;
3347}
3348
3349/*
3350 * Check if the device supports READ W/ INVALIDATE.
3351 */
3352static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3353{
3354        /*
3355         * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3356         * has support for it yet.
3357         */
3358        return rdma_protocol_iwarp(dev, port_num);
3359}
3360
3361/**
3362 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3363 * @device: Device
3364 * @port_num: 1 based Port number
3365 *
3366 * Return true if port is an Intel OPA port , false if not
3367 */
3368static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3369                                          u32 port_num)
3370{
3371        return (device->port_data[port_num].immutable.core_cap_flags &
3372                RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3373}
3374
3375/**
3376 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3377 * @device: Device
3378 * @port_num: Port number
3379 * @mtu: enum value of MTU
3380 *
3381 * Return the MTU size supported by the port as an integer value. Will return
3382 * -1 if enum value of mtu is not supported.
3383 */
3384static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3385                                       int mtu)
3386{
3387        if (rdma_core_cap_opa_port(device, port))
3388                return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3389        else
3390                return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3391}
3392
3393/**
3394 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3395 * @device: Device
3396 * @port_num: Port number
3397 * @attr: port attribute
3398 *
3399 * Return the MTU size supported by the port as an integer value.
3400 */
3401static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3402                                     struct ib_port_attr *attr)
3403{
3404        if (rdma_core_cap_opa_port(device, port))
3405                return attr->phys_mtu;
3406        else
3407                return ib_mtu_enum_to_int(attr->max_mtu);
3408}
3409
3410int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3411                         int state);
3412int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3413                     struct ifla_vf_info *info);
3414int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3415                    struct ifla_vf_stats *stats);
3416int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3417                    struct ifla_vf_guid *node_guid,
3418                    struct ifla_vf_guid *port_guid);
3419int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3420                   int type);
3421
3422int ib_query_pkey(struct ib_device *device,
3423                  u32 port_num, u16 index, u16 *pkey);
3424
3425int ib_modify_device(struct ib_device *device,
3426                     int device_modify_mask,
3427                     struct ib_device_modify *device_modify);
3428
3429int ib_modify_port(struct ib_device *device,
3430                   u32 port_num, int port_modify_mask,
3431                   struct ib_port_modify *port_modify);
3432
3433int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3434                u32 *port_num, u16 *index);
3435
3436int ib_find_pkey(struct ib_device *device,
3437                 u32 port_num, u16 pkey, u16 *index);
3438
3439enum ib_pd_flags {
3440        /*
3441         * Create a memory registration for all memory in the system and place
3442         * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3443         * ULPs to avoid the overhead of dynamic MRs.
3444         *
3445         * This flag is generally considered unsafe and must only be used in
3446         * extremly trusted environments.  Every use of it will log a warning
3447         * in the kernel log.
3448         */
3449        IB_PD_UNSAFE_GLOBAL_RKEY        = 0x01,
3450};
3451
3452struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3453                const char *caller);
3454
3455/**
3456 * ib_alloc_pd - Allocates an unused protection domain.
3457 * @device: The device on which to allocate the protection domain.
3458 * @flags: protection domain flags
3459 *
3460 * A protection domain object provides an association between QPs, shared
3461 * receive queues, address handles, memory regions, and memory windows.
3462 *
3463 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3464 * memory operations.
3465 */
3466#define ib_alloc_pd(device, flags) \
3467        __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3468
3469int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3470
3471/**
3472 * ib_dealloc_pd - Deallocate kernel PD
3473 * @pd: The protection domain
3474 *
3475 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3476 */
3477static inline void ib_dealloc_pd(struct ib_pd *pd)
3478{
3479        int ret = ib_dealloc_pd_user(pd, NULL);
3480
3481        WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3482}
3483
3484enum rdma_create_ah_flags {
3485        /* In a sleepable context */
3486        RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3487};
3488
3489/**
3490 * rdma_create_ah - Creates an address handle for the given address vector.
3491 * @pd: The protection domain associated with the address handle.
3492 * @ah_attr: The attributes of the address vector.
3493 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3494 *
3495 * The address handle is used to reference a local or global destination
3496 * in all UD QP post sends.
3497 */
3498struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3499                             u32 flags);
3500
3501/**
3502 * rdma_create_user_ah - Creates an address handle for the given address vector.
3503 * It resolves destination mac address for ah attribute of RoCE type.
3504 * @pd: The protection domain associated with the address handle.
3505 * @ah_attr: The attributes of the address vector.
3506 * @udata: pointer to user's input output buffer information need by
3507 *         provider driver.
3508 *
3509 * It returns 0 on success and returns appropriate error code on error.
3510 * The address handle is used to reference a local or global destination
3511 * in all UD QP post sends.
3512 */
3513struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3514                                  struct rdma_ah_attr *ah_attr,
3515                                  struct ib_udata *udata);
3516/**
3517 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3518 *   work completion.
3519 * @hdr: the L3 header to parse
3520 * @net_type: type of header to parse
3521 * @sgid: place to store source gid
3522 * @dgid: place to store destination gid
3523 */
3524int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3525                              enum rdma_network_type net_type,
3526                              union ib_gid *sgid, union ib_gid *dgid);
3527
3528/**
3529 * ib_get_rdma_header_version - Get the header version
3530 * @hdr: the L3 header to parse
3531 */
3532int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3533
3534/**
3535 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3536 *   work completion.
3537 * @device: Device on which the received message arrived.
3538 * @port_num: Port on which the received message arrived.
3539 * @wc: Work completion associated with the received message.
3540 * @grh: References the received global route header.  This parameter is
3541 *   ignored unless the work completion indicates that the GRH is valid.
3542 * @ah_attr: Returned attributes that can be used when creating an address
3543 *   handle for replying to the message.
3544 * When ib_init_ah_attr_from_wc() returns success,
3545 * (a) for IB link layer it optionally contains a reference to SGID attribute
3546 * when GRH is present for IB link layer.
3547 * (b) for RoCE link layer it contains a reference to SGID attribute.
3548 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3549 * attributes which are initialized using ib_init_ah_attr_from_wc().
3550 *
3551 */
3552int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3553                            const struct ib_wc *wc, const struct ib_grh *grh,
3554                            struct rdma_ah_attr *ah_attr);
3555
3556/**
3557 * ib_create_ah_from_wc - Creates an address handle associated with the
3558 *   sender of the specified work completion.
3559 * @pd: The protection domain associated with the address handle.
3560 * @wc: Work completion information associated with a received message.
3561 * @grh: References the received global route header.  This parameter is
3562 *   ignored unless the work completion indicates that the GRH is valid.
3563 * @port_num: The outbound port number to associate with the address.
3564 *
3565 * The address handle is used to reference a local or global destination
3566 * in all UD QP post sends.
3567 */
3568struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3569                                   const struct ib_grh *grh, u32 port_num);
3570
3571/**
3572 * rdma_modify_ah - Modifies the address vector associated with an address
3573 *   handle.
3574 * @ah: The address handle to modify.
3575 * @ah_attr: The new address vector attributes to associate with the
3576 *   address handle.
3577 */
3578int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3579
3580/**
3581 * rdma_query_ah - Queries the address vector associated with an address
3582 *   handle.
3583 * @ah: The address handle to query.
3584 * @ah_attr: The address vector attributes associated with the address
3585 *   handle.
3586 */
3587int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3588
3589enum rdma_destroy_ah_flags {
3590        /* In a sleepable context */
3591        RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3592};
3593
3594/**
3595 * rdma_destroy_ah_user - Destroys an address handle.
3596 * @ah: The address handle to destroy.
3597 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3598 * @udata: Valid user data or NULL for kernel objects
3599 */
3600int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3601
3602/**
3603 * rdma_destroy_ah - Destroys an kernel address handle.
3604 * @ah: The address handle to destroy.
3605 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3606 *
3607 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3608 */
3609static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3610{
3611        int ret = rdma_destroy_ah_user(ah, flags, NULL);
3612
3613        WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3614}
3615
3616struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3617                                  struct ib_srq_init_attr *srq_init_attr,
3618                                  struct ib_usrq_object *uobject,
3619                                  struct ib_udata *udata);
3620static inline struct ib_srq *
3621ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3622{
3623        if (!pd->device->ops.create_srq)
3624                return ERR_PTR(-EOPNOTSUPP);
3625
3626        return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3627}
3628
3629/**
3630 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3631 * @srq: The SRQ to modify.
3632 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3633 *   the current values of selected SRQ attributes are returned.
3634 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3635 *   are being modified.
3636 *
3637 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3638 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3639 * the number of receives queued drops below the limit.
3640 */
3641int ib_modify_srq(struct ib_srq *srq,
3642                  struct ib_srq_attr *srq_attr,
3643                  enum ib_srq_attr_mask srq_attr_mask);
3644
3645/**
3646 * ib_query_srq - Returns the attribute list and current values for the
3647 *   specified SRQ.
3648 * @srq: The SRQ to query.
3649 * @srq_attr: The attributes of the specified SRQ.
3650 */
3651int ib_query_srq(struct ib_srq *srq,
3652                 struct ib_srq_attr *srq_attr);
3653
3654/**
3655 * ib_destroy_srq_user - Destroys the specified SRQ.
3656 * @srq: The SRQ to destroy.
3657 * @udata: Valid user data or NULL for kernel objects
3658 */
3659int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3660
3661/**
3662 * ib_destroy_srq - Destroys the specified kernel SRQ.
3663 * @srq: The SRQ to destroy.
3664 *
3665 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3666 */
3667static inline void ib_destroy_srq(struct ib_srq *srq)
3668{
3669        int ret = ib_destroy_srq_user(srq, NULL);
3670
3671        WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3672}
3673
3674/**
3675 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3676 * @srq: The SRQ to post the work request on.
3677 * @recv_wr: A list of work requests to post on the receive queue.
3678 * @bad_recv_wr: On an immediate failure, this parameter will reference
3679 *   the work request that failed to be posted on the QP.
3680 */
3681static inline int ib_post_srq_recv(struct ib_srq *srq,
3682                                   const struct ib_recv_wr *recv_wr,
3683                                   const struct ib_recv_wr **bad_recv_wr)
3684{
3685        const struct ib_recv_wr *dummy;
3686
3687        return srq->device->ops.post_srq_recv(srq, recv_wr,
3688                                              bad_recv_wr ? : &dummy);
3689}
3690
3691struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3692                                  struct ib_qp_init_attr *qp_init_attr,
3693                                  const char *caller);
3694/**
3695 * ib_create_qp - Creates a kernel QP associated with the specific protection
3696 * domain.
3697 * @pd: The protection domain associated with the QP.
3698 * @init_attr: A list of initial attributes required to create the
3699 *   QP.  If QP creation succeeds, then the attributes are updated to
3700 *   the actual capabilities of the created QP.
3701 */
3702static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3703                                         struct ib_qp_init_attr *init_attr)
3704{
3705        return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3706}
3707
3708/**
3709 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3710 * @qp: The QP to modify.
3711 * @attr: On input, specifies the QP attributes to modify.  On output,
3712 *   the current values of selected QP attributes are returned.
3713 * @attr_mask: A bit-mask used to specify which attributes of the QP
3714 *   are being modified.
3715 * @udata: pointer to user's input output buffer information
3716 *   are being modified.
3717 * It returns 0 on success and returns appropriate error code on error.
3718 */
3719int ib_modify_qp_with_udata(struct ib_qp *qp,
3720                            struct ib_qp_attr *attr,
3721                            int attr_mask,
3722                            struct ib_udata *udata);
3723
3724/**
3725 * ib_modify_qp - Modifies the attributes for the specified QP and then
3726 *   transitions the QP to the given state.
3727 * @qp: The QP to modify.
3728 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3729 *   the current values of selected QP attributes are returned.
3730 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3731 *   are being modified.
3732 */
3733int ib_modify_qp(struct ib_qp *qp,
3734                 struct ib_qp_attr *qp_attr,
3735                 int qp_attr_mask);
3736
3737/**
3738 * ib_query_qp - Returns the attribute list and current values for the
3739 *   specified QP.
3740 * @qp: The QP to query.
3741 * @qp_attr: The attributes of the specified QP.
3742 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3743 * @qp_init_attr: Additional attributes of the selected QP.
3744 *
3745 * The qp_attr_mask may be used to limit the query to gathering only the
3746 * selected attributes.
3747 */
3748int ib_query_qp(struct ib_qp *qp,
3749                struct ib_qp_attr *qp_attr,
3750                int qp_attr_mask,
3751                struct ib_qp_init_attr *qp_init_attr);
3752
3753/**
3754 * ib_destroy_qp - Destroys the specified QP.
3755 * @qp: The QP to destroy.
3756 * @udata: Valid udata or NULL for kernel objects
3757 */
3758int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3759
3760/**
3761 * ib_destroy_qp - Destroys the specified kernel QP.
3762 * @qp: The QP to destroy.
3763 *
3764 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3765 */
3766static inline int ib_destroy_qp(struct ib_qp *qp)
3767{
3768        return ib_destroy_qp_user(qp, NULL);
3769}
3770
3771/**
3772 * ib_open_qp - Obtain a reference to an existing sharable QP.
3773 * @xrcd - XRC domain
3774 * @qp_open_attr: Attributes identifying the QP to open.
3775 *
3776 * Returns a reference to a sharable QP.
3777 */
3778struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3779                         struct ib_qp_open_attr *qp_open_attr);
3780
3781/**
3782 * ib_close_qp - Release an external reference to a QP.
3783 * @qp: The QP handle to release
3784 *
3785 * The opened QP handle is released by the caller.  The underlying
3786 * shared QP is not destroyed until all internal references are released.
3787 */
3788int ib_close_qp(struct ib_qp *qp);
3789
3790/**
3791 * ib_post_send - Posts a list of work requests to the send queue of
3792 *   the specified QP.
3793 * @qp: The QP to post the work request on.
3794 * @send_wr: A list of work requests to post on the send queue.
3795 * @bad_send_wr: On an immediate failure, this parameter will reference
3796 *   the work request that failed to be posted on the QP.
3797 *
3798 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3799 * error is returned, the QP state shall not be affected,
3800 * ib_post_send() will return an immediate error after queueing any
3801 * earlier work requests in the list.
3802 */
3803static inline int ib_post_send(struct ib_qp *qp,
3804                               const struct ib_send_wr *send_wr,
3805                               const struct ib_send_wr **bad_send_wr)
3806{
3807        const struct ib_send_wr *dummy;
3808
3809        return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3810}
3811
3812/**
3813 * ib_post_recv - Posts a list of work requests to the receive queue of
3814 *   the specified QP.
3815 * @qp: The QP to post the work request on.
3816 * @recv_wr: A list of work requests to post on the receive queue.
3817 * @bad_recv_wr: On an immediate failure, this parameter will reference
3818 *   the work request that failed to be posted on the QP.
3819 */
3820static inline int ib_post_recv(struct ib_qp *qp,
3821                               const struct ib_recv_wr *recv_wr,
3822                               const struct ib_recv_wr **bad_recv_wr)
3823{
3824        const struct ib_recv_wr *dummy;
3825
3826        return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3827}
3828
3829struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3830                            int comp_vector, enum ib_poll_context poll_ctx,
3831                            const char *caller);
3832static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3833                                        int nr_cqe, int comp_vector,
3834                                        enum ib_poll_context poll_ctx)
3835{
3836        return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3837                             KBUILD_MODNAME);
3838}
3839
3840struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3841                                int nr_cqe, enum ib_poll_context poll_ctx,
3842                                const char *caller);
3843
3844/**
3845 * ib_alloc_cq_any: Allocate kernel CQ
3846 * @dev: The IB device
3847 * @private: Private data attached to the CQE
3848 * @nr_cqe: Number of CQEs in the CQ
3849 * @poll_ctx: Context used for polling the CQ
3850 */
3851static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3852                                            void *private, int nr_cqe,
3853                                            enum ib_poll_context poll_ctx)
3854{
3855        return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3856                                 KBUILD_MODNAME);
3857}
3858
3859void ib_free_cq(struct ib_cq *cq);
3860int ib_process_cq_direct(struct ib_cq *cq, int budget);
3861
3862/**
3863 * ib_create_cq - Creates a CQ on the specified device.
3864 * @device: The device on which to create the CQ.
3865 * @comp_handler: A user-specified callback that is invoked when a
3866 *   completion event occurs on the CQ.
3867 * @event_handler: A user-specified callback that is invoked when an
3868 *   asynchronous event not associated with a completion occurs on the CQ.
3869 * @cq_context: Context associated with the CQ returned to the user via
3870 *   the associated completion and event handlers.
3871 * @cq_attr: The attributes the CQ should be created upon.
3872 *
3873 * Users can examine the cq structure to determine the actual CQ size.
3874 */
3875struct ib_cq *__ib_create_cq(struct ib_device *device,
3876                             ib_comp_handler comp_handler,
3877                             void (*event_handler)(struct ib_event *, void *),
3878                             void *cq_context,
3879                             const struct ib_cq_init_attr *cq_attr,
3880                             const char *caller);
3881#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3882        __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3883
3884/**
3885 * ib_resize_cq - Modifies the capacity of the CQ.
3886 * @cq: The CQ to resize.
3887 * @cqe: The minimum size of the CQ.
3888 *
3889 * Users can examine the cq structure to determine the actual CQ size.
3890 */
3891int ib_resize_cq(struct ib_cq *cq, int cqe);
3892
3893/**
3894 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3895 * @cq: The CQ to modify.
3896 * @cq_count: number of CQEs that will trigger an event
3897 * @cq_period: max period of time in usec before triggering an event
3898 *
3899 */
3900int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3901
3902/**
3903 * ib_destroy_cq_user - Destroys the specified CQ.
3904 * @cq: The CQ to destroy.
3905 * @udata: Valid user data or NULL for kernel objects
3906 */
3907int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3908
3909/**
3910 * ib_destroy_cq - Destroys the specified kernel CQ.
3911 * @cq: The CQ to destroy.
3912 *
3913 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3914 */
3915static inline void ib_destroy_cq(struct ib_cq *cq)
3916{
3917        int ret = ib_destroy_cq_user(cq, NULL);
3918
3919        WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3920}
3921
3922/**
3923 * ib_poll_cq - poll a CQ for completion(s)
3924 * @cq:the CQ being polled
3925 * @num_entries:maximum number of completions to return
3926 * @wc:array of at least @num_entries &struct ib_wc where completions
3927 *   will be returned
3928 *
3929 * Poll a CQ for (possibly multiple) completions.  If the return value
3930 * is < 0, an error occurred.  If the return value is >= 0, it is the
3931 * number of completions returned.  If the return value is
3932 * non-negative and < num_entries, then the CQ was emptied.
3933 */
3934static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3935                             struct ib_wc *wc)
3936{
3937        return cq->device->ops.poll_cq(cq, num_entries, wc);
3938}
3939
3940/**
3941 * ib_req_notify_cq - Request completion notification on a CQ.
3942 * @cq: The CQ to generate an event for.
3943 * @flags:
3944 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3945 *   to request an event on the next solicited event or next work
3946 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3947 *   may also be |ed in to request a hint about missed events, as
3948 *   described below.
3949 *
3950 * Return Value:
3951 *    < 0 means an error occurred while requesting notification
3952 *   == 0 means notification was requested successfully, and if
3953 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3954 *        were missed and it is safe to wait for another event.  In
3955 *        this case is it guaranteed that any work completions added
3956 *        to the CQ since the last CQ poll will trigger a completion
3957 *        notification event.
3958 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3959 *        in.  It means that the consumer must poll the CQ again to
3960 *        make sure it is empty to avoid missing an event because of a
3961 *        race between requesting notification and an entry being
3962 *        added to the CQ.  This return value means it is possible
3963 *        (but not guaranteed) that a work completion has been added
3964 *        to the CQ since the last poll without triggering a
3965 *        completion notification event.
3966 */
3967static inline int ib_req_notify_cq(struct ib_cq *cq,
3968                                   enum ib_cq_notify_flags flags)
3969{
3970        return cq->device->ops.req_notify_cq(cq, flags);
3971}
3972
3973struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
3974                             int comp_vector_hint,
3975                             enum ib_poll_context poll_ctx);
3976
3977void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
3978
3979/*
3980 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
3981 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
3982 * address into the dma address.
3983 */
3984static inline bool ib_uses_virt_dma(struct ib_device *dev)
3985{
3986        return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
3987}
3988
3989/**
3990 * ib_dma_mapping_error - check a DMA addr for error
3991 * @dev: The device for which the dma_addr was created
3992 * @dma_addr: The DMA address to check
3993 */
3994static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3995{
3996        if (ib_uses_virt_dma(dev))
3997                return 0;
3998        return dma_mapping_error(dev->dma_device, dma_addr);
3999}
4000
4001/**
4002 * ib_dma_map_single - Map a kernel virtual address to DMA address
4003 * @dev: The device for which the dma_addr is to be created
4004 * @cpu_addr: The kernel virtual address
4005 * @size: The size of the region in bytes
4006 * @direction: The direction of the DMA
4007 */
4008static inline u64 ib_dma_map_single(struct ib_device *dev,
4009                                    void *cpu_addr, size_t size,
4010                                    enum dma_data_direction direction)
4011{
4012        if (ib_uses_virt_dma(dev))
4013                return (uintptr_t)cpu_addr;
4014        return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4015}
4016
4017/**
4018 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4019 * @dev: The device for which the DMA address was created
4020 * @addr: The DMA address
4021 * @size: The size of the region in bytes
4022 * @direction: The direction of the DMA
4023 */
4024static inline void ib_dma_unmap_single(struct ib_device *dev,
4025                                       u64 addr, size_t size,
4026                                       enum dma_data_direction direction)
4027{
4028        if (!ib_uses_virt_dma(dev))
4029                dma_unmap_single(dev->dma_device, addr, size, direction);
4030}
4031
4032/**
4033 * ib_dma_map_page - Map a physical page to DMA address
4034 * @dev: The device for which the dma_addr is to be created
4035 * @page: The page to be mapped
4036 * @offset: The offset within the page
4037 * @size: The size of the region in bytes
4038 * @direction: The direction of the DMA
4039 */
4040static inline u64 ib_dma_map_page(struct ib_device *dev,
4041                                  struct page *page,
4042                                  unsigned long offset,
4043                                  size_t size,
4044                                         enum dma_data_direction direction)
4045{
4046        if (ib_uses_virt_dma(dev))
4047                return (uintptr_t)(page_address(page) + offset);
4048        return dma_map_page(dev->dma_device, page, offset, size, direction);
4049}
4050
4051/**
4052 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4053 * @dev: The device for which the DMA address was created
4054 * @addr: The DMA address
4055 * @size: The size of the region in bytes
4056 * @direction: The direction of the DMA
4057 */
4058static inline void ib_dma_unmap_page(struct ib_device *dev,
4059                                     u64 addr, size_t size,
4060                                     enum dma_data_direction direction)
4061{
4062        if (!ib_uses_virt_dma(dev))
4063                dma_unmap_page(dev->dma_device, addr, size, direction);
4064}
4065
4066int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4067static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4068                                      struct scatterlist *sg, int nents,
4069                                      enum dma_data_direction direction,
4070                                      unsigned long dma_attrs)
4071{
4072        if (ib_uses_virt_dma(dev))
4073                return ib_dma_virt_map_sg(dev, sg, nents);
4074        return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4075                                dma_attrs);
4076}
4077
4078static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4079                                         struct scatterlist *sg, int nents,
4080                                         enum dma_data_direction direction,
4081                                         unsigned long dma_attrs)
4082{
4083        if (!ib_uses_virt_dma(dev))
4084                dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4085                                   dma_attrs);
4086}
4087
4088/**
4089 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4090 * @dev: The device for which the DMA addresses are to be created
4091 * @sg: The sg_table object describing the buffer
4092 * @direction: The direction of the DMA
4093 * @attrs: Optional DMA attributes for the map operation
4094 */
4095static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4096                                           struct sg_table *sgt,
4097                                           enum dma_data_direction direction,
4098                                           unsigned long dma_attrs)
4099{
4100        if (ib_uses_virt_dma(dev)) {
4101                ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4102                return 0;
4103        }
4104        return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4105}
4106
4107static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4108                                              struct sg_table *sgt,
4109                                              enum dma_data_direction direction,
4110                                              unsigned long dma_attrs)
4111{
4112        if (!ib_uses_virt_dma(dev))
4113                dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4114}
4115
4116/**
4117 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4118 * @dev: The device for which the DMA addresses are to be created
4119 * @sg: The array of scatter/gather entries
4120 * @nents: The number of scatter/gather entries
4121 * @direction: The direction of the DMA
4122 */
4123static inline int ib_dma_map_sg(struct ib_device *dev,
4124                                struct scatterlist *sg, int nents,
4125                                enum dma_data_direction direction)
4126{
4127        return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4128}
4129
4130/**
4131 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4132 * @dev: The device for which the DMA addresses were created
4133 * @sg: The array of scatter/gather entries
4134 * @nents: The number of scatter/gather entries
4135 * @direction: The direction of the DMA
4136 */
4137static inline void ib_dma_unmap_sg(struct ib_device *dev,
4138                                   struct scatterlist *sg, int nents,
4139                                   enum dma_data_direction direction)
4140{
4141        ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4142}
4143
4144/**
4145 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4146 * @dev: The device to query
4147 *
4148 * The returned value represents a size in bytes.
4149 */
4150static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4151{
4152        if (ib_uses_virt_dma(dev))
4153                return UINT_MAX;
4154        return dma_get_max_seg_size(dev->dma_device);
4155}
4156
4157/**
4158 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4159 * @dev: The device for which the DMA address was created
4160 * @addr: The DMA address
4161 * @size: The size of the region in bytes
4162 * @dir: The direction of the DMA
4163 */
4164static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4165                                              u64 addr,
4166                                              size_t size,
4167                                              enum dma_data_direction dir)
4168{
4169        if (!ib_uses_virt_dma(dev))
4170                dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4171}
4172
4173/**
4174 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4175 * @dev: The device for which the DMA address was created
4176 * @addr: The DMA address
4177 * @size: The size of the region in bytes
4178 * @dir: The direction of the DMA
4179 */
4180static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4181                                                 u64 addr,
4182                                                 size_t size,
4183                                                 enum dma_data_direction dir)
4184{
4185        if (!ib_uses_virt_dma(dev))
4186                dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4187}
4188
4189/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4190 * space. This function should be called when 'current' is the owning MM.
4191 */
4192struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4193                             u64 virt_addr, int mr_access_flags);
4194
4195/* ib_advise_mr -  give an advice about an address range in a memory region */
4196int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4197                 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4198/**
4199 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4200 *   HCA translation table.
4201 * @mr: The memory region to deregister.
4202 * @udata: Valid user data or NULL for kernel object
4203 *
4204 * This function can fail, if the memory region has memory windows bound to it.
4205 */
4206int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4207
4208/**
4209 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4210 *   HCA translation table.
4211 * @mr: The memory region to deregister.
4212 *
4213 * This function can fail, if the memory region has memory windows bound to it.
4214 *
4215 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4216 */
4217static inline int ib_dereg_mr(struct ib_mr *mr)
4218{
4219        return ib_dereg_mr_user(mr, NULL);
4220}
4221
4222struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4223                          u32 max_num_sg);
4224
4225struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4226                                    u32 max_num_data_sg,
4227                                    u32 max_num_meta_sg);
4228
4229/**
4230 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4231 *   R_Key and L_Key.
4232 * @mr - struct ib_mr pointer to be updated.
4233 * @newkey - new key to be used.
4234 */
4235static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4236{
4237        mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4238        mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4239}
4240
4241/**
4242 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4243 * for calculating a new rkey for type 2 memory windows.
4244 * @rkey - the rkey to increment.
4245 */
4246static inline u32 ib_inc_rkey(u32 rkey)
4247{
4248        const u32 mask = 0x000000ff;
4249        return ((rkey + 1) & mask) | (rkey & ~mask);
4250}
4251
4252/**
4253 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4254 * @qp: QP to attach to the multicast group.  The QP must be type
4255 *   IB_QPT_UD.
4256 * @gid: Multicast group GID.
4257 * @lid: Multicast group LID in host byte order.
4258 *
4259 * In order to send and receive multicast packets, subnet
4260 * administration must have created the multicast group and configured
4261 * the fabric appropriately.  The port associated with the specified
4262 * QP must also be a member of the multicast group.
4263 */
4264int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4265
4266/**
4267 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4268 * @qp: QP to detach from the multicast group.
4269 * @gid: Multicast group GID.
4270 * @lid: Multicast group LID in host byte order.
4271 */
4272int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4273
4274struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4275                                   struct inode *inode, struct ib_udata *udata);
4276int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4277
4278static inline int ib_check_mr_access(struct ib_device *ib_dev,
4279                                     unsigned int flags)
4280{
4281        /*
4282         * Local write permission is required if remote write or
4283         * remote atomic permission is also requested.
4284         */
4285        if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4286            !(flags & IB_ACCESS_LOCAL_WRITE))
4287                return -EINVAL;
4288
4289        if (flags & ~IB_ACCESS_SUPPORTED)
4290                return -EINVAL;
4291
4292        if (flags & IB_ACCESS_ON_DEMAND &&
4293            !(ib_dev->attrs.device_cap_flags & IB_DEVICE_ON_DEMAND_PAGING))
4294                return -EINVAL;
4295        return 0;
4296}
4297
4298static inline bool ib_access_writable(int access_flags)
4299{
4300        /*
4301         * We have writable memory backing the MR if any of the following
4302         * access flags are set.  "Local write" and "remote write" obviously
4303         * require write access.  "Remote atomic" can do things like fetch and
4304         * add, which will modify memory, and "MW bind" can change permissions
4305         * by binding a window.
4306         */
4307        return access_flags &
4308                (IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4309                 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4310}
4311
4312/**
4313 * ib_check_mr_status: lightweight check of MR status.
4314 *     This routine may provide status checks on a selected
4315 *     ib_mr. first use is for signature status check.
4316 *
4317 * @mr: A memory region.
4318 * @check_mask: Bitmask of which checks to perform from
4319 *     ib_mr_status_check enumeration.
4320 * @mr_status: The container of relevant status checks.
4321 *     failed checks will be indicated in the status bitmask
4322 *     and the relevant info shall be in the error item.
4323 */
4324int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4325                       struct ib_mr_status *mr_status);
4326
4327/**
4328 * ib_device_try_get: Hold a registration lock
4329 * device: The device to lock
4330 *
4331 * A device under an active registration lock cannot become unregistered. It
4332 * is only possible to obtain a registration lock on a device that is fully
4333 * registered, otherwise this function returns false.
4334 *
4335 * The registration lock is only necessary for actions which require the
4336 * device to still be registered. Uses that only require the device pointer to
4337 * be valid should use get_device(&ibdev->dev) to hold the memory.
4338 *
4339 */
4340static inline bool ib_device_try_get(struct ib_device *dev)
4341{
4342        return refcount_inc_not_zero(&dev->refcount);
4343}
4344
4345void ib_device_put(struct ib_device *device);
4346struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4347                                          enum rdma_driver_id driver_id);
4348struct ib_device *ib_device_get_by_name(const char *name,
4349                                        enum rdma_driver_id driver_id);
4350struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4351                                            u16 pkey, const union ib_gid *gid,
4352                                            const struct sockaddr *addr);
4353int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4354                         unsigned int port);
4355struct net_device *ib_device_netdev(struct ib_device *dev, u32 port);
4356
4357struct ib_wq *ib_create_wq(struct ib_pd *pd,
4358                           struct ib_wq_init_attr *init_attr);
4359int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4360
4361int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4362                 unsigned int *sg_offset, unsigned int page_size);
4363int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4364                    int data_sg_nents, unsigned int *data_sg_offset,
4365                    struct scatterlist *meta_sg, int meta_sg_nents,
4366                    unsigned int *meta_sg_offset, unsigned int page_size);
4367
4368static inline int
4369ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4370                  unsigned int *sg_offset, unsigned int page_size)
4371{
4372        int n;
4373
4374        n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4375        mr->iova = 0;
4376
4377        return n;
4378}
4379
4380int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4381                unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4382
4383void ib_drain_rq(struct ib_qp *qp);
4384void ib_drain_sq(struct ib_qp *qp);
4385void ib_drain_qp(struct ib_qp *qp);
4386
4387int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4388                     u8 *width);
4389
4390static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4391{
4392        if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4393                return attr->roce.dmac;
4394        return NULL;
4395}
4396
4397static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4398{
4399        if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4400                attr->ib.dlid = (u16)dlid;
4401        else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4402                attr->opa.dlid = dlid;
4403}
4404
4405static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4406{
4407        if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4408                return attr->ib.dlid;
4409        else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4410                return attr->opa.dlid;
4411        return 0;
4412}
4413
4414static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4415{
4416        attr->sl = sl;
4417}
4418
4419static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4420{
4421        return attr->sl;
4422}
4423
4424static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4425                                         u8 src_path_bits)
4426{
4427        if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4428                attr->ib.src_path_bits = src_path_bits;
4429        else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4430                attr->opa.src_path_bits = src_path_bits;
4431}
4432
4433static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4434{
4435        if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4436                return attr->ib.src_path_bits;
4437        else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4438                return attr->opa.src_path_bits;
4439        return 0;
4440}
4441
4442static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4443                                        bool make_grd)
4444{
4445        if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4446                attr->opa.make_grd = make_grd;
4447}
4448
4449static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4450{
4451        if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4452                return attr->opa.make_grd;
4453        return false;
4454}
4455
4456static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4457{
4458        attr->port_num = port_num;
4459}
4460
4461static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4462{
4463        return attr->port_num;
4464}
4465
4466static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4467                                           u8 static_rate)
4468{
4469        attr->static_rate = static_rate;
4470}
4471
4472static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4473{
4474        return attr->static_rate;
4475}
4476
4477static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4478                                        enum ib_ah_flags flag)
4479{
4480        attr->ah_flags = flag;
4481}
4482
4483static inline enum ib_ah_flags
4484                rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4485{
4486        return attr->ah_flags;
4487}
4488
4489static inline const struct ib_global_route
4490                *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4491{
4492        return &attr->grh;
4493}
4494
4495/*To retrieve and modify the grh */
4496static inline struct ib_global_route
4497                *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4498{
4499        return &attr->grh;
4500}
4501
4502static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4503{
4504        struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4505
4506        memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4507}
4508
4509static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4510                                             __be64 prefix)
4511{
4512        struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4513
4514        grh->dgid.global.subnet_prefix = prefix;
4515}
4516
4517static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4518                                            __be64 if_id)
4519{
4520        struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4521
4522        grh->dgid.global.interface_id = if_id;
4523}
4524
4525static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4526                                   union ib_gid *dgid, u32 flow_label,
4527                                   u8 sgid_index, u8 hop_limit,
4528                                   u8 traffic_class)
4529{
4530        struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4531
4532        attr->ah_flags = IB_AH_GRH;
4533        if (dgid)
4534                grh->dgid = *dgid;
4535        grh->flow_label = flow_label;
4536        grh->sgid_index = sgid_index;
4537        grh->hop_limit = hop_limit;
4538        grh->traffic_class = traffic_class;
4539        grh->sgid_attr = NULL;
4540}
4541
4542void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4543void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4544                             u32 flow_label, u8 hop_limit, u8 traffic_class,
4545                             const struct ib_gid_attr *sgid_attr);
4546void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4547                       const struct rdma_ah_attr *src);
4548void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4549                          const struct rdma_ah_attr *new);
4550void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4551
4552/**
4553 * rdma_ah_find_type - Return address handle type.
4554 *
4555 * @dev: Device to be checked
4556 * @port_num: Port number
4557 */
4558static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4559                                                       u32 port_num)
4560{
4561        if (rdma_protocol_roce(dev, port_num))
4562                return RDMA_AH_ATTR_TYPE_ROCE;
4563        if (rdma_protocol_ib(dev, port_num)) {
4564                if (rdma_cap_opa_ah(dev, port_num))
4565                        return RDMA_AH_ATTR_TYPE_OPA;
4566                return RDMA_AH_ATTR_TYPE_IB;
4567        }
4568
4569        return RDMA_AH_ATTR_TYPE_UNDEFINED;
4570}
4571
4572/**
4573 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4574 *     In the current implementation the only way to get
4575 *     get the 32bit lid is from other sources for OPA.
4576 *     For IB, lids will always be 16bits so cast the
4577 *     value accordingly.
4578 *
4579 * @lid: A 32bit LID
4580 */
4581static inline u16 ib_lid_cpu16(u32 lid)
4582{
4583        WARN_ON_ONCE(lid & 0xFFFF0000);
4584        return (u16)lid;
4585}
4586
4587/**
4588 * ib_lid_be16 - Return lid in 16bit BE encoding.
4589 *
4590 * @lid: A 32bit LID
4591 */
4592static inline __be16 ib_lid_be16(u32 lid)
4593{
4594        WARN_ON_ONCE(lid & 0xFFFF0000);
4595        return cpu_to_be16((u16)lid);
4596}
4597
4598/**
4599 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4600 *   vector
4601 * @device:         the rdma device
4602 * @comp_vector:    index of completion vector
4603 *
4604 * Returns NULL on failure, otherwise a corresponding cpu map of the
4605 * completion vector (returns all-cpus map if the device driver doesn't
4606 * implement get_vector_affinity).
4607 */
4608static inline const struct cpumask *
4609ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4610{
4611        if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4612            !device->ops.get_vector_affinity)
4613                return NULL;
4614
4615        return device->ops.get_vector_affinity(device, comp_vector);
4616
4617}
4618
4619/**
4620 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4621 * and add their gids, as needed, to the relevant RoCE devices.
4622 *
4623 * @device:         the rdma device
4624 */
4625void rdma_roce_rescan_device(struct ib_device *ibdev);
4626
4627struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4628
4629int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4630
4631struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4632                                     enum rdma_netdev_t type, const char *name,
4633                                     unsigned char name_assign_type,
4634                                     void (*setup)(struct net_device *));
4635
4636int rdma_init_netdev(struct ib_device *device, u32 port_num,
4637                     enum rdma_netdev_t type, const char *name,
4638                     unsigned char name_assign_type,
4639                     void (*setup)(struct net_device *),
4640                     struct net_device *netdev);
4641
4642/**
4643 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4644 *
4645 * @device:     device pointer for which ib_device pointer to retrieve
4646 *
4647 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4648 *
4649 */
4650static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4651{
4652        struct ib_core_device *coredev =
4653                container_of(device, struct ib_core_device, dev);
4654
4655        return coredev->owner;
4656}
4657
4658/**
4659 * ibdev_to_node - return the NUMA node for a given ib_device
4660 * @dev:        device to get the NUMA node for.
4661 */
4662static inline int ibdev_to_node(struct ib_device *ibdev)
4663{
4664        struct device *parent = ibdev->dev.parent;
4665
4666        if (!parent)
4667                return NUMA_NO_NODE;
4668        return dev_to_node(parent);
4669}
4670
4671/**
4672 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4673 *                             ib_device holder structure from device pointer.
4674 *
4675 * NOTE: New drivers should not make use of this API; This API is only for
4676 * existing drivers who have exposed sysfs entries using
4677 * ops->device_group.
4678 */
4679#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4680        container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4681
4682bool rdma_dev_access_netns(const struct ib_device *device,
4683                           const struct net *net);
4684
4685#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4686#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4687#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4688
4689/**
4690 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4691 *                               on the flow_label
4692 *
4693 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4694 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4695 * convention.
4696 */
4697static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4698{
4699        u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4700
4701        fl_low ^= fl_high >> 14;
4702        return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4703}
4704
4705/**
4706 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4707 *                        local and remote qpn values
4708 *
4709 * This function folded the multiplication results of two qpns, 24 bit each,
4710 * fields, and converts it to a 20 bit results.
4711 *
4712 * This function will create symmetric flow_label value based on the local
4713 * and remote qpn values. this will allow both the requester and responder
4714 * to calculate the same flow_label for a given connection.
4715 *
4716 * This helper function should be used by driver in case the upper layer
4717 * provide a zero flow_label value. This is to improve entropy of RDMA
4718 * traffic in the network.
4719 */
4720static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4721{
4722        u64 v = (u64)lqpn * rqpn;
4723
4724        v ^= v >> 20;
4725        v ^= v >> 40;
4726
4727        return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4728}
4729
4730const struct ib_port_immutable*
4731ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4732#endif /* IB_VERBS_H */
4733