linux/ipc/sem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/ipc/sem.c
   4 * Copyright (C) 1992 Krishna Balasubramanian
   5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
   6 *
   7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
   8 *
   9 * SMP-threaded, sysctl's added
  10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
  11 * Enforced range limit on SEM_UNDO
  12 * (c) 2001 Red Hat Inc
  13 * Lockless wakeup
  14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
  15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
  16 * Further wakeup optimizations, documentation
  17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
  18 *
  19 * support for audit of ipc object properties and permission changes
  20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
  21 *
  22 * namespaces support
  23 * OpenVZ, SWsoft Inc.
  24 * Pavel Emelianov <xemul@openvz.org>
  25 *
  26 * Implementation notes: (May 2010)
  27 * This file implements System V semaphores.
  28 *
  29 * User space visible behavior:
  30 * - FIFO ordering for semop() operations (just FIFO, not starvation
  31 *   protection)
  32 * - multiple semaphore operations that alter the same semaphore in
  33 *   one semop() are handled.
  34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
  35 *   SETALL calls.
  36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
  37 * - undo adjustments at process exit are limited to 0..SEMVMX.
  38 * - namespace are supported.
  39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtime by writing
  40 *   to /proc/sys/kernel/sem.
  41 * - statistics about the usage are reported in /proc/sysvipc/sem.
  42 *
  43 * Internals:
  44 * - scalability:
  45 *   - all global variables are read-mostly.
  46 *   - semop() calls and semctl(RMID) are synchronized by RCU.
  47 *   - most operations do write operations (actually: spin_lock calls) to
  48 *     the per-semaphore array structure.
  49 *   Thus: Perfect SMP scaling between independent semaphore arrays.
  50 *         If multiple semaphores in one array are used, then cache line
  51 *         trashing on the semaphore array spinlock will limit the scaling.
  52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
  53 * - the task that performs a successful semop() scans the list of all
  54 *   sleeping tasks and completes any pending operations that can be fulfilled.
  55 *   Semaphores are actively given to waiting tasks (necessary for FIFO).
  56 *   (see update_queue())
  57 * - To improve the scalability, the actual wake-up calls are performed after
  58 *   dropping all locks. (see wake_up_sem_queue_prepare())
  59 * - All work is done by the waker, the woken up task does not have to do
  60 *   anything - not even acquiring a lock or dropping a refcount.
  61 * - A woken up task may not even touch the semaphore array anymore, it may
  62 *   have been destroyed already by a semctl(RMID).
  63 * - UNDO values are stored in an array (one per process and per
  64 *   semaphore array, lazily allocated). For backwards compatibility, multiple
  65 *   modes for the UNDO variables are supported (per process, per thread)
  66 *   (see copy_semundo, CLONE_SYSVSEM)
  67 * - There are two lists of the pending operations: a per-array list
  68 *   and per-semaphore list (stored in the array). This allows to achieve FIFO
  69 *   ordering without always scanning all pending operations.
  70 *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
  71 */
  72
  73#include <linux/compat.h>
  74#include <linux/slab.h>
  75#include <linux/spinlock.h>
  76#include <linux/init.h>
  77#include <linux/proc_fs.h>
  78#include <linux/time.h>
  79#include <linux/security.h>
  80#include <linux/syscalls.h>
  81#include <linux/audit.h>
  82#include <linux/capability.h>
  83#include <linux/seq_file.h>
  84#include <linux/rwsem.h>
  85#include <linux/nsproxy.h>
  86#include <linux/ipc_namespace.h>
  87#include <linux/sched/wake_q.h>
  88#include <linux/nospec.h>
  89#include <linux/rhashtable.h>
  90
  91#include <linux/uaccess.h>
  92#include "util.h"
  93
  94/* One semaphore structure for each semaphore in the system. */
  95struct sem {
  96        int     semval;         /* current value */
  97        /*
  98         * PID of the process that last modified the semaphore. For
  99         * Linux, specifically these are:
 100         *  - semop
 101         *  - semctl, via SETVAL and SETALL.
 102         *  - at task exit when performing undo adjustments (see exit_sem).
 103         */
 104        struct pid *sempid;
 105        spinlock_t      lock;   /* spinlock for fine-grained semtimedop */
 106        struct list_head pending_alter; /* pending single-sop operations */
 107                                        /* that alter the semaphore */
 108        struct list_head pending_const; /* pending single-sop operations */
 109                                        /* that do not alter the semaphore*/
 110        time64_t         sem_otime;     /* candidate for sem_otime */
 111} ____cacheline_aligned_in_smp;
 112
 113/* One sem_array data structure for each set of semaphores in the system. */
 114struct sem_array {
 115        struct kern_ipc_perm    sem_perm;       /* permissions .. see ipc.h */
 116        time64_t                sem_ctime;      /* create/last semctl() time */
 117        struct list_head        pending_alter;  /* pending operations */
 118                                                /* that alter the array */
 119        struct list_head        pending_const;  /* pending complex operations */
 120                                                /* that do not alter semvals */
 121        struct list_head        list_id;        /* undo requests on this array */
 122        int                     sem_nsems;      /* no. of semaphores in array */
 123        int                     complex_count;  /* pending complex operations */
 124        unsigned int            use_global_lock;/* >0: global lock required */
 125
 126        struct sem              sems[];
 127} __randomize_layout;
 128
 129/* One queue for each sleeping process in the system. */
 130struct sem_queue {
 131        struct list_head        list;    /* queue of pending operations */
 132        struct task_struct      *sleeper; /* this process */
 133        struct sem_undo         *undo;   /* undo structure */
 134        struct pid              *pid;    /* process id of requesting process */
 135        int                     status;  /* completion status of operation */
 136        struct sembuf           *sops;   /* array of pending operations */
 137        struct sembuf           *blocking; /* the operation that blocked */
 138        int                     nsops;   /* number of operations */
 139        bool                    alter;   /* does *sops alter the array? */
 140        bool                    dupsop;  /* sops on more than one sem_num */
 141};
 142
 143/* Each task has a list of undo requests. They are executed automatically
 144 * when the process exits.
 145 */
 146struct sem_undo {
 147        struct list_head        list_proc;      /* per-process list: *
 148                                                 * all undos from one process
 149                                                 * rcu protected */
 150        struct rcu_head         rcu;            /* rcu struct for sem_undo */
 151        struct sem_undo_list    *ulp;           /* back ptr to sem_undo_list */
 152        struct list_head        list_id;        /* per semaphore array list:
 153                                                 * all undos for one array */
 154        int                     semid;          /* semaphore set identifier */
 155        short                   *semadj;        /* array of adjustments */
 156                                                /* one per semaphore */
 157};
 158
 159/* sem_undo_list controls shared access to the list of sem_undo structures
 160 * that may be shared among all a CLONE_SYSVSEM task group.
 161 */
 162struct sem_undo_list {
 163        refcount_t              refcnt;
 164        spinlock_t              lock;
 165        struct list_head        list_proc;
 166};
 167
 168
 169#define sem_ids(ns)     ((ns)->ids[IPC_SEM_IDS])
 170
 171static int newary(struct ipc_namespace *, struct ipc_params *);
 172static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
 173#ifdef CONFIG_PROC_FS
 174static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
 175#endif
 176
 177#define SEMMSL_FAST     256 /* 512 bytes on stack */
 178#define SEMOPM_FAST     64  /* ~ 372 bytes on stack */
 179
 180/*
 181 * Switching from the mode suitable for simple ops
 182 * to the mode for complex ops is costly. Therefore:
 183 * use some hysteresis
 184 */
 185#define USE_GLOBAL_LOCK_HYSTERESIS      10
 186
 187/*
 188 * Locking:
 189 * a) global sem_lock() for read/write
 190 *      sem_undo.id_next,
 191 *      sem_array.complex_count,
 192 *      sem_array.pending{_alter,_const},
 193 *      sem_array.sem_undo
 194 *
 195 * b) global or semaphore sem_lock() for read/write:
 196 *      sem_array.sems[i].pending_{const,alter}:
 197 *
 198 * c) special:
 199 *      sem_undo_list.list_proc:
 200 *      * undo_list->lock for write
 201 *      * rcu for read
 202 *      use_global_lock:
 203 *      * global sem_lock() for write
 204 *      * either local or global sem_lock() for read.
 205 *
 206 * Memory ordering:
 207 * Most ordering is enforced by using spin_lock() and spin_unlock().
 208 *
 209 * Exceptions:
 210 * 1) use_global_lock: (SEM_BARRIER_1)
 211 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
 212 * using smp_store_release(): Immediately after setting it to 0,
 213 * a simple op can start.
 214 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
 215 * smp_load_acquire().
 216 * Setting it from 0 to non-zero must be ordered with regards to
 217 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
 218 * is inside a spin_lock() and after a write from 0 to non-zero a
 219 * spin_lock()+spin_unlock() is done.
 220 * To prevent the compiler/cpu temporarily writing 0 to use_global_lock,
 221 * READ_ONCE()/WRITE_ONCE() is used.
 222 *
 223 * 2) queue.status: (SEM_BARRIER_2)
 224 * Initialization is done while holding sem_lock(), so no further barrier is
 225 * required.
 226 * Setting it to a result code is a RELEASE, this is ensured by both a
 227 * smp_store_release() (for case a) and while holding sem_lock()
 228 * (for case b).
 229 * The ACQUIRE when reading the result code without holding sem_lock() is
 230 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
 231 * (case a above).
 232 * Reading the result code while holding sem_lock() needs no further barriers,
 233 * the locks inside sem_lock() enforce ordering (case b above)
 234 *
 235 * 3) current->state:
 236 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
 237 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
 238 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
 239 * when holding sem_lock(), no further barriers are required.
 240 *
 241 * See also ipc/mqueue.c for more details on the covered races.
 242 */
 243
 244#define sc_semmsl       sem_ctls[0]
 245#define sc_semmns       sem_ctls[1]
 246#define sc_semopm       sem_ctls[2]
 247#define sc_semmni       sem_ctls[3]
 248
 249void sem_init_ns(struct ipc_namespace *ns)
 250{
 251        ns->sc_semmsl = SEMMSL;
 252        ns->sc_semmns = SEMMNS;
 253        ns->sc_semopm = SEMOPM;
 254        ns->sc_semmni = SEMMNI;
 255        ns->used_sems = 0;
 256        ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
 257}
 258
 259#ifdef CONFIG_IPC_NS
 260void sem_exit_ns(struct ipc_namespace *ns)
 261{
 262        free_ipcs(ns, &sem_ids(ns), freeary);
 263        idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
 264        rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
 265}
 266#endif
 267
 268void __init sem_init(void)
 269{
 270        sem_init_ns(&init_ipc_ns);
 271        ipc_init_proc_interface("sysvipc/sem",
 272                                "       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
 273                                IPC_SEM_IDS, sysvipc_sem_proc_show);
 274}
 275
 276/**
 277 * unmerge_queues - unmerge queues, if possible.
 278 * @sma: semaphore array
 279 *
 280 * The function unmerges the wait queues if complex_count is 0.
 281 * It must be called prior to dropping the global semaphore array lock.
 282 */
 283static void unmerge_queues(struct sem_array *sma)
 284{
 285        struct sem_queue *q, *tq;
 286
 287        /* complex operations still around? */
 288        if (sma->complex_count)
 289                return;
 290        /*
 291         * We will switch back to simple mode.
 292         * Move all pending operation back into the per-semaphore
 293         * queues.
 294         */
 295        list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
 296                struct sem *curr;
 297                curr = &sma->sems[q->sops[0].sem_num];
 298
 299                list_add_tail(&q->list, &curr->pending_alter);
 300        }
 301        INIT_LIST_HEAD(&sma->pending_alter);
 302}
 303
 304/**
 305 * merge_queues - merge single semop queues into global queue
 306 * @sma: semaphore array
 307 *
 308 * This function merges all per-semaphore queues into the global queue.
 309 * It is necessary to achieve FIFO ordering for the pending single-sop
 310 * operations when a multi-semop operation must sleep.
 311 * Only the alter operations must be moved, the const operations can stay.
 312 */
 313static void merge_queues(struct sem_array *sma)
 314{
 315        int i;
 316        for (i = 0; i < sma->sem_nsems; i++) {
 317                struct sem *sem = &sma->sems[i];
 318
 319                list_splice_init(&sem->pending_alter, &sma->pending_alter);
 320        }
 321}
 322
 323static void sem_rcu_free(struct rcu_head *head)
 324{
 325        struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
 326        struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
 327
 328        security_sem_free(&sma->sem_perm);
 329        kvfree(sma);
 330}
 331
 332/*
 333 * Enter the mode suitable for non-simple operations:
 334 * Caller must own sem_perm.lock.
 335 */
 336static void complexmode_enter(struct sem_array *sma)
 337{
 338        int i;
 339        struct sem *sem;
 340
 341        if (sma->use_global_lock > 0)  {
 342                /*
 343                 * We are already in global lock mode.
 344                 * Nothing to do, just reset the
 345                 * counter until we return to simple mode.
 346                 */
 347                WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
 348                return;
 349        }
 350        WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
 351
 352        for (i = 0; i < sma->sem_nsems; i++) {
 353                sem = &sma->sems[i];
 354                spin_lock(&sem->lock);
 355                spin_unlock(&sem->lock);
 356        }
 357}
 358
 359/*
 360 * Try to leave the mode that disallows simple operations:
 361 * Caller must own sem_perm.lock.
 362 */
 363static void complexmode_tryleave(struct sem_array *sma)
 364{
 365        if (sma->complex_count)  {
 366                /* Complex ops are sleeping.
 367                 * We must stay in complex mode
 368                 */
 369                return;
 370        }
 371        if (sma->use_global_lock == 1) {
 372
 373                /* See SEM_BARRIER_1 for purpose/pairing */
 374                smp_store_release(&sma->use_global_lock, 0);
 375        } else {
 376                WRITE_ONCE(sma->use_global_lock,
 377                                sma->use_global_lock-1);
 378        }
 379}
 380
 381#define SEM_GLOBAL_LOCK (-1)
 382/*
 383 * If the request contains only one semaphore operation, and there are
 384 * no complex transactions pending, lock only the semaphore involved.
 385 * Otherwise, lock the entire semaphore array, since we either have
 386 * multiple semaphores in our own semops, or we need to look at
 387 * semaphores from other pending complex operations.
 388 */
 389static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
 390                              int nsops)
 391{
 392        struct sem *sem;
 393        int idx;
 394
 395        if (nsops != 1) {
 396                /* Complex operation - acquire a full lock */
 397                ipc_lock_object(&sma->sem_perm);
 398
 399                /* Prevent parallel simple ops */
 400                complexmode_enter(sma);
 401                return SEM_GLOBAL_LOCK;
 402        }
 403
 404        /*
 405         * Only one semaphore affected - try to optimize locking.
 406         * Optimized locking is possible if no complex operation
 407         * is either enqueued or processed right now.
 408         *
 409         * Both facts are tracked by use_global_mode.
 410         */
 411        idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
 412        sem = &sma->sems[idx];
 413
 414        /*
 415         * Initial check for use_global_lock. Just an optimization,
 416         * no locking, no memory barrier.
 417         */
 418        if (!READ_ONCE(sma->use_global_lock)) {
 419                /*
 420                 * It appears that no complex operation is around.
 421                 * Acquire the per-semaphore lock.
 422                 */
 423                spin_lock(&sem->lock);
 424
 425                /* see SEM_BARRIER_1 for purpose/pairing */
 426                if (!smp_load_acquire(&sma->use_global_lock)) {
 427                        /* fast path successful! */
 428                        return sops->sem_num;
 429                }
 430                spin_unlock(&sem->lock);
 431        }
 432
 433        /* slow path: acquire the full lock */
 434        ipc_lock_object(&sma->sem_perm);
 435
 436        if (sma->use_global_lock == 0) {
 437                /*
 438                 * The use_global_lock mode ended while we waited for
 439                 * sma->sem_perm.lock. Thus we must switch to locking
 440                 * with sem->lock.
 441                 * Unlike in the fast path, there is no need to recheck
 442                 * sma->use_global_lock after we have acquired sem->lock:
 443                 * We own sma->sem_perm.lock, thus use_global_lock cannot
 444                 * change.
 445                 */
 446                spin_lock(&sem->lock);
 447
 448                ipc_unlock_object(&sma->sem_perm);
 449                return sops->sem_num;
 450        } else {
 451                /*
 452                 * Not a false alarm, thus continue to use the global lock
 453                 * mode. No need for complexmode_enter(), this was done by
 454                 * the caller that has set use_global_mode to non-zero.
 455                 */
 456                return SEM_GLOBAL_LOCK;
 457        }
 458}
 459
 460static inline void sem_unlock(struct sem_array *sma, int locknum)
 461{
 462        if (locknum == SEM_GLOBAL_LOCK) {
 463                unmerge_queues(sma);
 464                complexmode_tryleave(sma);
 465                ipc_unlock_object(&sma->sem_perm);
 466        } else {
 467                struct sem *sem = &sma->sems[locknum];
 468                spin_unlock(&sem->lock);
 469        }
 470}
 471
 472/*
 473 * sem_lock_(check_) routines are called in the paths where the rwsem
 474 * is not held.
 475 *
 476 * The caller holds the RCU read lock.
 477 */
 478static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
 479{
 480        struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
 481
 482        if (IS_ERR(ipcp))
 483                return ERR_CAST(ipcp);
 484
 485        return container_of(ipcp, struct sem_array, sem_perm);
 486}
 487
 488static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
 489                                                        int id)
 490{
 491        struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
 492
 493        if (IS_ERR(ipcp))
 494                return ERR_CAST(ipcp);
 495
 496        return container_of(ipcp, struct sem_array, sem_perm);
 497}
 498
 499static inline void sem_lock_and_putref(struct sem_array *sma)
 500{
 501        sem_lock(sma, NULL, -1);
 502        ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
 503}
 504
 505static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
 506{
 507        ipc_rmid(&sem_ids(ns), &s->sem_perm);
 508}
 509
 510static struct sem_array *sem_alloc(size_t nsems)
 511{
 512        struct sem_array *sma;
 513
 514        if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
 515                return NULL;
 516
 517        sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL_ACCOUNT);
 518        if (unlikely(!sma))
 519                return NULL;
 520
 521        return sma;
 522}
 523
 524/**
 525 * newary - Create a new semaphore set
 526 * @ns: namespace
 527 * @params: ptr to the structure that contains key, semflg and nsems
 528 *
 529 * Called with sem_ids.rwsem held (as a writer)
 530 */
 531static int newary(struct ipc_namespace *ns, struct ipc_params *params)
 532{
 533        int retval;
 534        struct sem_array *sma;
 535        key_t key = params->key;
 536        int nsems = params->u.nsems;
 537        int semflg = params->flg;
 538        int i;
 539
 540        if (!nsems)
 541                return -EINVAL;
 542        if (ns->used_sems + nsems > ns->sc_semmns)
 543                return -ENOSPC;
 544
 545        sma = sem_alloc(nsems);
 546        if (!sma)
 547                return -ENOMEM;
 548
 549        sma->sem_perm.mode = (semflg & S_IRWXUGO);
 550        sma->sem_perm.key = key;
 551
 552        sma->sem_perm.security = NULL;
 553        retval = security_sem_alloc(&sma->sem_perm);
 554        if (retval) {
 555                kvfree(sma);
 556                return retval;
 557        }
 558
 559        for (i = 0; i < nsems; i++) {
 560                INIT_LIST_HEAD(&sma->sems[i].pending_alter);
 561                INIT_LIST_HEAD(&sma->sems[i].pending_const);
 562                spin_lock_init(&sma->sems[i].lock);
 563        }
 564
 565        sma->complex_count = 0;
 566        sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
 567        INIT_LIST_HEAD(&sma->pending_alter);
 568        INIT_LIST_HEAD(&sma->pending_const);
 569        INIT_LIST_HEAD(&sma->list_id);
 570        sma->sem_nsems = nsems;
 571        sma->sem_ctime = ktime_get_real_seconds();
 572
 573        /* ipc_addid() locks sma upon success. */
 574        retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
 575        if (retval < 0) {
 576                ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
 577                return retval;
 578        }
 579        ns->used_sems += nsems;
 580
 581        sem_unlock(sma, -1);
 582        rcu_read_unlock();
 583
 584        return sma->sem_perm.id;
 585}
 586
 587
 588/*
 589 * Called with sem_ids.rwsem and ipcp locked.
 590 */
 591static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
 592{
 593        struct sem_array *sma;
 594
 595        sma = container_of(ipcp, struct sem_array, sem_perm);
 596        if (params->u.nsems > sma->sem_nsems)
 597                return -EINVAL;
 598
 599        return 0;
 600}
 601
 602long ksys_semget(key_t key, int nsems, int semflg)
 603{
 604        struct ipc_namespace *ns;
 605        static const struct ipc_ops sem_ops = {
 606                .getnew = newary,
 607                .associate = security_sem_associate,
 608                .more_checks = sem_more_checks,
 609        };
 610        struct ipc_params sem_params;
 611
 612        ns = current->nsproxy->ipc_ns;
 613
 614        if (nsems < 0 || nsems > ns->sc_semmsl)
 615                return -EINVAL;
 616
 617        sem_params.key = key;
 618        sem_params.flg = semflg;
 619        sem_params.u.nsems = nsems;
 620
 621        return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
 622}
 623
 624SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
 625{
 626        return ksys_semget(key, nsems, semflg);
 627}
 628
 629/**
 630 * perform_atomic_semop[_slow] - Attempt to perform semaphore
 631 *                               operations on a given array.
 632 * @sma: semaphore array
 633 * @q: struct sem_queue that describes the operation
 634 *
 635 * Caller blocking are as follows, based the value
 636 * indicated by the semaphore operation (sem_op):
 637 *
 638 *  (1) >0 never blocks.
 639 *  (2)  0 (wait-for-zero operation): semval is non-zero.
 640 *  (3) <0 attempting to decrement semval to a value smaller than zero.
 641 *
 642 * Returns 0 if the operation was possible.
 643 * Returns 1 if the operation is impossible, the caller must sleep.
 644 * Returns <0 for error codes.
 645 */
 646static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
 647{
 648        int result, sem_op, nsops;
 649        struct pid *pid;
 650        struct sembuf *sop;
 651        struct sem *curr;
 652        struct sembuf *sops;
 653        struct sem_undo *un;
 654
 655        sops = q->sops;
 656        nsops = q->nsops;
 657        un = q->undo;
 658
 659        for (sop = sops; sop < sops + nsops; sop++) {
 660                int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
 661                curr = &sma->sems[idx];
 662                sem_op = sop->sem_op;
 663                result = curr->semval;
 664
 665                if (!sem_op && result)
 666                        goto would_block;
 667
 668                result += sem_op;
 669                if (result < 0)
 670                        goto would_block;
 671                if (result > SEMVMX)
 672                        goto out_of_range;
 673
 674                if (sop->sem_flg & SEM_UNDO) {
 675                        int undo = un->semadj[sop->sem_num] - sem_op;
 676                        /* Exceeding the undo range is an error. */
 677                        if (undo < (-SEMAEM - 1) || undo > SEMAEM)
 678                                goto out_of_range;
 679                        un->semadj[sop->sem_num] = undo;
 680                }
 681
 682                curr->semval = result;
 683        }
 684
 685        sop--;
 686        pid = q->pid;
 687        while (sop >= sops) {
 688                ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
 689                sop--;
 690        }
 691
 692        return 0;
 693
 694out_of_range:
 695        result = -ERANGE;
 696        goto undo;
 697
 698would_block:
 699        q->blocking = sop;
 700
 701        if (sop->sem_flg & IPC_NOWAIT)
 702                result = -EAGAIN;
 703        else
 704                result = 1;
 705
 706undo:
 707        sop--;
 708        while (sop >= sops) {
 709                sem_op = sop->sem_op;
 710                sma->sems[sop->sem_num].semval -= sem_op;
 711                if (sop->sem_flg & SEM_UNDO)
 712                        un->semadj[sop->sem_num] += sem_op;
 713                sop--;
 714        }
 715
 716        return result;
 717}
 718
 719static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
 720{
 721        int result, sem_op, nsops;
 722        struct sembuf *sop;
 723        struct sem *curr;
 724        struct sembuf *sops;
 725        struct sem_undo *un;
 726
 727        sops = q->sops;
 728        nsops = q->nsops;
 729        un = q->undo;
 730
 731        if (unlikely(q->dupsop))
 732                return perform_atomic_semop_slow(sma, q);
 733
 734        /*
 735         * We scan the semaphore set twice, first to ensure that the entire
 736         * operation can succeed, therefore avoiding any pointless writes
 737         * to shared memory and having to undo such changes in order to block
 738         * until the operations can go through.
 739         */
 740        for (sop = sops; sop < sops + nsops; sop++) {
 741                int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
 742
 743                curr = &sma->sems[idx];
 744                sem_op = sop->sem_op;
 745                result = curr->semval;
 746
 747                if (!sem_op && result)
 748                        goto would_block; /* wait-for-zero */
 749
 750                result += sem_op;
 751                if (result < 0)
 752                        goto would_block;
 753
 754                if (result > SEMVMX)
 755                        return -ERANGE;
 756
 757                if (sop->sem_flg & SEM_UNDO) {
 758                        int undo = un->semadj[sop->sem_num] - sem_op;
 759
 760                        /* Exceeding the undo range is an error. */
 761                        if (undo < (-SEMAEM - 1) || undo > SEMAEM)
 762                                return -ERANGE;
 763                }
 764        }
 765
 766        for (sop = sops; sop < sops + nsops; sop++) {
 767                curr = &sma->sems[sop->sem_num];
 768                sem_op = sop->sem_op;
 769                result = curr->semval;
 770
 771                if (sop->sem_flg & SEM_UNDO) {
 772                        int undo = un->semadj[sop->sem_num] - sem_op;
 773
 774                        un->semadj[sop->sem_num] = undo;
 775                }
 776                curr->semval += sem_op;
 777                ipc_update_pid(&curr->sempid, q->pid);
 778        }
 779
 780        return 0;
 781
 782would_block:
 783        q->blocking = sop;
 784        return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
 785}
 786
 787static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
 788                                             struct wake_q_head *wake_q)
 789{
 790        struct task_struct *sleeper;
 791
 792        sleeper = get_task_struct(q->sleeper);
 793
 794        /* see SEM_BARRIER_2 for purpose/pairing */
 795        smp_store_release(&q->status, error);
 796
 797        wake_q_add_safe(wake_q, sleeper);
 798}
 799
 800static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
 801{
 802        list_del(&q->list);
 803        if (q->nsops > 1)
 804                sma->complex_count--;
 805}
 806
 807/** check_restart(sma, q)
 808 * @sma: semaphore array
 809 * @q: the operation that just completed
 810 *
 811 * update_queue is O(N^2) when it restarts scanning the whole queue of
 812 * waiting operations. Therefore this function checks if the restart is
 813 * really necessary. It is called after a previously waiting operation
 814 * modified the array.
 815 * Note that wait-for-zero operations are handled without restart.
 816 */
 817static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
 818{
 819        /* pending complex alter operations are too difficult to analyse */
 820        if (!list_empty(&sma->pending_alter))
 821                return 1;
 822
 823        /* we were a sleeping complex operation. Too difficult */
 824        if (q->nsops > 1)
 825                return 1;
 826
 827        /* It is impossible that someone waits for the new value:
 828         * - complex operations always restart.
 829         * - wait-for-zero are handled separately.
 830         * - q is a previously sleeping simple operation that
 831         *   altered the array. It must be a decrement, because
 832         *   simple increments never sleep.
 833         * - If there are older (higher priority) decrements
 834         *   in the queue, then they have observed the original
 835         *   semval value and couldn't proceed. The operation
 836         *   decremented to value - thus they won't proceed either.
 837         */
 838        return 0;
 839}
 840
 841/**
 842 * wake_const_ops - wake up non-alter tasks
 843 * @sma: semaphore array.
 844 * @semnum: semaphore that was modified.
 845 * @wake_q: lockless wake-queue head.
 846 *
 847 * wake_const_ops must be called after a semaphore in a semaphore array
 848 * was set to 0. If complex const operations are pending, wake_const_ops must
 849 * be called with semnum = -1, as well as with the number of each modified
 850 * semaphore.
 851 * The tasks that must be woken up are added to @wake_q. The return code
 852 * is stored in q->pid.
 853 * The function returns 1 if at least one operation was completed successfully.
 854 */
 855static int wake_const_ops(struct sem_array *sma, int semnum,
 856                          struct wake_q_head *wake_q)
 857{
 858        struct sem_queue *q, *tmp;
 859        struct list_head *pending_list;
 860        int semop_completed = 0;
 861
 862        if (semnum == -1)
 863                pending_list = &sma->pending_const;
 864        else
 865                pending_list = &sma->sems[semnum].pending_const;
 866
 867        list_for_each_entry_safe(q, tmp, pending_list, list) {
 868                int error = perform_atomic_semop(sma, q);
 869
 870                if (error > 0)
 871                        continue;
 872                /* operation completed, remove from queue & wakeup */
 873                unlink_queue(sma, q);
 874
 875                wake_up_sem_queue_prepare(q, error, wake_q);
 876                if (error == 0)
 877                        semop_completed = 1;
 878        }
 879
 880        return semop_completed;
 881}
 882
 883/**
 884 * do_smart_wakeup_zero - wakeup all wait for zero tasks
 885 * @sma: semaphore array
 886 * @sops: operations that were performed
 887 * @nsops: number of operations
 888 * @wake_q: lockless wake-queue head
 889 *
 890 * Checks all required queue for wait-for-zero operations, based
 891 * on the actual changes that were performed on the semaphore array.
 892 * The function returns 1 if at least one operation was completed successfully.
 893 */
 894static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
 895                                int nsops, struct wake_q_head *wake_q)
 896{
 897        int i;
 898        int semop_completed = 0;
 899        int got_zero = 0;
 900
 901        /* first: the per-semaphore queues, if known */
 902        if (sops) {
 903                for (i = 0; i < nsops; i++) {
 904                        int num = sops[i].sem_num;
 905
 906                        if (sma->sems[num].semval == 0) {
 907                                got_zero = 1;
 908                                semop_completed |= wake_const_ops(sma, num, wake_q);
 909                        }
 910                }
 911        } else {
 912                /*
 913                 * No sops means modified semaphores not known.
 914                 * Assume all were changed.
 915                 */
 916                for (i = 0; i < sma->sem_nsems; i++) {
 917                        if (sma->sems[i].semval == 0) {
 918                                got_zero = 1;
 919                                semop_completed |= wake_const_ops(sma, i, wake_q);
 920                        }
 921                }
 922        }
 923        /*
 924         * If one of the modified semaphores got 0,
 925         * then check the global queue, too.
 926         */
 927        if (got_zero)
 928                semop_completed |= wake_const_ops(sma, -1, wake_q);
 929
 930        return semop_completed;
 931}
 932
 933
 934/**
 935 * update_queue - look for tasks that can be completed.
 936 * @sma: semaphore array.
 937 * @semnum: semaphore that was modified.
 938 * @wake_q: lockless wake-queue head.
 939 *
 940 * update_queue must be called after a semaphore in a semaphore array
 941 * was modified. If multiple semaphores were modified, update_queue must
 942 * be called with semnum = -1, as well as with the number of each modified
 943 * semaphore.
 944 * The tasks that must be woken up are added to @wake_q. The return code
 945 * is stored in q->pid.
 946 * The function internally checks if const operations can now succeed.
 947 *
 948 * The function return 1 if at least one semop was completed successfully.
 949 */
 950static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
 951{
 952        struct sem_queue *q, *tmp;
 953        struct list_head *pending_list;
 954        int semop_completed = 0;
 955
 956        if (semnum == -1)
 957                pending_list = &sma->pending_alter;
 958        else
 959                pending_list = &sma->sems[semnum].pending_alter;
 960
 961again:
 962        list_for_each_entry_safe(q, tmp, pending_list, list) {
 963                int error, restart;
 964
 965                /* If we are scanning the single sop, per-semaphore list of
 966                 * one semaphore and that semaphore is 0, then it is not
 967                 * necessary to scan further: simple increments
 968                 * that affect only one entry succeed immediately and cannot
 969                 * be in the  per semaphore pending queue, and decrements
 970                 * cannot be successful if the value is already 0.
 971                 */
 972                if (semnum != -1 && sma->sems[semnum].semval == 0)
 973                        break;
 974
 975                error = perform_atomic_semop(sma, q);
 976
 977                /* Does q->sleeper still need to sleep? */
 978                if (error > 0)
 979                        continue;
 980
 981                unlink_queue(sma, q);
 982
 983                if (error) {
 984                        restart = 0;
 985                } else {
 986                        semop_completed = 1;
 987                        do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
 988                        restart = check_restart(sma, q);
 989                }
 990
 991                wake_up_sem_queue_prepare(q, error, wake_q);
 992                if (restart)
 993                        goto again;
 994        }
 995        return semop_completed;
 996}
 997
 998/**
 999 * set_semotime - set sem_otime
1000 * @sma: semaphore array
1001 * @sops: operations that modified the array, may be NULL
1002 *
1003 * sem_otime is replicated to avoid cache line trashing.
1004 * This function sets one instance to the current time.
1005 */
1006static void set_semotime(struct sem_array *sma, struct sembuf *sops)
1007{
1008        if (sops == NULL) {
1009                sma->sems[0].sem_otime = ktime_get_real_seconds();
1010        } else {
1011                sma->sems[sops[0].sem_num].sem_otime =
1012                                                ktime_get_real_seconds();
1013        }
1014}
1015
1016/**
1017 * do_smart_update - optimized update_queue
1018 * @sma: semaphore array
1019 * @sops: operations that were performed
1020 * @nsops: number of operations
1021 * @otime: force setting otime
1022 * @wake_q: lockless wake-queue head
1023 *
1024 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1025 * based on the actual changes that were performed on the semaphore array.
1026 * Note that the function does not do the actual wake-up: the caller is
1027 * responsible for calling wake_up_q().
1028 * It is safe to perform this call after dropping all locks.
1029 */
1030static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1031                            int otime, struct wake_q_head *wake_q)
1032{
1033        int i;
1034
1035        otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1036
1037        if (!list_empty(&sma->pending_alter)) {
1038                /* semaphore array uses the global queue - just process it. */
1039                otime |= update_queue(sma, -1, wake_q);
1040        } else {
1041                if (!sops) {
1042                        /*
1043                         * No sops, thus the modified semaphores are not
1044                         * known. Check all.
1045                         */
1046                        for (i = 0; i < sma->sem_nsems; i++)
1047                                otime |= update_queue(sma, i, wake_q);
1048                } else {
1049                        /*
1050                         * Check the semaphores that were increased:
1051                         * - No complex ops, thus all sleeping ops are
1052                         *   decrease.
1053                         * - if we decreased the value, then any sleeping
1054                         *   semaphore ops won't be able to run: If the
1055                         *   previous value was too small, then the new
1056                         *   value will be too small, too.
1057                         */
1058                        for (i = 0; i < nsops; i++) {
1059                                if (sops[i].sem_op > 0) {
1060                                        otime |= update_queue(sma,
1061                                                              sops[i].sem_num, wake_q);
1062                                }
1063                        }
1064                }
1065        }
1066        if (otime)
1067                set_semotime(sma, sops);
1068}
1069
1070/*
1071 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1072 */
1073static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1074                        bool count_zero)
1075{
1076        struct sembuf *sop = q->blocking;
1077
1078        /*
1079         * Linux always (since 0.99.10) reported a task as sleeping on all
1080         * semaphores. This violates SUS, therefore it was changed to the
1081         * standard compliant behavior.
1082         * Give the administrators a chance to notice that an application
1083         * might misbehave because it relies on the Linux behavior.
1084         */
1085        pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1086                        "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1087                        current->comm, task_pid_nr(current));
1088
1089        if (sop->sem_num != semnum)
1090                return 0;
1091
1092        if (count_zero && sop->sem_op == 0)
1093                return 1;
1094        if (!count_zero && sop->sem_op < 0)
1095                return 1;
1096
1097        return 0;
1098}
1099
1100/* The following counts are associated to each semaphore:
1101 *   semncnt        number of tasks waiting on semval being nonzero
1102 *   semzcnt        number of tasks waiting on semval being zero
1103 *
1104 * Per definition, a task waits only on the semaphore of the first semop
1105 * that cannot proceed, even if additional operation would block, too.
1106 */
1107static int count_semcnt(struct sem_array *sma, ushort semnum,
1108                        bool count_zero)
1109{
1110        struct list_head *l;
1111        struct sem_queue *q;
1112        int semcnt;
1113
1114        semcnt = 0;
1115        /* First: check the simple operations. They are easy to evaluate */
1116        if (count_zero)
1117                l = &sma->sems[semnum].pending_const;
1118        else
1119                l = &sma->sems[semnum].pending_alter;
1120
1121        list_for_each_entry(q, l, list) {
1122                /* all task on a per-semaphore list sleep on exactly
1123                 * that semaphore
1124                 */
1125                semcnt++;
1126        }
1127
1128        /* Then: check the complex operations. */
1129        list_for_each_entry(q, &sma->pending_alter, list) {
1130                semcnt += check_qop(sma, semnum, q, count_zero);
1131        }
1132        if (count_zero) {
1133                list_for_each_entry(q, &sma->pending_const, list) {
1134                        semcnt += check_qop(sma, semnum, q, count_zero);
1135                }
1136        }
1137        return semcnt;
1138}
1139
1140/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1141 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1142 * remains locked on exit.
1143 */
1144static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1145{
1146        struct sem_undo *un, *tu;
1147        struct sem_queue *q, *tq;
1148        struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1149        int i;
1150        DEFINE_WAKE_Q(wake_q);
1151
1152        /* Free the existing undo structures for this semaphore set.  */
1153        ipc_assert_locked_object(&sma->sem_perm);
1154        list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1155                list_del(&un->list_id);
1156                spin_lock(&un->ulp->lock);
1157                un->semid = -1;
1158                list_del_rcu(&un->list_proc);
1159                spin_unlock(&un->ulp->lock);
1160                kvfree_rcu(un, rcu);
1161        }
1162
1163        /* Wake up all pending processes and let them fail with EIDRM. */
1164        list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1165                unlink_queue(sma, q);
1166                wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1167        }
1168
1169        list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1170                unlink_queue(sma, q);
1171                wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1172        }
1173        for (i = 0; i < sma->sem_nsems; i++) {
1174                struct sem *sem = &sma->sems[i];
1175                list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1176                        unlink_queue(sma, q);
1177                        wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1178                }
1179                list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1180                        unlink_queue(sma, q);
1181                        wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1182                }
1183                ipc_update_pid(&sem->sempid, NULL);
1184        }
1185
1186        /* Remove the semaphore set from the IDR */
1187        sem_rmid(ns, sma);
1188        sem_unlock(sma, -1);
1189        rcu_read_unlock();
1190
1191        wake_up_q(&wake_q);
1192        ns->used_sems -= sma->sem_nsems;
1193        ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1194}
1195
1196static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1197{
1198        switch (version) {
1199        case IPC_64:
1200                return copy_to_user(buf, in, sizeof(*in));
1201        case IPC_OLD:
1202            {
1203                struct semid_ds out;
1204
1205                memset(&out, 0, sizeof(out));
1206
1207                ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1208
1209                out.sem_otime   = in->sem_otime;
1210                out.sem_ctime   = in->sem_ctime;
1211                out.sem_nsems   = in->sem_nsems;
1212
1213                return copy_to_user(buf, &out, sizeof(out));
1214            }
1215        default:
1216                return -EINVAL;
1217        }
1218}
1219
1220static time64_t get_semotime(struct sem_array *sma)
1221{
1222        int i;
1223        time64_t res;
1224
1225        res = sma->sems[0].sem_otime;
1226        for (i = 1; i < sma->sem_nsems; i++) {
1227                time64_t to = sma->sems[i].sem_otime;
1228
1229                if (to > res)
1230                        res = to;
1231        }
1232        return res;
1233}
1234
1235static int semctl_stat(struct ipc_namespace *ns, int semid,
1236                         int cmd, struct semid64_ds *semid64)
1237{
1238        struct sem_array *sma;
1239        time64_t semotime;
1240        int err;
1241
1242        memset(semid64, 0, sizeof(*semid64));
1243
1244        rcu_read_lock();
1245        if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1246                sma = sem_obtain_object(ns, semid);
1247                if (IS_ERR(sma)) {
1248                        err = PTR_ERR(sma);
1249                        goto out_unlock;
1250                }
1251        } else { /* IPC_STAT */
1252                sma = sem_obtain_object_check(ns, semid);
1253                if (IS_ERR(sma)) {
1254                        err = PTR_ERR(sma);
1255                        goto out_unlock;
1256                }
1257        }
1258
1259        /* see comment for SHM_STAT_ANY */
1260        if (cmd == SEM_STAT_ANY)
1261                audit_ipc_obj(&sma->sem_perm);
1262        else {
1263                err = -EACCES;
1264                if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1265                        goto out_unlock;
1266        }
1267
1268        err = security_sem_semctl(&sma->sem_perm, cmd);
1269        if (err)
1270                goto out_unlock;
1271
1272        ipc_lock_object(&sma->sem_perm);
1273
1274        if (!ipc_valid_object(&sma->sem_perm)) {
1275                ipc_unlock_object(&sma->sem_perm);
1276                err = -EIDRM;
1277                goto out_unlock;
1278        }
1279
1280        kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1281        semotime = get_semotime(sma);
1282        semid64->sem_otime = semotime;
1283        semid64->sem_ctime = sma->sem_ctime;
1284#ifndef CONFIG_64BIT
1285        semid64->sem_otime_high = semotime >> 32;
1286        semid64->sem_ctime_high = sma->sem_ctime >> 32;
1287#endif
1288        semid64->sem_nsems = sma->sem_nsems;
1289
1290        if (cmd == IPC_STAT) {
1291                /*
1292                 * As defined in SUS:
1293                 * Return 0 on success
1294                 */
1295                err = 0;
1296        } else {
1297                /*
1298                 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1299                 * Return the full id, including the sequence number
1300                 */
1301                err = sma->sem_perm.id;
1302        }
1303        ipc_unlock_object(&sma->sem_perm);
1304out_unlock:
1305        rcu_read_unlock();
1306        return err;
1307}
1308
1309static int semctl_info(struct ipc_namespace *ns, int semid,
1310                         int cmd, void __user *p)
1311{
1312        struct seminfo seminfo;
1313        int max_idx;
1314        int err;
1315
1316        err = security_sem_semctl(NULL, cmd);
1317        if (err)
1318                return err;
1319
1320        memset(&seminfo, 0, sizeof(seminfo));
1321        seminfo.semmni = ns->sc_semmni;
1322        seminfo.semmns = ns->sc_semmns;
1323        seminfo.semmsl = ns->sc_semmsl;
1324        seminfo.semopm = ns->sc_semopm;
1325        seminfo.semvmx = SEMVMX;
1326        seminfo.semmnu = SEMMNU;
1327        seminfo.semmap = SEMMAP;
1328        seminfo.semume = SEMUME;
1329        down_read(&sem_ids(ns).rwsem);
1330        if (cmd == SEM_INFO) {
1331                seminfo.semusz = sem_ids(ns).in_use;
1332                seminfo.semaem = ns->used_sems;
1333        } else {
1334                seminfo.semusz = SEMUSZ;
1335                seminfo.semaem = SEMAEM;
1336        }
1337        max_idx = ipc_get_maxidx(&sem_ids(ns));
1338        up_read(&sem_ids(ns).rwsem);
1339        if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1340                return -EFAULT;
1341        return (max_idx < 0) ? 0 : max_idx;
1342}
1343
1344static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1345                int val)
1346{
1347        struct sem_undo *un;
1348        struct sem_array *sma;
1349        struct sem *curr;
1350        int err;
1351        DEFINE_WAKE_Q(wake_q);
1352
1353        if (val > SEMVMX || val < 0)
1354                return -ERANGE;
1355
1356        rcu_read_lock();
1357        sma = sem_obtain_object_check(ns, semid);
1358        if (IS_ERR(sma)) {
1359                rcu_read_unlock();
1360                return PTR_ERR(sma);
1361        }
1362
1363        if (semnum < 0 || semnum >= sma->sem_nsems) {
1364                rcu_read_unlock();
1365                return -EINVAL;
1366        }
1367
1368
1369        if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1370                rcu_read_unlock();
1371                return -EACCES;
1372        }
1373
1374        err = security_sem_semctl(&sma->sem_perm, SETVAL);
1375        if (err) {
1376                rcu_read_unlock();
1377                return -EACCES;
1378        }
1379
1380        sem_lock(sma, NULL, -1);
1381
1382        if (!ipc_valid_object(&sma->sem_perm)) {
1383                sem_unlock(sma, -1);
1384                rcu_read_unlock();
1385                return -EIDRM;
1386        }
1387
1388        semnum = array_index_nospec(semnum, sma->sem_nsems);
1389        curr = &sma->sems[semnum];
1390
1391        ipc_assert_locked_object(&sma->sem_perm);
1392        list_for_each_entry(un, &sma->list_id, list_id)
1393                un->semadj[semnum] = 0;
1394
1395        curr->semval = val;
1396        ipc_update_pid(&curr->sempid, task_tgid(current));
1397        sma->sem_ctime = ktime_get_real_seconds();
1398        /* maybe some queued-up processes were waiting for this */
1399        do_smart_update(sma, NULL, 0, 0, &wake_q);
1400        sem_unlock(sma, -1);
1401        rcu_read_unlock();
1402        wake_up_q(&wake_q);
1403        return 0;
1404}
1405
1406static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1407                int cmd, void __user *p)
1408{
1409        struct sem_array *sma;
1410        struct sem *curr;
1411        int err, nsems;
1412        ushort fast_sem_io[SEMMSL_FAST];
1413        ushort *sem_io = fast_sem_io;
1414        DEFINE_WAKE_Q(wake_q);
1415
1416        rcu_read_lock();
1417        sma = sem_obtain_object_check(ns, semid);
1418        if (IS_ERR(sma)) {
1419                rcu_read_unlock();
1420                return PTR_ERR(sma);
1421        }
1422
1423        nsems = sma->sem_nsems;
1424
1425        err = -EACCES;
1426        if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1427                goto out_rcu_wakeup;
1428
1429        err = security_sem_semctl(&sma->sem_perm, cmd);
1430        if (err)
1431                goto out_rcu_wakeup;
1432
1433        err = -EACCES;
1434        switch (cmd) {
1435        case GETALL:
1436        {
1437                ushort __user *array = p;
1438                int i;
1439
1440                sem_lock(sma, NULL, -1);
1441                if (!ipc_valid_object(&sma->sem_perm)) {
1442                        err = -EIDRM;
1443                        goto out_unlock;
1444                }
1445                if (nsems > SEMMSL_FAST) {
1446                        if (!ipc_rcu_getref(&sma->sem_perm)) {
1447                                err = -EIDRM;
1448                                goto out_unlock;
1449                        }
1450                        sem_unlock(sma, -1);
1451                        rcu_read_unlock();
1452                        sem_io = kvmalloc_array(nsems, sizeof(ushort),
1453                                                GFP_KERNEL);
1454                        if (sem_io == NULL) {
1455                                ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1456                                return -ENOMEM;
1457                        }
1458
1459                        rcu_read_lock();
1460                        sem_lock_and_putref(sma);
1461                        if (!ipc_valid_object(&sma->sem_perm)) {
1462                                err = -EIDRM;
1463                                goto out_unlock;
1464                        }
1465                }
1466                for (i = 0; i < sma->sem_nsems; i++)
1467                        sem_io[i] = sma->sems[i].semval;
1468                sem_unlock(sma, -1);
1469                rcu_read_unlock();
1470                err = 0;
1471                if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1472                        err = -EFAULT;
1473                goto out_free;
1474        }
1475        case SETALL:
1476        {
1477                int i;
1478                struct sem_undo *un;
1479
1480                if (!ipc_rcu_getref(&sma->sem_perm)) {
1481                        err = -EIDRM;
1482                        goto out_rcu_wakeup;
1483                }
1484                rcu_read_unlock();
1485
1486                if (nsems > SEMMSL_FAST) {
1487                        sem_io = kvmalloc_array(nsems, sizeof(ushort),
1488                                                GFP_KERNEL);
1489                        if (sem_io == NULL) {
1490                                ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1491                                return -ENOMEM;
1492                        }
1493                }
1494
1495                if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1496                        ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1497                        err = -EFAULT;
1498                        goto out_free;
1499                }
1500
1501                for (i = 0; i < nsems; i++) {
1502                        if (sem_io[i] > SEMVMX) {
1503                                ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1504                                err = -ERANGE;
1505                                goto out_free;
1506                        }
1507                }
1508                rcu_read_lock();
1509                sem_lock_and_putref(sma);
1510                if (!ipc_valid_object(&sma->sem_perm)) {
1511                        err = -EIDRM;
1512                        goto out_unlock;
1513                }
1514
1515                for (i = 0; i < nsems; i++) {
1516                        sma->sems[i].semval = sem_io[i];
1517                        ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1518                }
1519
1520                ipc_assert_locked_object(&sma->sem_perm);
1521                list_for_each_entry(un, &sma->list_id, list_id) {
1522                        for (i = 0; i < nsems; i++)
1523                                un->semadj[i] = 0;
1524                }
1525                sma->sem_ctime = ktime_get_real_seconds();
1526                /* maybe some queued-up processes were waiting for this */
1527                do_smart_update(sma, NULL, 0, 0, &wake_q);
1528                err = 0;
1529                goto out_unlock;
1530        }
1531        /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1532        }
1533        err = -EINVAL;
1534        if (semnum < 0 || semnum >= nsems)
1535                goto out_rcu_wakeup;
1536
1537        sem_lock(sma, NULL, -1);
1538        if (!ipc_valid_object(&sma->sem_perm)) {
1539                err = -EIDRM;
1540                goto out_unlock;
1541        }
1542
1543        semnum = array_index_nospec(semnum, nsems);
1544        curr = &sma->sems[semnum];
1545
1546        switch (cmd) {
1547        case GETVAL:
1548                err = curr->semval;
1549                goto out_unlock;
1550        case GETPID:
1551                err = pid_vnr(curr->sempid);
1552                goto out_unlock;
1553        case GETNCNT:
1554                err = count_semcnt(sma, semnum, 0);
1555                goto out_unlock;
1556        case GETZCNT:
1557                err = count_semcnt(sma, semnum, 1);
1558                goto out_unlock;
1559        }
1560
1561out_unlock:
1562        sem_unlock(sma, -1);
1563out_rcu_wakeup:
1564        rcu_read_unlock();
1565        wake_up_q(&wake_q);
1566out_free:
1567        if (sem_io != fast_sem_io)
1568                kvfree(sem_io);
1569        return err;
1570}
1571
1572static inline unsigned long
1573copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1574{
1575        switch (version) {
1576        case IPC_64:
1577                if (copy_from_user(out, buf, sizeof(*out)))
1578                        return -EFAULT;
1579                return 0;
1580        case IPC_OLD:
1581            {
1582                struct semid_ds tbuf_old;
1583
1584                if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1585                        return -EFAULT;
1586
1587                out->sem_perm.uid       = tbuf_old.sem_perm.uid;
1588                out->sem_perm.gid       = tbuf_old.sem_perm.gid;
1589                out->sem_perm.mode      = tbuf_old.sem_perm.mode;
1590
1591                return 0;
1592            }
1593        default:
1594                return -EINVAL;
1595        }
1596}
1597
1598/*
1599 * This function handles some semctl commands which require the rwsem
1600 * to be held in write mode.
1601 * NOTE: no locks must be held, the rwsem is taken inside this function.
1602 */
1603static int semctl_down(struct ipc_namespace *ns, int semid,
1604                       int cmd, struct semid64_ds *semid64)
1605{
1606        struct sem_array *sma;
1607        int err;
1608        struct kern_ipc_perm *ipcp;
1609
1610        down_write(&sem_ids(ns).rwsem);
1611        rcu_read_lock();
1612
1613        ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
1614                                      &semid64->sem_perm, 0);
1615        if (IS_ERR(ipcp)) {
1616                err = PTR_ERR(ipcp);
1617                goto out_unlock1;
1618        }
1619
1620        sma = container_of(ipcp, struct sem_array, sem_perm);
1621
1622        err = security_sem_semctl(&sma->sem_perm, cmd);
1623        if (err)
1624                goto out_unlock1;
1625
1626        switch (cmd) {
1627        case IPC_RMID:
1628                sem_lock(sma, NULL, -1);
1629                /* freeary unlocks the ipc object and rcu */
1630                freeary(ns, ipcp);
1631                goto out_up;
1632        case IPC_SET:
1633                sem_lock(sma, NULL, -1);
1634                err = ipc_update_perm(&semid64->sem_perm, ipcp);
1635                if (err)
1636                        goto out_unlock0;
1637                sma->sem_ctime = ktime_get_real_seconds();
1638                break;
1639        default:
1640                err = -EINVAL;
1641                goto out_unlock1;
1642        }
1643
1644out_unlock0:
1645        sem_unlock(sma, -1);
1646out_unlock1:
1647        rcu_read_unlock();
1648out_up:
1649        up_write(&sem_ids(ns).rwsem);
1650        return err;
1651}
1652
1653static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1654{
1655        struct ipc_namespace *ns;
1656        void __user *p = (void __user *)arg;
1657        struct semid64_ds semid64;
1658        int err;
1659
1660        if (semid < 0)
1661                return -EINVAL;
1662
1663        ns = current->nsproxy->ipc_ns;
1664
1665        switch (cmd) {
1666        case IPC_INFO:
1667        case SEM_INFO:
1668                return semctl_info(ns, semid, cmd, p);
1669        case IPC_STAT:
1670        case SEM_STAT:
1671        case SEM_STAT_ANY:
1672                err = semctl_stat(ns, semid, cmd, &semid64);
1673                if (err < 0)
1674                        return err;
1675                if (copy_semid_to_user(p, &semid64, version))
1676                        err = -EFAULT;
1677                return err;
1678        case GETALL:
1679        case GETVAL:
1680        case GETPID:
1681        case GETNCNT:
1682        case GETZCNT:
1683        case SETALL:
1684                return semctl_main(ns, semid, semnum, cmd, p);
1685        case SETVAL: {
1686                int val;
1687#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1688                /* big-endian 64bit */
1689                val = arg >> 32;
1690#else
1691                /* 32bit or little-endian 64bit */
1692                val = arg;
1693#endif
1694                return semctl_setval(ns, semid, semnum, val);
1695        }
1696        case IPC_SET:
1697                if (copy_semid_from_user(&semid64, p, version))
1698                        return -EFAULT;
1699                fallthrough;
1700        case IPC_RMID:
1701                return semctl_down(ns, semid, cmd, &semid64);
1702        default:
1703                return -EINVAL;
1704        }
1705}
1706
1707SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1708{
1709        return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1710}
1711
1712#ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1713long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1714{
1715        int version = ipc_parse_version(&cmd);
1716
1717        return ksys_semctl(semid, semnum, cmd, arg, version);
1718}
1719
1720SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1721{
1722        return ksys_old_semctl(semid, semnum, cmd, arg);
1723}
1724#endif
1725
1726#ifdef CONFIG_COMPAT
1727
1728struct compat_semid_ds {
1729        struct compat_ipc_perm sem_perm;
1730        old_time32_t sem_otime;
1731        old_time32_t sem_ctime;
1732        compat_uptr_t sem_base;
1733        compat_uptr_t sem_pending;
1734        compat_uptr_t sem_pending_last;
1735        compat_uptr_t undo;
1736        unsigned short sem_nsems;
1737};
1738
1739static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1740                                        int version)
1741{
1742        memset(out, 0, sizeof(*out));
1743        if (version == IPC_64) {
1744                struct compat_semid64_ds __user *p = buf;
1745                return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1746        } else {
1747                struct compat_semid_ds __user *p = buf;
1748                return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1749        }
1750}
1751
1752static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1753                                        int version)
1754{
1755        if (version == IPC_64) {
1756                struct compat_semid64_ds v;
1757                memset(&v, 0, sizeof(v));
1758                to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1759                v.sem_otime      = lower_32_bits(in->sem_otime);
1760                v.sem_otime_high = upper_32_bits(in->sem_otime);
1761                v.sem_ctime      = lower_32_bits(in->sem_ctime);
1762                v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1763                v.sem_nsems = in->sem_nsems;
1764                return copy_to_user(buf, &v, sizeof(v));
1765        } else {
1766                struct compat_semid_ds v;
1767                memset(&v, 0, sizeof(v));
1768                to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1769                v.sem_otime = in->sem_otime;
1770                v.sem_ctime = in->sem_ctime;
1771                v.sem_nsems = in->sem_nsems;
1772                return copy_to_user(buf, &v, sizeof(v));
1773        }
1774}
1775
1776static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1777{
1778        void __user *p = compat_ptr(arg);
1779        struct ipc_namespace *ns;
1780        struct semid64_ds semid64;
1781        int err;
1782
1783        ns = current->nsproxy->ipc_ns;
1784
1785        if (semid < 0)
1786                return -EINVAL;
1787
1788        switch (cmd & (~IPC_64)) {
1789        case IPC_INFO:
1790        case SEM_INFO:
1791                return semctl_info(ns, semid, cmd, p);
1792        case IPC_STAT:
1793        case SEM_STAT:
1794        case SEM_STAT_ANY:
1795                err = semctl_stat(ns, semid, cmd, &semid64);
1796                if (err < 0)
1797                        return err;
1798                if (copy_compat_semid_to_user(p, &semid64, version))
1799                        err = -EFAULT;
1800                return err;
1801        case GETVAL:
1802        case GETPID:
1803        case GETNCNT:
1804        case GETZCNT:
1805        case GETALL:
1806        case SETALL:
1807                return semctl_main(ns, semid, semnum, cmd, p);
1808        case SETVAL:
1809                return semctl_setval(ns, semid, semnum, arg);
1810        case IPC_SET:
1811                if (copy_compat_semid_from_user(&semid64, p, version))
1812                        return -EFAULT;
1813                fallthrough;
1814        case IPC_RMID:
1815                return semctl_down(ns, semid, cmd, &semid64);
1816        default:
1817                return -EINVAL;
1818        }
1819}
1820
1821COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1822{
1823        return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1824}
1825
1826#ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1827long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1828{
1829        int version = compat_ipc_parse_version(&cmd);
1830
1831        return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1832}
1833
1834COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1835{
1836        return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1837}
1838#endif
1839#endif
1840
1841/* If the task doesn't already have a undo_list, then allocate one
1842 * here.  We guarantee there is only one thread using this undo list,
1843 * and current is THE ONE
1844 *
1845 * If this allocation and assignment succeeds, but later
1846 * portions of this code fail, there is no need to free the sem_undo_list.
1847 * Just let it stay associated with the task, and it'll be freed later
1848 * at exit time.
1849 *
1850 * This can block, so callers must hold no locks.
1851 */
1852static inline int get_undo_list(struct sem_undo_list **undo_listp)
1853{
1854        struct sem_undo_list *undo_list;
1855
1856        undo_list = current->sysvsem.undo_list;
1857        if (!undo_list) {
1858                undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL_ACCOUNT);
1859                if (undo_list == NULL)
1860                        return -ENOMEM;
1861                spin_lock_init(&undo_list->lock);
1862                refcount_set(&undo_list->refcnt, 1);
1863                INIT_LIST_HEAD(&undo_list->list_proc);
1864
1865                current->sysvsem.undo_list = undo_list;
1866        }
1867        *undo_listp = undo_list;
1868        return 0;
1869}
1870
1871static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1872{
1873        struct sem_undo *un;
1874
1875        list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1876                                spin_is_locked(&ulp->lock)) {
1877                if (un->semid == semid)
1878                        return un;
1879        }
1880        return NULL;
1881}
1882
1883static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1884{
1885        struct sem_undo *un;
1886
1887        assert_spin_locked(&ulp->lock);
1888
1889        un = __lookup_undo(ulp, semid);
1890        if (un) {
1891                list_del_rcu(&un->list_proc);
1892                list_add_rcu(&un->list_proc, &ulp->list_proc);
1893        }
1894        return un;
1895}
1896
1897/**
1898 * find_alloc_undo - lookup (and if not present create) undo array
1899 * @ns: namespace
1900 * @semid: semaphore array id
1901 *
1902 * The function looks up (and if not present creates) the undo structure.
1903 * The size of the undo structure depends on the size of the semaphore
1904 * array, thus the alloc path is not that straightforward.
1905 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1906 * performs a rcu_read_lock().
1907 */
1908static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1909{
1910        struct sem_array *sma;
1911        struct sem_undo_list *ulp;
1912        struct sem_undo *un, *new;
1913        int nsems, error;
1914
1915        error = get_undo_list(&ulp);
1916        if (error)
1917                return ERR_PTR(error);
1918
1919        rcu_read_lock();
1920        spin_lock(&ulp->lock);
1921        un = lookup_undo(ulp, semid);
1922        spin_unlock(&ulp->lock);
1923        if (likely(un != NULL))
1924                goto out;
1925
1926        /* no undo structure around - allocate one. */
1927        /* step 1: figure out the size of the semaphore array */
1928        sma = sem_obtain_object_check(ns, semid);
1929        if (IS_ERR(sma)) {
1930                rcu_read_unlock();
1931                return ERR_CAST(sma);
1932        }
1933
1934        nsems = sma->sem_nsems;
1935        if (!ipc_rcu_getref(&sma->sem_perm)) {
1936                rcu_read_unlock();
1937                un = ERR_PTR(-EIDRM);
1938                goto out;
1939        }
1940        rcu_read_unlock();
1941
1942        /* step 2: allocate new undo structure */
1943        new = kvzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems,
1944                       GFP_KERNEL_ACCOUNT);
1945        if (!new) {
1946                ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1947                return ERR_PTR(-ENOMEM);
1948        }
1949
1950        /* step 3: Acquire the lock on semaphore array */
1951        rcu_read_lock();
1952        sem_lock_and_putref(sma);
1953        if (!ipc_valid_object(&sma->sem_perm)) {
1954                sem_unlock(sma, -1);
1955                rcu_read_unlock();
1956                kvfree(new);
1957                un = ERR_PTR(-EIDRM);
1958                goto out;
1959        }
1960        spin_lock(&ulp->lock);
1961
1962        /*
1963         * step 4: check for races: did someone else allocate the undo struct?
1964         */
1965        un = lookup_undo(ulp, semid);
1966        if (un) {
1967                kvfree(new);
1968                goto success;
1969        }
1970        /* step 5: initialize & link new undo structure */
1971        new->semadj = (short *) &new[1];
1972        new->ulp = ulp;
1973        new->semid = semid;
1974        assert_spin_locked(&ulp->lock);
1975        list_add_rcu(&new->list_proc, &ulp->list_proc);
1976        ipc_assert_locked_object(&sma->sem_perm);
1977        list_add(&new->list_id, &sma->list_id);
1978        un = new;
1979
1980success:
1981        spin_unlock(&ulp->lock);
1982        sem_unlock(sma, -1);
1983out:
1984        return un;
1985}
1986
1987long __do_semtimedop(int semid, struct sembuf *sops,
1988                unsigned nsops, const struct timespec64 *timeout,
1989                struct ipc_namespace *ns)
1990{
1991        int error = -EINVAL;
1992        struct sem_array *sma;
1993        struct sembuf *sop;
1994        struct sem_undo *un;
1995        int max, locknum;
1996        bool undos = false, alter = false, dupsop = false;
1997        struct sem_queue queue;
1998        unsigned long dup = 0, jiffies_left = 0;
1999
2000        if (nsops < 1 || semid < 0)
2001                return -EINVAL;
2002        if (nsops > ns->sc_semopm)
2003                return -E2BIG;
2004
2005        if (timeout) {
2006                if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
2007                        timeout->tv_nsec >= 1000000000L) {
2008                        error = -EINVAL;
2009                        goto out;
2010                }
2011                jiffies_left = timespec64_to_jiffies(timeout);
2012        }
2013
2014
2015        max = 0;
2016        for (sop = sops; sop < sops + nsops; sop++) {
2017                unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2018
2019                if (sop->sem_num >= max)
2020                        max = sop->sem_num;
2021                if (sop->sem_flg & SEM_UNDO)
2022                        undos = true;
2023                if (dup & mask) {
2024                        /*
2025                         * There was a previous alter access that appears
2026                         * to have accessed the same semaphore, thus use
2027                         * the dupsop logic. "appears", because the detection
2028                         * can only check % BITS_PER_LONG.
2029                         */
2030                        dupsop = true;
2031                }
2032                if (sop->sem_op != 0) {
2033                        alter = true;
2034                        dup |= mask;
2035                }
2036        }
2037
2038        if (undos) {
2039                /* On success, find_alloc_undo takes the rcu_read_lock */
2040                un = find_alloc_undo(ns, semid);
2041                if (IS_ERR(un)) {
2042                        error = PTR_ERR(un);
2043                        goto out;
2044                }
2045        } else {
2046                un = NULL;
2047                rcu_read_lock();
2048        }
2049
2050        sma = sem_obtain_object_check(ns, semid);
2051        if (IS_ERR(sma)) {
2052                rcu_read_unlock();
2053                error = PTR_ERR(sma);
2054                goto out;
2055        }
2056
2057        error = -EFBIG;
2058        if (max >= sma->sem_nsems) {
2059                rcu_read_unlock();
2060                goto out;
2061        }
2062
2063        error = -EACCES;
2064        if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2065                rcu_read_unlock();
2066                goto out;
2067        }
2068
2069        error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2070        if (error) {
2071                rcu_read_unlock();
2072                goto out;
2073        }
2074
2075        error = -EIDRM;
2076        locknum = sem_lock(sma, sops, nsops);
2077        /*
2078         * We eventually might perform the following check in a lockless
2079         * fashion, considering ipc_valid_object() locking constraints.
2080         * If nsops == 1 and there is no contention for sem_perm.lock, then
2081         * only a per-semaphore lock is held and it's OK to proceed with the
2082         * check below. More details on the fine grained locking scheme
2083         * entangled here and why it's RMID race safe on comments at sem_lock()
2084         */
2085        if (!ipc_valid_object(&sma->sem_perm))
2086                goto out_unlock;
2087        /*
2088         * semid identifiers are not unique - find_alloc_undo may have
2089         * allocated an undo structure, it was invalidated by an RMID
2090         * and now a new array with received the same id. Check and fail.
2091         * This case can be detected checking un->semid. The existence of
2092         * "un" itself is guaranteed by rcu.
2093         */
2094        if (un && un->semid == -1)
2095                goto out_unlock;
2096
2097        queue.sops = sops;
2098        queue.nsops = nsops;
2099        queue.undo = un;
2100        queue.pid = task_tgid(current);
2101        queue.alter = alter;
2102        queue.dupsop = dupsop;
2103
2104        error = perform_atomic_semop(sma, &queue);
2105        if (error == 0) { /* non-blocking successful path */
2106                DEFINE_WAKE_Q(wake_q);
2107
2108                /*
2109                 * If the operation was successful, then do
2110                 * the required updates.
2111                 */
2112                if (alter)
2113                        do_smart_update(sma, sops, nsops, 1, &wake_q);
2114                else
2115                        set_semotime(sma, sops);
2116
2117                sem_unlock(sma, locknum);
2118                rcu_read_unlock();
2119                wake_up_q(&wake_q);
2120
2121                goto out;
2122        }
2123        if (error < 0) /* non-blocking error path */
2124                goto out_unlock;
2125
2126        /*
2127         * We need to sleep on this operation, so we put the current
2128         * task into the pending queue and go to sleep.
2129         */
2130        if (nsops == 1) {
2131                struct sem *curr;
2132                int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2133                curr = &sma->sems[idx];
2134
2135                if (alter) {
2136                        if (sma->complex_count) {
2137                                list_add_tail(&queue.list,
2138                                                &sma->pending_alter);
2139                        } else {
2140
2141                                list_add_tail(&queue.list,
2142                                                &curr->pending_alter);
2143                        }
2144                } else {
2145                        list_add_tail(&queue.list, &curr->pending_const);
2146                }
2147        } else {
2148                if (!sma->complex_count)
2149                        merge_queues(sma);
2150
2151                if (alter)
2152                        list_add_tail(&queue.list, &sma->pending_alter);
2153                else
2154                        list_add_tail(&queue.list, &sma->pending_const);
2155
2156                sma->complex_count++;
2157        }
2158
2159        do {
2160                /* memory ordering ensured by the lock in sem_lock() */
2161                WRITE_ONCE(queue.status, -EINTR);
2162                queue.sleeper = current;
2163
2164                /* memory ordering is ensured by the lock in sem_lock() */
2165                __set_current_state(TASK_INTERRUPTIBLE);
2166                sem_unlock(sma, locknum);
2167                rcu_read_unlock();
2168
2169                if (timeout)
2170                        jiffies_left = schedule_timeout(jiffies_left);
2171                else
2172                        schedule();
2173
2174                /*
2175                 * fastpath: the semop has completed, either successfully or
2176                 * not, from the syscall pov, is quite irrelevant to us at this
2177                 * point; we're done.
2178                 *
2179                 * We _do_ care, nonetheless, about being awoken by a signal or
2180                 * spuriously.  The queue.status is checked again in the
2181                 * slowpath (aka after taking sem_lock), such that we can detect
2182                 * scenarios where we were awakened externally, during the
2183                 * window between wake_q_add() and wake_up_q().
2184                 */
2185                error = READ_ONCE(queue.status);
2186                if (error != -EINTR) {
2187                        /* see SEM_BARRIER_2 for purpose/pairing */
2188                        smp_acquire__after_ctrl_dep();
2189                        goto out;
2190                }
2191
2192                rcu_read_lock();
2193                locknum = sem_lock(sma, sops, nsops);
2194
2195                if (!ipc_valid_object(&sma->sem_perm))
2196                        goto out_unlock;
2197
2198                /*
2199                 * No necessity for any barrier: We are protect by sem_lock()
2200                 */
2201                error = READ_ONCE(queue.status);
2202
2203                /*
2204                 * If queue.status != -EINTR we are woken up by another process.
2205                 * Leave without unlink_queue(), but with sem_unlock().
2206                 */
2207                if (error != -EINTR)
2208                        goto out_unlock;
2209
2210                /*
2211                 * If an interrupt occurred we have to clean up the queue.
2212                 */
2213                if (timeout && jiffies_left == 0)
2214                        error = -EAGAIN;
2215        } while (error == -EINTR && !signal_pending(current)); /* spurious */
2216
2217        unlink_queue(sma, &queue);
2218
2219out_unlock:
2220        sem_unlock(sma, locknum);
2221        rcu_read_unlock();
2222out:
2223        return error;
2224}
2225
2226static long do_semtimedop(int semid, struct sembuf __user *tsops,
2227                unsigned nsops, const struct timespec64 *timeout)
2228{
2229        struct sembuf fast_sops[SEMOPM_FAST];
2230        struct sembuf *sops = fast_sops;
2231        struct ipc_namespace *ns;
2232        int ret;
2233
2234        ns = current->nsproxy->ipc_ns;
2235        if (nsops > ns->sc_semopm)
2236                return -E2BIG;
2237        if (nsops < 1)
2238                return -EINVAL;
2239
2240        if (nsops > SEMOPM_FAST) {
2241                sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
2242                if (sops == NULL)
2243                        return -ENOMEM;
2244        }
2245
2246        if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
2247                ret =  -EFAULT;
2248                goto out_free;
2249        }
2250
2251        ret = __do_semtimedop(semid, sops, nsops, timeout, ns);
2252
2253out_free:
2254        if (sops != fast_sops)
2255                kvfree(sops);
2256
2257        return ret;
2258}
2259
2260long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2261                     unsigned int nsops, const struct __kernel_timespec __user *timeout)
2262{
2263        if (timeout) {
2264                struct timespec64 ts;
2265                if (get_timespec64(&ts, timeout))
2266                        return -EFAULT;
2267                return do_semtimedop(semid, tsops, nsops, &ts);
2268        }
2269        return do_semtimedop(semid, tsops, nsops, NULL);
2270}
2271
2272SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2273                unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2274{
2275        return ksys_semtimedop(semid, tsops, nsops, timeout);
2276}
2277
2278#ifdef CONFIG_COMPAT_32BIT_TIME
2279long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2280                            unsigned int nsops,
2281                            const struct old_timespec32 __user *timeout)
2282{
2283        if (timeout) {
2284                struct timespec64 ts;
2285                if (get_old_timespec32(&ts, timeout))
2286                        return -EFAULT;
2287                return do_semtimedop(semid, tsems, nsops, &ts);
2288        }
2289        return do_semtimedop(semid, tsems, nsops, NULL);
2290}
2291
2292SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
2293                       unsigned int, nsops,
2294                       const struct old_timespec32 __user *, timeout)
2295{
2296        return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2297}
2298#endif
2299
2300SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2301                unsigned, nsops)
2302{
2303        return do_semtimedop(semid, tsops, nsops, NULL);
2304}
2305
2306/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2307 * parent and child tasks.
2308 */
2309
2310int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2311{
2312        struct sem_undo_list *undo_list;
2313        int error;
2314
2315        if (clone_flags & CLONE_SYSVSEM) {
2316                error = get_undo_list(&undo_list);
2317                if (error)
2318                        return error;
2319                refcount_inc(&undo_list->refcnt);
2320                tsk->sysvsem.undo_list = undo_list;
2321        } else
2322                tsk->sysvsem.undo_list = NULL;
2323
2324        return 0;
2325}
2326
2327/*
2328 * add semadj values to semaphores, free undo structures.
2329 * undo structures are not freed when semaphore arrays are destroyed
2330 * so some of them may be out of date.
2331 * IMPLEMENTATION NOTE: There is some confusion over whether the
2332 * set of adjustments that needs to be done should be done in an atomic
2333 * manner or not. That is, if we are attempting to decrement the semval
2334 * should we queue up and wait until we can do so legally?
2335 * The original implementation attempted to do this (queue and wait).
2336 * The current implementation does not do so. The POSIX standard
2337 * and SVID should be consulted to determine what behavior is mandated.
2338 */
2339void exit_sem(struct task_struct *tsk)
2340{
2341        struct sem_undo_list *ulp;
2342
2343        ulp = tsk->sysvsem.undo_list;
2344        if (!ulp)
2345                return;
2346        tsk->sysvsem.undo_list = NULL;
2347
2348        if (!refcount_dec_and_test(&ulp->refcnt))
2349                return;
2350
2351        for (;;) {
2352                struct sem_array *sma;
2353                struct sem_undo *un;
2354                int semid, i;
2355                DEFINE_WAKE_Q(wake_q);
2356
2357                cond_resched();
2358
2359                rcu_read_lock();
2360                un = list_entry_rcu(ulp->list_proc.next,
2361                                    struct sem_undo, list_proc);
2362                if (&un->list_proc == &ulp->list_proc) {
2363                        /*
2364                         * We must wait for freeary() before freeing this ulp,
2365                         * in case we raced with last sem_undo. There is a small
2366                         * possibility where we exit while freeary() didn't
2367                         * finish unlocking sem_undo_list.
2368                         */
2369                        spin_lock(&ulp->lock);
2370                        spin_unlock(&ulp->lock);
2371                        rcu_read_unlock();
2372                        break;
2373                }
2374                spin_lock(&ulp->lock);
2375                semid = un->semid;
2376                spin_unlock(&ulp->lock);
2377
2378                /* exit_sem raced with IPC_RMID, nothing to do */
2379                if (semid == -1) {
2380                        rcu_read_unlock();
2381                        continue;
2382                }
2383
2384                sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2385                /* exit_sem raced with IPC_RMID, nothing to do */
2386                if (IS_ERR(sma)) {
2387                        rcu_read_unlock();
2388                        continue;
2389                }
2390
2391                sem_lock(sma, NULL, -1);
2392                /* exit_sem raced with IPC_RMID, nothing to do */
2393                if (!ipc_valid_object(&sma->sem_perm)) {
2394                        sem_unlock(sma, -1);
2395                        rcu_read_unlock();
2396                        continue;
2397                }
2398                un = __lookup_undo(ulp, semid);
2399                if (un == NULL) {
2400                        /* exit_sem raced with IPC_RMID+semget() that created
2401                         * exactly the same semid. Nothing to do.
2402                         */
2403                        sem_unlock(sma, -1);
2404                        rcu_read_unlock();
2405                        continue;
2406                }
2407
2408                /* remove un from the linked lists */
2409                ipc_assert_locked_object(&sma->sem_perm);
2410                list_del(&un->list_id);
2411
2412                spin_lock(&ulp->lock);
2413                list_del_rcu(&un->list_proc);
2414                spin_unlock(&ulp->lock);
2415
2416                /* perform adjustments registered in un */
2417                for (i = 0; i < sma->sem_nsems; i++) {
2418                        struct sem *semaphore = &sma->sems[i];
2419                        if (un->semadj[i]) {
2420                                semaphore->semval += un->semadj[i];
2421                                /*
2422                                 * Range checks of the new semaphore value,
2423                                 * not defined by sus:
2424                                 * - Some unices ignore the undo entirely
2425                                 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2426                                 * - some cap the value (e.g. FreeBSD caps
2427                                 *   at 0, but doesn't enforce SEMVMX)
2428                                 *
2429                                 * Linux caps the semaphore value, both at 0
2430                                 * and at SEMVMX.
2431                                 *
2432                                 *      Manfred <manfred@colorfullife.com>
2433                                 */
2434                                if (semaphore->semval < 0)
2435                                        semaphore->semval = 0;
2436                                if (semaphore->semval > SEMVMX)
2437                                        semaphore->semval = SEMVMX;
2438                                ipc_update_pid(&semaphore->sempid, task_tgid(current));
2439                        }
2440                }
2441                /* maybe some queued-up processes were waiting for this */
2442                do_smart_update(sma, NULL, 0, 1, &wake_q);
2443                sem_unlock(sma, -1);
2444                rcu_read_unlock();
2445                wake_up_q(&wake_q);
2446
2447                kvfree_rcu(un, rcu);
2448        }
2449        kfree(ulp);
2450}
2451
2452#ifdef CONFIG_PROC_FS
2453static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2454{
2455        struct user_namespace *user_ns = seq_user_ns(s);
2456        struct kern_ipc_perm *ipcp = it;
2457        struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2458        time64_t sem_otime;
2459
2460        /*
2461         * The proc interface isn't aware of sem_lock(), it calls
2462         * ipc_lock_object(), i.e. spin_lock(&sma->sem_perm.lock).
2463         * (in sysvipc_find_ipc)
2464         * In order to stay compatible with sem_lock(), we must
2465         * enter / leave complex_mode.
2466         */
2467        complexmode_enter(sma);
2468
2469        sem_otime = get_semotime(sma);
2470
2471        seq_printf(s,
2472                   "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2473                   sma->sem_perm.key,
2474                   sma->sem_perm.id,
2475                   sma->sem_perm.mode,
2476                   sma->sem_nsems,
2477                   from_kuid_munged(user_ns, sma->sem_perm.uid),
2478                   from_kgid_munged(user_ns, sma->sem_perm.gid),
2479                   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2480                   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2481                   sem_otime,
2482                   sma->sem_ctime);
2483
2484        complexmode_tryleave(sma);
2485
2486        return 0;
2487}
2488#endif
2489