linux/include/xen/interface/io/netif.h
<<
>>
Prefs
   1/******************************************************************************
   2 * xen_netif.h
   3 *
   4 * Unified network-device I/O interface for Xen guest OSes.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to
   8 * deal in the Software without restriction, including without limitation the
   9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  10 * sell copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22 * DEALINGS IN THE SOFTWARE.
  23 *
  24 * Copyright (c) 2003-2004, Keir Fraser
  25 */
  26
  27#ifndef __XEN_PUBLIC_IO_XEN_NETIF_H__
  28#define __XEN_PUBLIC_IO_XEN_NETIF_H__
  29
  30#include "ring.h"
  31#include "../grant_table.h"
  32
  33/*
  34 * Older implementation of Xen network frontend / backend has an
  35 * implicit dependency on the MAX_SKB_FRAGS as the maximum number of
  36 * ring slots a skb can use. Netfront / netback may not work as
  37 * expected when frontend and backend have different MAX_SKB_FRAGS.
  38 *
  39 * A better approach is to add mechanism for netfront / netback to
  40 * negotiate this value. However we cannot fix all possible
  41 * frontends, so we need to define a value which states the minimum
  42 * slots backend must support.
  43 *
  44 * The minimum value derives from older Linux kernel's MAX_SKB_FRAGS
  45 * (18), which is proved to work with most frontends. Any new backend
  46 * which doesn't negotiate with frontend should expect frontend to
  47 * send a valid packet using slots up to this value.
  48 */
  49#define XEN_NETIF_NR_SLOTS_MIN 18
  50
  51/*
  52 * Notifications after enqueuing any type of message should be conditional on
  53 * the appropriate req_event or rsp_event field in the shared ring.
  54 * If the client sends notification for rx requests then it should specify
  55 * feature 'feature-rx-notify' via xenbus. Otherwise the backend will assume
  56 * that it cannot safely queue packets (as it may not be kicked to send them).
  57 */
  58
  59/*
  60 * "feature-split-event-channels" is introduced to separate guest TX
  61 * and RX notification. Backend either doesn't support this feature or
  62 * advertises it via xenstore as 0 (disabled) or 1 (enabled).
  63 *
  64 * To make use of this feature, frontend should allocate two event
  65 * channels for TX and RX, advertise them to backend as
  66 * "event-channel-tx" and "event-channel-rx" respectively. If frontend
  67 * doesn't want to use this feature, it just writes "event-channel"
  68 * node as before.
  69 */
  70
  71/*
  72 * Multiple transmit and receive queues:
  73 * If supported, the backend will write the key "multi-queue-max-queues" to
  74 * the directory for that vif, and set its value to the maximum supported
  75 * number of queues.
  76 * Frontends that are aware of this feature and wish to use it can write the
  77 * key "multi-queue-num-queues", set to the number they wish to use, which
  78 * must be greater than zero, and no more than the value reported by the backend
  79 * in "multi-queue-max-queues".
  80 *
  81 * Queues replicate the shared rings and event channels.
  82 * "feature-split-event-channels" may optionally be used when using
  83 * multiple queues, but is not mandatory.
  84 *
  85 * Each queue consists of one shared ring pair, i.e. there must be the same
  86 * number of tx and rx rings.
  87 *
  88 * For frontends requesting just one queue, the usual event-channel and
  89 * ring-ref keys are written as before, simplifying the backend processing
  90 * to avoid distinguishing between a frontend that doesn't understand the
  91 * multi-queue feature, and one that does, but requested only one queue.
  92 *
  93 * Frontends requesting two or more queues must not write the toplevel
  94 * event-channel (or event-channel-{tx,rx}) and {tx,rx}-ring-ref keys,
  95 * instead writing those keys under sub-keys having the name "queue-N" where
  96 * N is the integer ID of the queue for which those keys belong. Queues
  97 * are indexed from zero. For example, a frontend with two queues and split
  98 * event channels must write the following set of queue-related keys:
  99 *
 100 * /local/domain/1/device/vif/0/multi-queue-num-queues = "2"
 101 * /local/domain/1/device/vif/0/queue-0 = ""
 102 * /local/domain/1/device/vif/0/queue-0/tx-ring-ref = "<ring-ref-tx0>"
 103 * /local/domain/1/device/vif/0/queue-0/rx-ring-ref = "<ring-ref-rx0>"
 104 * /local/domain/1/device/vif/0/queue-0/event-channel-tx = "<evtchn-tx0>"
 105 * /local/domain/1/device/vif/0/queue-0/event-channel-rx = "<evtchn-rx0>"
 106 * /local/domain/1/device/vif/0/queue-1 = ""
 107 * /local/domain/1/device/vif/0/queue-1/tx-ring-ref = "<ring-ref-tx1>"
 108 * /local/domain/1/device/vif/0/queue-1/rx-ring-ref = "<ring-ref-rx1"
 109 * /local/domain/1/device/vif/0/queue-1/event-channel-tx = "<evtchn-tx1>"
 110 * /local/domain/1/device/vif/0/queue-1/event-channel-rx = "<evtchn-rx1>"
 111 *
 112 * If there is any inconsistency in the XenStore data, the backend may
 113 * choose not to connect any queues, instead treating the request as an
 114 * error. This includes scenarios where more (or fewer) queues were
 115 * requested than the frontend provided details for.
 116 *
 117 * Mapping of packets to queues is considered to be a function of the
 118 * transmitting system (backend or frontend) and is not negotiated
 119 * between the two. Guests are free to transmit packets on any queue
 120 * they choose, provided it has been set up correctly. Guests must be
 121 * prepared to receive packets on any queue they have requested be set up.
 122 */
 123
 124/*
 125 * "feature-no-csum-offload" should be used to turn IPv4 TCP/UDP checksum
 126 * offload off or on. If it is missing then the feature is assumed to be on.
 127 * "feature-ipv6-csum-offload" should be used to turn IPv6 TCP/UDP checksum
 128 * offload on or off. If it is missing then the feature is assumed to be off.
 129 */
 130
 131/*
 132 * "feature-gso-tcpv4" and "feature-gso-tcpv6" advertise the capability to
 133 * handle large TCP packets (in IPv4 or IPv6 form respectively). Neither
 134 * frontends nor backends are assumed to be capable unless the flags are
 135 * present.
 136 */
 137
 138/*
 139 * "feature-multicast-control" and "feature-dynamic-multicast-control"
 140 * advertise the capability to filter ethernet multicast packets in the
 141 * backend. If the frontend wishes to take advantage of this feature then
 142 * it may set "request-multicast-control". If the backend only advertises
 143 * "feature-multicast-control" then "request-multicast-control" must be set
 144 * before the frontend moves into the connected state. The backend will
 145 * sample the value on this state transition and any subsequent change in
 146 * value will have no effect. However, if the backend also advertises
 147 * "feature-dynamic-multicast-control" then "request-multicast-control"
 148 * may be set by the frontend at any time. In this case, the backend will
 149 * watch the value and re-sample on watch events.
 150 *
 151 * If the sampled value of "request-multicast-control" is set then the
 152 * backend transmit side should no longer flood multicast packets to the
 153 * frontend, it should instead drop any multicast packet that does not
 154 * match in a filter list.
 155 * The list is amended by the frontend by sending dummy transmit requests
 156 * containing XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL} extra-info fragments as
 157 * specified below.
 158 * Note that the filter list may be amended even if the sampled value of
 159 * "request-multicast-control" is not set, however the filter should only
 160 * be applied if it is set.
 161 */
 162
 163/*
 164 * "xdp-headroom" is used to request that extra space is added
 165 * for XDP processing.  The value is measured in bytes and passed by
 166 * the frontend to be consistent between both ends.
 167 * If the value is greater than zero that means that
 168 * an RX response is going to be passed to an XDP program for processing.
 169 * XEN_NETIF_MAX_XDP_HEADROOM defines the maximum headroom offset in bytes
 170 *
 171 * "feature-xdp-headroom" is set to "1" by the netback side like other features
 172 * so a guest can check if an XDP program can be processed.
 173 */
 174#define XEN_NETIF_MAX_XDP_HEADROOM 0x7FFF
 175
 176/*
 177 * Control ring
 178 * ============
 179 *
 180 * Some features, such as hashing (detailed below), require a
 181 * significant amount of out-of-band data to be passed from frontend to
 182 * backend. Use of xenstore is not suitable for large quantities of data
 183 * because of quota limitations and so a dedicated 'control ring' is used.
 184 * The ability of the backend to use a control ring is advertised by
 185 * setting:
 186 *
 187 * /local/domain/X/backend/<domid>/<vif>/feature-ctrl-ring = "1"
 188 *
 189 * The frontend provides a control ring to the backend by setting:
 190 *
 191 * /local/domain/<domid>/device/vif/<vif>/ctrl-ring-ref = <gref>
 192 * /local/domain/<domid>/device/vif/<vif>/event-channel-ctrl = <port>
 193 *
 194 * where <gref> is the grant reference of the shared page used to
 195 * implement the control ring and <port> is an event channel to be used
 196 * as a mailbox interrupt. These keys must be set before the frontend
 197 * moves into the connected state.
 198 *
 199 * The control ring uses a fixed request/response message size and is
 200 * balanced (i.e. one request to one response), so operationally it is much
 201 * the same as a transmit or receive ring.
 202 * Note that there is no requirement that responses are issued in the same
 203 * order as requests.
 204 */
 205
 206/*
 207 * Hash types
 208 * ==========
 209 *
 210 * For the purposes of the definitions below, 'Packet[]' is an array of
 211 * octets containing an IP packet without options, 'Array[X..Y]' means a
 212 * sub-array of 'Array' containing bytes X thru Y inclusive, and '+' is
 213 * used to indicate concatenation of arrays.
 214 */
 215
 216/*
 217 * A hash calculated over an IP version 4 header as follows:
 218 *
 219 * Buffer[0..8] = Packet[12..15] (source address) +
 220 *                Packet[16..19] (destination address)
 221 *
 222 * Result = Hash(Buffer, 8)
 223 */
 224#define _XEN_NETIF_CTRL_HASH_TYPE_IPV4 0
 225#define XEN_NETIF_CTRL_HASH_TYPE_IPV4 \
 226        (1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4)
 227
 228/*
 229 * A hash calculated over an IP version 4 header and TCP header as
 230 * follows:
 231 *
 232 * Buffer[0..12] = Packet[12..15] (source address) +
 233 *                 Packet[16..19] (destination address) +
 234 *                 Packet[20..21] (source port) +
 235 *                 Packet[22..23] (destination port)
 236 *
 237 * Result = Hash(Buffer, 12)
 238 */
 239#define _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP 1
 240#define XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP \
 241        (1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP)
 242
 243/*
 244 * A hash calculated over an IP version 6 header as follows:
 245 *
 246 * Buffer[0..32] = Packet[8..23]  (source address ) +
 247 *                 Packet[24..39] (destination address)
 248 *
 249 * Result = Hash(Buffer, 32)
 250 */
 251#define _XEN_NETIF_CTRL_HASH_TYPE_IPV6 2
 252#define XEN_NETIF_CTRL_HASH_TYPE_IPV6 \
 253        (1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6)
 254
 255/*
 256 * A hash calculated over an IP version 6 header and TCP header as
 257 * follows:
 258 *
 259 * Buffer[0..36] = Packet[8..23]  (source address) +
 260 *                 Packet[24..39] (destination address) +
 261 *                 Packet[40..41] (source port) +
 262 *                 Packet[42..43] (destination port)
 263 *
 264 * Result = Hash(Buffer, 36)
 265 */
 266#define _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP 3
 267#define XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP \
 268        (1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP)
 269
 270/*
 271 * Hash algorithms
 272 * ===============
 273 */
 274
 275#define XEN_NETIF_CTRL_HASH_ALGORITHM_NONE 0
 276
 277/*
 278 * Toeplitz hash:
 279 */
 280
 281#define XEN_NETIF_CTRL_HASH_ALGORITHM_TOEPLITZ 1
 282
 283/*
 284 * This algorithm uses a 'key' as well as the data buffer itself.
 285 * (Buffer[] and Key[] are treated as shift-registers where the MSB of
 286 * Buffer/Key[0] is considered 'left-most' and the LSB of Buffer/Key[N-1]
 287 * is the 'right-most').
 288 *
 289 * Value = 0
 290 * For number of bits in Buffer[]
 291 *    If (left-most bit of Buffer[] is 1)
 292 *        Value ^= left-most 32 bits of Key[]
 293 *    Key[] << 1
 294 *    Buffer[] << 1
 295 *
 296 * The code below is provided for convenience where an operating system
 297 * does not already provide an implementation.
 298 */
 299#ifdef XEN_NETIF_DEFINE_TOEPLITZ
 300static uint32_t xen_netif_toeplitz_hash(const uint8_t *key,
 301                                        unsigned int keylen,
 302                                        const uint8_t *buf, unsigned int buflen)
 303{
 304        unsigned int keyi, bufi;
 305        uint64_t prefix = 0;
 306        uint64_t hash = 0;
 307
 308        /* Pre-load prefix with the first 8 bytes of the key */
 309        for (keyi = 0; keyi < 8; keyi++) {
 310                prefix <<= 8;
 311                prefix |= (keyi < keylen) ? key[keyi] : 0;
 312        }
 313
 314        for (bufi = 0; bufi < buflen; bufi++) {
 315                uint8_t byte = buf[bufi];
 316                unsigned int bit;
 317
 318                for (bit = 0; bit < 8; bit++) {
 319                        if (byte & 0x80)
 320                                hash ^= prefix;
 321                        prefix <<= 1;
 322                        byte <<= 1;
 323                }
 324
 325                /*
 326                 * 'prefix' has now been left-shifted by 8, so
 327                 * OR in the next byte.
 328                 */
 329                prefix |= (keyi < keylen) ? key[keyi] : 0;
 330                keyi++;
 331        }
 332
 333        /* The valid part of the hash is in the upper 32 bits. */
 334        return hash >> 32;
 335}
 336#endif                          /* XEN_NETIF_DEFINE_TOEPLITZ */
 337
 338/*
 339 * Control requests (struct xen_netif_ctrl_request)
 340 * ================================================
 341 *
 342 * All requests have the following format:
 343 *
 344 *    0     1     2     3     4     5     6     7  octet
 345 * +-----+-----+-----+-----+-----+-----+-----+-----+
 346 * |    id     |   type    |         data[0]       |
 347 * +-----+-----+-----+-----+-----+-----+-----+-----+
 348 * |         data[1]       |         data[2]       |
 349 * +-----+-----+-----+-----+-----------------------+
 350 *
 351 * id: the request identifier, echoed in response.
 352 * type: the type of request (see below)
 353 * data[]: any data associated with the request (determined by type)
 354 */
 355
 356struct xen_netif_ctrl_request {
 357        uint16_t id;
 358        uint16_t type;
 359
 360#define XEN_NETIF_CTRL_TYPE_INVALID               0
 361#define XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS        1
 362#define XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS        2
 363#define XEN_NETIF_CTRL_TYPE_SET_HASH_KEY          3
 364#define XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE 4
 365#define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE 5
 366#define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING      6
 367#define XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM    7
 368
 369        uint32_t data[3];
 370};
 371
 372/*
 373 * Control responses (struct xen_netif_ctrl_response)
 374 * ==================================================
 375 *
 376 * All responses have the following format:
 377 *
 378 *    0     1     2     3     4     5     6     7  octet
 379 * +-----+-----+-----+-----+-----+-----+-----+-----+
 380 * |    id     |   type    |         status        |
 381 * +-----+-----+-----+-----+-----+-----+-----+-----+
 382 * |         data          |
 383 * +-----+-----+-----+-----+
 384 *
 385 * id: the corresponding request identifier
 386 * type: the type of the corresponding request
 387 * status: the status of request processing
 388 * data: any data associated with the response (determined by type and
 389 *       status)
 390 */
 391
 392struct xen_netif_ctrl_response {
 393        uint16_t id;
 394        uint16_t type;
 395        uint32_t status;
 396
 397#define XEN_NETIF_CTRL_STATUS_SUCCESS           0
 398#define XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     1
 399#define XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER 2
 400#define XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   3
 401
 402        uint32_t data;
 403};
 404
 405/*
 406 * Control messages
 407 * ================
 408 *
 409 * XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
 410 * --------------------------------------
 411 *
 412 * This is sent by the frontend to set the desired hash algorithm.
 413 *
 414 * Request:
 415 *
 416 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
 417 *  data[0] = a XEN_NETIF_CTRL_HASH_ALGORITHM_* value
 418 *  data[1] = 0
 419 *  data[2] = 0
 420 *
 421 * Response:
 422 *
 423 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
 424 *                                                     supported
 425 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - The algorithm is not
 426 *                                                     supported
 427 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
 428 *
 429 * NOTE: Setting data[0] to XEN_NETIF_CTRL_HASH_ALGORITHM_NONE disables
 430 *       hashing and the backend is free to choose how it steers packets
 431 *       to queues (which is the default behaviour).
 432 *
 433 * XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
 434 * ----------------------------------
 435 *
 436 * This is sent by the frontend to query the types of hash supported by
 437 * the backend.
 438 *
 439 * Request:
 440 *
 441 *  type    = XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
 442 *  data[0] = 0
 443 *  data[1] = 0
 444 *  data[2] = 0
 445 *
 446 * Response:
 447 *
 448 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
 449 *           XEN_NETIF_CTRL_STATUS_SUCCESS       - Operation successful
 450 *  data   = supported hash types (if operation was successful)
 451 *
 452 * NOTE: A valid hash algorithm must be selected before this operation can
 453 *       succeed.
 454 *
 455 * XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
 456 * ----------------------------------
 457 *
 458 * This is sent by the frontend to set the types of hash that the backend
 459 * should calculate. (See above for hash type definitions).
 460 * Note that the 'maximal' type of hash should always be chosen. For
 461 * example, if the frontend sets both IPV4 and IPV4_TCP hash types then
 462 * the latter hash type should be calculated for any TCP packet and the
 463 * former only calculated for non-TCP packets.
 464 *
 465 * Request:
 466 *
 467 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
 468 *  data[0] = bitwise OR of XEN_NETIF_CTRL_HASH_TYPE_* values
 469 *  data[1] = 0
 470 *  data[2] = 0
 471 *
 472 * Response:
 473 *
 474 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
 475 *                                                     supported
 476 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - One or more flag
 477 *                                                     value is invalid or
 478 *                                                     unsupported
 479 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
 480 *  data   = 0
 481 *
 482 * NOTE: A valid hash algorithm must be selected before this operation can
 483 *       succeed.
 484 *       Also, setting data[0] to zero disables hashing and the backend
 485 *       is free to choose how it steers packets to queues.
 486 *
 487 * XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
 488 * --------------------------------
 489 *
 490 * This is sent by the frontend to set the key of the hash if the algorithm
 491 * requires it. (See hash algorithms above).
 492 *
 493 * Request:
 494 *
 495 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
 496 *  data[0] = grant reference of page containing the key (assumed to
 497 *            start at beginning of grant)
 498 *  data[1] = size of key in octets
 499 *  data[2] = 0
 500 *
 501 * Response:
 502 *
 503 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
 504 *                                                     supported
 505 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Key size is invalid
 506 *           XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   - Key size is larger
 507 *                                                     than the backend
 508 *                                                     supports
 509 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
 510 *  data   = 0
 511 *
 512 * NOTE: Any key octets not specified are assumed to be zero (the key
 513 *       is assumed to be empty by default) and specifying a new key
 514 *       invalidates any previous key, hence specifying a key size of
 515 *       zero will clear the key (which ensures that the calculated hash
 516 *       will always be zero).
 517 *       The maximum size of key is algorithm and backend specific, but
 518 *       is also limited by the single grant reference.
 519 *       The grant reference may be read-only and must remain valid until
 520 *       the response has been processed.
 521 *
 522 * XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
 523 * -----------------------------------------
 524 *
 525 * This is sent by the frontend to query the maximum size of mapping
 526 * table supported by the backend. The size is specified in terms of
 527 * table entries.
 528 *
 529 * Request:
 530 *
 531 *  type    = XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
 532 *  data[0] = 0
 533 *  data[1] = 0
 534 *  data[2] = 0
 535 *
 536 * Response:
 537 *
 538 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
 539 *           XEN_NETIF_CTRL_STATUS_SUCCESS       - Operation successful
 540 *  data   = maximum number of entries allowed in the mapping table
 541 *           (if operation was successful) or zero if a mapping table is
 542 *           not supported (i.e. hash mapping is done only by modular
 543 *           arithmetic).
 544 *
 545 * XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
 546 * -------------------------------------
 547 *
 548 * This is sent by the frontend to set the actual size of the mapping
 549 * table to be used by the backend. The size is specified in terms of
 550 * table entries.
 551 * Any previous table is invalidated by this message and any new table
 552 * is assumed to be zero filled.
 553 *
 554 * Request:
 555 *
 556 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
 557 *  data[0] = number of entries in mapping table
 558 *  data[1] = 0
 559 *  data[2] = 0
 560 *
 561 * Response:
 562 *
 563 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
 564 *                                                     supported
 565 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size is invalid
 566 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
 567 *  data   = 0
 568 *
 569 * NOTE: Setting data[0] to 0 means that hash mapping should be done
 570 *       using modular arithmetic.
 571 *
 572 * XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
 573 * ------------------------------------
 574 *
 575 * This is sent by the frontend to set the content of the table mapping
 576 * hash value to queue number. The backend should calculate the hash from
 577 * the packet header, use it as an index into the table (modulo the size
 578 * of the table) and then steer the packet to the queue number found at
 579 * that index.
 580 *
 581 * Request:
 582 *
 583 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
 584 *  data[0] = grant reference of page containing the mapping (sub-)table
 585 *            (assumed to start at beginning of grant)
 586 *  data[1] = size of (sub-)table in entries
 587 *  data[2] = offset, in entries, of sub-table within overall table
 588 *
 589 * Response:
 590 *
 591 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
 592 *                                                     supported
 593 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size or content
 594 *                                                     is invalid
 595 *           XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   - Table size is larger
 596 *                                                     than the backend
 597 *                                                     supports
 598 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
 599 *  data   = 0
 600 *
 601 * NOTE: The overall table has the following format:
 602 *
 603 *          0     1     2     3     4     5     6     7  octet
 604 *       +-----+-----+-----+-----+-----+-----+-----+-----+
 605 *       |       mapping[0]      |       mapping[1]      |
 606 *       +-----+-----+-----+-----+-----+-----+-----+-----+
 607 *       |                       .                       |
 608 *       |                       .                       |
 609 *       |                       .                       |
 610 *       +-----+-----+-----+-----+-----+-----+-----+-----+
 611 *       |      mapping[N-2]     |      mapping[N-1]     |
 612 *       +-----+-----+-----+-----+-----+-----+-----+-----+
 613 *
 614 *       where N is specified by a XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
 615 *       message and each  mapping must specifies a queue between 0 and
 616 *       "multi-queue-num-queues" (see above).
 617 *       The backend may support a mapping table larger than can be
 618 *       mapped by a single grant reference. Thus sub-tables within a
 619 *       larger table can be individually set by sending multiple messages
 620 *       with differing offset values. Specifying a new sub-table does not
 621 *       invalidate any table data outside that range.
 622 *       The grant reference may be read-only and must remain valid until
 623 *       the response has been processed.
 624 */
 625
 626DEFINE_RING_TYPES(xen_netif_ctrl,
 627                  struct xen_netif_ctrl_request,
 628                  struct xen_netif_ctrl_response);
 629
 630/*
 631 * Guest transmit
 632 * ==============
 633 *
 634 * This is the 'wire' format for transmit (frontend -> backend) packets:
 635 *
 636 *  Fragment 1: xen_netif_tx_request_t  - flags = XEN_NETTXF_*
 637 *                                    size = total packet size
 638 * [Extra 1: xen_netif_extra_info_t]    - (only if fragment 1 flags include
 639 *                                     XEN_NETTXF_extra_info)
 640 *  ...
 641 * [Extra N: xen_netif_extra_info_t]    - (only if extra N-1 flags include
 642 *                                     XEN_NETIF_EXTRA_MORE)
 643 *  ...
 644 *  Fragment N: xen_netif_tx_request_t  - (only if fragment N-1 flags include
 645 *                                     XEN_NETTXF_more_data - flags on preceding
 646 *                                     extras are not relevant here)
 647 *                                    flags = 0
 648 *                                    size = fragment size
 649 *
 650 * NOTE:
 651 *
 652 * This format slightly is different from that used for receive
 653 * (backend -> frontend) packets. Specifically, in a multi-fragment
 654 * packet the actual size of fragment 1 can only be determined by
 655 * subtracting the sizes of fragments 2..N from the total packet size.
 656 *
 657 * Ring slot size is 12 octets, however not all request/response
 658 * structs use the full size.
 659 *
 660 * tx request data (xen_netif_tx_request_t)
 661 * ------------------------------------
 662 *
 663 *    0     1     2     3     4     5     6     7  octet
 664 * +-----+-----+-----+-----+-----+-----+-----+-----+
 665 * | grant ref             | offset    | flags     |
 666 * +-----+-----+-----+-----+-----+-----+-----+-----+
 667 * | id        | size      |
 668 * +-----+-----+-----+-----+
 669 *
 670 * grant ref: Reference to buffer page.
 671 * offset: Offset within buffer page.
 672 * flags: XEN_NETTXF_*.
 673 * id: request identifier, echoed in response.
 674 * size: packet size in bytes.
 675 *
 676 * tx response (xen_netif_tx_response_t)
 677 * ---------------------------------
 678 *
 679 *    0     1     2     3     4     5     6     7  octet
 680 * +-----+-----+-----+-----+-----+-----+-----+-----+
 681 * | id        | status    | unused                |
 682 * +-----+-----+-----+-----+-----+-----+-----+-----+
 683 * | unused                |
 684 * +-----+-----+-----+-----+
 685 *
 686 * id: reflects id in transmit request
 687 * status: XEN_NETIF_RSP_*
 688 *
 689 * Guest receive
 690 * =============
 691 *
 692 * This is the 'wire' format for receive (backend -> frontend) packets:
 693 *
 694 *  Fragment 1: xen_netif_rx_request_t  - flags = XEN_NETRXF_*
 695 *                                    size = fragment size
 696 * [Extra 1: xen_netif_extra_info_t]    - (only if fragment 1 flags include
 697 *                                     XEN_NETRXF_extra_info)
 698 *  ...
 699 * [Extra N: xen_netif_extra_info_t]    - (only if extra N-1 flags include
 700 *                                     XEN_NETIF_EXTRA_MORE)
 701 *  ...
 702 *  Fragment N: xen_netif_rx_request_t  - (only if fragment N-1 flags include
 703 *                                     XEN_NETRXF_more_data - flags on preceding
 704 *                                     extras are not relevant here)
 705 *                                    flags = 0
 706 *                                    size = fragment size
 707 *
 708 * NOTE:
 709 *
 710 * This format slightly is different from that used for transmit
 711 * (frontend -> backend) packets. Specifically, in a multi-fragment
 712 * packet the size of the packet can only be determined by summing the
 713 * sizes of fragments 1..N.
 714 *
 715 * Ring slot size is 8 octets.
 716 *
 717 * rx request (xen_netif_rx_request_t)
 718 * -------------------------------
 719 *
 720 *    0     1     2     3     4     5     6     7  octet
 721 * +-----+-----+-----+-----+-----+-----+-----+-----+
 722 * | id        | pad       | gref                  |
 723 * +-----+-----+-----+-----+-----+-----+-----+-----+
 724 *
 725 * id: request identifier, echoed in response.
 726 * gref: reference to incoming granted frame.
 727 *
 728 * rx response (xen_netif_rx_response_t)
 729 * ---------------------------------
 730 *
 731 *    0     1     2     3     4     5     6     7  octet
 732 * +-----+-----+-----+-----+-----+-----+-----+-----+
 733 * | id        | offset    | flags     | status    |
 734 * +-----+-----+-----+-----+-----+-----+-----+-----+
 735 *
 736 * id: reflects id in receive request
 737 * offset: offset in page of start of received packet
 738 * flags: XEN_NETRXF_*
 739 * status: -ve: XEN_NETIF_RSP_*; +ve: Rx'ed pkt size.
 740 *
 741 * NOTE: Historically, to support GSO on the frontend receive side, Linux
 742 *       netfront does not make use of the rx response id (because, as
 743 *       described below, extra info structures overlay the id field).
 744 *       Instead it assumes that responses always appear in the same ring
 745 *       slot as their corresponding request. Thus, to maintain
 746 *       compatibility, backends must make sure this is the case.
 747 *
 748 * Extra Info
 749 * ==========
 750 *
 751 * Can be present if initial request or response has NET{T,R}XF_extra_info,
 752 * or previous extra request has XEN_NETIF_EXTRA_MORE.
 753 *
 754 * The struct therefore needs to fit into either a tx or rx slot and
 755 * is therefore limited to 8 octets.
 756 *
 757 * NOTE: Because extra info data overlays the usual request/response
 758 *       structures, there is no id information in the opposite direction.
 759 *       So, if an extra info overlays an rx response the frontend can
 760 *       assume that it is in the same ring slot as the request that was
 761 *       consumed to make the slot available, and the backend must ensure
 762 *       this assumption is true.
 763 *
 764 * extra info (xen_netif_extra_info_t)
 765 * -------------------------------
 766 *
 767 * General format:
 768 *
 769 *    0     1     2     3     4     5     6     7  octet
 770 * +-----+-----+-----+-----+-----+-----+-----+-----+
 771 * |type |flags| type specific data                |
 772 * +-----+-----+-----+-----+-----+-----+-----+-----+
 773 * | padding for tx        |
 774 * +-----+-----+-----+-----+
 775 *
 776 * type: XEN_NETIF_EXTRA_TYPE_*
 777 * flags: XEN_NETIF_EXTRA_FLAG_*
 778 * padding for tx: present only in the tx case due to 8 octet limit
 779 *                 from rx case. Not shown in type specific entries
 780 *                 below.
 781 *
 782 * XEN_NETIF_EXTRA_TYPE_GSO:
 783 *
 784 *    0     1     2     3     4     5     6     7  octet
 785 * +-----+-----+-----+-----+-----+-----+-----+-----+
 786 * |type |flags| size      |type | pad | features  |
 787 * +-----+-----+-----+-----+-----+-----+-----+-----+
 788 *
 789 * type: Must be XEN_NETIF_EXTRA_TYPE_GSO
 790 * flags: XEN_NETIF_EXTRA_FLAG_*
 791 * size: Maximum payload size of each segment. For example,
 792 *       for TCP this is just the path MSS.
 793 * type: XEN_NETIF_GSO_TYPE_*: This determines the protocol of
 794 *       the packet and any extra features required to segment the
 795 *       packet properly.
 796 * features: EN_XEN_NETIF_GSO_FEAT_*: This specifies any extra GSO
 797 *           features required to process this packet, such as ECN
 798 *           support for TCPv4.
 799 *
 800 * XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}:
 801 *
 802 *    0     1     2     3     4     5     6     7  octet
 803 * +-----+-----+-----+-----+-----+-----+-----+-----+
 804 * |type |flags| addr                              |
 805 * +-----+-----+-----+-----+-----+-----+-----+-----+
 806 *
 807 * type: Must be XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}
 808 * flags: XEN_NETIF_EXTRA_FLAG_*
 809 * addr: address to add/remove
 810 *
 811 * XEN_NETIF_EXTRA_TYPE_HASH:
 812 *
 813 * A backend that supports teoplitz hashing is assumed to accept
 814 * this type of extra info in transmit packets.
 815 * A frontend that enables hashing is assumed to accept
 816 * this type of extra info in receive packets.
 817 *
 818 *    0     1     2     3     4     5     6     7  octet
 819 * +-----+-----+-----+-----+-----+-----+-----+-----+
 820 * |type |flags|htype| alg |LSB ---- value ---- MSB|
 821 * +-----+-----+-----+-----+-----+-----+-----+-----+
 822 *
 823 * type: Must be XEN_NETIF_EXTRA_TYPE_HASH
 824 * flags: XEN_NETIF_EXTRA_FLAG_*
 825 * htype: Hash type (one of _XEN_NETIF_CTRL_HASH_TYPE_* - see above)
 826 * alg: The algorithm used to calculate the hash (one of
 827 *      XEN_NETIF_CTRL_HASH_TYPE_ALGORITHM_* - see above)
 828 * value: Hash value
 829 */
 830
 831/* Protocol checksum field is blank in the packet (hardware offload)? */
 832#define _XEN_NETTXF_csum_blank     (0)
 833#define  XEN_NETTXF_csum_blank     (1U<<_XEN_NETTXF_csum_blank)
 834
 835/* Packet data has been validated against protocol checksum. */
 836#define _XEN_NETTXF_data_validated (1)
 837#define  XEN_NETTXF_data_validated (1U<<_XEN_NETTXF_data_validated)
 838
 839/* Packet continues in the next request descriptor. */
 840#define _XEN_NETTXF_more_data      (2)
 841#define  XEN_NETTXF_more_data      (1U<<_XEN_NETTXF_more_data)
 842
 843/* Packet to be followed by extra descriptor(s). */
 844#define _XEN_NETTXF_extra_info     (3)
 845#define  XEN_NETTXF_extra_info     (1U<<_XEN_NETTXF_extra_info)
 846
 847#define XEN_NETIF_MAX_TX_SIZE 0xFFFF
 848struct xen_netif_tx_request {
 849        grant_ref_t gref;
 850        uint16_t offset;
 851        uint16_t flags;
 852        uint16_t id;
 853        uint16_t size;
 854};
 855
 856/* Types of xen_netif_extra_info descriptors. */
 857#define XEN_NETIF_EXTRA_TYPE_NONE      (0)      /* Never used - invalid */
 858#define XEN_NETIF_EXTRA_TYPE_GSO       (1)      /* u.gso */
 859#define XEN_NETIF_EXTRA_TYPE_MCAST_ADD (2)      /* u.mcast */
 860#define XEN_NETIF_EXTRA_TYPE_MCAST_DEL (3)      /* u.mcast */
 861#define XEN_NETIF_EXTRA_TYPE_HASH      (4)      /* u.hash */
 862#define XEN_NETIF_EXTRA_TYPE_XDP       (5)      /* u.xdp */
 863#define XEN_NETIF_EXTRA_TYPE_MAX       (6)
 864
 865/* xen_netif_extra_info_t flags. */
 866#define _XEN_NETIF_EXTRA_FLAG_MORE (0)
 867#define XEN_NETIF_EXTRA_FLAG_MORE  (1U<<_XEN_NETIF_EXTRA_FLAG_MORE)
 868
 869/* GSO types */
 870#define XEN_NETIF_GSO_TYPE_NONE         (0)
 871#define XEN_NETIF_GSO_TYPE_TCPV4        (1)
 872#define XEN_NETIF_GSO_TYPE_TCPV6        (2)
 873
 874/*
 875 * This structure needs to fit within both xen_netif_tx_request_t and
 876 * xen_netif_rx_response_t for compatibility.
 877 */
 878struct xen_netif_extra_info {
 879        uint8_t type;
 880        uint8_t flags;
 881        union {
 882                struct {
 883                        uint16_t size;
 884                        uint8_t type;
 885                        uint8_t pad;
 886                        uint16_t features;
 887                } gso;
 888                struct {
 889                        uint8_t addr[6];
 890                } mcast;
 891                struct {
 892                        uint8_t type;
 893                        uint8_t algorithm;
 894                        uint8_t value[4];
 895                } hash;
 896                struct {
 897                        uint16_t headroom;
 898                        uint16_t pad[2];
 899                } xdp;
 900                uint16_t pad[3];
 901        } u;
 902};
 903
 904struct xen_netif_tx_response {
 905        uint16_t id;
 906        int16_t status;
 907};
 908
 909struct xen_netif_rx_request {
 910        uint16_t id;            /* Echoed in response message.        */
 911        uint16_t pad;
 912        grant_ref_t gref;
 913};
 914
 915/* Packet data has been validated against protocol checksum. */
 916#define _XEN_NETRXF_data_validated (0)
 917#define  XEN_NETRXF_data_validated (1U<<_XEN_NETRXF_data_validated)
 918
 919/* Protocol checksum field is blank in the packet (hardware offload)? */
 920#define _XEN_NETRXF_csum_blank     (1)
 921#define  XEN_NETRXF_csum_blank     (1U<<_XEN_NETRXF_csum_blank)
 922
 923/* Packet continues in the next request descriptor. */
 924#define _XEN_NETRXF_more_data      (2)
 925#define  XEN_NETRXF_more_data      (1U<<_XEN_NETRXF_more_data)
 926
 927/* Packet to be followed by extra descriptor(s). */
 928#define _XEN_NETRXF_extra_info     (3)
 929#define  XEN_NETRXF_extra_info     (1U<<_XEN_NETRXF_extra_info)
 930
 931/* Packet has GSO prefix. Deprecated but included for compatibility */
 932#define _XEN_NETRXF_gso_prefix     (4)
 933#define  XEN_NETRXF_gso_prefix     (1U<<_XEN_NETRXF_gso_prefix)
 934
 935struct xen_netif_rx_response {
 936        uint16_t id;
 937        uint16_t offset;
 938        uint16_t flags;
 939        int16_t status;
 940};
 941
 942/*
 943 * Generate xen_netif ring structures and types.
 944 */
 945
 946DEFINE_RING_TYPES(xen_netif_tx, struct xen_netif_tx_request,
 947                  struct xen_netif_tx_response);
 948DEFINE_RING_TYPES(xen_netif_rx, struct xen_netif_rx_request,
 949                  struct xen_netif_rx_response);
 950
 951#define XEN_NETIF_RSP_DROPPED         -2
 952#define XEN_NETIF_RSP_ERROR           -1
 953#define XEN_NETIF_RSP_OKAY             0
 954/* No response: used for auxiliary requests (e.g., xen_netif_extra_info_t). */
 955#define XEN_NETIF_RSP_NULL             1
 956
 957#endif
 958