linux/include/uapi/misc/habanalabs.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
   2 *
   3 * Copyright 2016-2020 HabanaLabs, Ltd.
   4 * All Rights Reserved.
   5 *
   6 */
   7
   8#ifndef HABANALABS_H_
   9#define HABANALABS_H_
  10
  11#include <linux/types.h>
  12#include <linux/ioctl.h>
  13
  14/*
  15 * Defines that are asic-specific but constitutes as ABI between kernel driver
  16 * and userspace
  17 */
  18#define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START          0x8000  /* 32KB */
  19#define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START      0x80    /* 128 bytes */
  20
  21/*
  22 * 128 SOBs reserved for collective wait
  23 * 16 SOBs reserved for sync stream
  24 */
  25#define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT           144
  26
  27/*
  28 * 64 monitors reserved for collective wait
  29 * 8 monitors reserved for sync stream
  30 */
  31#define GAUDI_FIRST_AVAILABLE_W_S_MONITOR               72
  32
  33/*
  34 * Goya queue Numbering
  35 *
  36 * The external queues (PCI DMA channels) MUST be before the internal queues
  37 * and each group (PCI DMA channels and internal) must be contiguous inside
  38 * itself but there can be a gap between the two groups (although not
  39 * recommended)
  40 */
  41
  42enum goya_queue_id {
  43        GOYA_QUEUE_ID_DMA_0 = 0,
  44        GOYA_QUEUE_ID_DMA_1 = 1,
  45        GOYA_QUEUE_ID_DMA_2 = 2,
  46        GOYA_QUEUE_ID_DMA_3 = 3,
  47        GOYA_QUEUE_ID_DMA_4 = 4,
  48        GOYA_QUEUE_ID_CPU_PQ = 5,
  49        GOYA_QUEUE_ID_MME = 6,  /* Internal queues start here */
  50        GOYA_QUEUE_ID_TPC0 = 7,
  51        GOYA_QUEUE_ID_TPC1 = 8,
  52        GOYA_QUEUE_ID_TPC2 = 9,
  53        GOYA_QUEUE_ID_TPC3 = 10,
  54        GOYA_QUEUE_ID_TPC4 = 11,
  55        GOYA_QUEUE_ID_TPC5 = 12,
  56        GOYA_QUEUE_ID_TPC6 = 13,
  57        GOYA_QUEUE_ID_TPC7 = 14,
  58        GOYA_QUEUE_ID_SIZE
  59};
  60
  61/*
  62 * Gaudi queue Numbering
  63 * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
  64 * Except one CPU queue, all the rest are internal queues.
  65 */
  66
  67enum gaudi_queue_id {
  68        GAUDI_QUEUE_ID_DMA_0_0 = 0,     /* external */
  69        GAUDI_QUEUE_ID_DMA_0_1 = 1,     /* external */
  70        GAUDI_QUEUE_ID_DMA_0_2 = 2,     /* external */
  71        GAUDI_QUEUE_ID_DMA_0_3 = 3,     /* external */
  72        GAUDI_QUEUE_ID_DMA_1_0 = 4,     /* external */
  73        GAUDI_QUEUE_ID_DMA_1_1 = 5,     /* external */
  74        GAUDI_QUEUE_ID_DMA_1_2 = 6,     /* external */
  75        GAUDI_QUEUE_ID_DMA_1_3 = 7,     /* external */
  76        GAUDI_QUEUE_ID_CPU_PQ = 8,      /* CPU */
  77        GAUDI_QUEUE_ID_DMA_2_0 = 9,     /* internal */
  78        GAUDI_QUEUE_ID_DMA_2_1 = 10,    /* internal */
  79        GAUDI_QUEUE_ID_DMA_2_2 = 11,    /* internal */
  80        GAUDI_QUEUE_ID_DMA_2_3 = 12,    /* internal */
  81        GAUDI_QUEUE_ID_DMA_3_0 = 13,    /* internal */
  82        GAUDI_QUEUE_ID_DMA_3_1 = 14,    /* internal */
  83        GAUDI_QUEUE_ID_DMA_3_2 = 15,    /* internal */
  84        GAUDI_QUEUE_ID_DMA_3_3 = 16,    /* internal */
  85        GAUDI_QUEUE_ID_DMA_4_0 = 17,    /* internal */
  86        GAUDI_QUEUE_ID_DMA_4_1 = 18,    /* internal */
  87        GAUDI_QUEUE_ID_DMA_4_2 = 19,    /* internal */
  88        GAUDI_QUEUE_ID_DMA_4_3 = 20,    /* internal */
  89        GAUDI_QUEUE_ID_DMA_5_0 = 21,    /* internal */
  90        GAUDI_QUEUE_ID_DMA_5_1 = 22,    /* internal */
  91        GAUDI_QUEUE_ID_DMA_5_2 = 23,    /* internal */
  92        GAUDI_QUEUE_ID_DMA_5_3 = 24,    /* internal */
  93        GAUDI_QUEUE_ID_DMA_6_0 = 25,    /* internal */
  94        GAUDI_QUEUE_ID_DMA_6_1 = 26,    /* internal */
  95        GAUDI_QUEUE_ID_DMA_6_2 = 27,    /* internal */
  96        GAUDI_QUEUE_ID_DMA_6_3 = 28,    /* internal */
  97        GAUDI_QUEUE_ID_DMA_7_0 = 29,    /* internal */
  98        GAUDI_QUEUE_ID_DMA_7_1 = 30,    /* internal */
  99        GAUDI_QUEUE_ID_DMA_7_2 = 31,    /* internal */
 100        GAUDI_QUEUE_ID_DMA_7_3 = 32,    /* internal */
 101        GAUDI_QUEUE_ID_MME_0_0 = 33,    /* internal */
 102        GAUDI_QUEUE_ID_MME_0_1 = 34,    /* internal */
 103        GAUDI_QUEUE_ID_MME_0_2 = 35,    /* internal */
 104        GAUDI_QUEUE_ID_MME_0_3 = 36,    /* internal */
 105        GAUDI_QUEUE_ID_MME_1_0 = 37,    /* internal */
 106        GAUDI_QUEUE_ID_MME_1_1 = 38,    /* internal */
 107        GAUDI_QUEUE_ID_MME_1_2 = 39,    /* internal */
 108        GAUDI_QUEUE_ID_MME_1_3 = 40,    /* internal */
 109        GAUDI_QUEUE_ID_TPC_0_0 = 41,    /* internal */
 110        GAUDI_QUEUE_ID_TPC_0_1 = 42,    /* internal */
 111        GAUDI_QUEUE_ID_TPC_0_2 = 43,    /* internal */
 112        GAUDI_QUEUE_ID_TPC_0_3 = 44,    /* internal */
 113        GAUDI_QUEUE_ID_TPC_1_0 = 45,    /* internal */
 114        GAUDI_QUEUE_ID_TPC_1_1 = 46,    /* internal */
 115        GAUDI_QUEUE_ID_TPC_1_2 = 47,    /* internal */
 116        GAUDI_QUEUE_ID_TPC_1_3 = 48,    /* internal */
 117        GAUDI_QUEUE_ID_TPC_2_0 = 49,    /* internal */
 118        GAUDI_QUEUE_ID_TPC_2_1 = 50,    /* internal */
 119        GAUDI_QUEUE_ID_TPC_2_2 = 51,    /* internal */
 120        GAUDI_QUEUE_ID_TPC_2_3 = 52,    /* internal */
 121        GAUDI_QUEUE_ID_TPC_3_0 = 53,    /* internal */
 122        GAUDI_QUEUE_ID_TPC_3_1 = 54,    /* internal */
 123        GAUDI_QUEUE_ID_TPC_3_2 = 55,    /* internal */
 124        GAUDI_QUEUE_ID_TPC_3_3 = 56,    /* internal */
 125        GAUDI_QUEUE_ID_TPC_4_0 = 57,    /* internal */
 126        GAUDI_QUEUE_ID_TPC_4_1 = 58,    /* internal */
 127        GAUDI_QUEUE_ID_TPC_4_2 = 59,    /* internal */
 128        GAUDI_QUEUE_ID_TPC_4_3 = 60,    /* internal */
 129        GAUDI_QUEUE_ID_TPC_5_0 = 61,    /* internal */
 130        GAUDI_QUEUE_ID_TPC_5_1 = 62,    /* internal */
 131        GAUDI_QUEUE_ID_TPC_5_2 = 63,    /* internal */
 132        GAUDI_QUEUE_ID_TPC_5_3 = 64,    /* internal */
 133        GAUDI_QUEUE_ID_TPC_6_0 = 65,    /* internal */
 134        GAUDI_QUEUE_ID_TPC_6_1 = 66,    /* internal */
 135        GAUDI_QUEUE_ID_TPC_6_2 = 67,    /* internal */
 136        GAUDI_QUEUE_ID_TPC_6_3 = 68,    /* internal */
 137        GAUDI_QUEUE_ID_TPC_7_0 = 69,    /* internal */
 138        GAUDI_QUEUE_ID_TPC_7_1 = 70,    /* internal */
 139        GAUDI_QUEUE_ID_TPC_7_2 = 71,    /* internal */
 140        GAUDI_QUEUE_ID_TPC_7_3 = 72,    /* internal */
 141        GAUDI_QUEUE_ID_NIC_0_0 = 73,    /* internal */
 142        GAUDI_QUEUE_ID_NIC_0_1 = 74,    /* internal */
 143        GAUDI_QUEUE_ID_NIC_0_2 = 75,    /* internal */
 144        GAUDI_QUEUE_ID_NIC_0_3 = 76,    /* internal */
 145        GAUDI_QUEUE_ID_NIC_1_0 = 77,    /* internal */
 146        GAUDI_QUEUE_ID_NIC_1_1 = 78,    /* internal */
 147        GAUDI_QUEUE_ID_NIC_1_2 = 79,    /* internal */
 148        GAUDI_QUEUE_ID_NIC_1_3 = 80,    /* internal */
 149        GAUDI_QUEUE_ID_NIC_2_0 = 81,    /* internal */
 150        GAUDI_QUEUE_ID_NIC_2_1 = 82,    /* internal */
 151        GAUDI_QUEUE_ID_NIC_2_2 = 83,    /* internal */
 152        GAUDI_QUEUE_ID_NIC_2_3 = 84,    /* internal */
 153        GAUDI_QUEUE_ID_NIC_3_0 = 85,    /* internal */
 154        GAUDI_QUEUE_ID_NIC_3_1 = 86,    /* internal */
 155        GAUDI_QUEUE_ID_NIC_3_2 = 87,    /* internal */
 156        GAUDI_QUEUE_ID_NIC_3_3 = 88,    /* internal */
 157        GAUDI_QUEUE_ID_NIC_4_0 = 89,    /* internal */
 158        GAUDI_QUEUE_ID_NIC_4_1 = 90,    /* internal */
 159        GAUDI_QUEUE_ID_NIC_4_2 = 91,    /* internal */
 160        GAUDI_QUEUE_ID_NIC_4_3 = 92,    /* internal */
 161        GAUDI_QUEUE_ID_NIC_5_0 = 93,    /* internal */
 162        GAUDI_QUEUE_ID_NIC_5_1 = 94,    /* internal */
 163        GAUDI_QUEUE_ID_NIC_5_2 = 95,    /* internal */
 164        GAUDI_QUEUE_ID_NIC_5_3 = 96,    /* internal */
 165        GAUDI_QUEUE_ID_NIC_6_0 = 97,    /* internal */
 166        GAUDI_QUEUE_ID_NIC_6_1 = 98,    /* internal */
 167        GAUDI_QUEUE_ID_NIC_6_2 = 99,    /* internal */
 168        GAUDI_QUEUE_ID_NIC_6_3 = 100,   /* internal */
 169        GAUDI_QUEUE_ID_NIC_7_0 = 101,   /* internal */
 170        GAUDI_QUEUE_ID_NIC_7_1 = 102,   /* internal */
 171        GAUDI_QUEUE_ID_NIC_7_2 = 103,   /* internal */
 172        GAUDI_QUEUE_ID_NIC_7_3 = 104,   /* internal */
 173        GAUDI_QUEUE_ID_NIC_8_0 = 105,   /* internal */
 174        GAUDI_QUEUE_ID_NIC_8_1 = 106,   /* internal */
 175        GAUDI_QUEUE_ID_NIC_8_2 = 107,   /* internal */
 176        GAUDI_QUEUE_ID_NIC_8_3 = 108,   /* internal */
 177        GAUDI_QUEUE_ID_NIC_9_0 = 109,   /* internal */
 178        GAUDI_QUEUE_ID_NIC_9_1 = 110,   /* internal */
 179        GAUDI_QUEUE_ID_NIC_9_2 = 111,   /* internal */
 180        GAUDI_QUEUE_ID_NIC_9_3 = 112,   /* internal */
 181        GAUDI_QUEUE_ID_SIZE
 182};
 183
 184/*
 185 * Engine Numbering
 186 *
 187 * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
 188 */
 189
 190enum goya_engine_id {
 191        GOYA_ENGINE_ID_DMA_0 = 0,
 192        GOYA_ENGINE_ID_DMA_1,
 193        GOYA_ENGINE_ID_DMA_2,
 194        GOYA_ENGINE_ID_DMA_3,
 195        GOYA_ENGINE_ID_DMA_4,
 196        GOYA_ENGINE_ID_MME_0,
 197        GOYA_ENGINE_ID_TPC_0,
 198        GOYA_ENGINE_ID_TPC_1,
 199        GOYA_ENGINE_ID_TPC_2,
 200        GOYA_ENGINE_ID_TPC_3,
 201        GOYA_ENGINE_ID_TPC_4,
 202        GOYA_ENGINE_ID_TPC_5,
 203        GOYA_ENGINE_ID_TPC_6,
 204        GOYA_ENGINE_ID_TPC_7,
 205        GOYA_ENGINE_ID_SIZE
 206};
 207
 208enum gaudi_engine_id {
 209        GAUDI_ENGINE_ID_DMA_0 = 0,
 210        GAUDI_ENGINE_ID_DMA_1,
 211        GAUDI_ENGINE_ID_DMA_2,
 212        GAUDI_ENGINE_ID_DMA_3,
 213        GAUDI_ENGINE_ID_DMA_4,
 214        GAUDI_ENGINE_ID_DMA_5,
 215        GAUDI_ENGINE_ID_DMA_6,
 216        GAUDI_ENGINE_ID_DMA_7,
 217        GAUDI_ENGINE_ID_MME_0,
 218        GAUDI_ENGINE_ID_MME_1,
 219        GAUDI_ENGINE_ID_MME_2,
 220        GAUDI_ENGINE_ID_MME_3,
 221        GAUDI_ENGINE_ID_TPC_0,
 222        GAUDI_ENGINE_ID_TPC_1,
 223        GAUDI_ENGINE_ID_TPC_2,
 224        GAUDI_ENGINE_ID_TPC_3,
 225        GAUDI_ENGINE_ID_TPC_4,
 226        GAUDI_ENGINE_ID_TPC_5,
 227        GAUDI_ENGINE_ID_TPC_6,
 228        GAUDI_ENGINE_ID_TPC_7,
 229        GAUDI_ENGINE_ID_NIC_0,
 230        GAUDI_ENGINE_ID_NIC_1,
 231        GAUDI_ENGINE_ID_NIC_2,
 232        GAUDI_ENGINE_ID_NIC_3,
 233        GAUDI_ENGINE_ID_NIC_4,
 234        GAUDI_ENGINE_ID_NIC_5,
 235        GAUDI_ENGINE_ID_NIC_6,
 236        GAUDI_ENGINE_ID_NIC_7,
 237        GAUDI_ENGINE_ID_NIC_8,
 238        GAUDI_ENGINE_ID_NIC_9,
 239        GAUDI_ENGINE_ID_SIZE
 240};
 241
 242/*
 243 * ASIC specific PLL index
 244 *
 245 * Used to retrieve in frequency info of different IPs via
 246 * HL_INFO_PLL_FREQUENCY under HL_IOCTL_INFO IOCTL. The enums need to be
 247 * used as an index in struct hl_pll_frequency_info
 248 */
 249
 250enum hl_goya_pll_index {
 251        HL_GOYA_CPU_PLL = 0,
 252        HL_GOYA_IC_PLL,
 253        HL_GOYA_MC_PLL,
 254        HL_GOYA_MME_PLL,
 255        HL_GOYA_PCI_PLL,
 256        HL_GOYA_EMMC_PLL,
 257        HL_GOYA_TPC_PLL,
 258        HL_GOYA_PLL_MAX
 259};
 260
 261enum hl_gaudi_pll_index {
 262        HL_GAUDI_CPU_PLL = 0,
 263        HL_GAUDI_PCI_PLL,
 264        HL_GAUDI_SRAM_PLL,
 265        HL_GAUDI_HBM_PLL,
 266        HL_GAUDI_NIC_PLL,
 267        HL_GAUDI_DMA_PLL,
 268        HL_GAUDI_MESH_PLL,
 269        HL_GAUDI_MME_PLL,
 270        HL_GAUDI_TPC_PLL,
 271        HL_GAUDI_IF_PLL,
 272        HL_GAUDI_PLL_MAX
 273};
 274
 275enum hl_device_status {
 276        HL_DEVICE_STATUS_OPERATIONAL,
 277        HL_DEVICE_STATUS_IN_RESET,
 278        HL_DEVICE_STATUS_MALFUNCTION,
 279        HL_DEVICE_STATUS_NEEDS_RESET,
 280        HL_DEVICE_STATUS_IN_DEVICE_CREATION,
 281        HL_DEVICE_STATUS_LAST = HL_DEVICE_STATUS_IN_DEVICE_CREATION
 282};
 283
 284enum hl_server_type {
 285        HL_SERVER_TYPE_UNKNOWN = 0,
 286        HL_SERVER_GAUDI_HLS1 = 1,
 287        HL_SERVER_GAUDI_HLS1H = 2,
 288        HL_SERVER_GAUDI_TYPE1 = 3,
 289        HL_SERVER_GAUDI_TYPE2 = 4
 290};
 291
 292/* Opcode for management ioctl
 293 *
 294 * HW_IP_INFO            - Receive information about different IP blocks in the
 295 *                         device.
 296 * HL_INFO_HW_EVENTS     - Receive an array describing how many times each event
 297 *                         occurred since the last hard reset.
 298 * HL_INFO_DRAM_USAGE    - Retrieve the dram usage inside the device and of the
 299 *                         specific context. This is relevant only for devices
 300 *                         where the dram is managed by the kernel driver
 301 * HL_INFO_HW_IDLE       - Retrieve information about the idle status of each
 302 *                         internal engine.
 303 * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
 304 *                         require an open context.
 305 * HL_INFO_DEVICE_UTILIZATION  - Retrieve the total utilization of the device
 306 *                               over the last period specified by the user.
 307 *                               The period can be between 100ms to 1s, in
 308 *                               resolution of 100ms. The return value is a
 309 *                               percentage of the utilization rate.
 310 * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
 311 *                               event occurred since the driver was loaded.
 312 * HL_INFO_CLK_RATE            - Retrieve the current and maximum clock rate
 313 *                               of the device in MHz. The maximum clock rate is
 314 *                               configurable via sysfs parameter
 315 * HL_INFO_RESET_COUNT   - Retrieve the counts of the soft and hard reset
 316 *                         operations performed on the device since the last
 317 *                         time the driver was loaded.
 318 * HL_INFO_TIME_SYNC     - Retrieve the device's time alongside the host's time
 319 *                         for synchronization.
 320 * HL_INFO_CS_COUNTERS   - Retrieve command submission counters
 321 * HL_INFO_PCI_COUNTERS  - Retrieve PCI counters
 322 * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
 323 * HL_INFO_SYNC_MANAGER  - Retrieve sync manager info per dcore
 324 * HL_INFO_TOTAL_ENERGY  - Retrieve total energy consumption
 325 * HL_INFO_PLL_FREQUENCY - Retrieve PLL frequency
 326 * HL_INFO_OPEN_STATS    - Retrieve info regarding recent device open calls
 327 */
 328#define HL_INFO_HW_IP_INFO              0
 329#define HL_INFO_HW_EVENTS               1
 330#define HL_INFO_DRAM_USAGE              2
 331#define HL_INFO_HW_IDLE                 3
 332#define HL_INFO_DEVICE_STATUS           4
 333#define HL_INFO_DEVICE_UTILIZATION      6
 334#define HL_INFO_HW_EVENTS_AGGREGATE     7
 335#define HL_INFO_CLK_RATE                8
 336#define HL_INFO_RESET_COUNT             9
 337#define HL_INFO_TIME_SYNC               10
 338#define HL_INFO_CS_COUNTERS             11
 339#define HL_INFO_PCI_COUNTERS            12
 340#define HL_INFO_CLK_THROTTLE_REASON     13
 341#define HL_INFO_SYNC_MANAGER            14
 342#define HL_INFO_TOTAL_ENERGY            15
 343#define HL_INFO_PLL_FREQUENCY           16
 344#define HL_INFO_POWER                   17
 345#define HL_INFO_OPEN_STATS              18
 346
 347#define HL_INFO_VERSION_MAX_LEN 128
 348#define HL_INFO_CARD_NAME_MAX_LEN       16
 349
 350/**
 351 * struct hl_info_hw_ip_info - hardware information on various IPs in the ASIC
 352 * @sram_base_address: The first SRAM physical base address that is free to be
 353 *                     used by the user.
 354 * @dram_base_address: The first DRAM virtual or physical base address that is
 355 *                     free to be used by the user.
 356 * @dram_size: The DRAM size that is available to the user.
 357 * @sram_size: The SRAM size that is available to the user.
 358 * @num_of_events: The number of events that can be received from the f/w. This
 359 *                 is needed so the user can what is the size of the h/w events
 360 *                 array he needs to pass to the kernel when he wants to fetch
 361 *                 the event counters.
 362 * @device_id: PCI device ID of the ASIC.
 363 * @module_id: Module ID of the ASIC for mezzanine cards in servers
 364 *             (From OCP spec).
 365 * @first_available_interrupt_id: The first available interrupt ID for the user
 366 *                                to be used when it works with user interrupts.
 367 * @server_type: Server type that the Gaudi ASIC is currently installed in.
 368 *               The value is according to enum hl_server_type
 369 * @cpld_version: CPLD version on the board.
 370 * @psoc_pci_pll_nr: PCI PLL NR value. Needed by the profiler in some ASICs.
 371 * @psoc_pci_pll_nf: PCI PLL NF value. Needed by the profiler in some ASICs.
 372 * @psoc_pci_pll_od: PCI PLL OD value. Needed by the profiler in some ASICs.
 373 * @psoc_pci_pll_div_factor: PCI PLL DIV factor value. Needed by the profiler
 374 *                           in some ASICs.
 375 * @tpc_enabled_mask: Bit-mask that represents which TPCs are enabled. Relevant
 376 *                    for Goya/Gaudi only.
 377 * @dram_enabled: Whether the DRAM is enabled.
 378 * @cpucp_version: The CPUCP f/w version.
 379 * @card_name: The card name as passed by the f/w.
 380 * @dram_page_size: The DRAM physical page size.
 381 */
 382struct hl_info_hw_ip_info {
 383        __u64 sram_base_address;
 384        __u64 dram_base_address;
 385        __u64 dram_size;
 386        __u32 sram_size;
 387        __u32 num_of_events;
 388        __u32 device_id;
 389        __u32 module_id;
 390        __u32 reserved;
 391        __u16 first_available_interrupt_id;
 392        __u16 server_type;
 393        __u32 cpld_version;
 394        __u32 psoc_pci_pll_nr;
 395        __u32 psoc_pci_pll_nf;
 396        __u32 psoc_pci_pll_od;
 397        __u32 psoc_pci_pll_div_factor;
 398        __u8 tpc_enabled_mask;
 399        __u8 dram_enabled;
 400        __u8 pad[2];
 401        __u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
 402        __u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
 403        __u64 reserved2;
 404        __u64 dram_page_size;
 405};
 406
 407struct hl_info_dram_usage {
 408        __u64 dram_free_mem;
 409        __u64 ctx_dram_mem;
 410};
 411
 412#define HL_BUSY_ENGINES_MASK_EXT_SIZE   2
 413
 414struct hl_info_hw_idle {
 415        __u32 is_idle;
 416        /*
 417         * Bitmask of busy engines.
 418         * Bits definition is according to `enum <chip>_enging_id'.
 419         */
 420        __u32 busy_engines_mask;
 421
 422        /*
 423         * Extended Bitmask of busy engines.
 424         * Bits definition is according to `enum <chip>_enging_id'.
 425         */
 426        __u64 busy_engines_mask_ext[HL_BUSY_ENGINES_MASK_EXT_SIZE];
 427};
 428
 429struct hl_info_device_status {
 430        __u32 status;
 431        __u32 pad;
 432};
 433
 434struct hl_info_device_utilization {
 435        __u32 utilization;
 436        __u32 pad;
 437};
 438
 439struct hl_info_clk_rate {
 440        __u32 cur_clk_rate_mhz;
 441        __u32 max_clk_rate_mhz;
 442};
 443
 444struct hl_info_reset_count {
 445        __u32 hard_reset_cnt;
 446        __u32 soft_reset_cnt;
 447};
 448
 449struct hl_info_time_sync {
 450        __u64 device_time;
 451        __u64 host_time;
 452};
 453
 454/**
 455 * struct hl_info_pci_counters - pci counters
 456 * @rx_throughput: PCI rx throughput KBps
 457 * @tx_throughput: PCI tx throughput KBps
 458 * @replay_cnt: PCI replay counter
 459 */
 460struct hl_info_pci_counters {
 461        __u64 rx_throughput;
 462        __u64 tx_throughput;
 463        __u64 replay_cnt;
 464};
 465
 466#define HL_CLK_THROTTLE_POWER   0x1
 467#define HL_CLK_THROTTLE_THERMAL 0x2
 468
 469/**
 470 * struct hl_info_clk_throttle - clock throttling reason
 471 * @clk_throttling_reason: each bit represents a clk throttling reason
 472 */
 473struct hl_info_clk_throttle {
 474        __u32 clk_throttling_reason;
 475};
 476
 477/**
 478 * struct hl_info_energy - device energy information
 479 * @total_energy_consumption: total device energy consumption
 480 */
 481struct hl_info_energy {
 482        __u64 total_energy_consumption;
 483};
 484
 485#define HL_PLL_NUM_OUTPUTS 4
 486
 487struct hl_pll_frequency_info {
 488        __u16 output[HL_PLL_NUM_OUTPUTS];
 489};
 490
 491/**
 492 * struct hl_open_stats_info - device open statistics information
 493 * @open_counter: ever growing counter, increased on each successful dev open
 494 * @last_open_period_ms: duration (ms) device was open last time
 495 */
 496struct hl_open_stats_info {
 497        __u64 open_counter;
 498        __u64 last_open_period_ms;
 499};
 500
 501/**
 502 * struct hl_power_info - power information
 503 * @power: power consumption
 504 */
 505struct hl_power_info {
 506        __u64 power;
 507};
 508
 509/**
 510 * struct hl_info_sync_manager - sync manager information
 511 * @first_available_sync_object: first available sob
 512 * @first_available_monitor: first available monitor
 513 * @first_available_cq: first available cq
 514 */
 515struct hl_info_sync_manager {
 516        __u32 first_available_sync_object;
 517        __u32 first_available_monitor;
 518        __u32 first_available_cq;
 519        __u32 reserved;
 520};
 521
 522/**
 523 * struct hl_info_cs_counters - command submission counters
 524 * @total_out_of_mem_drop_cnt: total dropped due to memory allocation issue
 525 * @ctx_out_of_mem_drop_cnt: context dropped due to memory allocation issue
 526 * @total_parsing_drop_cnt: total dropped due to error in packet parsing
 527 * @ctx_parsing_drop_cnt: context dropped due to error in packet parsing
 528 * @total_queue_full_drop_cnt: total dropped due to queue full
 529 * @ctx_queue_full_drop_cnt: context dropped due to queue full
 530 * @total_device_in_reset_drop_cnt: total dropped due to device in reset
 531 * @ctx_device_in_reset_drop_cnt: context dropped due to device in reset
 532 * @total_max_cs_in_flight_drop_cnt: total dropped due to maximum CS in-flight
 533 * @ctx_max_cs_in_flight_drop_cnt: context dropped due to maximum CS in-flight
 534 * @total_validation_drop_cnt: total dropped due to validation error
 535 * @ctx_validation_drop_cnt: context dropped due to validation error
 536 */
 537struct hl_info_cs_counters {
 538        __u64 total_out_of_mem_drop_cnt;
 539        __u64 ctx_out_of_mem_drop_cnt;
 540        __u64 total_parsing_drop_cnt;
 541        __u64 ctx_parsing_drop_cnt;
 542        __u64 total_queue_full_drop_cnt;
 543        __u64 ctx_queue_full_drop_cnt;
 544        __u64 total_device_in_reset_drop_cnt;
 545        __u64 ctx_device_in_reset_drop_cnt;
 546        __u64 total_max_cs_in_flight_drop_cnt;
 547        __u64 ctx_max_cs_in_flight_drop_cnt;
 548        __u64 total_validation_drop_cnt;
 549        __u64 ctx_validation_drop_cnt;
 550};
 551
 552enum gaudi_dcores {
 553        HL_GAUDI_WS_DCORE,
 554        HL_GAUDI_WN_DCORE,
 555        HL_GAUDI_EN_DCORE,
 556        HL_GAUDI_ES_DCORE
 557};
 558
 559struct hl_info_args {
 560        /* Location of relevant struct in userspace */
 561        __u64 return_pointer;
 562        /*
 563         * The size of the return value. Just like "size" in "snprintf",
 564         * it limits how many bytes the kernel can write
 565         *
 566         * For hw_events array, the size should be
 567         * hl_info_hw_ip_info.num_of_events * sizeof(__u32)
 568         */
 569        __u32 return_size;
 570
 571        /* HL_INFO_* */
 572        __u32 op;
 573
 574        union {
 575                /* Dcore id for which the information is relevant.
 576                 * For Gaudi refer to 'enum gaudi_dcores'
 577                 */
 578                __u32 dcore_id;
 579                /* Context ID - Currently not in use */
 580                __u32 ctx_id;
 581                /* Period value for utilization rate (100ms - 1000ms, in 100ms
 582                 * resolution.
 583                 */
 584                __u32 period_ms;
 585                /* PLL frequency retrieval */
 586                __u32 pll_index;
 587        };
 588
 589        __u32 pad;
 590};
 591
 592/* Opcode to create a new command buffer */
 593#define HL_CB_OP_CREATE         0
 594/* Opcode to destroy previously created command buffer */
 595#define HL_CB_OP_DESTROY        1
 596/* Opcode to retrieve information about a command buffer */
 597#define HL_CB_OP_INFO           2
 598
 599/* 2MB minus 32 bytes for 2xMSG_PROT */
 600#define HL_MAX_CB_SIZE          (0x200000 - 32)
 601
 602/* Indicates whether the command buffer should be mapped to the device's MMU */
 603#define HL_CB_FLAGS_MAP         0x1
 604
 605struct hl_cb_in {
 606        /* Handle of CB or 0 if we want to create one */
 607        __u64 cb_handle;
 608        /* HL_CB_OP_* */
 609        __u32 op;
 610        /* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
 611         * will be allocated, regardless of this parameter's value, is PAGE_SIZE
 612         */
 613        __u32 cb_size;
 614        /* Context ID - Currently not in use */
 615        __u32 ctx_id;
 616        /* HL_CB_FLAGS_* */
 617        __u32 flags;
 618};
 619
 620struct hl_cb_out {
 621        union {
 622                /* Handle of CB */
 623                __u64 cb_handle;
 624
 625                /* Information about CB */
 626                struct {
 627                        /* Usage count of CB */
 628                        __u32 usage_cnt;
 629                        __u32 pad;
 630                };
 631        };
 632};
 633
 634union hl_cb_args {
 635        struct hl_cb_in in;
 636        struct hl_cb_out out;
 637};
 638
 639/* HL_CS_CHUNK_FLAGS_ values
 640 *
 641 * HL_CS_CHUNK_FLAGS_USER_ALLOC_CB:
 642 *      Indicates if the CB was allocated and mapped by userspace.
 643 *      User allocated CB is a command buffer allocated by the user, via malloc
 644 *      (or similar). After allocating the CB, the user invokes “memory ioctl”
 645 *      to map the user memory into a device virtual address. The user provides
 646 *      this address via the cb_handle field. The interface provides the
 647 *      ability to create a large CBs, Which aren’t limited to
 648 *      “HL_MAX_CB_SIZE”. Therefore, it increases the PCI-DMA queues
 649 *      throughput. This CB allocation method also reduces the use of Linux
 650 *      DMA-able memory pool. Which are limited and used by other Linux
 651 *      sub-systems.
 652 */
 653#define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1
 654
 655/*
 656 * This structure size must always be fixed to 64-bytes for backward
 657 * compatibility
 658 */
 659struct hl_cs_chunk {
 660        union {
 661                /* For external queue, this represents a Handle of CB on the
 662                 * Host.
 663                 * For internal queue in Goya, this represents an SRAM or
 664                 * a DRAM address of the internal CB. In Gaudi, this might also
 665                 * represent a mapped host address of the CB.
 666                 *
 667                 * A mapped host address is in the device address space, after
 668                 * a host address was mapped by the device MMU.
 669                 */
 670                __u64 cb_handle;
 671
 672                /* Relevant only when HL_CS_FLAGS_WAIT or
 673                 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
 674                 * This holds address of array of u64 values that contain
 675                 * signal CS sequence numbers. The wait described by
 676                 * this job will listen on all those signals
 677                 * (wait event per signal)
 678                 */
 679                __u64 signal_seq_arr;
 680
 681                /*
 682                 * Relevant only when HL_CS_FLAGS_WAIT or
 683                 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
 684                 * along with HL_CS_FLAGS_ENCAP_SIGNALS.
 685                 * This is the CS sequence which has the encapsulated signals.
 686                 */
 687                __u64 encaps_signal_seq;
 688        };
 689
 690        /* Index of queue to put the CB on */
 691        __u32 queue_index;
 692
 693        union {
 694                /*
 695                 * Size of command buffer with valid packets
 696                 * Can be smaller then actual CB size
 697                 */
 698                __u32 cb_size;
 699
 700                /* Relevant only when HL_CS_FLAGS_WAIT or
 701                 * HL_CS_FLAGS_COLLECTIVE_WAIT is set.
 702                 * Number of entries in signal_seq_arr
 703                 */
 704                __u32 num_signal_seq_arr;
 705
 706                /* Relevant only when HL_CS_FLAGS_WAIT or
 707                 * HL_CS_FLAGS_COLLECTIVE_WAIT is set along
 708                 * with HL_CS_FLAGS_ENCAP_SIGNALS
 709                 * This set the signals range that the user want to wait for
 710                 * out of the whole reserved signals range.
 711                 * e.g if the signals range is 20, and user don't want
 712                 * to wait for signal 8, so he set this offset to 7, then
 713                 * he call the API again with 9 and so on till 20.
 714                 */
 715                __u32 encaps_signal_offset;
 716        };
 717
 718        /* HL_CS_CHUNK_FLAGS_* */
 719        __u32 cs_chunk_flags;
 720
 721        /* Relevant only when HL_CS_FLAGS_COLLECTIVE_WAIT is set.
 722         * This holds the collective engine ID. The wait described by this job
 723         * will sync with this engine and with all NICs before completion.
 724         */
 725        __u32 collective_engine_id;
 726
 727        /* Align structure to 64 bytes */
 728        __u32 pad[10];
 729};
 730
 731/* SIGNAL and WAIT/COLLECTIVE_WAIT flags are mutually exclusive */
 732#define HL_CS_FLAGS_FORCE_RESTORE               0x1
 733#define HL_CS_FLAGS_SIGNAL                      0x2
 734#define HL_CS_FLAGS_WAIT                        0x4
 735#define HL_CS_FLAGS_COLLECTIVE_WAIT             0x8
 736#define HL_CS_FLAGS_TIMESTAMP                   0x20
 737#define HL_CS_FLAGS_STAGED_SUBMISSION           0x40
 738#define HL_CS_FLAGS_STAGED_SUBMISSION_FIRST     0x80
 739#define HL_CS_FLAGS_STAGED_SUBMISSION_LAST      0x100
 740#define HL_CS_FLAGS_CUSTOM_TIMEOUT              0x200
 741#define HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT       0x400
 742
 743/*
 744 * The encapsulated signals CS is merged into the existing CS ioctls.
 745 * In order to use this feature need to follow the below procedure:
 746 * 1. Reserve signals, set the CS type to HL_CS_FLAGS_RESERVE_SIGNALS_ONLY
 747 *    the output of this API will be the SOB offset from CFG_BASE.
 748 *    this address will be used to patch CB cmds to do the signaling for this
 749 *    SOB by incrementing it's value.
 750 *    for reverting the reservation use HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY
 751 *    CS type, note that this might fail if out-of-sync happened to the SOB
 752 *    value, in case other signaling request to the same SOB occurred between
 753 *    reserve-unreserve calls.
 754 * 2. Use the staged CS to do the encapsulated signaling jobs.
 755 *    use HL_CS_FLAGS_STAGED_SUBMISSION and HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
 756 *    along with HL_CS_FLAGS_ENCAP_SIGNALS flag, and set encaps_signal_offset
 757 *    field. This offset allows app to wait on part of the reserved signals.
 758 * 3. Use WAIT/COLLECTIVE WAIT CS along with HL_CS_FLAGS_ENCAP_SIGNALS flag
 759 *    to wait for the encapsulated signals.
 760 */
 761#define HL_CS_FLAGS_ENCAP_SIGNALS               0x800
 762#define HL_CS_FLAGS_RESERVE_SIGNALS_ONLY        0x1000
 763#define HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY      0x2000
 764
 765#define HL_CS_STATUS_SUCCESS            0
 766
 767#define HL_MAX_JOBS_PER_CS              512
 768
 769struct hl_cs_in {
 770
 771        /* this holds address of array of hl_cs_chunk for restore phase */
 772        __u64 chunks_restore;
 773
 774        /* holds address of array of hl_cs_chunk for execution phase */
 775        __u64 chunks_execute;
 776
 777        union {
 778                /*
 779                 * Sequence number of a staged submission CS
 780                 * valid only if HL_CS_FLAGS_STAGED_SUBMISSION is set and
 781                 * HL_CS_FLAGS_STAGED_SUBMISSION_FIRST is unset.
 782                 */
 783                __u64 seq;
 784
 785                /*
 786                 * Encapsulated signals handle id
 787                 * Valid for two flows:
 788                 * 1. CS with encapsulated signals:
 789                 *    when HL_CS_FLAGS_STAGED_SUBMISSION and
 790                 *    HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
 791                 *    and HL_CS_FLAGS_ENCAP_SIGNALS are set.
 792                 * 2. unreserve signals:
 793                 *    valid when HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY is set.
 794                 */
 795                __u32 encaps_sig_handle_id;
 796
 797                /* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
 798                struct {
 799                        /* Encapsulated signals number */
 800                        __u32 encaps_signals_count;
 801
 802                        /* Encapsulated signals queue index (stream) */
 803                        __u32 encaps_signals_q_idx;
 804                };
 805        };
 806
 807        /* Number of chunks in restore phase array. Maximum number is
 808         * HL_MAX_JOBS_PER_CS
 809         */
 810        __u32 num_chunks_restore;
 811
 812        /* Number of chunks in execution array. Maximum number is
 813         * HL_MAX_JOBS_PER_CS
 814         */
 815        __u32 num_chunks_execute;
 816
 817        /* timeout in seconds - valid only if HL_CS_FLAGS_CUSTOM_TIMEOUT
 818         * is set
 819         */
 820        __u32 timeout;
 821
 822        /* HL_CS_FLAGS_* */
 823        __u32 cs_flags;
 824
 825        /* Context ID - Currently not in use */
 826        __u32 ctx_id;
 827};
 828
 829struct hl_cs_out {
 830        union {
 831                /*
 832                 * seq holds the sequence number of the CS to pass to wait
 833                 * ioctl. All values are valid except for 0 and ULLONG_MAX
 834                 */
 835                __u64 seq;
 836
 837                /* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
 838                struct {
 839                        /* This is the resereved signal handle id */
 840                        __u32 handle_id;
 841
 842                        /* This is the signals count */
 843                        __u32 count;
 844                };
 845        };
 846
 847        /* HL_CS_STATUS */
 848        __u32 status;
 849
 850        /*
 851         * SOB base address offset
 852         * Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set
 853         */
 854        __u32 sob_base_addr_offset;
 855};
 856
 857union hl_cs_args {
 858        struct hl_cs_in in;
 859        struct hl_cs_out out;
 860};
 861
 862#define HL_WAIT_CS_FLAGS_INTERRUPT      0x2
 863#define HL_WAIT_CS_FLAGS_INTERRUPT_MASK 0xFFF00000
 864#define HL_WAIT_CS_FLAGS_MULTI_CS       0x4
 865
 866#define HL_WAIT_MULTI_CS_LIST_MAX_LEN   32
 867
 868struct hl_wait_cs_in {
 869        union {
 870                struct {
 871                        /*
 872                         * In case of wait_cs holds the CS sequence number.
 873                         * In case of wait for multi CS hold a user pointer to
 874                         * an array of CS sequence numbers
 875                         */
 876                        __u64 seq;
 877                        /* Absolute timeout to wait for command submission
 878                         * in microseconds
 879                         */
 880                        __u64 timeout_us;
 881                };
 882
 883                struct {
 884                        /* User address for completion comparison.
 885                         * upon interrupt, driver will compare the value pointed
 886                         * by this address with the supplied target value.
 887                         * in order not to perform any comparison, set address
 888                         * to all 1s.
 889                         * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
 890                         */
 891                        __u64 addr;
 892                        /* Target value for completion comparison */
 893                        __u32 target;
 894                        /* Absolute timeout to wait for interrupt
 895                         * in microseconds
 896                         */
 897                        __u32 interrupt_timeout_us;
 898                };
 899        };
 900
 901        /* Context ID - Currently not in use */
 902        __u32 ctx_id;
 903
 904        /* HL_WAIT_CS_FLAGS_*
 905         * If HL_WAIT_CS_FLAGS_INTERRUPT is set, this field should include
 906         * interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK, in order
 907         * not to specify an interrupt id ,set mask to all 1s.
 908         */
 909        __u32 flags;
 910
 911        /* Multi CS API info- valid entries in multi-CS array */
 912        __u8 seq_arr_len;
 913        __u8 pad[7];
 914};
 915
 916#define HL_WAIT_CS_STATUS_COMPLETED     0
 917#define HL_WAIT_CS_STATUS_BUSY          1
 918#define HL_WAIT_CS_STATUS_TIMEDOUT      2
 919#define HL_WAIT_CS_STATUS_ABORTED       3
 920
 921#define HL_WAIT_CS_STATUS_FLAG_GONE             0x1
 922#define HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD    0x2
 923
 924struct hl_wait_cs_out {
 925        /* HL_WAIT_CS_STATUS_* */
 926        __u32 status;
 927        /* HL_WAIT_CS_STATUS_FLAG* */
 928        __u32 flags;
 929        /*
 930         * valid only if HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD is set
 931         * for wait_cs: timestamp of CS completion
 932         * for wait_multi_cs: timestamp of FIRST CS completion
 933         */
 934        __s64 timestamp_nsec;
 935        /* multi CS completion bitmap */
 936        __u32 cs_completion_map;
 937        __u32 pad;
 938};
 939
 940union hl_wait_cs_args {
 941        struct hl_wait_cs_in in;
 942        struct hl_wait_cs_out out;
 943};
 944
 945/* Opcode to allocate device memory */
 946#define HL_MEM_OP_ALLOC                 0
 947/* Opcode to free previously allocated device memory */
 948#define HL_MEM_OP_FREE                  1
 949/* Opcode to map host and device memory */
 950#define HL_MEM_OP_MAP                   2
 951/* Opcode to unmap previously mapped host and device memory */
 952#define HL_MEM_OP_UNMAP                 3
 953/* Opcode to map a hw block */
 954#define HL_MEM_OP_MAP_BLOCK             4
 955
 956/* Memory flags */
 957#define HL_MEM_CONTIGUOUS       0x1
 958#define HL_MEM_SHARED           0x2
 959#define HL_MEM_USERPTR          0x4
 960#define HL_MEM_FORCE_HINT       0x8
 961
 962struct hl_mem_in {
 963        union {
 964                /* HL_MEM_OP_ALLOC- allocate device memory */
 965                struct {
 966                        /* Size to alloc */
 967                        __u64 mem_size;
 968                } alloc;
 969
 970                /* HL_MEM_OP_FREE - free device memory */
 971                struct {
 972                        /* Handle returned from HL_MEM_OP_ALLOC */
 973                        __u64 handle;
 974                } free;
 975
 976                /* HL_MEM_OP_MAP - map device memory */
 977                struct {
 978                        /*
 979                         * Requested virtual address of mapped memory.
 980                         * The driver will try to map the requested region to
 981                         * this hint address, as long as the address is valid
 982                         * and not already mapped. The user should check the
 983                         * returned address of the IOCTL to make sure he got
 984                         * the hint address. Passing 0 here means that the
 985                         * driver will choose the address itself.
 986                         */
 987                        __u64 hint_addr;
 988                        /* Handle returned from HL_MEM_OP_ALLOC */
 989                        __u64 handle;
 990                } map_device;
 991
 992                /* HL_MEM_OP_MAP - map host memory */
 993                struct {
 994                        /* Address of allocated host memory */
 995                        __u64 host_virt_addr;
 996                        /*
 997                         * Requested virtual address of mapped memory.
 998                         * The driver will try to map the requested region to
 999                         * this hint address, as long as the address is valid
1000                         * and not already mapped. The user should check the
1001                         * returned address of the IOCTL to make sure he got
1002                         * the hint address. Passing 0 here means that the
1003                         * driver will choose the address itself.
1004                         */
1005                        __u64 hint_addr;
1006                        /* Size of allocated host memory */
1007                        __u64 mem_size;
1008                } map_host;
1009
1010                /* HL_MEM_OP_MAP_BLOCK - map a hw block */
1011                struct {
1012                        /*
1013                         * HW block address to map, a handle and size will be
1014                         * returned to the user and will be used to mmap the
1015                         * relevant block. Only addresses from configuration
1016                         * space are allowed.
1017                         */
1018                        __u64 block_addr;
1019                } map_block;
1020
1021                /* HL_MEM_OP_UNMAP - unmap host memory */
1022                struct {
1023                        /* Virtual address returned from HL_MEM_OP_MAP */
1024                        __u64 device_virt_addr;
1025                } unmap;
1026        };
1027
1028        /* HL_MEM_OP_* */
1029        __u32 op;
1030        /* HL_MEM_* flags */
1031        __u32 flags;
1032        /* Context ID - Currently not in use */
1033        __u32 ctx_id;
1034        __u32 pad;
1035};
1036
1037struct hl_mem_out {
1038        union {
1039                /*
1040                 * Used for HL_MEM_OP_MAP as the virtual address that was
1041                 * assigned in the device VA space.
1042                 * A value of 0 means the requested operation failed.
1043                 */
1044                __u64 device_virt_addr;
1045
1046                /*
1047                 * Used in HL_MEM_OP_ALLOC
1048                 * This is the assigned handle for the allocated memory
1049                 */
1050                __u64 handle;
1051
1052                struct {
1053                        /*
1054                         * Used in HL_MEM_OP_MAP_BLOCK.
1055                         * This is the assigned handle for the mapped block
1056                         */
1057                        __u64 block_handle;
1058
1059                        /*
1060                         * Used in HL_MEM_OP_MAP_BLOCK
1061                         * This is the size of the mapped block
1062                         */
1063                        __u32 block_size;
1064
1065                        __u32 pad;
1066                };
1067        };
1068};
1069
1070union hl_mem_args {
1071        struct hl_mem_in in;
1072        struct hl_mem_out out;
1073};
1074
1075#define HL_DEBUG_MAX_AUX_VALUES         10
1076
1077struct hl_debug_params_etr {
1078        /* Address in memory to allocate buffer */
1079        __u64 buffer_address;
1080
1081        /* Size of buffer to allocate */
1082        __u64 buffer_size;
1083
1084        /* Sink operation mode: SW fifo, HW fifo, Circular buffer */
1085        __u32 sink_mode;
1086        __u32 pad;
1087};
1088
1089struct hl_debug_params_etf {
1090        /* Address in memory to allocate buffer */
1091        __u64 buffer_address;
1092
1093        /* Size of buffer to allocate */
1094        __u64 buffer_size;
1095
1096        /* Sink operation mode: SW fifo, HW fifo, Circular buffer */
1097        __u32 sink_mode;
1098        __u32 pad;
1099};
1100
1101struct hl_debug_params_stm {
1102        /* Two bit masks for HW event and Stimulus Port */
1103        __u64 he_mask;
1104        __u64 sp_mask;
1105
1106        /* Trace source ID */
1107        __u32 id;
1108
1109        /* Frequency for the timestamp register */
1110        __u32 frequency;
1111};
1112
1113struct hl_debug_params_bmon {
1114        /* Two address ranges that the user can request to filter */
1115        __u64 start_addr0;
1116        __u64 addr_mask0;
1117
1118        __u64 start_addr1;
1119        __u64 addr_mask1;
1120
1121        /* Capture window configuration */
1122        __u32 bw_win;
1123        __u32 win_capture;
1124
1125        /* Trace source ID */
1126        __u32 id;
1127        __u32 pad;
1128};
1129
1130struct hl_debug_params_spmu {
1131        /* Event types selection */
1132        __u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
1133
1134        /* Number of event types selection */
1135        __u32 event_types_num;
1136        __u32 pad;
1137};
1138
1139/* Opcode for ETR component */
1140#define HL_DEBUG_OP_ETR         0
1141/* Opcode for ETF component */
1142#define HL_DEBUG_OP_ETF         1
1143/* Opcode for STM component */
1144#define HL_DEBUG_OP_STM         2
1145/* Opcode for FUNNEL component */
1146#define HL_DEBUG_OP_FUNNEL      3
1147/* Opcode for BMON component */
1148#define HL_DEBUG_OP_BMON        4
1149/* Opcode for SPMU component */
1150#define HL_DEBUG_OP_SPMU        5
1151/* Opcode for timestamp (deprecated) */
1152#define HL_DEBUG_OP_TIMESTAMP   6
1153/* Opcode for setting the device into or out of debug mode. The enable
1154 * variable should be 1 for enabling debug mode and 0 for disabling it
1155 */
1156#define HL_DEBUG_OP_SET_MODE    7
1157
1158struct hl_debug_args {
1159        /*
1160         * Pointer to user input structure.
1161         * This field is relevant to specific opcodes.
1162         */
1163        __u64 input_ptr;
1164        /* Pointer to user output structure */
1165        __u64 output_ptr;
1166        /* Size of user input structure */
1167        __u32 input_size;
1168        /* Size of user output structure */
1169        __u32 output_size;
1170        /* HL_DEBUG_OP_* */
1171        __u32 op;
1172        /*
1173         * Register index in the component, taken from the debug_regs_index enum
1174         * in the various ASIC header files
1175         */
1176        __u32 reg_idx;
1177        /* Enable/disable */
1178        __u32 enable;
1179        /* Context ID - Currently not in use */
1180        __u32 ctx_id;
1181};
1182
1183/*
1184 * Various information operations such as:
1185 * - H/W IP information
1186 * - Current dram usage
1187 *
1188 * The user calls this IOCTL with an opcode that describes the required
1189 * information. The user should supply a pointer to a user-allocated memory
1190 * chunk, which will be filled by the driver with the requested information.
1191 *
1192 * The user supplies the maximum amount of size to copy into the user's memory,
1193 * in order to prevent data corruption in case of differences between the
1194 * definitions of structures in kernel and userspace, e.g. in case of old
1195 * userspace and new kernel driver
1196 */
1197#define HL_IOCTL_INFO   \
1198                _IOWR('H', 0x01, struct hl_info_args)
1199
1200/*
1201 * Command Buffer
1202 * - Request a Command Buffer
1203 * - Destroy a Command Buffer
1204 *
1205 * The command buffers are memory blocks that reside in DMA-able address
1206 * space and are physically contiguous so they can be accessed by the device
1207 * directly. They are allocated using the coherent DMA API.
1208 *
1209 * When creating a new CB, the IOCTL returns a handle of it, and the user-space
1210 * process needs to use that handle to mmap the buffer so it can access them.
1211 *
1212 * In some instances, the device must access the command buffer through the
1213 * device's MMU, and thus its memory should be mapped. In these cases, user can
1214 * indicate the driver that such a mapping is required.
1215 * The resulting device virtual address will be used internally by the driver,
1216 * and won't be returned to user.
1217 *
1218 */
1219#define HL_IOCTL_CB             \
1220                _IOWR('H', 0x02, union hl_cb_args)
1221
1222/*
1223 * Command Submission
1224 *
1225 * To submit work to the device, the user need to call this IOCTL with a set
1226 * of JOBS. That set of JOBS constitutes a CS object.
1227 * Each JOB will be enqueued on a specific queue, according to the user's input.
1228 * There can be more then one JOB per queue.
1229 *
1230 * The CS IOCTL will receive two sets of JOBS. One set is for "restore" phase
1231 * and a second set is for "execution" phase.
1232 * The JOBS on the "restore" phase are enqueued only after context-switch
1233 * (or if its the first CS for this context). The user can also order the
1234 * driver to run the "restore" phase explicitly
1235 *
1236 * There are two types of queues - external and internal. External queues
1237 * are DMA queues which transfer data from/to the Host. All other queues are
1238 * internal. The driver will get completion notifications from the device only
1239 * on JOBS which are enqueued in the external queues.
1240 *
1241 * For jobs on external queues, the user needs to create command buffers
1242 * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
1243 * internal queues, the user needs to prepare a "command buffer" with packets
1244 * on either the device SRAM/DRAM or the host, and give the device address of
1245 * that buffer to the CS ioctl.
1246 *
1247 * This IOCTL is asynchronous in regard to the actual execution of the CS. This
1248 * means it returns immediately after ALL the JOBS were enqueued on their
1249 * relevant queues. Therefore, the user mustn't assume the CS has been completed
1250 * or has even started to execute.
1251 *
1252 * Upon successful enqueue, the IOCTL returns a sequence number which the user
1253 * can use with the "Wait for CS" IOCTL to check whether the handle's CS
1254 * external JOBS have been completed. Note that if the CS has internal JOBS
1255 * which can execute AFTER the external JOBS have finished, the driver might
1256 * report that the CS has finished executing BEFORE the internal JOBS have
1257 * actually finished executing.
1258 *
1259 * Even though the sequence number increments per CS, the user can NOT
1260 * automatically assume that if CS with sequence number N finished, then CS
1261 * with sequence number N-1 also finished. The user can make this assumption if
1262 * and only if CS N and CS N-1 are exactly the same (same CBs for the same
1263 * queues).
1264 */
1265#define HL_IOCTL_CS                     \
1266                _IOWR('H', 0x03, union hl_cs_args)
1267
1268/*
1269 * Wait for Command Submission
1270 *
1271 * The user can call this IOCTL with a handle it received from the CS IOCTL
1272 * to wait until the handle's CS has finished executing. The user will wait
1273 * inside the kernel until the CS has finished or until the user-requested
1274 * timeout has expired.
1275 *
1276 * If the timeout value is 0, the driver won't sleep at all. It will check
1277 * the status of the CS and return immediately
1278 *
1279 * The return value of the IOCTL is a standard Linux error code. The possible
1280 * values are:
1281 *
1282 * EINTR     - Kernel waiting has been interrupted, e.g. due to OS signal
1283 *             that the user process received
1284 * ETIMEDOUT - The CS has caused a timeout on the device
1285 * EIO       - The CS was aborted (usually because the device was reset)
1286 * ENODEV    - The device wants to do hard-reset (so user need to close FD)
1287 *
1288 * The driver also returns a custom define in case the IOCTL call returned 0.
1289 * The define can be one of the following:
1290 *
1291 * HL_WAIT_CS_STATUS_COMPLETED   - The CS has been completed successfully (0)
1292 * HL_WAIT_CS_STATUS_BUSY        - The CS is still executing (0)
1293 * HL_WAIT_CS_STATUS_TIMEDOUT    - The CS has caused a timeout on the device
1294 *                                 (ETIMEDOUT)
1295 * HL_WAIT_CS_STATUS_ABORTED     - The CS was aborted, usually because the
1296 *                                 device was reset (EIO)
1297 */
1298
1299#define HL_IOCTL_WAIT_CS                        \
1300                _IOWR('H', 0x04, union hl_wait_cs_args)
1301
1302/*
1303 * Memory
1304 * - Map host memory to device MMU
1305 * - Unmap host memory from device MMU
1306 *
1307 * This IOCTL allows the user to map host memory to the device MMU
1308 *
1309 * For host memory, the IOCTL doesn't allocate memory. The user is supposed
1310 * to allocate the memory in user-space (malloc/new). The driver pins the
1311 * physical pages (up to the allowed limit by the OS), assigns a virtual
1312 * address in the device VA space and initializes the device MMU.
1313 *
1314 * There is an option for the user to specify the requested virtual address.
1315 *
1316 */
1317#define HL_IOCTL_MEMORY         \
1318                _IOWR('H', 0x05, union hl_mem_args)
1319
1320/*
1321 * Debug
1322 * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
1323 *
1324 * This IOCTL allows the user to get debug traces from the chip.
1325 *
1326 * Before the user can send configuration requests of the various
1327 * debug/profile engines, it needs to set the device into debug mode.
1328 * This is because the debug/profile infrastructure is shared component in the
1329 * device and we can't allow multiple users to access it at the same time.
1330 *
1331 * Once a user set the device into debug mode, the driver won't allow other
1332 * users to "work" with the device, i.e. open a FD. If there are multiple users
1333 * opened on the device, the driver won't allow any user to debug the device.
1334 *
1335 * For each configuration request, the user needs to provide the register index
1336 * and essential data such as buffer address and size.
1337 *
1338 * Once the user has finished using the debug/profile engines, he should
1339 * set the device into non-debug mode, i.e. disable debug mode.
1340 *
1341 * The driver can decide to "kick out" the user if he abuses this interface.
1342 *
1343 */
1344#define HL_IOCTL_DEBUG          \
1345                _IOWR('H', 0x06, struct hl_debug_args)
1346
1347#define HL_COMMAND_START        0x01
1348#define HL_COMMAND_END          0x07
1349
1350#endif /* HABANALABS_H_ */
1351