linux/kernel/bpf/btf.c
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <uapi/linux/btf.h>
   5#include <uapi/linux/bpf.h>
   6#include <uapi/linux/bpf_perf_event.h>
   7#include <uapi/linux/types.h>
   8#include <linux/seq_file.h>
   9#include <linux/compiler.h>
  10#include <linux/ctype.h>
  11#include <linux/errno.h>
  12#include <linux/slab.h>
  13#include <linux/anon_inodes.h>
  14#include <linux/file.h>
  15#include <linux/uaccess.h>
  16#include <linux/kernel.h>
  17#include <linux/idr.h>
  18#include <linux/sort.h>
  19#include <linux/bpf_verifier.h>
  20#include <linux/btf.h>
  21#include <linux/btf_ids.h>
  22#include <linux/skmsg.h>
  23#include <linux/perf_event.h>
  24#include <linux/bsearch.h>
  25#include <linux/kobject.h>
  26#include <linux/sysfs.h>
  27#include <net/sock.h>
  28
  29/* BTF (BPF Type Format) is the meta data format which describes
  30 * the data types of BPF program/map.  Hence, it basically focus
  31 * on the C programming language which the modern BPF is primary
  32 * using.
  33 *
  34 * ELF Section:
  35 * ~~~~~~~~~~~
  36 * The BTF data is stored under the ".BTF" ELF section
  37 *
  38 * struct btf_type:
  39 * ~~~~~~~~~~~~~~~
  40 * Each 'struct btf_type' object describes a C data type.
  41 * Depending on the type it is describing, a 'struct btf_type'
  42 * object may be followed by more data.  F.e.
  43 * To describe an array, 'struct btf_type' is followed by
  44 * 'struct btf_array'.
  45 *
  46 * 'struct btf_type' and any extra data following it are
  47 * 4 bytes aligned.
  48 *
  49 * Type section:
  50 * ~~~~~~~~~~~~~
  51 * The BTF type section contains a list of 'struct btf_type' objects.
  52 * Each one describes a C type.  Recall from the above section
  53 * that a 'struct btf_type' object could be immediately followed by extra
  54 * data in order to describe some particular C types.
  55 *
  56 * type_id:
  57 * ~~~~~~~
  58 * Each btf_type object is identified by a type_id.  The type_id
  59 * is implicitly implied by the location of the btf_type object in
  60 * the BTF type section.  The first one has type_id 1.  The second
  61 * one has type_id 2...etc.  Hence, an earlier btf_type has
  62 * a smaller type_id.
  63 *
  64 * A btf_type object may refer to another btf_type object by using
  65 * type_id (i.e. the "type" in the "struct btf_type").
  66 *
  67 * NOTE that we cannot assume any reference-order.
  68 * A btf_type object can refer to an earlier btf_type object
  69 * but it can also refer to a later btf_type object.
  70 *
  71 * For example, to describe "const void *".  A btf_type
  72 * object describing "const" may refer to another btf_type
  73 * object describing "void *".  This type-reference is done
  74 * by specifying type_id:
  75 *
  76 * [1] CONST (anon) type_id=2
  77 * [2] PTR (anon) type_id=0
  78 *
  79 * The above is the btf_verifier debug log:
  80 *   - Each line started with "[?]" is a btf_type object
  81 *   - [?] is the type_id of the btf_type object.
  82 *   - CONST/PTR is the BTF_KIND_XXX
  83 *   - "(anon)" is the name of the type.  It just
  84 *     happens that CONST and PTR has no name.
  85 *   - type_id=XXX is the 'u32 type' in btf_type
  86 *
  87 * NOTE: "void" has type_id 0
  88 *
  89 * String section:
  90 * ~~~~~~~~~~~~~~
  91 * The BTF string section contains the names used by the type section.
  92 * Each string is referred by an "offset" from the beginning of the
  93 * string section.
  94 *
  95 * Each string is '\0' terminated.
  96 *
  97 * The first character in the string section must be '\0'
  98 * which is used to mean 'anonymous'. Some btf_type may not
  99 * have a name.
 100 */
 101
 102/* BTF verification:
 103 *
 104 * To verify BTF data, two passes are needed.
 105 *
 106 * Pass #1
 107 * ~~~~~~~
 108 * The first pass is to collect all btf_type objects to
 109 * an array: "btf->types".
 110 *
 111 * Depending on the C type that a btf_type is describing,
 112 * a btf_type may be followed by extra data.  We don't know
 113 * how many btf_type is there, and more importantly we don't
 114 * know where each btf_type is located in the type section.
 115 *
 116 * Without knowing the location of each type_id, most verifications
 117 * cannot be done.  e.g. an earlier btf_type may refer to a later
 118 * btf_type (recall the "const void *" above), so we cannot
 119 * check this type-reference in the first pass.
 120 *
 121 * In the first pass, it still does some verifications (e.g.
 122 * checking the name is a valid offset to the string section).
 123 *
 124 * Pass #2
 125 * ~~~~~~~
 126 * The main focus is to resolve a btf_type that is referring
 127 * to another type.
 128 *
 129 * We have to ensure the referring type:
 130 * 1) does exist in the BTF (i.e. in btf->types[])
 131 * 2) does not cause a loop:
 132 *      struct A {
 133 *              struct B b;
 134 *      };
 135 *
 136 *      struct B {
 137 *              struct A a;
 138 *      };
 139 *
 140 * btf_type_needs_resolve() decides if a btf_type needs
 141 * to be resolved.
 142 *
 143 * The needs_resolve type implements the "resolve()" ops which
 144 * essentially does a DFS and detects backedge.
 145 *
 146 * During resolve (or DFS), different C types have different
 147 * "RESOLVED" conditions.
 148 *
 149 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
 150 * members because a member is always referring to another
 151 * type.  A struct's member can be treated as "RESOLVED" if
 152 * it is referring to a BTF_KIND_PTR.  Otherwise, the
 153 * following valid C struct would be rejected:
 154 *
 155 *      struct A {
 156 *              int m;
 157 *              struct A *a;
 158 *      };
 159 *
 160 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
 161 * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
 162 * detect a pointer loop, e.g.:
 163 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
 164 *                        ^                                         |
 165 *                        +-----------------------------------------+
 166 *
 167 */
 168
 169#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
 170#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
 171#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
 172#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
 173#define BITS_ROUNDUP_BYTES(bits) \
 174        (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
 175
 176#define BTF_INFO_MASK 0x9f00ffff
 177#define BTF_INT_MASK 0x0fffffff
 178#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
 179#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
 180
 181/* 16MB for 64k structs and each has 16 members and
 182 * a few MB spaces for the string section.
 183 * The hard limit is S32_MAX.
 184 */
 185#define BTF_MAX_SIZE (16 * 1024 * 1024)
 186
 187#define for_each_member_from(i, from, struct_type, member)              \
 188        for (i = from, member = btf_type_member(struct_type) + from;    \
 189             i < btf_type_vlen(struct_type);                            \
 190             i++, member++)
 191
 192#define for_each_vsi_from(i, from, struct_type, member)                         \
 193        for (i = from, member = btf_type_var_secinfo(struct_type) + from;       \
 194             i < btf_type_vlen(struct_type);                                    \
 195             i++, member++)
 196
 197DEFINE_IDR(btf_idr);
 198DEFINE_SPINLOCK(btf_idr_lock);
 199
 200struct btf {
 201        void *data;
 202        struct btf_type **types;
 203        u32 *resolved_ids;
 204        u32 *resolved_sizes;
 205        const char *strings;
 206        void *nohdr_data;
 207        struct btf_header hdr;
 208        u32 nr_types; /* includes VOID for base BTF */
 209        u32 types_size;
 210        u32 data_size;
 211        refcount_t refcnt;
 212        u32 id;
 213        struct rcu_head rcu;
 214
 215        /* split BTF support */
 216        struct btf *base_btf;
 217        u32 start_id; /* first type ID in this BTF (0 for base BTF) */
 218        u32 start_str_off; /* first string offset (0 for base BTF) */
 219        char name[MODULE_NAME_LEN];
 220        bool kernel_btf;
 221};
 222
 223enum verifier_phase {
 224        CHECK_META,
 225        CHECK_TYPE,
 226};
 227
 228struct resolve_vertex {
 229        const struct btf_type *t;
 230        u32 type_id;
 231        u16 next_member;
 232};
 233
 234enum visit_state {
 235        NOT_VISITED,
 236        VISITED,
 237        RESOLVED,
 238};
 239
 240enum resolve_mode {
 241        RESOLVE_TBD,    /* To Be Determined */
 242        RESOLVE_PTR,    /* Resolving for Pointer */
 243        RESOLVE_STRUCT_OR_ARRAY,        /* Resolving for struct/union
 244                                         * or array
 245                                         */
 246};
 247
 248#define MAX_RESOLVE_DEPTH 32
 249
 250struct btf_sec_info {
 251        u32 off;
 252        u32 len;
 253};
 254
 255struct btf_verifier_env {
 256        struct btf *btf;
 257        u8 *visit_states;
 258        struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
 259        struct bpf_verifier_log log;
 260        u32 log_type_id;
 261        u32 top_stack;
 262        enum verifier_phase phase;
 263        enum resolve_mode resolve_mode;
 264};
 265
 266static const char * const btf_kind_str[NR_BTF_KINDS] = {
 267        [BTF_KIND_UNKN]         = "UNKNOWN",
 268        [BTF_KIND_INT]          = "INT",
 269        [BTF_KIND_PTR]          = "PTR",
 270        [BTF_KIND_ARRAY]        = "ARRAY",
 271        [BTF_KIND_STRUCT]       = "STRUCT",
 272        [BTF_KIND_UNION]        = "UNION",
 273        [BTF_KIND_ENUM]         = "ENUM",
 274        [BTF_KIND_FWD]          = "FWD",
 275        [BTF_KIND_TYPEDEF]      = "TYPEDEF",
 276        [BTF_KIND_VOLATILE]     = "VOLATILE",
 277        [BTF_KIND_CONST]        = "CONST",
 278        [BTF_KIND_RESTRICT]     = "RESTRICT",
 279        [BTF_KIND_FUNC]         = "FUNC",
 280        [BTF_KIND_FUNC_PROTO]   = "FUNC_PROTO",
 281        [BTF_KIND_VAR]          = "VAR",
 282        [BTF_KIND_DATASEC]      = "DATASEC",
 283        [BTF_KIND_FLOAT]        = "FLOAT",
 284};
 285
 286const char *btf_type_str(const struct btf_type *t)
 287{
 288        return btf_kind_str[BTF_INFO_KIND(t->info)];
 289}
 290
 291/* Chunk size we use in safe copy of data to be shown. */
 292#define BTF_SHOW_OBJ_SAFE_SIZE          32
 293
 294/*
 295 * This is the maximum size of a base type value (equivalent to a
 296 * 128-bit int); if we are at the end of our safe buffer and have
 297 * less than 16 bytes space we can't be assured of being able
 298 * to copy the next type safely, so in such cases we will initiate
 299 * a new copy.
 300 */
 301#define BTF_SHOW_OBJ_BASE_TYPE_SIZE     16
 302
 303/* Type name size */
 304#define BTF_SHOW_NAME_SIZE              80
 305
 306/*
 307 * Common data to all BTF show operations. Private show functions can add
 308 * their own data to a structure containing a struct btf_show and consult it
 309 * in the show callback.  See btf_type_show() below.
 310 *
 311 * One challenge with showing nested data is we want to skip 0-valued
 312 * data, but in order to figure out whether a nested object is all zeros
 313 * we need to walk through it.  As a result, we need to make two passes
 314 * when handling structs, unions and arrays; the first path simply looks
 315 * for nonzero data, while the second actually does the display.  The first
 316 * pass is signalled by show->state.depth_check being set, and if we
 317 * encounter a non-zero value we set show->state.depth_to_show to
 318 * the depth at which we encountered it.  When we have completed the
 319 * first pass, we will know if anything needs to be displayed if
 320 * depth_to_show > depth.  See btf_[struct,array]_show() for the
 321 * implementation of this.
 322 *
 323 * Another problem is we want to ensure the data for display is safe to
 324 * access.  To support this, the anonymous "struct {} obj" tracks the data
 325 * object and our safe copy of it.  We copy portions of the data needed
 326 * to the object "copy" buffer, but because its size is limited to
 327 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
 328 * traverse larger objects for display.
 329 *
 330 * The various data type show functions all start with a call to
 331 * btf_show_start_type() which returns a pointer to the safe copy
 332 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
 333 * raw data itself).  btf_show_obj_safe() is responsible for
 334 * using copy_from_kernel_nofault() to update the safe data if necessary
 335 * as we traverse the object's data.  skbuff-like semantics are
 336 * used:
 337 *
 338 * - obj.head points to the start of the toplevel object for display
 339 * - obj.size is the size of the toplevel object
 340 * - obj.data points to the current point in the original data at
 341 *   which our safe data starts.  obj.data will advance as we copy
 342 *   portions of the data.
 343 *
 344 * In most cases a single copy will suffice, but larger data structures
 345 * such as "struct task_struct" will require many copies.  The logic in
 346 * btf_show_obj_safe() handles the logic that determines if a new
 347 * copy_from_kernel_nofault() is needed.
 348 */
 349struct btf_show {
 350        u64 flags;
 351        void *target;   /* target of show operation (seq file, buffer) */
 352        void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
 353        const struct btf *btf;
 354        /* below are used during iteration */
 355        struct {
 356                u8 depth;
 357                u8 depth_to_show;
 358                u8 depth_check;
 359                u8 array_member:1,
 360                   array_terminated:1;
 361                u16 array_encoding;
 362                u32 type_id;
 363                int status;                     /* non-zero for error */
 364                const struct btf_type *type;
 365                const struct btf_member *member;
 366                char name[BTF_SHOW_NAME_SIZE];  /* space for member name/type */
 367        } state;
 368        struct {
 369                u32 size;
 370                void *head;
 371                void *data;
 372                u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
 373        } obj;
 374};
 375
 376struct btf_kind_operations {
 377        s32 (*check_meta)(struct btf_verifier_env *env,
 378                          const struct btf_type *t,
 379                          u32 meta_left);
 380        int (*resolve)(struct btf_verifier_env *env,
 381                       const struct resolve_vertex *v);
 382        int (*check_member)(struct btf_verifier_env *env,
 383                            const struct btf_type *struct_type,
 384                            const struct btf_member *member,
 385                            const struct btf_type *member_type);
 386        int (*check_kflag_member)(struct btf_verifier_env *env,
 387                                  const struct btf_type *struct_type,
 388                                  const struct btf_member *member,
 389                                  const struct btf_type *member_type);
 390        void (*log_details)(struct btf_verifier_env *env,
 391                            const struct btf_type *t);
 392        void (*show)(const struct btf *btf, const struct btf_type *t,
 393                         u32 type_id, void *data, u8 bits_offsets,
 394                         struct btf_show *show);
 395};
 396
 397static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
 398static struct btf_type btf_void;
 399
 400static int btf_resolve(struct btf_verifier_env *env,
 401                       const struct btf_type *t, u32 type_id);
 402
 403static bool btf_type_is_modifier(const struct btf_type *t)
 404{
 405        /* Some of them is not strictly a C modifier
 406         * but they are grouped into the same bucket
 407         * for BTF concern:
 408         *   A type (t) that refers to another
 409         *   type through t->type AND its size cannot
 410         *   be determined without following the t->type.
 411         *
 412         * ptr does not fall into this bucket
 413         * because its size is always sizeof(void *).
 414         */
 415        switch (BTF_INFO_KIND(t->info)) {
 416        case BTF_KIND_TYPEDEF:
 417        case BTF_KIND_VOLATILE:
 418        case BTF_KIND_CONST:
 419        case BTF_KIND_RESTRICT:
 420                return true;
 421        }
 422
 423        return false;
 424}
 425
 426bool btf_type_is_void(const struct btf_type *t)
 427{
 428        return t == &btf_void;
 429}
 430
 431static bool btf_type_is_fwd(const struct btf_type *t)
 432{
 433        return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
 434}
 435
 436static bool btf_type_nosize(const struct btf_type *t)
 437{
 438        return btf_type_is_void(t) || btf_type_is_fwd(t) ||
 439               btf_type_is_func(t) || btf_type_is_func_proto(t);
 440}
 441
 442static bool btf_type_nosize_or_null(const struct btf_type *t)
 443{
 444        return !t || btf_type_nosize(t);
 445}
 446
 447static bool __btf_type_is_struct(const struct btf_type *t)
 448{
 449        return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
 450}
 451
 452static bool btf_type_is_array(const struct btf_type *t)
 453{
 454        return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
 455}
 456
 457static bool btf_type_is_datasec(const struct btf_type *t)
 458{
 459        return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
 460}
 461
 462u32 btf_nr_types(const struct btf *btf)
 463{
 464        u32 total = 0;
 465
 466        while (btf) {
 467                total += btf->nr_types;
 468                btf = btf->base_btf;
 469        }
 470
 471        return total;
 472}
 473
 474s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
 475{
 476        const struct btf_type *t;
 477        const char *tname;
 478        u32 i, total;
 479
 480        total = btf_nr_types(btf);
 481        for (i = 1; i < total; i++) {
 482                t = btf_type_by_id(btf, i);
 483                if (BTF_INFO_KIND(t->info) != kind)
 484                        continue;
 485
 486                tname = btf_name_by_offset(btf, t->name_off);
 487                if (!strcmp(tname, name))
 488                        return i;
 489        }
 490
 491        return -ENOENT;
 492}
 493
 494const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
 495                                               u32 id, u32 *res_id)
 496{
 497        const struct btf_type *t = btf_type_by_id(btf, id);
 498
 499        while (btf_type_is_modifier(t)) {
 500                id = t->type;
 501                t = btf_type_by_id(btf, t->type);
 502        }
 503
 504        if (res_id)
 505                *res_id = id;
 506
 507        return t;
 508}
 509
 510const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
 511                                            u32 id, u32 *res_id)
 512{
 513        const struct btf_type *t;
 514
 515        t = btf_type_skip_modifiers(btf, id, NULL);
 516        if (!btf_type_is_ptr(t))
 517                return NULL;
 518
 519        return btf_type_skip_modifiers(btf, t->type, res_id);
 520}
 521
 522const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
 523                                                 u32 id, u32 *res_id)
 524{
 525        const struct btf_type *ptype;
 526
 527        ptype = btf_type_resolve_ptr(btf, id, res_id);
 528        if (ptype && btf_type_is_func_proto(ptype))
 529                return ptype;
 530
 531        return NULL;
 532}
 533
 534/* Types that act only as a source, not sink or intermediate
 535 * type when resolving.
 536 */
 537static bool btf_type_is_resolve_source_only(const struct btf_type *t)
 538{
 539        return btf_type_is_var(t) ||
 540               btf_type_is_datasec(t);
 541}
 542
 543/* What types need to be resolved?
 544 *
 545 * btf_type_is_modifier() is an obvious one.
 546 *
 547 * btf_type_is_struct() because its member refers to
 548 * another type (through member->type).
 549 *
 550 * btf_type_is_var() because the variable refers to
 551 * another type. btf_type_is_datasec() holds multiple
 552 * btf_type_is_var() types that need resolving.
 553 *
 554 * btf_type_is_array() because its element (array->type)
 555 * refers to another type.  Array can be thought of a
 556 * special case of struct while array just has the same
 557 * member-type repeated by array->nelems of times.
 558 */
 559static bool btf_type_needs_resolve(const struct btf_type *t)
 560{
 561        return btf_type_is_modifier(t) ||
 562               btf_type_is_ptr(t) ||
 563               btf_type_is_struct(t) ||
 564               btf_type_is_array(t) ||
 565               btf_type_is_var(t) ||
 566               btf_type_is_datasec(t);
 567}
 568
 569/* t->size can be used */
 570static bool btf_type_has_size(const struct btf_type *t)
 571{
 572        switch (BTF_INFO_KIND(t->info)) {
 573        case BTF_KIND_INT:
 574        case BTF_KIND_STRUCT:
 575        case BTF_KIND_UNION:
 576        case BTF_KIND_ENUM:
 577        case BTF_KIND_DATASEC:
 578        case BTF_KIND_FLOAT:
 579                return true;
 580        }
 581
 582        return false;
 583}
 584
 585static const char *btf_int_encoding_str(u8 encoding)
 586{
 587        if (encoding == 0)
 588                return "(none)";
 589        else if (encoding == BTF_INT_SIGNED)
 590                return "SIGNED";
 591        else if (encoding == BTF_INT_CHAR)
 592                return "CHAR";
 593        else if (encoding == BTF_INT_BOOL)
 594                return "BOOL";
 595        else
 596                return "UNKN";
 597}
 598
 599static u32 btf_type_int(const struct btf_type *t)
 600{
 601        return *(u32 *)(t + 1);
 602}
 603
 604static const struct btf_array *btf_type_array(const struct btf_type *t)
 605{
 606        return (const struct btf_array *)(t + 1);
 607}
 608
 609static const struct btf_enum *btf_type_enum(const struct btf_type *t)
 610{
 611        return (const struct btf_enum *)(t + 1);
 612}
 613
 614static const struct btf_var *btf_type_var(const struct btf_type *t)
 615{
 616        return (const struct btf_var *)(t + 1);
 617}
 618
 619static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
 620{
 621        return kind_ops[BTF_INFO_KIND(t->info)];
 622}
 623
 624static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
 625{
 626        if (!BTF_STR_OFFSET_VALID(offset))
 627                return false;
 628
 629        while (offset < btf->start_str_off)
 630                btf = btf->base_btf;
 631
 632        offset -= btf->start_str_off;
 633        return offset < btf->hdr.str_len;
 634}
 635
 636static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
 637{
 638        if ((first ? !isalpha(c) :
 639                     !isalnum(c)) &&
 640            c != '_' &&
 641            ((c == '.' && !dot_ok) ||
 642              c != '.'))
 643                return false;
 644        return true;
 645}
 646
 647static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
 648{
 649        while (offset < btf->start_str_off)
 650                btf = btf->base_btf;
 651
 652        offset -= btf->start_str_off;
 653        if (offset < btf->hdr.str_len)
 654                return &btf->strings[offset];
 655
 656        return NULL;
 657}
 658
 659static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
 660{
 661        /* offset must be valid */
 662        const char *src = btf_str_by_offset(btf, offset);
 663        const char *src_limit;
 664
 665        if (!__btf_name_char_ok(*src, true, dot_ok))
 666                return false;
 667
 668        /* set a limit on identifier length */
 669        src_limit = src + KSYM_NAME_LEN;
 670        src++;
 671        while (*src && src < src_limit) {
 672                if (!__btf_name_char_ok(*src, false, dot_ok))
 673                        return false;
 674                src++;
 675        }
 676
 677        return !*src;
 678}
 679
 680/* Only C-style identifier is permitted. This can be relaxed if
 681 * necessary.
 682 */
 683static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
 684{
 685        return __btf_name_valid(btf, offset, false);
 686}
 687
 688static bool btf_name_valid_section(const struct btf *btf, u32 offset)
 689{
 690        return __btf_name_valid(btf, offset, true);
 691}
 692
 693static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
 694{
 695        const char *name;
 696
 697        if (!offset)
 698                return "(anon)";
 699
 700        name = btf_str_by_offset(btf, offset);
 701        return name ?: "(invalid-name-offset)";
 702}
 703
 704const char *btf_name_by_offset(const struct btf *btf, u32 offset)
 705{
 706        return btf_str_by_offset(btf, offset);
 707}
 708
 709const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
 710{
 711        while (type_id < btf->start_id)
 712                btf = btf->base_btf;
 713
 714        type_id -= btf->start_id;
 715        if (type_id >= btf->nr_types)
 716                return NULL;
 717        return btf->types[type_id];
 718}
 719
 720/*
 721 * Regular int is not a bit field and it must be either
 722 * u8/u16/u32/u64 or __int128.
 723 */
 724static bool btf_type_int_is_regular(const struct btf_type *t)
 725{
 726        u8 nr_bits, nr_bytes;
 727        u32 int_data;
 728
 729        int_data = btf_type_int(t);
 730        nr_bits = BTF_INT_BITS(int_data);
 731        nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
 732        if (BITS_PER_BYTE_MASKED(nr_bits) ||
 733            BTF_INT_OFFSET(int_data) ||
 734            (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
 735             nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
 736             nr_bytes != (2 * sizeof(u64)))) {
 737                return false;
 738        }
 739
 740        return true;
 741}
 742
 743/*
 744 * Check that given struct member is a regular int with expected
 745 * offset and size.
 746 */
 747bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
 748                           const struct btf_member *m,
 749                           u32 expected_offset, u32 expected_size)
 750{
 751        const struct btf_type *t;
 752        u32 id, int_data;
 753        u8 nr_bits;
 754
 755        id = m->type;
 756        t = btf_type_id_size(btf, &id, NULL);
 757        if (!t || !btf_type_is_int(t))
 758                return false;
 759
 760        int_data = btf_type_int(t);
 761        nr_bits = BTF_INT_BITS(int_data);
 762        if (btf_type_kflag(s)) {
 763                u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
 764                u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
 765
 766                /* if kflag set, int should be a regular int and
 767                 * bit offset should be at byte boundary.
 768                 */
 769                return !bitfield_size &&
 770                       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
 771                       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
 772        }
 773
 774        if (BTF_INT_OFFSET(int_data) ||
 775            BITS_PER_BYTE_MASKED(m->offset) ||
 776            BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
 777            BITS_PER_BYTE_MASKED(nr_bits) ||
 778            BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
 779                return false;
 780
 781        return true;
 782}
 783
 784/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
 785static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
 786                                                       u32 id)
 787{
 788        const struct btf_type *t = btf_type_by_id(btf, id);
 789
 790        while (btf_type_is_modifier(t) &&
 791               BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
 792                t = btf_type_by_id(btf, t->type);
 793        }
 794
 795        return t;
 796}
 797
 798#define BTF_SHOW_MAX_ITER       10
 799
 800#define BTF_KIND_BIT(kind)      (1ULL << kind)
 801
 802/*
 803 * Populate show->state.name with type name information.
 804 * Format of type name is
 805 *
 806 * [.member_name = ] (type_name)
 807 */
 808static const char *btf_show_name(struct btf_show *show)
 809{
 810        /* BTF_MAX_ITER array suffixes "[]" */
 811        const char *array_suffixes = "[][][][][][][][][][]";
 812        const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
 813        /* BTF_MAX_ITER pointer suffixes "*" */
 814        const char *ptr_suffixes = "**********";
 815        const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
 816        const char *name = NULL, *prefix = "", *parens = "";
 817        const struct btf_member *m = show->state.member;
 818        const struct btf_type *t = show->state.type;
 819        const struct btf_array *array;
 820        u32 id = show->state.type_id;
 821        const char *member = NULL;
 822        bool show_member = false;
 823        u64 kinds = 0;
 824        int i;
 825
 826        show->state.name[0] = '\0';
 827
 828        /*
 829         * Don't show type name if we're showing an array member;
 830         * in that case we show the array type so don't need to repeat
 831         * ourselves for each member.
 832         */
 833        if (show->state.array_member)
 834                return "";
 835
 836        /* Retrieve member name, if any. */
 837        if (m) {
 838                member = btf_name_by_offset(show->btf, m->name_off);
 839                show_member = strlen(member) > 0;
 840                id = m->type;
 841        }
 842
 843        /*
 844         * Start with type_id, as we have resolved the struct btf_type *
 845         * via btf_modifier_show() past the parent typedef to the child
 846         * struct, int etc it is defined as.  In such cases, the type_id
 847         * still represents the starting type while the struct btf_type *
 848         * in our show->state points at the resolved type of the typedef.
 849         */
 850        t = btf_type_by_id(show->btf, id);
 851        if (!t)
 852                return "";
 853
 854        /*
 855         * The goal here is to build up the right number of pointer and
 856         * array suffixes while ensuring the type name for a typedef
 857         * is represented.  Along the way we accumulate a list of
 858         * BTF kinds we have encountered, since these will inform later
 859         * display; for example, pointer types will not require an
 860         * opening "{" for struct, we will just display the pointer value.
 861         *
 862         * We also want to accumulate the right number of pointer or array
 863         * indices in the format string while iterating until we get to
 864         * the typedef/pointee/array member target type.
 865         *
 866         * We start by pointing at the end of pointer and array suffix
 867         * strings; as we accumulate pointers and arrays we move the pointer
 868         * or array string backwards so it will show the expected number of
 869         * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
 870         * and/or arrays and typedefs are supported as a precaution.
 871         *
 872         * We also want to get typedef name while proceeding to resolve
 873         * type it points to so that we can add parentheses if it is a
 874         * "typedef struct" etc.
 875         */
 876        for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
 877
 878                switch (BTF_INFO_KIND(t->info)) {
 879                case BTF_KIND_TYPEDEF:
 880                        if (!name)
 881                                name = btf_name_by_offset(show->btf,
 882                                                               t->name_off);
 883                        kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
 884                        id = t->type;
 885                        break;
 886                case BTF_KIND_ARRAY:
 887                        kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
 888                        parens = "[";
 889                        if (!t)
 890                                return "";
 891                        array = btf_type_array(t);
 892                        if (array_suffix > array_suffixes)
 893                                array_suffix -= 2;
 894                        id = array->type;
 895                        break;
 896                case BTF_KIND_PTR:
 897                        kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
 898                        if (ptr_suffix > ptr_suffixes)
 899                                ptr_suffix -= 1;
 900                        id = t->type;
 901                        break;
 902                default:
 903                        id = 0;
 904                        break;
 905                }
 906                if (!id)
 907                        break;
 908                t = btf_type_skip_qualifiers(show->btf, id);
 909        }
 910        /* We may not be able to represent this type; bail to be safe */
 911        if (i == BTF_SHOW_MAX_ITER)
 912                return "";
 913
 914        if (!name)
 915                name = btf_name_by_offset(show->btf, t->name_off);
 916
 917        switch (BTF_INFO_KIND(t->info)) {
 918        case BTF_KIND_STRUCT:
 919        case BTF_KIND_UNION:
 920                prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
 921                         "struct" : "union";
 922                /* if it's an array of struct/union, parens is already set */
 923                if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
 924                        parens = "{";
 925                break;
 926        case BTF_KIND_ENUM:
 927                prefix = "enum";
 928                break;
 929        default:
 930                break;
 931        }
 932
 933        /* pointer does not require parens */
 934        if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
 935                parens = "";
 936        /* typedef does not require struct/union/enum prefix */
 937        if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
 938                prefix = "";
 939
 940        if (!name)
 941                name = "";
 942
 943        /* Even if we don't want type name info, we want parentheses etc */
 944        if (show->flags & BTF_SHOW_NONAME)
 945                snprintf(show->state.name, sizeof(show->state.name), "%s",
 946                         parens);
 947        else
 948                snprintf(show->state.name, sizeof(show->state.name),
 949                         "%s%s%s(%s%s%s%s%s%s)%s",
 950                         /* first 3 strings comprise ".member = " */
 951                         show_member ? "." : "",
 952                         show_member ? member : "",
 953                         show_member ? " = " : "",
 954                         /* ...next is our prefix (struct, enum, etc) */
 955                         prefix,
 956                         strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
 957                         /* ...this is the type name itself */
 958                         name,
 959                         /* ...suffixed by the appropriate '*', '[]' suffixes */
 960                         strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
 961                         array_suffix, parens);
 962
 963        return show->state.name;
 964}
 965
 966static const char *__btf_show_indent(struct btf_show *show)
 967{
 968        const char *indents = "                                ";
 969        const char *indent = &indents[strlen(indents)];
 970
 971        if ((indent - show->state.depth) >= indents)
 972                return indent - show->state.depth;
 973        return indents;
 974}
 975
 976static const char *btf_show_indent(struct btf_show *show)
 977{
 978        return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
 979}
 980
 981static const char *btf_show_newline(struct btf_show *show)
 982{
 983        return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
 984}
 985
 986static const char *btf_show_delim(struct btf_show *show)
 987{
 988        if (show->state.depth == 0)
 989                return "";
 990
 991        if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
 992                BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
 993                return "|";
 994
 995        return ",";
 996}
 997
 998__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
 999{
1000        va_list args;
1001
1002        if (!show->state.depth_check) {
1003                va_start(args, fmt);
1004                show->showfn(show, fmt, args);
1005                va_end(args);
1006        }
1007}
1008
1009/* Macros are used here as btf_show_type_value[s]() prepends and appends
1010 * format specifiers to the format specifier passed in; these do the work of
1011 * adding indentation, delimiters etc while the caller simply has to specify
1012 * the type value(s) in the format specifier + value(s).
1013 */
1014#define btf_show_type_value(show, fmt, value)                                  \
1015        do {                                                                   \
1016                if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||           \
1017                    show->state.depth == 0) {                                  \
1018                        btf_show(show, "%s%s" fmt "%s%s",                      \
1019                                 btf_show_indent(show),                        \
1020                                 btf_show_name(show),                          \
1021                                 value, btf_show_delim(show),                  \
1022                                 btf_show_newline(show));                      \
1023                        if (show->state.depth > show->state.depth_to_show)     \
1024                                show->state.depth_to_show = show->state.depth; \
1025                }                                                              \
1026        } while (0)
1027
1028#define btf_show_type_values(show, fmt, ...)                                   \
1029        do {                                                                   \
1030                btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1031                         btf_show_name(show),                                  \
1032                         __VA_ARGS__, btf_show_delim(show),                    \
1033                         btf_show_newline(show));                              \
1034                if (show->state.depth > show->state.depth_to_show)             \
1035                        show->state.depth_to_show = show->state.depth;         \
1036        } while (0)
1037
1038/* How much is left to copy to safe buffer after @data? */
1039static int btf_show_obj_size_left(struct btf_show *show, void *data)
1040{
1041        return show->obj.head + show->obj.size - data;
1042}
1043
1044/* Is object pointed to by @data of @size already copied to our safe buffer? */
1045static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1046{
1047        return data >= show->obj.data &&
1048               (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1049}
1050
1051/*
1052 * If object pointed to by @data of @size falls within our safe buffer, return
1053 * the equivalent pointer to the same safe data.  Assumes
1054 * copy_from_kernel_nofault() has already happened and our safe buffer is
1055 * populated.
1056 */
1057static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1058{
1059        if (btf_show_obj_is_safe(show, data, size))
1060                return show->obj.safe + (data - show->obj.data);
1061        return NULL;
1062}
1063
1064/*
1065 * Return a safe-to-access version of data pointed to by @data.
1066 * We do this by copying the relevant amount of information
1067 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1068 *
1069 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1070 * safe copy is needed.
1071 *
1072 * Otherwise we need to determine if we have the required amount
1073 * of data (determined by the @data pointer and the size of the
1074 * largest base type we can encounter (represented by
1075 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1076 * that we will be able to print some of the current object,
1077 * and if more is needed a copy will be triggered.
1078 * Some objects such as structs will not fit into the buffer;
1079 * in such cases additional copies when we iterate over their
1080 * members may be needed.
1081 *
1082 * btf_show_obj_safe() is used to return a safe buffer for
1083 * btf_show_start_type(); this ensures that as we recurse into
1084 * nested types we always have safe data for the given type.
1085 * This approach is somewhat wasteful; it's possible for example
1086 * that when iterating over a large union we'll end up copying the
1087 * same data repeatedly, but the goal is safety not performance.
1088 * We use stack data as opposed to per-CPU buffers because the
1089 * iteration over a type can take some time, and preemption handling
1090 * would greatly complicate use of the safe buffer.
1091 */
1092static void *btf_show_obj_safe(struct btf_show *show,
1093                               const struct btf_type *t,
1094                               void *data)
1095{
1096        const struct btf_type *rt;
1097        int size_left, size;
1098        void *safe = NULL;
1099
1100        if (show->flags & BTF_SHOW_UNSAFE)
1101                return data;
1102
1103        rt = btf_resolve_size(show->btf, t, &size);
1104        if (IS_ERR(rt)) {
1105                show->state.status = PTR_ERR(rt);
1106                return NULL;
1107        }
1108
1109        /*
1110         * Is this toplevel object? If so, set total object size and
1111         * initialize pointers.  Otherwise check if we still fall within
1112         * our safe object data.
1113         */
1114        if (show->state.depth == 0) {
1115                show->obj.size = size;
1116                show->obj.head = data;
1117        } else {
1118                /*
1119                 * If the size of the current object is > our remaining
1120                 * safe buffer we _may_ need to do a new copy.  However
1121                 * consider the case of a nested struct; it's size pushes
1122                 * us over the safe buffer limit, but showing any individual
1123                 * struct members does not.  In such cases, we don't need
1124                 * to initiate a fresh copy yet; however we definitely need
1125                 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1126                 * in our buffer, regardless of the current object size.
1127                 * The logic here is that as we resolve types we will
1128                 * hit a base type at some point, and we need to be sure
1129                 * the next chunk of data is safely available to display
1130                 * that type info safely.  We cannot rely on the size of
1131                 * the current object here because it may be much larger
1132                 * than our current buffer (e.g. task_struct is 8k).
1133                 * All we want to do here is ensure that we can print the
1134                 * next basic type, which we can if either
1135                 * - the current type size is within the safe buffer; or
1136                 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1137                 *   the safe buffer.
1138                 */
1139                safe = __btf_show_obj_safe(show, data,
1140                                           min(size,
1141                                               BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1142        }
1143
1144        /*
1145         * We need a new copy to our safe object, either because we haven't
1146         * yet copied and are initializing safe data, or because the data
1147         * we want falls outside the boundaries of the safe object.
1148         */
1149        if (!safe) {
1150                size_left = btf_show_obj_size_left(show, data);
1151                if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1152                        size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1153                show->state.status = copy_from_kernel_nofault(show->obj.safe,
1154                                                              data, size_left);
1155                if (!show->state.status) {
1156                        show->obj.data = data;
1157                        safe = show->obj.safe;
1158                }
1159        }
1160
1161        return safe;
1162}
1163
1164/*
1165 * Set the type we are starting to show and return a safe data pointer
1166 * to be used for showing the associated data.
1167 */
1168static void *btf_show_start_type(struct btf_show *show,
1169                                 const struct btf_type *t,
1170                                 u32 type_id, void *data)
1171{
1172        show->state.type = t;
1173        show->state.type_id = type_id;
1174        show->state.name[0] = '\0';
1175
1176        return btf_show_obj_safe(show, t, data);
1177}
1178
1179static void btf_show_end_type(struct btf_show *show)
1180{
1181        show->state.type = NULL;
1182        show->state.type_id = 0;
1183        show->state.name[0] = '\0';
1184}
1185
1186static void *btf_show_start_aggr_type(struct btf_show *show,
1187                                      const struct btf_type *t,
1188                                      u32 type_id, void *data)
1189{
1190        void *safe_data = btf_show_start_type(show, t, type_id, data);
1191
1192        if (!safe_data)
1193                return safe_data;
1194
1195        btf_show(show, "%s%s%s", btf_show_indent(show),
1196                 btf_show_name(show),
1197                 btf_show_newline(show));
1198        show->state.depth++;
1199        return safe_data;
1200}
1201
1202static void btf_show_end_aggr_type(struct btf_show *show,
1203                                   const char *suffix)
1204{
1205        show->state.depth--;
1206        btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1207                 btf_show_delim(show), btf_show_newline(show));
1208        btf_show_end_type(show);
1209}
1210
1211static void btf_show_start_member(struct btf_show *show,
1212                                  const struct btf_member *m)
1213{
1214        show->state.member = m;
1215}
1216
1217static void btf_show_start_array_member(struct btf_show *show)
1218{
1219        show->state.array_member = 1;
1220        btf_show_start_member(show, NULL);
1221}
1222
1223static void btf_show_end_member(struct btf_show *show)
1224{
1225        show->state.member = NULL;
1226}
1227
1228static void btf_show_end_array_member(struct btf_show *show)
1229{
1230        show->state.array_member = 0;
1231        btf_show_end_member(show);
1232}
1233
1234static void *btf_show_start_array_type(struct btf_show *show,
1235                                       const struct btf_type *t,
1236                                       u32 type_id,
1237                                       u16 array_encoding,
1238                                       void *data)
1239{
1240        show->state.array_encoding = array_encoding;
1241        show->state.array_terminated = 0;
1242        return btf_show_start_aggr_type(show, t, type_id, data);
1243}
1244
1245static void btf_show_end_array_type(struct btf_show *show)
1246{
1247        show->state.array_encoding = 0;
1248        show->state.array_terminated = 0;
1249        btf_show_end_aggr_type(show, "]");
1250}
1251
1252static void *btf_show_start_struct_type(struct btf_show *show,
1253                                        const struct btf_type *t,
1254                                        u32 type_id,
1255                                        void *data)
1256{
1257        return btf_show_start_aggr_type(show, t, type_id, data);
1258}
1259
1260static void btf_show_end_struct_type(struct btf_show *show)
1261{
1262        btf_show_end_aggr_type(show, "}");
1263}
1264
1265__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1266                                              const char *fmt, ...)
1267{
1268        va_list args;
1269
1270        va_start(args, fmt);
1271        bpf_verifier_vlog(log, fmt, args);
1272        va_end(args);
1273}
1274
1275__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1276                                            const char *fmt, ...)
1277{
1278        struct bpf_verifier_log *log = &env->log;
1279        va_list args;
1280
1281        if (!bpf_verifier_log_needed(log))
1282                return;
1283
1284        va_start(args, fmt);
1285        bpf_verifier_vlog(log, fmt, args);
1286        va_end(args);
1287}
1288
1289__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1290                                                   const struct btf_type *t,
1291                                                   bool log_details,
1292                                                   const char *fmt, ...)
1293{
1294        struct bpf_verifier_log *log = &env->log;
1295        u8 kind = BTF_INFO_KIND(t->info);
1296        struct btf *btf = env->btf;
1297        va_list args;
1298
1299        if (!bpf_verifier_log_needed(log))
1300                return;
1301
1302        /* btf verifier prints all types it is processing via
1303         * btf_verifier_log_type(..., fmt = NULL).
1304         * Skip those prints for in-kernel BTF verification.
1305         */
1306        if (log->level == BPF_LOG_KERNEL && !fmt)
1307                return;
1308
1309        __btf_verifier_log(log, "[%u] %s %s%s",
1310                           env->log_type_id,
1311                           btf_kind_str[kind],
1312                           __btf_name_by_offset(btf, t->name_off),
1313                           log_details ? " " : "");
1314
1315        if (log_details)
1316                btf_type_ops(t)->log_details(env, t);
1317
1318        if (fmt && *fmt) {
1319                __btf_verifier_log(log, " ");
1320                va_start(args, fmt);
1321                bpf_verifier_vlog(log, fmt, args);
1322                va_end(args);
1323        }
1324
1325        __btf_verifier_log(log, "\n");
1326}
1327
1328#define btf_verifier_log_type(env, t, ...) \
1329        __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1330#define btf_verifier_log_basic(env, t, ...) \
1331        __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1332
1333__printf(4, 5)
1334static void btf_verifier_log_member(struct btf_verifier_env *env,
1335                                    const struct btf_type *struct_type,
1336                                    const struct btf_member *member,
1337                                    const char *fmt, ...)
1338{
1339        struct bpf_verifier_log *log = &env->log;
1340        struct btf *btf = env->btf;
1341        va_list args;
1342
1343        if (!bpf_verifier_log_needed(log))
1344                return;
1345
1346        if (log->level == BPF_LOG_KERNEL && !fmt)
1347                return;
1348        /* The CHECK_META phase already did a btf dump.
1349         *
1350         * If member is logged again, it must hit an error in
1351         * parsing this member.  It is useful to print out which
1352         * struct this member belongs to.
1353         */
1354        if (env->phase != CHECK_META)
1355                btf_verifier_log_type(env, struct_type, NULL);
1356
1357        if (btf_type_kflag(struct_type))
1358                __btf_verifier_log(log,
1359                                   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1360                                   __btf_name_by_offset(btf, member->name_off),
1361                                   member->type,
1362                                   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1363                                   BTF_MEMBER_BIT_OFFSET(member->offset));
1364        else
1365                __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1366                                   __btf_name_by_offset(btf, member->name_off),
1367                                   member->type, member->offset);
1368
1369        if (fmt && *fmt) {
1370                __btf_verifier_log(log, " ");
1371                va_start(args, fmt);
1372                bpf_verifier_vlog(log, fmt, args);
1373                va_end(args);
1374        }
1375
1376        __btf_verifier_log(log, "\n");
1377}
1378
1379__printf(4, 5)
1380static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1381                                 const struct btf_type *datasec_type,
1382                                 const struct btf_var_secinfo *vsi,
1383                                 const char *fmt, ...)
1384{
1385        struct bpf_verifier_log *log = &env->log;
1386        va_list args;
1387
1388        if (!bpf_verifier_log_needed(log))
1389                return;
1390        if (log->level == BPF_LOG_KERNEL && !fmt)
1391                return;
1392        if (env->phase != CHECK_META)
1393                btf_verifier_log_type(env, datasec_type, NULL);
1394
1395        __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1396                           vsi->type, vsi->offset, vsi->size);
1397        if (fmt && *fmt) {
1398                __btf_verifier_log(log, " ");
1399                va_start(args, fmt);
1400                bpf_verifier_vlog(log, fmt, args);
1401                va_end(args);
1402        }
1403
1404        __btf_verifier_log(log, "\n");
1405}
1406
1407static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1408                                 u32 btf_data_size)
1409{
1410        struct bpf_verifier_log *log = &env->log;
1411        const struct btf *btf = env->btf;
1412        const struct btf_header *hdr;
1413
1414        if (!bpf_verifier_log_needed(log))
1415                return;
1416
1417        if (log->level == BPF_LOG_KERNEL)
1418                return;
1419        hdr = &btf->hdr;
1420        __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1421        __btf_verifier_log(log, "version: %u\n", hdr->version);
1422        __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1423        __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1424        __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1425        __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1426        __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1427        __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1428        __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1429}
1430
1431static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1432{
1433        struct btf *btf = env->btf;
1434
1435        if (btf->types_size == btf->nr_types) {
1436                /* Expand 'types' array */
1437
1438                struct btf_type **new_types;
1439                u32 expand_by, new_size;
1440
1441                if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1442                        btf_verifier_log(env, "Exceeded max num of types");
1443                        return -E2BIG;
1444                }
1445
1446                expand_by = max_t(u32, btf->types_size >> 2, 16);
1447                new_size = min_t(u32, BTF_MAX_TYPE,
1448                                 btf->types_size + expand_by);
1449
1450                new_types = kvcalloc(new_size, sizeof(*new_types),
1451                                     GFP_KERNEL | __GFP_NOWARN);
1452                if (!new_types)
1453                        return -ENOMEM;
1454
1455                if (btf->nr_types == 0) {
1456                        if (!btf->base_btf) {
1457                                /* lazily init VOID type */
1458                                new_types[0] = &btf_void;
1459                                btf->nr_types++;
1460                        }
1461                } else {
1462                        memcpy(new_types, btf->types,
1463                               sizeof(*btf->types) * btf->nr_types);
1464                }
1465
1466                kvfree(btf->types);
1467                btf->types = new_types;
1468                btf->types_size = new_size;
1469        }
1470
1471        btf->types[btf->nr_types++] = t;
1472
1473        return 0;
1474}
1475
1476static int btf_alloc_id(struct btf *btf)
1477{
1478        int id;
1479
1480        idr_preload(GFP_KERNEL);
1481        spin_lock_bh(&btf_idr_lock);
1482        id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1483        if (id > 0)
1484                btf->id = id;
1485        spin_unlock_bh(&btf_idr_lock);
1486        idr_preload_end();
1487
1488        if (WARN_ON_ONCE(!id))
1489                return -ENOSPC;
1490
1491        return id > 0 ? 0 : id;
1492}
1493
1494static void btf_free_id(struct btf *btf)
1495{
1496        unsigned long flags;
1497
1498        /*
1499         * In map-in-map, calling map_delete_elem() on outer
1500         * map will call bpf_map_put on the inner map.
1501         * It will then eventually call btf_free_id()
1502         * on the inner map.  Some of the map_delete_elem()
1503         * implementation may have irq disabled, so
1504         * we need to use the _irqsave() version instead
1505         * of the _bh() version.
1506         */
1507        spin_lock_irqsave(&btf_idr_lock, flags);
1508        idr_remove(&btf_idr, btf->id);
1509        spin_unlock_irqrestore(&btf_idr_lock, flags);
1510}
1511
1512static void btf_free(struct btf *btf)
1513{
1514        kvfree(btf->types);
1515        kvfree(btf->resolved_sizes);
1516        kvfree(btf->resolved_ids);
1517        kvfree(btf->data);
1518        kfree(btf);
1519}
1520
1521static void btf_free_rcu(struct rcu_head *rcu)
1522{
1523        struct btf *btf = container_of(rcu, struct btf, rcu);
1524
1525        btf_free(btf);
1526}
1527
1528void btf_get(struct btf *btf)
1529{
1530        refcount_inc(&btf->refcnt);
1531}
1532
1533void btf_put(struct btf *btf)
1534{
1535        if (btf && refcount_dec_and_test(&btf->refcnt)) {
1536                btf_free_id(btf);
1537                call_rcu(&btf->rcu, btf_free_rcu);
1538        }
1539}
1540
1541static int env_resolve_init(struct btf_verifier_env *env)
1542{
1543        struct btf *btf = env->btf;
1544        u32 nr_types = btf->nr_types;
1545        u32 *resolved_sizes = NULL;
1546        u32 *resolved_ids = NULL;
1547        u8 *visit_states = NULL;
1548
1549        resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1550                                  GFP_KERNEL | __GFP_NOWARN);
1551        if (!resolved_sizes)
1552                goto nomem;
1553
1554        resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1555                                GFP_KERNEL | __GFP_NOWARN);
1556        if (!resolved_ids)
1557                goto nomem;
1558
1559        visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1560                                GFP_KERNEL | __GFP_NOWARN);
1561        if (!visit_states)
1562                goto nomem;
1563
1564        btf->resolved_sizes = resolved_sizes;
1565        btf->resolved_ids = resolved_ids;
1566        env->visit_states = visit_states;
1567
1568        return 0;
1569
1570nomem:
1571        kvfree(resolved_sizes);
1572        kvfree(resolved_ids);
1573        kvfree(visit_states);
1574        return -ENOMEM;
1575}
1576
1577static void btf_verifier_env_free(struct btf_verifier_env *env)
1578{
1579        kvfree(env->visit_states);
1580        kfree(env);
1581}
1582
1583static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1584                                     const struct btf_type *next_type)
1585{
1586        switch (env->resolve_mode) {
1587        case RESOLVE_TBD:
1588                /* int, enum or void is a sink */
1589                return !btf_type_needs_resolve(next_type);
1590        case RESOLVE_PTR:
1591                /* int, enum, void, struct, array, func or func_proto is a sink
1592                 * for ptr
1593                 */
1594                return !btf_type_is_modifier(next_type) &&
1595                        !btf_type_is_ptr(next_type);
1596        case RESOLVE_STRUCT_OR_ARRAY:
1597                /* int, enum, void, ptr, func or func_proto is a sink
1598                 * for struct and array
1599                 */
1600                return !btf_type_is_modifier(next_type) &&
1601                        !btf_type_is_array(next_type) &&
1602                        !btf_type_is_struct(next_type);
1603        default:
1604                BUG();
1605        }
1606}
1607
1608static bool env_type_is_resolved(const struct btf_verifier_env *env,
1609                                 u32 type_id)
1610{
1611        /* base BTF types should be resolved by now */
1612        if (type_id < env->btf->start_id)
1613                return true;
1614
1615        return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1616}
1617
1618static int env_stack_push(struct btf_verifier_env *env,
1619                          const struct btf_type *t, u32 type_id)
1620{
1621        const struct btf *btf = env->btf;
1622        struct resolve_vertex *v;
1623
1624        if (env->top_stack == MAX_RESOLVE_DEPTH)
1625                return -E2BIG;
1626
1627        if (type_id < btf->start_id
1628            || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1629                return -EEXIST;
1630
1631        env->visit_states[type_id - btf->start_id] = VISITED;
1632
1633        v = &env->stack[env->top_stack++];
1634        v->t = t;
1635        v->type_id = type_id;
1636        v->next_member = 0;
1637
1638        if (env->resolve_mode == RESOLVE_TBD) {
1639                if (btf_type_is_ptr(t))
1640                        env->resolve_mode = RESOLVE_PTR;
1641                else if (btf_type_is_struct(t) || btf_type_is_array(t))
1642                        env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1643        }
1644
1645        return 0;
1646}
1647
1648static void env_stack_set_next_member(struct btf_verifier_env *env,
1649                                      u16 next_member)
1650{
1651        env->stack[env->top_stack - 1].next_member = next_member;
1652}
1653
1654static void env_stack_pop_resolved(struct btf_verifier_env *env,
1655                                   u32 resolved_type_id,
1656                                   u32 resolved_size)
1657{
1658        u32 type_id = env->stack[--(env->top_stack)].type_id;
1659        struct btf *btf = env->btf;
1660
1661        type_id -= btf->start_id; /* adjust to local type id */
1662        btf->resolved_sizes[type_id] = resolved_size;
1663        btf->resolved_ids[type_id] = resolved_type_id;
1664        env->visit_states[type_id] = RESOLVED;
1665}
1666
1667static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1668{
1669        return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1670}
1671
1672/* Resolve the size of a passed-in "type"
1673 *
1674 * type: is an array (e.g. u32 array[x][y])
1675 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1676 * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1677 *             corresponds to the return type.
1678 * *elem_type: u32
1679 * *elem_id: id of u32
1680 * *total_nelems: (x * y).  Hence, individual elem size is
1681 *                (*type_size / *total_nelems)
1682 * *type_id: id of type if it's changed within the function, 0 if not
1683 *
1684 * type: is not an array (e.g. const struct X)
1685 * return type: type "struct X"
1686 * *type_size: sizeof(struct X)
1687 * *elem_type: same as return type ("struct X")
1688 * *elem_id: 0
1689 * *total_nelems: 1
1690 * *type_id: id of type if it's changed within the function, 0 if not
1691 */
1692static const struct btf_type *
1693__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1694                   u32 *type_size, const struct btf_type **elem_type,
1695                   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1696{
1697        const struct btf_type *array_type = NULL;
1698        const struct btf_array *array = NULL;
1699        u32 i, size, nelems = 1, id = 0;
1700
1701        for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1702                switch (BTF_INFO_KIND(type->info)) {
1703                /* type->size can be used */
1704                case BTF_KIND_INT:
1705                case BTF_KIND_STRUCT:
1706                case BTF_KIND_UNION:
1707                case BTF_KIND_ENUM:
1708                case BTF_KIND_FLOAT:
1709                        size = type->size;
1710                        goto resolved;
1711
1712                case BTF_KIND_PTR:
1713                        size = sizeof(void *);
1714                        goto resolved;
1715
1716                /* Modifiers */
1717                case BTF_KIND_TYPEDEF:
1718                case BTF_KIND_VOLATILE:
1719                case BTF_KIND_CONST:
1720                case BTF_KIND_RESTRICT:
1721                        id = type->type;
1722                        type = btf_type_by_id(btf, type->type);
1723                        break;
1724
1725                case BTF_KIND_ARRAY:
1726                        if (!array_type)
1727                                array_type = type;
1728                        array = btf_type_array(type);
1729                        if (nelems && array->nelems > U32_MAX / nelems)
1730                                return ERR_PTR(-EINVAL);
1731                        nelems *= array->nelems;
1732                        type = btf_type_by_id(btf, array->type);
1733                        break;
1734
1735                /* type without size */
1736                default:
1737                        return ERR_PTR(-EINVAL);
1738                }
1739        }
1740
1741        return ERR_PTR(-EINVAL);
1742
1743resolved:
1744        if (nelems && size > U32_MAX / nelems)
1745                return ERR_PTR(-EINVAL);
1746
1747        *type_size = nelems * size;
1748        if (total_nelems)
1749                *total_nelems = nelems;
1750        if (elem_type)
1751                *elem_type = type;
1752        if (elem_id)
1753                *elem_id = array ? array->type : 0;
1754        if (type_id && id)
1755                *type_id = id;
1756
1757        return array_type ? : type;
1758}
1759
1760const struct btf_type *
1761btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1762                 u32 *type_size)
1763{
1764        return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1765}
1766
1767static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1768{
1769        while (type_id < btf->start_id)
1770                btf = btf->base_btf;
1771
1772        return btf->resolved_ids[type_id - btf->start_id];
1773}
1774
1775/* The input param "type_id" must point to a needs_resolve type */
1776static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1777                                                  u32 *type_id)
1778{
1779        *type_id = btf_resolved_type_id(btf, *type_id);
1780        return btf_type_by_id(btf, *type_id);
1781}
1782
1783static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1784{
1785        while (type_id < btf->start_id)
1786                btf = btf->base_btf;
1787
1788        return btf->resolved_sizes[type_id - btf->start_id];
1789}
1790
1791const struct btf_type *btf_type_id_size(const struct btf *btf,
1792                                        u32 *type_id, u32 *ret_size)
1793{
1794        const struct btf_type *size_type;
1795        u32 size_type_id = *type_id;
1796        u32 size = 0;
1797
1798        size_type = btf_type_by_id(btf, size_type_id);
1799        if (btf_type_nosize_or_null(size_type))
1800                return NULL;
1801
1802        if (btf_type_has_size(size_type)) {
1803                size = size_type->size;
1804        } else if (btf_type_is_array(size_type)) {
1805                size = btf_resolved_type_size(btf, size_type_id);
1806        } else if (btf_type_is_ptr(size_type)) {
1807                size = sizeof(void *);
1808        } else {
1809                if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1810                                 !btf_type_is_var(size_type)))
1811                        return NULL;
1812
1813                size_type_id = btf_resolved_type_id(btf, size_type_id);
1814                size_type = btf_type_by_id(btf, size_type_id);
1815                if (btf_type_nosize_or_null(size_type))
1816                        return NULL;
1817                else if (btf_type_has_size(size_type))
1818                        size = size_type->size;
1819                else if (btf_type_is_array(size_type))
1820                        size = btf_resolved_type_size(btf, size_type_id);
1821                else if (btf_type_is_ptr(size_type))
1822                        size = sizeof(void *);
1823                else
1824                        return NULL;
1825        }
1826
1827        *type_id = size_type_id;
1828        if (ret_size)
1829                *ret_size = size;
1830
1831        return size_type;
1832}
1833
1834static int btf_df_check_member(struct btf_verifier_env *env,
1835                               const struct btf_type *struct_type,
1836                               const struct btf_member *member,
1837                               const struct btf_type *member_type)
1838{
1839        btf_verifier_log_basic(env, struct_type,
1840                               "Unsupported check_member");
1841        return -EINVAL;
1842}
1843
1844static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1845                                     const struct btf_type *struct_type,
1846                                     const struct btf_member *member,
1847                                     const struct btf_type *member_type)
1848{
1849        btf_verifier_log_basic(env, struct_type,
1850                               "Unsupported check_kflag_member");
1851        return -EINVAL;
1852}
1853
1854/* Used for ptr, array struct/union and float type members.
1855 * int, enum and modifier types have their specific callback functions.
1856 */
1857static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1858                                          const struct btf_type *struct_type,
1859                                          const struct btf_member *member,
1860                                          const struct btf_type *member_type)
1861{
1862        if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1863                btf_verifier_log_member(env, struct_type, member,
1864                                        "Invalid member bitfield_size");
1865                return -EINVAL;
1866        }
1867
1868        /* bitfield size is 0, so member->offset represents bit offset only.
1869         * It is safe to call non kflag check_member variants.
1870         */
1871        return btf_type_ops(member_type)->check_member(env, struct_type,
1872                                                       member,
1873                                                       member_type);
1874}
1875
1876static int btf_df_resolve(struct btf_verifier_env *env,
1877                          const struct resolve_vertex *v)
1878{
1879        btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1880        return -EINVAL;
1881}
1882
1883static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1884                        u32 type_id, void *data, u8 bits_offsets,
1885                        struct btf_show *show)
1886{
1887        btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1888}
1889
1890static int btf_int_check_member(struct btf_verifier_env *env,
1891                                const struct btf_type *struct_type,
1892                                const struct btf_member *member,
1893                                const struct btf_type *member_type)
1894{
1895        u32 int_data = btf_type_int(member_type);
1896        u32 struct_bits_off = member->offset;
1897        u32 struct_size = struct_type->size;
1898        u32 nr_copy_bits;
1899        u32 bytes_offset;
1900
1901        if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1902                btf_verifier_log_member(env, struct_type, member,
1903                                        "bits_offset exceeds U32_MAX");
1904                return -EINVAL;
1905        }
1906
1907        struct_bits_off += BTF_INT_OFFSET(int_data);
1908        bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1909        nr_copy_bits = BTF_INT_BITS(int_data) +
1910                BITS_PER_BYTE_MASKED(struct_bits_off);
1911
1912        if (nr_copy_bits > BITS_PER_U128) {
1913                btf_verifier_log_member(env, struct_type, member,
1914                                        "nr_copy_bits exceeds 128");
1915                return -EINVAL;
1916        }
1917
1918        if (struct_size < bytes_offset ||
1919            struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1920                btf_verifier_log_member(env, struct_type, member,
1921                                        "Member exceeds struct_size");
1922                return -EINVAL;
1923        }
1924
1925        return 0;
1926}
1927
1928static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1929                                      const struct btf_type *struct_type,
1930                                      const struct btf_member *member,
1931                                      const struct btf_type *member_type)
1932{
1933        u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1934        u32 int_data = btf_type_int(member_type);
1935        u32 struct_size = struct_type->size;
1936        u32 nr_copy_bits;
1937
1938        /* a regular int type is required for the kflag int member */
1939        if (!btf_type_int_is_regular(member_type)) {
1940                btf_verifier_log_member(env, struct_type, member,
1941                                        "Invalid member base type");
1942                return -EINVAL;
1943        }
1944
1945        /* check sanity of bitfield size */
1946        nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1947        struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1948        nr_int_data_bits = BTF_INT_BITS(int_data);
1949        if (!nr_bits) {
1950                /* Not a bitfield member, member offset must be at byte
1951                 * boundary.
1952                 */
1953                if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1954                        btf_verifier_log_member(env, struct_type, member,
1955                                                "Invalid member offset");
1956                        return -EINVAL;
1957                }
1958
1959                nr_bits = nr_int_data_bits;
1960        } else if (nr_bits > nr_int_data_bits) {
1961                btf_verifier_log_member(env, struct_type, member,
1962                                        "Invalid member bitfield_size");
1963                return -EINVAL;
1964        }
1965
1966        bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1967        nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1968        if (nr_copy_bits > BITS_PER_U128) {
1969                btf_verifier_log_member(env, struct_type, member,
1970                                        "nr_copy_bits exceeds 128");
1971                return -EINVAL;
1972        }
1973
1974        if (struct_size < bytes_offset ||
1975            struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1976                btf_verifier_log_member(env, struct_type, member,
1977                                        "Member exceeds struct_size");
1978                return -EINVAL;
1979        }
1980
1981        return 0;
1982}
1983
1984static s32 btf_int_check_meta(struct btf_verifier_env *env,
1985                              const struct btf_type *t,
1986                              u32 meta_left)
1987{
1988        u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1989        u16 encoding;
1990
1991        if (meta_left < meta_needed) {
1992                btf_verifier_log_basic(env, t,
1993                                       "meta_left:%u meta_needed:%u",
1994                                       meta_left, meta_needed);
1995                return -EINVAL;
1996        }
1997
1998        if (btf_type_vlen(t)) {
1999                btf_verifier_log_type(env, t, "vlen != 0");
2000                return -EINVAL;
2001        }
2002
2003        if (btf_type_kflag(t)) {
2004                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2005                return -EINVAL;
2006        }
2007
2008        int_data = btf_type_int(t);
2009        if (int_data & ~BTF_INT_MASK) {
2010                btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2011                                       int_data);
2012                return -EINVAL;
2013        }
2014
2015        nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2016
2017        if (nr_bits > BITS_PER_U128) {
2018                btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2019                                      BITS_PER_U128);
2020                return -EINVAL;
2021        }
2022
2023        if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2024                btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2025                return -EINVAL;
2026        }
2027
2028        /*
2029         * Only one of the encoding bits is allowed and it
2030         * should be sufficient for the pretty print purpose (i.e. decoding).
2031         * Multiple bits can be allowed later if it is found
2032         * to be insufficient.
2033         */
2034        encoding = BTF_INT_ENCODING(int_data);
2035        if (encoding &&
2036            encoding != BTF_INT_SIGNED &&
2037            encoding != BTF_INT_CHAR &&
2038            encoding != BTF_INT_BOOL) {
2039                btf_verifier_log_type(env, t, "Unsupported encoding");
2040                return -ENOTSUPP;
2041        }
2042
2043        btf_verifier_log_type(env, t, NULL);
2044
2045        return meta_needed;
2046}
2047
2048static void btf_int_log(struct btf_verifier_env *env,
2049                        const struct btf_type *t)
2050{
2051        int int_data = btf_type_int(t);
2052
2053        btf_verifier_log(env,
2054                         "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2055                         t->size, BTF_INT_OFFSET(int_data),
2056                         BTF_INT_BITS(int_data),
2057                         btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2058}
2059
2060static void btf_int128_print(struct btf_show *show, void *data)
2061{
2062        /* data points to a __int128 number.
2063         * Suppose
2064         *     int128_num = *(__int128 *)data;
2065         * The below formulas shows what upper_num and lower_num represents:
2066         *     upper_num = int128_num >> 64;
2067         *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2068         */
2069        u64 upper_num, lower_num;
2070
2071#ifdef __BIG_ENDIAN_BITFIELD
2072        upper_num = *(u64 *)data;
2073        lower_num = *(u64 *)(data + 8);
2074#else
2075        upper_num = *(u64 *)(data + 8);
2076        lower_num = *(u64 *)data;
2077#endif
2078        if (upper_num == 0)
2079                btf_show_type_value(show, "0x%llx", lower_num);
2080        else
2081                btf_show_type_values(show, "0x%llx%016llx", upper_num,
2082                                     lower_num);
2083}
2084
2085static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2086                             u16 right_shift_bits)
2087{
2088        u64 upper_num, lower_num;
2089
2090#ifdef __BIG_ENDIAN_BITFIELD
2091        upper_num = print_num[0];
2092        lower_num = print_num[1];
2093#else
2094        upper_num = print_num[1];
2095        lower_num = print_num[0];
2096#endif
2097
2098        /* shake out un-needed bits by shift/or operations */
2099        if (left_shift_bits >= 64) {
2100                upper_num = lower_num << (left_shift_bits - 64);
2101                lower_num = 0;
2102        } else {
2103                upper_num = (upper_num << left_shift_bits) |
2104                            (lower_num >> (64 - left_shift_bits));
2105                lower_num = lower_num << left_shift_bits;
2106        }
2107
2108        if (right_shift_bits >= 64) {
2109                lower_num = upper_num >> (right_shift_bits - 64);
2110                upper_num = 0;
2111        } else {
2112                lower_num = (lower_num >> right_shift_bits) |
2113                            (upper_num << (64 - right_shift_bits));
2114                upper_num = upper_num >> right_shift_bits;
2115        }
2116
2117#ifdef __BIG_ENDIAN_BITFIELD
2118        print_num[0] = upper_num;
2119        print_num[1] = lower_num;
2120#else
2121        print_num[0] = lower_num;
2122        print_num[1] = upper_num;
2123#endif
2124}
2125
2126static void btf_bitfield_show(void *data, u8 bits_offset,
2127                              u8 nr_bits, struct btf_show *show)
2128{
2129        u16 left_shift_bits, right_shift_bits;
2130        u8 nr_copy_bytes;
2131        u8 nr_copy_bits;
2132        u64 print_num[2] = {};
2133
2134        nr_copy_bits = nr_bits + bits_offset;
2135        nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2136
2137        memcpy(print_num, data, nr_copy_bytes);
2138
2139#ifdef __BIG_ENDIAN_BITFIELD
2140        left_shift_bits = bits_offset;
2141#else
2142        left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2143#endif
2144        right_shift_bits = BITS_PER_U128 - nr_bits;
2145
2146        btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2147        btf_int128_print(show, print_num);
2148}
2149
2150
2151static void btf_int_bits_show(const struct btf *btf,
2152                              const struct btf_type *t,
2153                              void *data, u8 bits_offset,
2154                              struct btf_show *show)
2155{
2156        u32 int_data = btf_type_int(t);
2157        u8 nr_bits = BTF_INT_BITS(int_data);
2158        u8 total_bits_offset;
2159
2160        /*
2161         * bits_offset is at most 7.
2162         * BTF_INT_OFFSET() cannot exceed 128 bits.
2163         */
2164        total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2165        data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2166        bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2167        btf_bitfield_show(data, bits_offset, nr_bits, show);
2168}
2169
2170static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2171                         u32 type_id, void *data, u8 bits_offset,
2172                         struct btf_show *show)
2173{
2174        u32 int_data = btf_type_int(t);
2175        u8 encoding = BTF_INT_ENCODING(int_data);
2176        bool sign = encoding & BTF_INT_SIGNED;
2177        u8 nr_bits = BTF_INT_BITS(int_data);
2178        void *safe_data;
2179
2180        safe_data = btf_show_start_type(show, t, type_id, data);
2181        if (!safe_data)
2182                return;
2183
2184        if (bits_offset || BTF_INT_OFFSET(int_data) ||
2185            BITS_PER_BYTE_MASKED(nr_bits)) {
2186                btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2187                goto out;
2188        }
2189
2190        switch (nr_bits) {
2191        case 128:
2192                btf_int128_print(show, safe_data);
2193                break;
2194        case 64:
2195                if (sign)
2196                        btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2197                else
2198                        btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2199                break;
2200        case 32:
2201                if (sign)
2202                        btf_show_type_value(show, "%d", *(s32 *)safe_data);
2203                else
2204                        btf_show_type_value(show, "%u", *(u32 *)safe_data);
2205                break;
2206        case 16:
2207                if (sign)
2208                        btf_show_type_value(show, "%d", *(s16 *)safe_data);
2209                else
2210                        btf_show_type_value(show, "%u", *(u16 *)safe_data);
2211                break;
2212        case 8:
2213                if (show->state.array_encoding == BTF_INT_CHAR) {
2214                        /* check for null terminator */
2215                        if (show->state.array_terminated)
2216                                break;
2217                        if (*(char *)data == '\0') {
2218                                show->state.array_terminated = 1;
2219                                break;
2220                        }
2221                        if (isprint(*(char *)data)) {
2222                                btf_show_type_value(show, "'%c'",
2223                                                    *(char *)safe_data);
2224                                break;
2225                        }
2226                }
2227                if (sign)
2228                        btf_show_type_value(show, "%d", *(s8 *)safe_data);
2229                else
2230                        btf_show_type_value(show, "%u", *(u8 *)safe_data);
2231                break;
2232        default:
2233                btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2234                break;
2235        }
2236out:
2237        btf_show_end_type(show);
2238}
2239
2240static const struct btf_kind_operations int_ops = {
2241        .check_meta = btf_int_check_meta,
2242        .resolve = btf_df_resolve,
2243        .check_member = btf_int_check_member,
2244        .check_kflag_member = btf_int_check_kflag_member,
2245        .log_details = btf_int_log,
2246        .show = btf_int_show,
2247};
2248
2249static int btf_modifier_check_member(struct btf_verifier_env *env,
2250                                     const struct btf_type *struct_type,
2251                                     const struct btf_member *member,
2252                                     const struct btf_type *member_type)
2253{
2254        const struct btf_type *resolved_type;
2255        u32 resolved_type_id = member->type;
2256        struct btf_member resolved_member;
2257        struct btf *btf = env->btf;
2258
2259        resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2260        if (!resolved_type) {
2261                btf_verifier_log_member(env, struct_type, member,
2262                                        "Invalid member");
2263                return -EINVAL;
2264        }
2265
2266        resolved_member = *member;
2267        resolved_member.type = resolved_type_id;
2268
2269        return btf_type_ops(resolved_type)->check_member(env, struct_type,
2270                                                         &resolved_member,
2271                                                         resolved_type);
2272}
2273
2274static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2275                                           const struct btf_type *struct_type,
2276                                           const struct btf_member *member,
2277                                           const struct btf_type *member_type)
2278{
2279        const struct btf_type *resolved_type;
2280        u32 resolved_type_id = member->type;
2281        struct btf_member resolved_member;
2282        struct btf *btf = env->btf;
2283
2284        resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2285        if (!resolved_type) {
2286                btf_verifier_log_member(env, struct_type, member,
2287                                        "Invalid member");
2288                return -EINVAL;
2289        }
2290
2291        resolved_member = *member;
2292        resolved_member.type = resolved_type_id;
2293
2294        return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2295                                                               &resolved_member,
2296                                                               resolved_type);
2297}
2298
2299static int btf_ptr_check_member(struct btf_verifier_env *env,
2300                                const struct btf_type *struct_type,
2301                                const struct btf_member *member,
2302                                const struct btf_type *member_type)
2303{
2304        u32 struct_size, struct_bits_off, bytes_offset;
2305
2306        struct_size = struct_type->size;
2307        struct_bits_off = member->offset;
2308        bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2309
2310        if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2311                btf_verifier_log_member(env, struct_type, member,
2312                                        "Member is not byte aligned");
2313                return -EINVAL;
2314        }
2315
2316        if (struct_size - bytes_offset < sizeof(void *)) {
2317                btf_verifier_log_member(env, struct_type, member,
2318                                        "Member exceeds struct_size");
2319                return -EINVAL;
2320        }
2321
2322        return 0;
2323}
2324
2325static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2326                                   const struct btf_type *t,
2327                                   u32 meta_left)
2328{
2329        if (btf_type_vlen(t)) {
2330                btf_verifier_log_type(env, t, "vlen != 0");
2331                return -EINVAL;
2332        }
2333
2334        if (btf_type_kflag(t)) {
2335                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2336                return -EINVAL;
2337        }
2338
2339        if (!BTF_TYPE_ID_VALID(t->type)) {
2340                btf_verifier_log_type(env, t, "Invalid type_id");
2341                return -EINVAL;
2342        }
2343
2344        /* typedef type must have a valid name, and other ref types,
2345         * volatile, const, restrict, should have a null name.
2346         */
2347        if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2348                if (!t->name_off ||
2349                    !btf_name_valid_identifier(env->btf, t->name_off)) {
2350                        btf_verifier_log_type(env, t, "Invalid name");
2351                        return -EINVAL;
2352                }
2353        } else {
2354                if (t->name_off) {
2355                        btf_verifier_log_type(env, t, "Invalid name");
2356                        return -EINVAL;
2357                }
2358        }
2359
2360        btf_verifier_log_type(env, t, NULL);
2361
2362        return 0;
2363}
2364
2365static int btf_modifier_resolve(struct btf_verifier_env *env,
2366                                const struct resolve_vertex *v)
2367{
2368        const struct btf_type *t = v->t;
2369        const struct btf_type *next_type;
2370        u32 next_type_id = t->type;
2371        struct btf *btf = env->btf;
2372
2373        next_type = btf_type_by_id(btf, next_type_id);
2374        if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2375                btf_verifier_log_type(env, v->t, "Invalid type_id");
2376                return -EINVAL;
2377        }
2378
2379        if (!env_type_is_resolve_sink(env, next_type) &&
2380            !env_type_is_resolved(env, next_type_id))
2381                return env_stack_push(env, next_type, next_type_id);
2382
2383        /* Figure out the resolved next_type_id with size.
2384         * They will be stored in the current modifier's
2385         * resolved_ids and resolved_sizes such that it can
2386         * save us a few type-following when we use it later (e.g. in
2387         * pretty print).
2388         */
2389        if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2390                if (env_type_is_resolved(env, next_type_id))
2391                        next_type = btf_type_id_resolve(btf, &next_type_id);
2392
2393                /* "typedef void new_void", "const void"...etc */
2394                if (!btf_type_is_void(next_type) &&
2395                    !btf_type_is_fwd(next_type) &&
2396                    !btf_type_is_func_proto(next_type)) {
2397                        btf_verifier_log_type(env, v->t, "Invalid type_id");
2398                        return -EINVAL;
2399                }
2400        }
2401
2402        env_stack_pop_resolved(env, next_type_id, 0);
2403
2404        return 0;
2405}
2406
2407static int btf_var_resolve(struct btf_verifier_env *env,
2408                           const struct resolve_vertex *v)
2409{
2410        const struct btf_type *next_type;
2411        const struct btf_type *t = v->t;
2412        u32 next_type_id = t->type;
2413        struct btf *btf = env->btf;
2414
2415        next_type = btf_type_by_id(btf, next_type_id);
2416        if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2417                btf_verifier_log_type(env, v->t, "Invalid type_id");
2418                return -EINVAL;
2419        }
2420
2421        if (!env_type_is_resolve_sink(env, next_type) &&
2422            !env_type_is_resolved(env, next_type_id))
2423                return env_stack_push(env, next_type, next_type_id);
2424
2425        if (btf_type_is_modifier(next_type)) {
2426                const struct btf_type *resolved_type;
2427                u32 resolved_type_id;
2428
2429                resolved_type_id = next_type_id;
2430                resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2431
2432                if (btf_type_is_ptr(resolved_type) &&
2433                    !env_type_is_resolve_sink(env, resolved_type) &&
2434                    !env_type_is_resolved(env, resolved_type_id))
2435                        return env_stack_push(env, resolved_type,
2436                                              resolved_type_id);
2437        }
2438
2439        /* We must resolve to something concrete at this point, no
2440         * forward types or similar that would resolve to size of
2441         * zero is allowed.
2442         */
2443        if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2444                btf_verifier_log_type(env, v->t, "Invalid type_id");
2445                return -EINVAL;
2446        }
2447
2448        env_stack_pop_resolved(env, next_type_id, 0);
2449
2450        return 0;
2451}
2452
2453static int btf_ptr_resolve(struct btf_verifier_env *env,
2454                           const struct resolve_vertex *v)
2455{
2456        const struct btf_type *next_type;
2457        const struct btf_type *t = v->t;
2458        u32 next_type_id = t->type;
2459        struct btf *btf = env->btf;
2460
2461        next_type = btf_type_by_id(btf, next_type_id);
2462        if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2463                btf_verifier_log_type(env, v->t, "Invalid type_id");
2464                return -EINVAL;
2465        }
2466
2467        if (!env_type_is_resolve_sink(env, next_type) &&
2468            !env_type_is_resolved(env, next_type_id))
2469                return env_stack_push(env, next_type, next_type_id);
2470
2471        /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2472         * the modifier may have stopped resolving when it was resolved
2473         * to a ptr (last-resolved-ptr).
2474         *
2475         * We now need to continue from the last-resolved-ptr to
2476         * ensure the last-resolved-ptr will not referring back to
2477         * the currenct ptr (t).
2478         */
2479        if (btf_type_is_modifier(next_type)) {
2480                const struct btf_type *resolved_type;
2481                u32 resolved_type_id;
2482
2483                resolved_type_id = next_type_id;
2484                resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2485
2486                if (btf_type_is_ptr(resolved_type) &&
2487                    !env_type_is_resolve_sink(env, resolved_type) &&
2488                    !env_type_is_resolved(env, resolved_type_id))
2489                        return env_stack_push(env, resolved_type,
2490                                              resolved_type_id);
2491        }
2492
2493        if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2494                if (env_type_is_resolved(env, next_type_id))
2495                        next_type = btf_type_id_resolve(btf, &next_type_id);
2496
2497                if (!btf_type_is_void(next_type) &&
2498                    !btf_type_is_fwd(next_type) &&
2499                    !btf_type_is_func_proto(next_type)) {
2500                        btf_verifier_log_type(env, v->t, "Invalid type_id");
2501                        return -EINVAL;
2502                }
2503        }
2504
2505        env_stack_pop_resolved(env, next_type_id, 0);
2506
2507        return 0;
2508}
2509
2510static void btf_modifier_show(const struct btf *btf,
2511                              const struct btf_type *t,
2512                              u32 type_id, void *data,
2513                              u8 bits_offset, struct btf_show *show)
2514{
2515        if (btf->resolved_ids)
2516                t = btf_type_id_resolve(btf, &type_id);
2517        else
2518                t = btf_type_skip_modifiers(btf, type_id, NULL);
2519
2520        btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2521}
2522
2523static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2524                         u32 type_id, void *data, u8 bits_offset,
2525                         struct btf_show *show)
2526{
2527        t = btf_type_id_resolve(btf, &type_id);
2528
2529        btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2530}
2531
2532static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2533                         u32 type_id, void *data, u8 bits_offset,
2534                         struct btf_show *show)
2535{
2536        void *safe_data;
2537
2538        safe_data = btf_show_start_type(show, t, type_id, data);
2539        if (!safe_data)
2540                return;
2541
2542        /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2543        if (show->flags & BTF_SHOW_PTR_RAW)
2544                btf_show_type_value(show, "0x%px", *(void **)safe_data);
2545        else
2546                btf_show_type_value(show, "0x%p", *(void **)safe_data);
2547        btf_show_end_type(show);
2548}
2549
2550static void btf_ref_type_log(struct btf_verifier_env *env,
2551                             const struct btf_type *t)
2552{
2553        btf_verifier_log(env, "type_id=%u", t->type);
2554}
2555
2556static struct btf_kind_operations modifier_ops = {
2557        .check_meta = btf_ref_type_check_meta,
2558        .resolve = btf_modifier_resolve,
2559        .check_member = btf_modifier_check_member,
2560        .check_kflag_member = btf_modifier_check_kflag_member,
2561        .log_details = btf_ref_type_log,
2562        .show = btf_modifier_show,
2563};
2564
2565static struct btf_kind_operations ptr_ops = {
2566        .check_meta = btf_ref_type_check_meta,
2567        .resolve = btf_ptr_resolve,
2568        .check_member = btf_ptr_check_member,
2569        .check_kflag_member = btf_generic_check_kflag_member,
2570        .log_details = btf_ref_type_log,
2571        .show = btf_ptr_show,
2572};
2573
2574static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2575                              const struct btf_type *t,
2576                              u32 meta_left)
2577{
2578        if (btf_type_vlen(t)) {
2579                btf_verifier_log_type(env, t, "vlen != 0");
2580                return -EINVAL;
2581        }
2582
2583        if (t->type) {
2584                btf_verifier_log_type(env, t, "type != 0");
2585                return -EINVAL;
2586        }
2587
2588        /* fwd type must have a valid name */
2589        if (!t->name_off ||
2590            !btf_name_valid_identifier(env->btf, t->name_off)) {
2591                btf_verifier_log_type(env, t, "Invalid name");
2592                return -EINVAL;
2593        }
2594
2595        btf_verifier_log_type(env, t, NULL);
2596
2597        return 0;
2598}
2599
2600static void btf_fwd_type_log(struct btf_verifier_env *env,
2601                             const struct btf_type *t)
2602{
2603        btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2604}
2605
2606static struct btf_kind_operations fwd_ops = {
2607        .check_meta = btf_fwd_check_meta,
2608        .resolve = btf_df_resolve,
2609        .check_member = btf_df_check_member,
2610        .check_kflag_member = btf_df_check_kflag_member,
2611        .log_details = btf_fwd_type_log,
2612        .show = btf_df_show,
2613};
2614
2615static int btf_array_check_member(struct btf_verifier_env *env,
2616                                  const struct btf_type *struct_type,
2617                                  const struct btf_member *member,
2618                                  const struct btf_type *member_type)
2619{
2620        u32 struct_bits_off = member->offset;
2621        u32 struct_size, bytes_offset;
2622        u32 array_type_id, array_size;
2623        struct btf *btf = env->btf;
2624
2625        if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2626                btf_verifier_log_member(env, struct_type, member,
2627                                        "Member is not byte aligned");
2628                return -EINVAL;
2629        }
2630
2631        array_type_id = member->type;
2632        btf_type_id_size(btf, &array_type_id, &array_size);
2633        struct_size = struct_type->size;
2634        bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2635        if (struct_size - bytes_offset < array_size) {
2636                btf_verifier_log_member(env, struct_type, member,
2637                                        "Member exceeds struct_size");
2638                return -EINVAL;
2639        }
2640
2641        return 0;
2642}
2643
2644static s32 btf_array_check_meta(struct btf_verifier_env *env,
2645                                const struct btf_type *t,
2646                                u32 meta_left)
2647{
2648        const struct btf_array *array = btf_type_array(t);
2649        u32 meta_needed = sizeof(*array);
2650
2651        if (meta_left < meta_needed) {
2652                btf_verifier_log_basic(env, t,
2653                                       "meta_left:%u meta_needed:%u",
2654                                       meta_left, meta_needed);
2655                return -EINVAL;
2656        }
2657
2658        /* array type should not have a name */
2659        if (t->name_off) {
2660                btf_verifier_log_type(env, t, "Invalid name");
2661                return -EINVAL;
2662        }
2663
2664        if (btf_type_vlen(t)) {
2665                btf_verifier_log_type(env, t, "vlen != 0");
2666                return -EINVAL;
2667        }
2668
2669        if (btf_type_kflag(t)) {
2670                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2671                return -EINVAL;
2672        }
2673
2674        if (t->size) {
2675                btf_verifier_log_type(env, t, "size != 0");
2676                return -EINVAL;
2677        }
2678
2679        /* Array elem type and index type cannot be in type void,
2680         * so !array->type and !array->index_type are not allowed.
2681         */
2682        if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2683                btf_verifier_log_type(env, t, "Invalid elem");
2684                return -EINVAL;
2685        }
2686
2687        if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2688                btf_verifier_log_type(env, t, "Invalid index");
2689                return -EINVAL;
2690        }
2691
2692        btf_verifier_log_type(env, t, NULL);
2693
2694        return meta_needed;
2695}
2696
2697static int btf_array_resolve(struct btf_verifier_env *env,
2698                             const struct resolve_vertex *v)
2699{
2700        const struct btf_array *array = btf_type_array(v->t);
2701        const struct btf_type *elem_type, *index_type;
2702        u32 elem_type_id, index_type_id;
2703        struct btf *btf = env->btf;
2704        u32 elem_size;
2705
2706        /* Check array->index_type */
2707        index_type_id = array->index_type;
2708        index_type = btf_type_by_id(btf, index_type_id);
2709        if (btf_type_nosize_or_null(index_type) ||
2710            btf_type_is_resolve_source_only(index_type)) {
2711                btf_verifier_log_type(env, v->t, "Invalid index");
2712                return -EINVAL;
2713        }
2714
2715        if (!env_type_is_resolve_sink(env, index_type) &&
2716            !env_type_is_resolved(env, index_type_id))
2717                return env_stack_push(env, index_type, index_type_id);
2718
2719        index_type = btf_type_id_size(btf, &index_type_id, NULL);
2720        if (!index_type || !btf_type_is_int(index_type) ||
2721            !btf_type_int_is_regular(index_type)) {
2722                btf_verifier_log_type(env, v->t, "Invalid index");
2723                return -EINVAL;
2724        }
2725
2726        /* Check array->type */
2727        elem_type_id = array->type;
2728        elem_type = btf_type_by_id(btf, elem_type_id);
2729        if (btf_type_nosize_or_null(elem_type) ||
2730            btf_type_is_resolve_source_only(elem_type)) {
2731                btf_verifier_log_type(env, v->t,
2732                                      "Invalid elem");
2733                return -EINVAL;
2734        }
2735
2736        if (!env_type_is_resolve_sink(env, elem_type) &&
2737            !env_type_is_resolved(env, elem_type_id))
2738                return env_stack_push(env, elem_type, elem_type_id);
2739
2740        elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2741        if (!elem_type) {
2742                btf_verifier_log_type(env, v->t, "Invalid elem");
2743                return -EINVAL;
2744        }
2745
2746        if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2747                btf_verifier_log_type(env, v->t, "Invalid array of int");
2748                return -EINVAL;
2749        }
2750
2751        if (array->nelems && elem_size > U32_MAX / array->nelems) {
2752                btf_verifier_log_type(env, v->t,
2753                                      "Array size overflows U32_MAX");
2754                return -EINVAL;
2755        }
2756
2757        env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2758
2759        return 0;
2760}
2761
2762static void btf_array_log(struct btf_verifier_env *env,
2763                          const struct btf_type *t)
2764{
2765        const struct btf_array *array = btf_type_array(t);
2766
2767        btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2768                         array->type, array->index_type, array->nelems);
2769}
2770
2771static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2772                             u32 type_id, void *data, u8 bits_offset,
2773                             struct btf_show *show)
2774{
2775        const struct btf_array *array = btf_type_array(t);
2776        const struct btf_kind_operations *elem_ops;
2777        const struct btf_type *elem_type;
2778        u32 i, elem_size = 0, elem_type_id;
2779        u16 encoding = 0;
2780
2781        elem_type_id = array->type;
2782        elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2783        if (elem_type && btf_type_has_size(elem_type))
2784                elem_size = elem_type->size;
2785
2786        if (elem_type && btf_type_is_int(elem_type)) {
2787                u32 int_type = btf_type_int(elem_type);
2788
2789                encoding = BTF_INT_ENCODING(int_type);
2790
2791                /*
2792                 * BTF_INT_CHAR encoding never seems to be set for
2793                 * char arrays, so if size is 1 and element is
2794                 * printable as a char, we'll do that.
2795                 */
2796                if (elem_size == 1)
2797                        encoding = BTF_INT_CHAR;
2798        }
2799
2800        if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2801                return;
2802
2803        if (!elem_type)
2804                goto out;
2805        elem_ops = btf_type_ops(elem_type);
2806
2807        for (i = 0; i < array->nelems; i++) {
2808
2809                btf_show_start_array_member(show);
2810
2811                elem_ops->show(btf, elem_type, elem_type_id, data,
2812                               bits_offset, show);
2813                data += elem_size;
2814
2815                btf_show_end_array_member(show);
2816
2817                if (show->state.array_terminated)
2818                        break;
2819        }
2820out:
2821        btf_show_end_array_type(show);
2822}
2823
2824static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2825                           u32 type_id, void *data, u8 bits_offset,
2826                           struct btf_show *show)
2827{
2828        const struct btf_member *m = show->state.member;
2829
2830        /*
2831         * First check if any members would be shown (are non-zero).
2832         * See comments above "struct btf_show" definition for more
2833         * details on how this works at a high-level.
2834         */
2835        if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2836                if (!show->state.depth_check) {
2837                        show->state.depth_check = show->state.depth + 1;
2838                        show->state.depth_to_show = 0;
2839                }
2840                __btf_array_show(btf, t, type_id, data, bits_offset, show);
2841                show->state.member = m;
2842
2843                if (show->state.depth_check != show->state.depth + 1)
2844                        return;
2845                show->state.depth_check = 0;
2846
2847                if (show->state.depth_to_show <= show->state.depth)
2848                        return;
2849                /*
2850                 * Reaching here indicates we have recursed and found
2851                 * non-zero array member(s).
2852                 */
2853        }
2854        __btf_array_show(btf, t, type_id, data, bits_offset, show);
2855}
2856
2857static struct btf_kind_operations array_ops = {
2858        .check_meta = btf_array_check_meta,
2859        .resolve = btf_array_resolve,
2860        .check_member = btf_array_check_member,
2861        .check_kflag_member = btf_generic_check_kflag_member,
2862        .log_details = btf_array_log,
2863        .show = btf_array_show,
2864};
2865
2866static int btf_struct_check_member(struct btf_verifier_env *env,
2867                                   const struct btf_type *struct_type,
2868                                   const struct btf_member *member,
2869                                   const struct btf_type *member_type)
2870{
2871        u32 struct_bits_off = member->offset;
2872        u32 struct_size, bytes_offset;
2873
2874        if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2875                btf_verifier_log_member(env, struct_type, member,
2876                                        "Member is not byte aligned");
2877                return -EINVAL;
2878        }
2879
2880        struct_size = struct_type->size;
2881        bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2882        if (struct_size - bytes_offset < member_type->size) {
2883                btf_verifier_log_member(env, struct_type, member,
2884                                        "Member exceeds struct_size");
2885                return -EINVAL;
2886        }
2887
2888        return 0;
2889}
2890
2891static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2892                                 const struct btf_type *t,
2893                                 u32 meta_left)
2894{
2895        bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2896        const struct btf_member *member;
2897        u32 meta_needed, last_offset;
2898        struct btf *btf = env->btf;
2899        u32 struct_size = t->size;
2900        u32 offset;
2901        u16 i;
2902
2903        meta_needed = btf_type_vlen(t) * sizeof(*member);
2904        if (meta_left < meta_needed) {
2905                btf_verifier_log_basic(env, t,
2906                                       "meta_left:%u meta_needed:%u",
2907                                       meta_left, meta_needed);
2908                return -EINVAL;
2909        }
2910
2911        /* struct type either no name or a valid one */
2912        if (t->name_off &&
2913            !btf_name_valid_identifier(env->btf, t->name_off)) {
2914                btf_verifier_log_type(env, t, "Invalid name");
2915                return -EINVAL;
2916        }
2917
2918        btf_verifier_log_type(env, t, NULL);
2919
2920        last_offset = 0;
2921        for_each_member(i, t, member) {
2922                if (!btf_name_offset_valid(btf, member->name_off)) {
2923                        btf_verifier_log_member(env, t, member,
2924                                                "Invalid member name_offset:%u",
2925                                                member->name_off);
2926                        return -EINVAL;
2927                }
2928
2929                /* struct member either no name or a valid one */
2930                if (member->name_off &&
2931                    !btf_name_valid_identifier(btf, member->name_off)) {
2932                        btf_verifier_log_member(env, t, member, "Invalid name");
2933                        return -EINVAL;
2934                }
2935                /* A member cannot be in type void */
2936                if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2937                        btf_verifier_log_member(env, t, member,
2938                                                "Invalid type_id");
2939                        return -EINVAL;
2940                }
2941
2942                offset = btf_member_bit_offset(t, member);
2943                if (is_union && offset) {
2944                        btf_verifier_log_member(env, t, member,
2945                                                "Invalid member bits_offset");
2946                        return -EINVAL;
2947                }
2948
2949                /*
2950                 * ">" instead of ">=" because the last member could be
2951                 * "char a[0];"
2952                 */
2953                if (last_offset > offset) {
2954                        btf_verifier_log_member(env, t, member,
2955                                                "Invalid member bits_offset");
2956                        return -EINVAL;
2957                }
2958
2959                if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2960                        btf_verifier_log_member(env, t, member,
2961                                                "Member bits_offset exceeds its struct size");
2962                        return -EINVAL;
2963                }
2964
2965                btf_verifier_log_member(env, t, member, NULL);
2966                last_offset = offset;
2967        }
2968
2969        return meta_needed;
2970}
2971
2972static int btf_struct_resolve(struct btf_verifier_env *env,
2973                              const struct resolve_vertex *v)
2974{
2975        const struct btf_member *member;
2976        int err;
2977        u16 i;
2978
2979        /* Before continue resolving the next_member,
2980         * ensure the last member is indeed resolved to a
2981         * type with size info.
2982         */
2983        if (v->next_member) {
2984                const struct btf_type *last_member_type;
2985                const struct btf_member *last_member;
2986                u16 last_member_type_id;
2987
2988                last_member = btf_type_member(v->t) + v->next_member - 1;
2989                last_member_type_id = last_member->type;
2990                if (WARN_ON_ONCE(!env_type_is_resolved(env,
2991                                                       last_member_type_id)))
2992                        return -EINVAL;
2993
2994                last_member_type = btf_type_by_id(env->btf,
2995                                                  last_member_type_id);
2996                if (btf_type_kflag(v->t))
2997                        err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2998                                                                last_member,
2999                                                                last_member_type);
3000                else
3001                        err = btf_type_ops(last_member_type)->check_member(env, v->t,
3002                                                                last_member,
3003                                                                last_member_type);
3004                if (err)
3005                        return err;
3006        }
3007
3008        for_each_member_from(i, v->next_member, v->t, member) {
3009                u32 member_type_id = member->type;
3010                const struct btf_type *member_type = btf_type_by_id(env->btf,
3011                                                                member_type_id);
3012
3013                if (btf_type_nosize_or_null(member_type) ||
3014                    btf_type_is_resolve_source_only(member_type)) {
3015                        btf_verifier_log_member(env, v->t, member,
3016                                                "Invalid member");
3017                        return -EINVAL;
3018                }
3019
3020                if (!env_type_is_resolve_sink(env, member_type) &&
3021                    !env_type_is_resolved(env, member_type_id)) {
3022                        env_stack_set_next_member(env, i + 1);
3023                        return env_stack_push(env, member_type, member_type_id);
3024                }
3025
3026                if (btf_type_kflag(v->t))
3027                        err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3028                                                                            member,
3029                                                                            member_type);
3030                else
3031                        err = btf_type_ops(member_type)->check_member(env, v->t,
3032                                                                      member,
3033                                                                      member_type);
3034                if (err)
3035                        return err;
3036        }
3037
3038        env_stack_pop_resolved(env, 0, 0);
3039
3040        return 0;
3041}
3042
3043static void btf_struct_log(struct btf_verifier_env *env,
3044                           const struct btf_type *t)
3045{
3046        btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3047}
3048
3049static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
3050                                 const char *name, int sz, int align)
3051{
3052        const struct btf_member *member;
3053        u32 i, off = -ENOENT;
3054
3055        for_each_member(i, t, member) {
3056                const struct btf_type *member_type = btf_type_by_id(btf,
3057                                                                    member->type);
3058                if (!__btf_type_is_struct(member_type))
3059                        continue;
3060                if (member_type->size != sz)
3061                        continue;
3062                if (strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
3063                        continue;
3064                if (off != -ENOENT)
3065                        /* only one such field is allowed */
3066                        return -E2BIG;
3067                off = btf_member_bit_offset(t, member);
3068                if (off % 8)
3069                        /* valid C code cannot generate such BTF */
3070                        return -EINVAL;
3071                off /= 8;
3072                if (off % align)
3073                        return -EINVAL;
3074        }
3075        return off;
3076}
3077
3078static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3079                                const char *name, int sz, int align)
3080{
3081        const struct btf_var_secinfo *vsi;
3082        u32 i, off = -ENOENT;
3083
3084        for_each_vsi(i, t, vsi) {
3085                const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3086                const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3087
3088                if (!__btf_type_is_struct(var_type))
3089                        continue;
3090                if (var_type->size != sz)
3091                        continue;
3092                if (vsi->size != sz)
3093                        continue;
3094                if (strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
3095                        continue;
3096                if (off != -ENOENT)
3097                        /* only one such field is allowed */
3098                        return -E2BIG;
3099                off = vsi->offset;
3100                if (off % align)
3101                        return -EINVAL;
3102        }
3103        return off;
3104}
3105
3106static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3107                          const char *name, int sz, int align)
3108{
3109
3110        if (__btf_type_is_struct(t))
3111                return btf_find_struct_field(btf, t, name, sz, align);
3112        else if (btf_type_is_datasec(t))
3113                return btf_find_datasec_var(btf, t, name, sz, align);
3114        return -EINVAL;
3115}
3116
3117/* find 'struct bpf_spin_lock' in map value.
3118 * return >= 0 offset if found
3119 * and < 0 in case of error
3120 */
3121int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3122{
3123        return btf_find_field(btf, t, "bpf_spin_lock",
3124                              sizeof(struct bpf_spin_lock),
3125                              __alignof__(struct bpf_spin_lock));
3126}
3127
3128int btf_find_timer(const struct btf *btf, const struct btf_type *t)
3129{
3130        return btf_find_field(btf, t, "bpf_timer",
3131                              sizeof(struct bpf_timer),
3132                              __alignof__(struct bpf_timer));
3133}
3134
3135static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3136                              u32 type_id, void *data, u8 bits_offset,
3137                              struct btf_show *show)
3138{
3139        const struct btf_member *member;
3140        void *safe_data;
3141        u32 i;
3142
3143        safe_data = btf_show_start_struct_type(show, t, type_id, data);
3144        if (!safe_data)
3145                return;
3146
3147        for_each_member(i, t, member) {
3148                const struct btf_type *member_type = btf_type_by_id(btf,
3149                                                                member->type);
3150                const struct btf_kind_operations *ops;
3151                u32 member_offset, bitfield_size;
3152                u32 bytes_offset;
3153                u8 bits8_offset;
3154
3155                btf_show_start_member(show, member);
3156
3157                member_offset = btf_member_bit_offset(t, member);
3158                bitfield_size = btf_member_bitfield_size(t, member);
3159                bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3160                bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3161                if (bitfield_size) {
3162                        safe_data = btf_show_start_type(show, member_type,
3163                                                        member->type,
3164                                                        data + bytes_offset);
3165                        if (safe_data)
3166                                btf_bitfield_show(safe_data,
3167                                                  bits8_offset,
3168                                                  bitfield_size, show);
3169                        btf_show_end_type(show);
3170                } else {
3171                        ops = btf_type_ops(member_type);
3172                        ops->show(btf, member_type, member->type,
3173                                  data + bytes_offset, bits8_offset, show);
3174                }
3175
3176                btf_show_end_member(show);
3177        }
3178
3179        btf_show_end_struct_type(show);
3180}
3181
3182static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3183                            u32 type_id, void *data, u8 bits_offset,
3184                            struct btf_show *show)
3185{
3186        const struct btf_member *m = show->state.member;
3187
3188        /*
3189         * First check if any members would be shown (are non-zero).
3190         * See comments above "struct btf_show" definition for more
3191         * details on how this works at a high-level.
3192         */
3193        if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3194                if (!show->state.depth_check) {
3195                        show->state.depth_check = show->state.depth + 1;
3196                        show->state.depth_to_show = 0;
3197                }
3198                __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3199                /* Restore saved member data here */
3200                show->state.member = m;
3201                if (show->state.depth_check != show->state.depth + 1)
3202                        return;
3203                show->state.depth_check = 0;
3204
3205                if (show->state.depth_to_show <= show->state.depth)
3206                        return;
3207                /*
3208                 * Reaching here indicates we have recursed and found
3209                 * non-zero child values.
3210                 */
3211        }
3212
3213        __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3214}
3215
3216static struct btf_kind_operations struct_ops = {
3217        .check_meta = btf_struct_check_meta,
3218        .resolve = btf_struct_resolve,
3219        .check_member = btf_struct_check_member,
3220        .check_kflag_member = btf_generic_check_kflag_member,
3221        .log_details = btf_struct_log,
3222        .show = btf_struct_show,
3223};
3224
3225static int btf_enum_check_member(struct btf_verifier_env *env,
3226                                 const struct btf_type *struct_type,
3227                                 const struct btf_member *member,
3228                                 const struct btf_type *member_type)
3229{
3230        u32 struct_bits_off = member->offset;
3231        u32 struct_size, bytes_offset;
3232
3233        if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3234                btf_verifier_log_member(env, struct_type, member,
3235                                        "Member is not byte aligned");
3236                return -EINVAL;
3237        }
3238
3239        struct_size = struct_type->size;
3240        bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3241        if (struct_size - bytes_offset < member_type->size) {
3242                btf_verifier_log_member(env, struct_type, member,
3243                                        "Member exceeds struct_size");
3244                return -EINVAL;
3245        }
3246
3247        return 0;
3248}
3249
3250static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3251                                       const struct btf_type *struct_type,
3252                                       const struct btf_member *member,
3253                                       const struct btf_type *member_type)
3254{
3255        u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3256        u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3257
3258        struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3259        nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3260        if (!nr_bits) {
3261                if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3262                        btf_verifier_log_member(env, struct_type, member,
3263                                                "Member is not byte aligned");
3264                        return -EINVAL;
3265                }
3266
3267                nr_bits = int_bitsize;
3268        } else if (nr_bits > int_bitsize) {
3269                btf_verifier_log_member(env, struct_type, member,
3270                                        "Invalid member bitfield_size");
3271                return -EINVAL;
3272        }
3273
3274        struct_size = struct_type->size;
3275        bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3276        if (struct_size < bytes_end) {
3277                btf_verifier_log_member(env, struct_type, member,
3278                                        "Member exceeds struct_size");
3279                return -EINVAL;
3280        }
3281
3282        return 0;
3283}
3284
3285static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3286                               const struct btf_type *t,
3287                               u32 meta_left)
3288{
3289        const struct btf_enum *enums = btf_type_enum(t);
3290        struct btf *btf = env->btf;
3291        u16 i, nr_enums;
3292        u32 meta_needed;
3293
3294        nr_enums = btf_type_vlen(t);
3295        meta_needed = nr_enums * sizeof(*enums);
3296
3297        if (meta_left < meta_needed) {
3298                btf_verifier_log_basic(env, t,
3299                                       "meta_left:%u meta_needed:%u",
3300                                       meta_left, meta_needed);
3301                return -EINVAL;
3302        }
3303
3304        if (btf_type_kflag(t)) {
3305                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3306                return -EINVAL;
3307        }
3308
3309        if (t->size > 8 || !is_power_of_2(t->size)) {
3310                btf_verifier_log_type(env, t, "Unexpected size");
3311                return -EINVAL;
3312        }
3313
3314        /* enum type either no name or a valid one */
3315        if (t->name_off &&
3316            !btf_name_valid_identifier(env->btf, t->name_off)) {
3317                btf_verifier_log_type(env, t, "Invalid name");
3318                return -EINVAL;
3319        }
3320
3321        btf_verifier_log_type(env, t, NULL);
3322
3323        for (i = 0; i < nr_enums; i++) {
3324                if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3325                        btf_verifier_log(env, "\tInvalid name_offset:%u",
3326                                         enums[i].name_off);
3327                        return -EINVAL;
3328                }
3329
3330                /* enum member must have a valid name */
3331                if (!enums[i].name_off ||
3332                    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3333                        btf_verifier_log_type(env, t, "Invalid name");
3334                        return -EINVAL;
3335                }
3336
3337                if (env->log.level == BPF_LOG_KERNEL)
3338                        continue;
3339                btf_verifier_log(env, "\t%s val=%d\n",
3340                                 __btf_name_by_offset(btf, enums[i].name_off),
3341                                 enums[i].val);
3342        }
3343
3344        return meta_needed;
3345}
3346
3347static void btf_enum_log(struct btf_verifier_env *env,
3348                         const struct btf_type *t)
3349{
3350        btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3351}
3352
3353static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3354                          u32 type_id, void *data, u8 bits_offset,
3355                          struct btf_show *show)
3356{
3357        const struct btf_enum *enums = btf_type_enum(t);
3358        u32 i, nr_enums = btf_type_vlen(t);
3359        void *safe_data;
3360        int v;
3361
3362        safe_data = btf_show_start_type(show, t, type_id, data);
3363        if (!safe_data)
3364                return;
3365
3366        v = *(int *)safe_data;
3367
3368        for (i = 0; i < nr_enums; i++) {
3369                if (v != enums[i].val)
3370                        continue;
3371
3372                btf_show_type_value(show, "%s",
3373                                    __btf_name_by_offset(btf,
3374                                                         enums[i].name_off));
3375
3376                btf_show_end_type(show);
3377                return;
3378        }
3379
3380        btf_show_type_value(show, "%d", v);
3381        btf_show_end_type(show);
3382}
3383
3384static struct btf_kind_operations enum_ops = {
3385        .check_meta = btf_enum_check_meta,
3386        .resolve = btf_df_resolve,
3387        .check_member = btf_enum_check_member,
3388        .check_kflag_member = btf_enum_check_kflag_member,
3389        .log_details = btf_enum_log,
3390        .show = btf_enum_show,
3391};
3392
3393static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3394                                     const struct btf_type *t,
3395                                     u32 meta_left)
3396{
3397        u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3398
3399        if (meta_left < meta_needed) {
3400                btf_verifier_log_basic(env, t,
3401                                       "meta_left:%u meta_needed:%u",
3402                                       meta_left, meta_needed);
3403                return -EINVAL;
3404        }
3405
3406        if (t->name_off) {
3407                btf_verifier_log_type(env, t, "Invalid name");
3408                return -EINVAL;
3409        }
3410
3411        if (btf_type_kflag(t)) {
3412                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3413                return -EINVAL;
3414        }
3415
3416        btf_verifier_log_type(env, t, NULL);
3417
3418        return meta_needed;
3419}
3420
3421static void btf_func_proto_log(struct btf_verifier_env *env,
3422                               const struct btf_type *t)
3423{
3424        const struct btf_param *args = (const struct btf_param *)(t + 1);
3425        u16 nr_args = btf_type_vlen(t), i;
3426
3427        btf_verifier_log(env, "return=%u args=(", t->type);
3428        if (!nr_args) {
3429                btf_verifier_log(env, "void");
3430                goto done;
3431        }
3432
3433        if (nr_args == 1 && !args[0].type) {
3434                /* Only one vararg */
3435                btf_verifier_log(env, "vararg");
3436                goto done;
3437        }
3438
3439        btf_verifier_log(env, "%u %s", args[0].type,
3440                         __btf_name_by_offset(env->btf,
3441                                              args[0].name_off));
3442        for (i = 1; i < nr_args - 1; i++)
3443                btf_verifier_log(env, ", %u %s", args[i].type,
3444                                 __btf_name_by_offset(env->btf,
3445                                                      args[i].name_off));
3446
3447        if (nr_args > 1) {
3448                const struct btf_param *last_arg = &args[nr_args - 1];
3449
3450                if (last_arg->type)
3451                        btf_verifier_log(env, ", %u %s", last_arg->type,
3452                                         __btf_name_by_offset(env->btf,
3453                                                              last_arg->name_off));
3454                else
3455                        btf_verifier_log(env, ", vararg");
3456        }
3457
3458done:
3459        btf_verifier_log(env, ")");
3460}
3461
3462static struct btf_kind_operations func_proto_ops = {
3463        .check_meta = btf_func_proto_check_meta,
3464        .resolve = btf_df_resolve,
3465        /*
3466         * BTF_KIND_FUNC_PROTO cannot be directly referred by
3467         * a struct's member.
3468         *
3469         * It should be a function pointer instead.
3470         * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3471         *
3472         * Hence, there is no btf_func_check_member().
3473         */
3474        .check_member = btf_df_check_member,
3475        .check_kflag_member = btf_df_check_kflag_member,
3476        .log_details = btf_func_proto_log,
3477        .show = btf_df_show,
3478};
3479
3480static s32 btf_func_check_meta(struct btf_verifier_env *env,
3481                               const struct btf_type *t,
3482                               u32 meta_left)
3483{
3484        if (!t->name_off ||
3485            !btf_name_valid_identifier(env->btf, t->name_off)) {
3486                btf_verifier_log_type(env, t, "Invalid name");
3487                return -EINVAL;
3488        }
3489
3490        if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3491                btf_verifier_log_type(env, t, "Invalid func linkage");
3492                return -EINVAL;
3493        }
3494
3495        if (btf_type_kflag(t)) {
3496                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3497                return -EINVAL;
3498        }
3499
3500        btf_verifier_log_type(env, t, NULL);
3501
3502        return 0;
3503}
3504
3505static struct btf_kind_operations func_ops = {
3506        .check_meta = btf_func_check_meta,
3507        .resolve = btf_df_resolve,
3508        .check_member = btf_df_check_member,
3509        .check_kflag_member = btf_df_check_kflag_member,
3510        .log_details = btf_ref_type_log,
3511        .show = btf_df_show,
3512};
3513
3514static s32 btf_var_check_meta(struct btf_verifier_env *env,
3515                              const struct btf_type *t,
3516                              u32 meta_left)
3517{
3518        const struct btf_var *var;
3519        u32 meta_needed = sizeof(*var);
3520
3521        if (meta_left < meta_needed) {
3522                btf_verifier_log_basic(env, t,
3523                                       "meta_left:%u meta_needed:%u",
3524                                       meta_left, meta_needed);
3525                return -EINVAL;
3526        }
3527
3528        if (btf_type_vlen(t)) {
3529                btf_verifier_log_type(env, t, "vlen != 0");
3530                return -EINVAL;
3531        }
3532
3533        if (btf_type_kflag(t)) {
3534                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3535                return -EINVAL;
3536        }
3537
3538        if (!t->name_off ||
3539            !__btf_name_valid(env->btf, t->name_off, true)) {
3540                btf_verifier_log_type(env, t, "Invalid name");
3541                return -EINVAL;
3542        }
3543
3544        /* A var cannot be in type void */
3545        if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3546                btf_verifier_log_type(env, t, "Invalid type_id");
3547                return -EINVAL;
3548        }
3549
3550        var = btf_type_var(t);
3551        if (var->linkage != BTF_VAR_STATIC &&
3552            var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3553                btf_verifier_log_type(env, t, "Linkage not supported");
3554                return -EINVAL;
3555        }
3556
3557        btf_verifier_log_type(env, t, NULL);
3558
3559        return meta_needed;
3560}
3561
3562static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3563{
3564        const struct btf_var *var = btf_type_var(t);
3565
3566        btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3567}
3568
3569static const struct btf_kind_operations var_ops = {
3570        .check_meta             = btf_var_check_meta,
3571        .resolve                = btf_var_resolve,
3572        .check_member           = btf_df_check_member,
3573        .check_kflag_member     = btf_df_check_kflag_member,
3574        .log_details            = btf_var_log,
3575        .show                   = btf_var_show,
3576};
3577
3578static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3579                                  const struct btf_type *t,
3580                                  u32 meta_left)
3581{
3582        const struct btf_var_secinfo *vsi;
3583        u64 last_vsi_end_off = 0, sum = 0;
3584        u32 i, meta_needed;
3585
3586        meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3587        if (meta_left < meta_needed) {
3588                btf_verifier_log_basic(env, t,
3589                                       "meta_left:%u meta_needed:%u",
3590                                       meta_left, meta_needed);
3591                return -EINVAL;
3592        }
3593
3594        if (!t->size) {
3595                btf_verifier_log_type(env, t, "size == 0");
3596                return -EINVAL;
3597        }
3598
3599        if (btf_type_kflag(t)) {
3600                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3601                return -EINVAL;
3602        }
3603
3604        if (!t->name_off ||
3605            !btf_name_valid_section(env->btf, t->name_off)) {
3606                btf_verifier_log_type(env, t, "Invalid name");
3607                return -EINVAL;
3608        }
3609
3610        btf_verifier_log_type(env, t, NULL);
3611
3612        for_each_vsi(i, t, vsi) {
3613                /* A var cannot be in type void */
3614                if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3615                        btf_verifier_log_vsi(env, t, vsi,
3616                                             "Invalid type_id");
3617                        return -EINVAL;
3618                }
3619
3620                if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3621                        btf_verifier_log_vsi(env, t, vsi,
3622                                             "Invalid offset");
3623                        return -EINVAL;
3624                }
3625
3626                if (!vsi->size || vsi->size > t->size) {
3627                        btf_verifier_log_vsi(env, t, vsi,
3628                                             "Invalid size");
3629                        return -EINVAL;
3630                }
3631
3632                last_vsi_end_off = vsi->offset + vsi->size;
3633                if (last_vsi_end_off > t->size) {
3634                        btf_verifier_log_vsi(env, t, vsi,
3635                                             "Invalid offset+size");
3636                        return -EINVAL;
3637                }
3638
3639                btf_verifier_log_vsi(env, t, vsi, NULL);
3640                sum += vsi->size;
3641        }
3642
3643        if (t->size < sum) {
3644                btf_verifier_log_type(env, t, "Invalid btf_info size");
3645                return -EINVAL;
3646        }
3647
3648        return meta_needed;
3649}
3650
3651static int btf_datasec_resolve(struct btf_verifier_env *env,
3652                               const struct resolve_vertex *v)
3653{
3654        const struct btf_var_secinfo *vsi;
3655        struct btf *btf = env->btf;
3656        u16 i;
3657
3658        for_each_vsi_from(i, v->next_member, v->t, vsi) {
3659                u32 var_type_id = vsi->type, type_id, type_size = 0;
3660                const struct btf_type *var_type = btf_type_by_id(env->btf,
3661                                                                 var_type_id);
3662                if (!var_type || !btf_type_is_var(var_type)) {
3663                        btf_verifier_log_vsi(env, v->t, vsi,
3664                                             "Not a VAR kind member");
3665                        return -EINVAL;
3666                }
3667
3668                if (!env_type_is_resolve_sink(env, var_type) &&
3669                    !env_type_is_resolved(env, var_type_id)) {
3670                        env_stack_set_next_member(env, i + 1);
3671                        return env_stack_push(env, var_type, var_type_id);
3672                }
3673
3674                type_id = var_type->type;
3675                if (!btf_type_id_size(btf, &type_id, &type_size)) {
3676                        btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3677                        return -EINVAL;
3678                }
3679
3680                if (vsi->size < type_size) {
3681                        btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3682                        return -EINVAL;
3683                }
3684        }
3685
3686        env_stack_pop_resolved(env, 0, 0);
3687        return 0;
3688}
3689
3690static void btf_datasec_log(struct btf_verifier_env *env,
3691                            const struct btf_type *t)
3692{
3693        btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3694}
3695
3696static void btf_datasec_show(const struct btf *btf,
3697                             const struct btf_type *t, u32 type_id,
3698                             void *data, u8 bits_offset,
3699                             struct btf_show *show)
3700{
3701        const struct btf_var_secinfo *vsi;
3702        const struct btf_type *var;
3703        u32 i;
3704
3705        if (!btf_show_start_type(show, t, type_id, data))
3706                return;
3707
3708        btf_show_type_value(show, "section (\"%s\") = {",
3709                            __btf_name_by_offset(btf, t->name_off));
3710        for_each_vsi(i, t, vsi) {
3711                var = btf_type_by_id(btf, vsi->type);
3712                if (i)
3713                        btf_show(show, ",");
3714                btf_type_ops(var)->show(btf, var, vsi->type,
3715                                        data + vsi->offset, bits_offset, show);
3716        }
3717        btf_show_end_type(show);
3718}
3719
3720static const struct btf_kind_operations datasec_ops = {
3721        .check_meta             = btf_datasec_check_meta,
3722        .resolve                = btf_datasec_resolve,
3723        .check_member           = btf_df_check_member,
3724        .check_kflag_member     = btf_df_check_kflag_member,
3725        .log_details            = btf_datasec_log,
3726        .show                   = btf_datasec_show,
3727};
3728
3729static s32 btf_float_check_meta(struct btf_verifier_env *env,
3730                                const struct btf_type *t,
3731                                u32 meta_left)
3732{
3733        if (btf_type_vlen(t)) {
3734                btf_verifier_log_type(env, t, "vlen != 0");
3735                return -EINVAL;
3736        }
3737
3738        if (btf_type_kflag(t)) {
3739                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3740                return -EINVAL;
3741        }
3742
3743        if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
3744            t->size != 16) {
3745                btf_verifier_log_type(env, t, "Invalid type_size");
3746                return -EINVAL;
3747        }
3748
3749        btf_verifier_log_type(env, t, NULL);
3750
3751        return 0;
3752}
3753
3754static int btf_float_check_member(struct btf_verifier_env *env,
3755                                  const struct btf_type *struct_type,
3756                                  const struct btf_member *member,
3757                                  const struct btf_type *member_type)
3758{
3759        u64 start_offset_bytes;
3760        u64 end_offset_bytes;
3761        u64 misalign_bits;
3762        u64 align_bytes;
3763        u64 align_bits;
3764
3765        /* Different architectures have different alignment requirements, so
3766         * here we check only for the reasonable minimum. This way we ensure
3767         * that types after CO-RE can pass the kernel BTF verifier.
3768         */
3769        align_bytes = min_t(u64, sizeof(void *), member_type->size);
3770        align_bits = align_bytes * BITS_PER_BYTE;
3771        div64_u64_rem(member->offset, align_bits, &misalign_bits);
3772        if (misalign_bits) {
3773                btf_verifier_log_member(env, struct_type, member,
3774                                        "Member is not properly aligned");
3775                return -EINVAL;
3776        }
3777
3778        start_offset_bytes = member->offset / BITS_PER_BYTE;
3779        end_offset_bytes = start_offset_bytes + member_type->size;
3780        if (end_offset_bytes > struct_type->size) {
3781                btf_verifier_log_member(env, struct_type, member,
3782                                        "Member exceeds struct_size");
3783                return -EINVAL;
3784        }
3785
3786        return 0;
3787}
3788
3789static void btf_float_log(struct btf_verifier_env *env,
3790                          const struct btf_type *t)
3791{
3792        btf_verifier_log(env, "size=%u", t->size);
3793}
3794
3795static const struct btf_kind_operations float_ops = {
3796        .check_meta = btf_float_check_meta,
3797        .resolve = btf_df_resolve,
3798        .check_member = btf_float_check_member,
3799        .check_kflag_member = btf_generic_check_kflag_member,
3800        .log_details = btf_float_log,
3801        .show = btf_df_show,
3802};
3803
3804static int btf_func_proto_check(struct btf_verifier_env *env,
3805                                const struct btf_type *t)
3806{
3807        const struct btf_type *ret_type;
3808        const struct btf_param *args;
3809        const struct btf *btf;
3810        u16 nr_args, i;
3811        int err;
3812
3813        btf = env->btf;
3814        args = (const struct btf_param *)(t + 1);
3815        nr_args = btf_type_vlen(t);
3816
3817        /* Check func return type which could be "void" (t->type == 0) */
3818        if (t->type) {
3819                u32 ret_type_id = t->type;
3820
3821                ret_type = btf_type_by_id(btf, ret_type_id);
3822                if (!ret_type) {
3823                        btf_verifier_log_type(env, t, "Invalid return type");
3824                        return -EINVAL;
3825                }
3826
3827                if (btf_type_needs_resolve(ret_type) &&
3828                    !env_type_is_resolved(env, ret_type_id)) {
3829                        err = btf_resolve(env, ret_type, ret_type_id);
3830                        if (err)
3831                                return err;
3832                }
3833
3834                /* Ensure the return type is a type that has a size */
3835                if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3836                        btf_verifier_log_type(env, t, "Invalid return type");
3837                        return -EINVAL;
3838                }
3839        }
3840
3841        if (!nr_args)
3842                return 0;
3843
3844        /* Last func arg type_id could be 0 if it is a vararg */
3845        if (!args[nr_args - 1].type) {
3846                if (args[nr_args - 1].name_off) {
3847                        btf_verifier_log_type(env, t, "Invalid arg#%u",
3848                                              nr_args);
3849                        return -EINVAL;
3850                }
3851                nr_args--;
3852        }
3853
3854        err = 0;
3855        for (i = 0; i < nr_args; i++) {
3856                const struct btf_type *arg_type;
3857                u32 arg_type_id;
3858
3859                arg_type_id = args[i].type;
3860                arg_type = btf_type_by_id(btf, arg_type_id);
3861                if (!arg_type) {
3862                        btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3863                        err = -EINVAL;
3864                        break;
3865                }
3866
3867                if (args[i].name_off &&
3868                    (!btf_name_offset_valid(btf, args[i].name_off) ||
3869                     !btf_name_valid_identifier(btf, args[i].name_off))) {
3870                        btf_verifier_log_type(env, t,
3871                                              "Invalid arg#%u", i + 1);
3872                        err = -EINVAL;
3873                        break;
3874                }
3875
3876                if (btf_type_needs_resolve(arg_type) &&
3877                    !env_type_is_resolved(env, arg_type_id)) {
3878                        err = btf_resolve(env, arg_type, arg_type_id);
3879                        if (err)
3880                                break;
3881                }
3882
3883                if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3884                        btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3885                        err = -EINVAL;
3886                        break;
3887                }
3888        }
3889
3890        return err;
3891}
3892
3893static int btf_func_check(struct btf_verifier_env *env,
3894                          const struct btf_type *t)
3895{
3896        const struct btf_type *proto_type;
3897        const struct btf_param *args;
3898        const struct btf *btf;
3899        u16 nr_args, i;
3900
3901        btf = env->btf;
3902        proto_type = btf_type_by_id(btf, t->type);
3903
3904        if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3905                btf_verifier_log_type(env, t, "Invalid type_id");
3906                return -EINVAL;
3907        }
3908
3909        args = (const struct btf_param *)(proto_type + 1);
3910        nr_args = btf_type_vlen(proto_type);
3911        for (i = 0; i < nr_args; i++) {
3912                if (!args[i].name_off && args[i].type) {
3913                        btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3914                        return -EINVAL;
3915                }
3916        }
3917
3918        return 0;
3919}
3920
3921static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3922        [BTF_KIND_INT] = &int_ops,
3923        [BTF_KIND_PTR] = &ptr_ops,
3924        [BTF_KIND_ARRAY] = &array_ops,
3925        [BTF_KIND_STRUCT] = &struct_ops,
3926        [BTF_KIND_UNION] = &struct_ops,
3927        [BTF_KIND_ENUM] = &enum_ops,
3928        [BTF_KIND_FWD] = &fwd_ops,
3929        [BTF_KIND_TYPEDEF] = &modifier_ops,
3930        [BTF_KIND_VOLATILE] = &modifier_ops,
3931        [BTF_KIND_CONST] = &modifier_ops,
3932        [BTF_KIND_RESTRICT] = &modifier_ops,
3933        [BTF_KIND_FUNC] = &func_ops,
3934        [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3935        [BTF_KIND_VAR] = &var_ops,
3936        [BTF_KIND_DATASEC] = &datasec_ops,
3937        [BTF_KIND_FLOAT] = &float_ops,
3938};
3939
3940static s32 btf_check_meta(struct btf_verifier_env *env,
3941                          const struct btf_type *t,
3942                          u32 meta_left)
3943{
3944        u32 saved_meta_left = meta_left;
3945        s32 var_meta_size;
3946
3947        if (meta_left < sizeof(*t)) {
3948                btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3949                                 env->log_type_id, meta_left, sizeof(*t));
3950                return -EINVAL;
3951        }
3952        meta_left -= sizeof(*t);
3953
3954        if (t->info & ~BTF_INFO_MASK) {
3955                btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3956                                 env->log_type_id, t->info);
3957                return -EINVAL;
3958        }
3959
3960        if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3961            BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3962                btf_verifier_log(env, "[%u] Invalid kind:%u",
3963                                 env->log_type_id, BTF_INFO_KIND(t->info));
3964                return -EINVAL;
3965        }
3966
3967        if (!btf_name_offset_valid(env->btf, t->name_off)) {
3968                btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3969                                 env->log_type_id, t->name_off);
3970                return -EINVAL;
3971        }
3972
3973        var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3974        if (var_meta_size < 0)
3975                return var_meta_size;
3976
3977        meta_left -= var_meta_size;
3978
3979        return saved_meta_left - meta_left;
3980}
3981
3982static int btf_check_all_metas(struct btf_verifier_env *env)
3983{
3984        struct btf *btf = env->btf;
3985        struct btf_header *hdr;
3986        void *cur, *end;
3987
3988        hdr = &btf->hdr;
3989        cur = btf->nohdr_data + hdr->type_off;
3990        end = cur + hdr->type_len;
3991
3992        env->log_type_id = btf->base_btf ? btf->start_id : 1;
3993        while (cur < end) {
3994                struct btf_type *t = cur;
3995                s32 meta_size;
3996
3997                meta_size = btf_check_meta(env, t, end - cur);
3998                if (meta_size < 0)
3999                        return meta_size;
4000
4001                btf_add_type(env, t);
4002                cur += meta_size;
4003                env->log_type_id++;
4004        }
4005
4006        return 0;
4007}
4008
4009static bool btf_resolve_valid(struct btf_verifier_env *env,
4010                              const struct btf_type *t,
4011                              u32 type_id)
4012{
4013        struct btf *btf = env->btf;
4014
4015        if (!env_type_is_resolved(env, type_id))
4016                return false;
4017
4018        if (btf_type_is_struct(t) || btf_type_is_datasec(t))
4019                return !btf_resolved_type_id(btf, type_id) &&
4020                       !btf_resolved_type_size(btf, type_id);
4021
4022        if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4023            btf_type_is_var(t)) {
4024                t = btf_type_id_resolve(btf, &type_id);
4025                return t &&
4026                       !btf_type_is_modifier(t) &&
4027                       !btf_type_is_var(t) &&
4028                       !btf_type_is_datasec(t);
4029        }
4030
4031        if (btf_type_is_array(t)) {
4032                const struct btf_array *array = btf_type_array(t);
4033                const struct btf_type *elem_type;
4034                u32 elem_type_id = array->type;
4035                u32 elem_size;
4036
4037                elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4038                return elem_type && !btf_type_is_modifier(elem_type) &&
4039                        (array->nelems * elem_size ==
4040                         btf_resolved_type_size(btf, type_id));
4041        }
4042
4043        return false;
4044}
4045
4046static int btf_resolve(struct btf_verifier_env *env,
4047                       const struct btf_type *t, u32 type_id)
4048{
4049        u32 save_log_type_id = env->log_type_id;
4050        const struct resolve_vertex *v;
4051        int err = 0;
4052
4053        env->resolve_mode = RESOLVE_TBD;
4054        env_stack_push(env, t, type_id);
4055        while (!err && (v = env_stack_peak(env))) {
4056                env->log_type_id = v->type_id;
4057                err = btf_type_ops(v->t)->resolve(env, v);
4058        }
4059
4060        env->log_type_id = type_id;
4061        if (err == -E2BIG) {
4062                btf_verifier_log_type(env, t,
4063                                      "Exceeded max resolving depth:%u",
4064                                      MAX_RESOLVE_DEPTH);
4065        } else if (err == -EEXIST) {
4066                btf_verifier_log_type(env, t, "Loop detected");
4067        }
4068
4069        /* Final sanity check */
4070        if (!err && !btf_resolve_valid(env, t, type_id)) {
4071                btf_verifier_log_type(env, t, "Invalid resolve state");
4072                err = -EINVAL;
4073        }
4074
4075        env->log_type_id = save_log_type_id;
4076        return err;
4077}
4078
4079static int btf_check_all_types(struct btf_verifier_env *env)
4080{
4081        struct btf *btf = env->btf;
4082        const struct btf_type *t;
4083        u32 type_id, i;
4084        int err;
4085
4086        err = env_resolve_init(env);
4087        if (err)
4088                return err;
4089
4090        env->phase++;
4091        for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4092                type_id = btf->start_id + i;
4093                t = btf_type_by_id(btf, type_id);
4094
4095                env->log_type_id = type_id;
4096                if (btf_type_needs_resolve(t) &&
4097                    !env_type_is_resolved(env, type_id)) {
4098                        err = btf_resolve(env, t, type_id);
4099                        if (err)
4100                                return err;
4101                }
4102
4103                if (btf_type_is_func_proto(t)) {
4104                        err = btf_func_proto_check(env, t);
4105                        if (err)
4106                                return err;
4107                }
4108
4109                if (btf_type_is_func(t)) {
4110                        err = btf_func_check(env, t);
4111                        if (err)
4112                                return err;
4113                }
4114        }
4115
4116        return 0;
4117}
4118
4119static int btf_parse_type_sec(struct btf_verifier_env *env)
4120{
4121        const struct btf_header *hdr = &env->btf->hdr;
4122        int err;
4123
4124        /* Type section must align to 4 bytes */
4125        if (hdr->type_off & (sizeof(u32) - 1)) {
4126                btf_verifier_log(env, "Unaligned type_off");
4127                return -EINVAL;
4128        }
4129
4130        if (!env->btf->base_btf && !hdr->type_len) {
4131                btf_verifier_log(env, "No type found");
4132                return -EINVAL;
4133        }
4134
4135        err = btf_check_all_metas(env);
4136        if (err)
4137                return err;
4138
4139        return btf_check_all_types(env);
4140}
4141
4142static int btf_parse_str_sec(struct btf_verifier_env *env)
4143{
4144        const struct btf_header *hdr;
4145        struct btf *btf = env->btf;
4146        const char *start, *end;
4147
4148        hdr = &btf->hdr;
4149        start = btf->nohdr_data + hdr->str_off;
4150        end = start + hdr->str_len;
4151
4152        if (end != btf->data + btf->data_size) {
4153                btf_verifier_log(env, "String section is not at the end");
4154                return -EINVAL;
4155        }
4156
4157        btf->strings = start;
4158
4159        if (btf->base_btf && !hdr->str_len)
4160                return 0;
4161        if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4162                btf_verifier_log(env, "Invalid string section");
4163                return -EINVAL;
4164        }
4165        if (!btf->base_btf && start[0]) {
4166                btf_verifier_log(env, "Invalid string section");
4167                return -EINVAL;
4168        }
4169
4170        return 0;
4171}
4172
4173static const size_t btf_sec_info_offset[] = {
4174        offsetof(struct btf_header, type_off),
4175        offsetof(struct btf_header, str_off),
4176};
4177
4178static int btf_sec_info_cmp(const void *a, const void *b)
4179{
4180        const struct btf_sec_info *x = a;
4181        const struct btf_sec_info *y = b;
4182
4183        return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4184}
4185
4186static int btf_check_sec_info(struct btf_verifier_env *env,
4187                              u32 btf_data_size)
4188{
4189        struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4190        u32 total, expected_total, i;
4191        const struct btf_header *hdr;
4192        const struct btf *btf;
4193
4194        btf = env->btf;
4195        hdr = &btf->hdr;
4196
4197        /* Populate the secs from hdr */
4198        for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4199                secs[i] = *(struct btf_sec_info *)((void *)hdr +
4200                                                   btf_sec_info_offset[i]);
4201
4202        sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4203             sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4204
4205        /* Check for gaps and overlap among sections */
4206        total = 0;
4207        expected_total = btf_data_size - hdr->hdr_len;
4208        for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4209                if (expected_total < secs[i].off) {
4210                        btf_verifier_log(env, "Invalid section offset");
4211                        return -EINVAL;
4212                }
4213                if (total < secs[i].off) {
4214                        /* gap */
4215                        btf_verifier_log(env, "Unsupported section found");
4216                        return -EINVAL;
4217                }
4218                if (total > secs[i].off) {
4219                        btf_verifier_log(env, "Section overlap found");
4220                        return -EINVAL;
4221                }
4222                if (expected_total - total < secs[i].len) {
4223                        btf_verifier_log(env,
4224                                         "Total section length too long");
4225                        return -EINVAL;
4226                }
4227                total += secs[i].len;
4228        }
4229
4230        /* There is data other than hdr and known sections */
4231        if (expected_total != total) {
4232                btf_verifier_log(env, "Unsupported section found");
4233                return -EINVAL;
4234        }
4235
4236        return 0;
4237}
4238
4239static int btf_parse_hdr(struct btf_verifier_env *env)
4240{
4241        u32 hdr_len, hdr_copy, btf_data_size;
4242        const struct btf_header *hdr;
4243        struct btf *btf;
4244        int err;
4245
4246        btf = env->btf;
4247        btf_data_size = btf->data_size;
4248
4249        if (btf_data_size <
4250            offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4251                btf_verifier_log(env, "hdr_len not found");
4252                return -EINVAL;
4253        }
4254
4255        hdr = btf->data;
4256        hdr_len = hdr->hdr_len;
4257        if (btf_data_size < hdr_len) {
4258                btf_verifier_log(env, "btf_header not found");
4259                return -EINVAL;
4260        }
4261
4262        /* Ensure the unsupported header fields are zero */
4263        if (hdr_len > sizeof(btf->hdr)) {
4264                u8 *expected_zero = btf->data + sizeof(btf->hdr);
4265                u8 *end = btf->data + hdr_len;
4266
4267                for (; expected_zero < end; expected_zero++) {
4268                        if (*expected_zero) {
4269                                btf_verifier_log(env, "Unsupported btf_header");
4270                                return -E2BIG;
4271                        }
4272                }
4273        }
4274
4275        hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4276        memcpy(&btf->hdr, btf->data, hdr_copy);
4277
4278        hdr = &btf->hdr;
4279
4280        btf_verifier_log_hdr(env, btf_data_size);
4281
4282        if (hdr->magic != BTF_MAGIC) {
4283                btf_verifier_log(env, "Invalid magic");
4284                return -EINVAL;
4285        }
4286
4287        if (hdr->version != BTF_VERSION) {
4288                btf_verifier_log(env, "Unsupported version");
4289                return -ENOTSUPP;
4290        }
4291
4292        if (hdr->flags) {
4293                btf_verifier_log(env, "Unsupported flags");
4294                return -ENOTSUPP;
4295        }
4296
4297        if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4298                btf_verifier_log(env, "No data");
4299                return -EINVAL;
4300        }
4301
4302        err = btf_check_sec_info(env, btf_data_size);
4303        if (err)
4304                return err;
4305
4306        return 0;
4307}
4308
4309static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
4310                             u32 log_level, char __user *log_ubuf, u32 log_size)
4311{
4312        struct btf_verifier_env *env = NULL;
4313        struct bpf_verifier_log *log;
4314        struct btf *btf = NULL;
4315        u8 *data;
4316        int err;
4317
4318        if (btf_data_size > BTF_MAX_SIZE)
4319                return ERR_PTR(-E2BIG);
4320
4321        env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4322        if (!env)
4323                return ERR_PTR(-ENOMEM);
4324
4325        log = &env->log;
4326        if (log_level || log_ubuf || log_size) {
4327                /* user requested verbose verifier output
4328                 * and supplied buffer to store the verification trace
4329                 */
4330                log->level = log_level;
4331                log->ubuf = log_ubuf;
4332                log->len_total = log_size;
4333
4334                /* log attributes have to be sane */
4335                if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4336                    !log->level || !log->ubuf) {
4337                        err = -EINVAL;
4338                        goto errout;
4339                }
4340        }
4341
4342        btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4343        if (!btf) {
4344                err = -ENOMEM;
4345                goto errout;
4346        }
4347        env->btf = btf;
4348
4349        data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4350        if (!data) {
4351                err = -ENOMEM;
4352                goto errout;
4353        }
4354
4355        btf->data = data;
4356        btf->data_size = btf_data_size;
4357
4358        if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
4359                err = -EFAULT;
4360                goto errout;
4361        }
4362
4363        err = btf_parse_hdr(env);
4364        if (err)
4365                goto errout;
4366
4367        btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4368
4369        err = btf_parse_str_sec(env);
4370        if (err)
4371                goto errout;
4372
4373        err = btf_parse_type_sec(env);
4374        if (err)
4375                goto errout;
4376
4377        if (log->level && bpf_verifier_log_full(log)) {
4378                err = -ENOSPC;
4379                goto errout;
4380        }
4381
4382        btf_verifier_env_free(env);
4383        refcount_set(&btf->refcnt, 1);
4384        return btf;
4385
4386errout:
4387        btf_verifier_env_free(env);
4388        if (btf)
4389                btf_free(btf);
4390        return ERR_PTR(err);
4391}
4392
4393extern char __weak __start_BTF[];
4394extern char __weak __stop_BTF[];
4395extern struct btf *btf_vmlinux;
4396
4397#define BPF_MAP_TYPE(_id, _ops)
4398#define BPF_LINK_TYPE(_id, _name)
4399static union {
4400        struct bpf_ctx_convert {
4401#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4402        prog_ctx_type _id##_prog; \
4403        kern_ctx_type _id##_kern;
4404#include <linux/bpf_types.h>
4405#undef BPF_PROG_TYPE
4406        } *__t;
4407        /* 't' is written once under lock. Read many times. */
4408        const struct btf_type *t;
4409} bpf_ctx_convert;
4410enum {
4411#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4412        __ctx_convert##_id,
4413#include <linux/bpf_types.h>
4414#undef BPF_PROG_TYPE
4415        __ctx_convert_unused, /* to avoid empty enum in extreme .config */
4416};
4417static u8 bpf_ctx_convert_map[] = {
4418#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4419        [_id] = __ctx_convert##_id,
4420#include <linux/bpf_types.h>
4421#undef BPF_PROG_TYPE
4422        0, /* avoid empty array */
4423};
4424#undef BPF_MAP_TYPE
4425#undef BPF_LINK_TYPE
4426
4427static const struct btf_member *
4428btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
4429                      const struct btf_type *t, enum bpf_prog_type prog_type,
4430                      int arg)
4431{
4432        const struct btf_type *conv_struct;
4433        const struct btf_type *ctx_struct;
4434        const struct btf_member *ctx_type;
4435        const char *tname, *ctx_tname;
4436
4437        conv_struct = bpf_ctx_convert.t;
4438        if (!conv_struct) {
4439                bpf_log(log, "btf_vmlinux is malformed\n");
4440                return NULL;
4441        }
4442        t = btf_type_by_id(btf, t->type);
4443        while (btf_type_is_modifier(t))
4444                t = btf_type_by_id(btf, t->type);
4445        if (!btf_type_is_struct(t)) {
4446                /* Only pointer to struct is supported for now.
4447                 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4448                 * is not supported yet.
4449                 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4450                 */
4451                return NULL;
4452        }
4453        tname = btf_name_by_offset(btf, t->name_off);
4454        if (!tname) {
4455                bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4456                return NULL;
4457        }
4458        /* prog_type is valid bpf program type. No need for bounds check. */
4459        ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4460        /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4461         * Like 'struct __sk_buff'
4462         */
4463        ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4464        if (!ctx_struct)
4465                /* should not happen */
4466                return NULL;
4467        ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4468        if (!ctx_tname) {
4469                /* should not happen */
4470                bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4471                return NULL;
4472        }
4473        /* only compare that prog's ctx type name is the same as
4474         * kernel expects. No need to compare field by field.
4475         * It's ok for bpf prog to do:
4476         * struct __sk_buff {};
4477         * int socket_filter_bpf_prog(struct __sk_buff *skb)
4478         * { // no fields of skb are ever used }
4479         */
4480        if (strcmp(ctx_tname, tname))
4481                return NULL;
4482        return ctx_type;
4483}
4484
4485static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4486#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4487#define BPF_LINK_TYPE(_id, _name)
4488#define BPF_MAP_TYPE(_id, _ops) \
4489        [_id] = &_ops,
4490#include <linux/bpf_types.h>
4491#undef BPF_PROG_TYPE
4492#undef BPF_LINK_TYPE
4493#undef BPF_MAP_TYPE
4494};
4495
4496static int btf_vmlinux_map_ids_init(const struct btf *btf,
4497                                    struct bpf_verifier_log *log)
4498{
4499        const struct bpf_map_ops *ops;
4500        int i, btf_id;
4501
4502        for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4503                ops = btf_vmlinux_map_ops[i];
4504                if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4505                        continue;
4506                if (!ops->map_btf_name || !ops->map_btf_id) {
4507                        bpf_log(log, "map type %d is misconfigured\n", i);
4508                        return -EINVAL;
4509                }
4510                btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4511                                               BTF_KIND_STRUCT);
4512                if (btf_id < 0)
4513                        return btf_id;
4514                *ops->map_btf_id = btf_id;
4515        }
4516
4517        return 0;
4518}
4519
4520static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4521                                     struct btf *btf,
4522                                     const struct btf_type *t,
4523                                     enum bpf_prog_type prog_type,
4524                                     int arg)
4525{
4526        const struct btf_member *prog_ctx_type, *kern_ctx_type;
4527
4528        prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4529        if (!prog_ctx_type)
4530                return -ENOENT;
4531        kern_ctx_type = prog_ctx_type + 1;
4532        return kern_ctx_type->type;
4533}
4534
4535BTF_ID_LIST(bpf_ctx_convert_btf_id)
4536BTF_ID(struct, bpf_ctx_convert)
4537
4538struct btf *btf_parse_vmlinux(void)
4539{
4540        struct btf_verifier_env *env = NULL;
4541        struct bpf_verifier_log *log;
4542        struct btf *btf = NULL;
4543        int err;
4544
4545        env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4546        if (!env)
4547                return ERR_PTR(-ENOMEM);
4548
4549        log = &env->log;
4550        log->level = BPF_LOG_KERNEL;
4551
4552        btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4553        if (!btf) {
4554                err = -ENOMEM;
4555                goto errout;
4556        }
4557        env->btf = btf;
4558
4559        btf->data = __start_BTF;
4560        btf->data_size = __stop_BTF - __start_BTF;
4561        btf->kernel_btf = true;
4562        snprintf(btf->name, sizeof(btf->name), "vmlinux");
4563
4564        err = btf_parse_hdr(env);
4565        if (err)
4566                goto errout;
4567
4568        btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4569
4570        err = btf_parse_str_sec(env);
4571        if (err)
4572                goto errout;
4573
4574        err = btf_check_all_metas(env);
4575        if (err)
4576                goto errout;
4577
4578        /* btf_parse_vmlinux() runs under bpf_verifier_lock */
4579        bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4580
4581        /* find bpf map structs for map_ptr access checking */
4582        err = btf_vmlinux_map_ids_init(btf, log);
4583        if (err < 0)
4584                goto errout;
4585
4586        bpf_struct_ops_init(btf, log);
4587
4588        refcount_set(&btf->refcnt, 1);
4589
4590        err = btf_alloc_id(btf);
4591        if (err)
4592                goto errout;
4593
4594        btf_verifier_env_free(env);
4595        return btf;
4596
4597errout:
4598        btf_verifier_env_free(env);
4599        if (btf) {
4600                kvfree(btf->types);
4601                kfree(btf);
4602        }
4603        return ERR_PTR(err);
4604}
4605
4606#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4607
4608static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4609{
4610        struct btf_verifier_env *env = NULL;
4611        struct bpf_verifier_log *log;
4612        struct btf *btf = NULL, *base_btf;
4613        int err;
4614
4615        base_btf = bpf_get_btf_vmlinux();
4616        if (IS_ERR(base_btf))
4617                return base_btf;
4618        if (!base_btf)
4619                return ERR_PTR(-EINVAL);
4620
4621        env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4622        if (!env)
4623                return ERR_PTR(-ENOMEM);
4624
4625        log = &env->log;
4626        log->level = BPF_LOG_KERNEL;
4627
4628        btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4629        if (!btf) {
4630                err = -ENOMEM;
4631                goto errout;
4632        }
4633        env->btf = btf;
4634
4635        btf->base_btf = base_btf;
4636        btf->start_id = base_btf->nr_types;
4637        btf->start_str_off = base_btf->hdr.str_len;
4638        btf->kernel_btf = true;
4639        snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4640
4641        btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4642        if (!btf->data) {
4643                err = -ENOMEM;
4644                goto errout;
4645        }
4646        memcpy(btf->data, data, data_size);
4647        btf->data_size = data_size;
4648
4649        err = btf_parse_hdr(env);
4650        if (err)
4651                goto errout;
4652
4653        btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4654
4655        err = btf_parse_str_sec(env);
4656        if (err)
4657                goto errout;
4658
4659        err = btf_check_all_metas(env);
4660        if (err)
4661                goto errout;
4662
4663        btf_verifier_env_free(env);
4664        refcount_set(&btf->refcnt, 1);
4665        return btf;
4666
4667errout:
4668        btf_verifier_env_free(env);
4669        if (btf) {
4670                kvfree(btf->data);
4671                kvfree(btf->types);
4672                kfree(btf);
4673        }
4674        return ERR_PTR(err);
4675}
4676
4677#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4678
4679struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4680{
4681        struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4682
4683        if (tgt_prog)
4684                return tgt_prog->aux->btf;
4685        else
4686                return prog->aux->attach_btf;
4687}
4688
4689static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4690{
4691        /* t comes in already as a pointer */
4692        t = btf_type_by_id(btf, t->type);
4693
4694        /* allow const */
4695        if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4696                t = btf_type_by_id(btf, t->type);
4697
4698        /* char, signed char, unsigned char */
4699        return btf_type_is_int(t) && t->size == 1;
4700}
4701
4702bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4703                    const struct bpf_prog *prog,
4704                    struct bpf_insn_access_aux *info)
4705{
4706        const struct btf_type *t = prog->aux->attach_func_proto;
4707        struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4708        struct btf *btf = bpf_prog_get_target_btf(prog);
4709        const char *tname = prog->aux->attach_func_name;
4710        struct bpf_verifier_log *log = info->log;
4711        const struct btf_param *args;
4712        u32 nr_args, arg;
4713        int i, ret;
4714
4715        if (off % 8) {
4716                bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4717                        tname, off);
4718                return false;
4719        }
4720        arg = off / 8;
4721        args = (const struct btf_param *)(t + 1);
4722        /* if (t == NULL) Fall back to default BPF prog with
4723         * MAX_BPF_FUNC_REG_ARGS u64 arguments.
4724         */
4725        nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
4726        if (prog->aux->attach_btf_trace) {
4727                /* skip first 'void *__data' argument in btf_trace_##name typedef */
4728                args++;
4729                nr_args--;
4730        }
4731
4732        if (arg > nr_args) {
4733                bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4734                        tname, arg + 1);
4735                return false;
4736        }
4737
4738        if (arg == nr_args) {
4739                switch (prog->expected_attach_type) {
4740                case BPF_LSM_MAC:
4741                case BPF_TRACE_FEXIT:
4742                        /* When LSM programs are attached to void LSM hooks
4743                         * they use FEXIT trampolines and when attached to
4744                         * int LSM hooks, they use MODIFY_RETURN trampolines.
4745                         *
4746                         * While the LSM programs are BPF_MODIFY_RETURN-like
4747                         * the check:
4748                         *
4749                         *      if (ret_type != 'int')
4750                         *              return -EINVAL;
4751                         *
4752                         * is _not_ done here. This is still safe as LSM hooks
4753                         * have only void and int return types.
4754                         */
4755                        if (!t)
4756                                return true;
4757                        t = btf_type_by_id(btf, t->type);
4758                        break;
4759                case BPF_MODIFY_RETURN:
4760                        /* For now the BPF_MODIFY_RETURN can only be attached to
4761                         * functions that return an int.
4762                         */
4763                        if (!t)
4764                                return false;
4765
4766                        t = btf_type_skip_modifiers(btf, t->type, NULL);
4767                        if (!btf_type_is_small_int(t)) {
4768                                bpf_log(log,
4769                                        "ret type %s not allowed for fmod_ret\n",
4770                                        btf_kind_str[BTF_INFO_KIND(t->info)]);
4771                                return false;
4772                        }
4773                        break;
4774                default:
4775                        bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4776                                tname, arg + 1);
4777                        return false;
4778                }
4779        } else {
4780                if (!t)
4781                        /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
4782                        return true;
4783                t = btf_type_by_id(btf, args[arg].type);
4784        }
4785
4786        /* skip modifiers */
4787        while (btf_type_is_modifier(t))
4788                t = btf_type_by_id(btf, t->type);
4789        if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4790                /* accessing a scalar */
4791                return true;
4792        if (!btf_type_is_ptr(t)) {
4793                bpf_log(log,
4794                        "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4795                        tname, arg,
4796                        __btf_name_by_offset(btf, t->name_off),
4797                        btf_kind_str[BTF_INFO_KIND(t->info)]);
4798                return false;
4799        }
4800
4801        /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4802        for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4803                const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4804
4805                if (ctx_arg_info->offset == off &&
4806                    (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4807                     ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4808                        info->reg_type = ctx_arg_info->reg_type;
4809                        return true;
4810                }
4811        }
4812
4813        if (t->type == 0)
4814                /* This is a pointer to void.
4815                 * It is the same as scalar from the verifier safety pov.
4816                 * No further pointer walking is allowed.
4817                 */
4818                return true;
4819
4820        if (is_string_ptr(btf, t))
4821                return true;
4822
4823        /* this is a pointer to another type */
4824        for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4825                const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4826
4827                if (ctx_arg_info->offset == off) {
4828                        if (!ctx_arg_info->btf_id) {
4829                                bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
4830                                return false;
4831                        }
4832
4833                        info->reg_type = ctx_arg_info->reg_type;
4834                        info->btf = btf_vmlinux;
4835                        info->btf_id = ctx_arg_info->btf_id;
4836                        return true;
4837                }
4838        }
4839
4840        info->reg_type = PTR_TO_BTF_ID;
4841        if (tgt_prog) {
4842                enum bpf_prog_type tgt_type;
4843
4844                if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4845                        tgt_type = tgt_prog->aux->saved_dst_prog_type;
4846                else
4847                        tgt_type = tgt_prog->type;
4848
4849                ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4850                if (ret > 0) {
4851                        info->btf = btf_vmlinux;
4852                        info->btf_id = ret;
4853                        return true;
4854                } else {
4855                        return false;
4856                }
4857        }
4858
4859        info->btf = btf;
4860        info->btf_id = t->type;
4861        t = btf_type_by_id(btf, t->type);
4862        /* skip modifiers */
4863        while (btf_type_is_modifier(t)) {
4864                info->btf_id = t->type;
4865                t = btf_type_by_id(btf, t->type);
4866        }
4867        if (!btf_type_is_struct(t)) {
4868                bpf_log(log,
4869                        "func '%s' arg%d type %s is not a struct\n",
4870                        tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4871                return false;
4872        }
4873        bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
4874                tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
4875                __btf_name_by_offset(btf, t->name_off));
4876        return true;
4877}
4878
4879enum bpf_struct_walk_result {
4880        /* < 0 error */
4881        WALK_SCALAR = 0,
4882        WALK_PTR,
4883        WALK_STRUCT,
4884};
4885
4886static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
4887                           const struct btf_type *t, int off, int size,
4888                           u32 *next_btf_id)
4889{
4890        u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4891        const struct btf_type *mtype, *elem_type = NULL;
4892        const struct btf_member *member;
4893        const char *tname, *mname;
4894        u32 vlen, elem_id, mid;
4895
4896again:
4897        tname = __btf_name_by_offset(btf, t->name_off);
4898        if (!btf_type_is_struct(t)) {
4899                bpf_log(log, "Type '%s' is not a struct\n", tname);
4900                return -EINVAL;
4901        }
4902
4903        vlen = btf_type_vlen(t);
4904        if (off + size > t->size) {
4905                /* If the last element is a variable size array, we may
4906                 * need to relax the rule.
4907                 */
4908                struct btf_array *array_elem;
4909
4910                if (vlen == 0)
4911                        goto error;
4912
4913                member = btf_type_member(t) + vlen - 1;
4914                mtype = btf_type_skip_modifiers(btf, member->type,
4915                                                NULL);
4916                if (!btf_type_is_array(mtype))
4917                        goto error;
4918
4919                array_elem = (struct btf_array *)(mtype + 1);
4920                if (array_elem->nelems != 0)
4921                        goto error;
4922
4923                moff = btf_member_bit_offset(t, member) / 8;
4924                if (off < moff)
4925                        goto error;
4926
4927                /* Only allow structure for now, can be relaxed for
4928                 * other types later.
4929                 */
4930                t = btf_type_skip_modifiers(btf, array_elem->type,
4931                                            NULL);
4932                if (!btf_type_is_struct(t))
4933                        goto error;
4934
4935                off = (off - moff) % t->size;
4936                goto again;
4937
4938error:
4939                bpf_log(log, "access beyond struct %s at off %u size %u\n",
4940                        tname, off, size);
4941                return -EACCES;
4942        }
4943
4944        for_each_member(i, t, member) {
4945                /* offset of the field in bytes */
4946                moff = btf_member_bit_offset(t, member) / 8;
4947                if (off + size <= moff)
4948                        /* won't find anything, field is already too far */
4949                        break;
4950
4951                if (btf_member_bitfield_size(t, member)) {
4952                        u32 end_bit = btf_member_bit_offset(t, member) +
4953                                btf_member_bitfield_size(t, member);
4954
4955                        /* off <= moff instead of off == moff because clang
4956                         * does not generate a BTF member for anonymous
4957                         * bitfield like the ":16" here:
4958                         * struct {
4959                         *      int :16;
4960                         *      int x:8;
4961                         * };
4962                         */
4963                        if (off <= moff &&
4964                            BITS_ROUNDUP_BYTES(end_bit) <= off + size)
4965                                return WALK_SCALAR;
4966
4967                        /* off may be accessing a following member
4968                         *
4969                         * or
4970                         *
4971                         * Doing partial access at either end of this
4972                         * bitfield.  Continue on this case also to
4973                         * treat it as not accessing this bitfield
4974                         * and eventually error out as field not
4975                         * found to keep it simple.
4976                         * It could be relaxed if there was a legit
4977                         * partial access case later.
4978                         */
4979                        continue;
4980                }
4981
4982                /* In case of "off" is pointing to holes of a struct */
4983                if (off < moff)
4984                        break;
4985
4986                /* type of the field */
4987                mid = member->type;
4988                mtype = btf_type_by_id(btf, member->type);
4989                mname = __btf_name_by_offset(btf, member->name_off);
4990
4991                mtype = __btf_resolve_size(btf, mtype, &msize,
4992                                           &elem_type, &elem_id, &total_nelems,
4993                                           &mid);
4994                if (IS_ERR(mtype)) {
4995                        bpf_log(log, "field %s doesn't have size\n", mname);
4996                        return -EFAULT;
4997                }
4998
4999                mtrue_end = moff + msize;
5000                if (off >= mtrue_end)
5001                        /* no overlap with member, keep iterating */
5002                        continue;
5003
5004                if (btf_type_is_array(mtype)) {
5005                        u32 elem_idx;
5006
5007                        /* __btf_resolve_size() above helps to
5008                         * linearize a multi-dimensional array.
5009                         *
5010                         * The logic here is treating an array
5011                         * in a struct as the following way:
5012                         *
5013                         * struct outer {
5014                         *      struct inner array[2][2];
5015                         * };
5016                         *
5017                         * looks like:
5018                         *
5019                         * struct outer {
5020                         *      struct inner array_elem0;
5021                         *      struct inner array_elem1;
5022                         *      struct inner array_elem2;
5023                         *      struct inner array_elem3;
5024                         * };
5025                         *
5026                         * When accessing outer->array[1][0], it moves
5027                         * moff to "array_elem2", set mtype to
5028                         * "struct inner", and msize also becomes
5029                         * sizeof(struct inner).  Then most of the
5030                         * remaining logic will fall through without
5031                         * caring the current member is an array or
5032                         * not.
5033                         *
5034                         * Unlike mtype/msize/moff, mtrue_end does not
5035                         * change.  The naming difference ("_true") tells
5036                         * that it is not always corresponding to
5037                         * the current mtype/msize/moff.
5038                         * It is the true end of the current
5039                         * member (i.e. array in this case).  That
5040                         * will allow an int array to be accessed like
5041                         * a scratch space,
5042                         * i.e. allow access beyond the size of
5043                         *      the array's element as long as it is
5044                         *      within the mtrue_end boundary.
5045                         */
5046
5047                        /* skip empty array */
5048                        if (moff == mtrue_end)
5049                                continue;
5050
5051                        msize /= total_nelems;
5052                        elem_idx = (off - moff) / msize;
5053                        moff += elem_idx * msize;
5054                        mtype = elem_type;
5055                        mid = elem_id;
5056                }
5057
5058                /* the 'off' we're looking for is either equal to start
5059                 * of this field or inside of this struct
5060                 */
5061                if (btf_type_is_struct(mtype)) {
5062                        /* our field must be inside that union or struct */
5063                        t = mtype;
5064
5065                        /* return if the offset matches the member offset */
5066                        if (off == moff) {
5067                                *next_btf_id = mid;
5068                                return WALK_STRUCT;
5069                        }
5070
5071                        /* adjust offset we're looking for */
5072                        off -= moff;
5073                        goto again;
5074                }
5075
5076                if (btf_type_is_ptr(mtype)) {
5077                        const struct btf_type *stype;
5078                        u32 id;
5079
5080                        if (msize != size || off != moff) {
5081                                bpf_log(log,
5082                                        "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5083                                        mname, moff, tname, off, size);
5084                                return -EACCES;
5085                        }
5086                        stype = btf_type_skip_modifiers(btf, mtype->type, &id);
5087                        if (btf_type_is_struct(stype)) {
5088                                *next_btf_id = id;
5089                                return WALK_PTR;
5090                        }
5091                }
5092
5093                /* Allow more flexible access within an int as long as
5094                 * it is within mtrue_end.
5095                 * Since mtrue_end could be the end of an array,
5096                 * that also allows using an array of int as a scratch
5097                 * space. e.g. skb->cb[].
5098                 */
5099                if (off + size > mtrue_end) {
5100                        bpf_log(log,
5101                                "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5102                                mname, mtrue_end, tname, off, size);
5103                        return -EACCES;
5104                }
5105
5106                return WALK_SCALAR;
5107        }
5108        bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5109        return -EINVAL;
5110}
5111
5112int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
5113                      const struct btf_type *t, int off, int size,
5114                      enum bpf_access_type atype __maybe_unused,
5115                      u32 *next_btf_id)
5116{
5117        int err;
5118        u32 id;
5119
5120        do {
5121                err = btf_struct_walk(log, btf, t, off, size, &id);
5122
5123                switch (err) {
5124                case WALK_PTR:
5125                        /* If we found the pointer or scalar on t+off,
5126                         * we're done.
5127                         */
5128                        *next_btf_id = id;
5129                        return PTR_TO_BTF_ID;
5130                case WALK_SCALAR:
5131                        return SCALAR_VALUE;
5132                case WALK_STRUCT:
5133                        /* We found nested struct, so continue the search
5134                         * by diving in it. At this point the offset is
5135                         * aligned with the new type, so set it to 0.
5136                         */
5137                        t = btf_type_by_id(btf, id);
5138                        off = 0;
5139                        break;
5140                default:
5141                        /* It's either error or unknown return value..
5142                         * scream and leave.
5143                         */
5144                        if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5145                                return -EINVAL;
5146                        return err;
5147                }
5148        } while (t);
5149
5150        return -EINVAL;
5151}
5152
5153/* Check that two BTF types, each specified as an BTF object + id, are exactly
5154 * the same. Trivial ID check is not enough due to module BTFs, because we can
5155 * end up with two different module BTFs, but IDs point to the common type in
5156 * vmlinux BTF.
5157 */
5158static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5159                               const struct btf *btf2, u32 id2)
5160{
5161        if (id1 != id2)
5162                return false;
5163        if (btf1 == btf2)
5164                return true;
5165        return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5166}
5167
5168bool btf_struct_ids_match(struct bpf_verifier_log *log,
5169                          const struct btf *btf, u32 id, int off,
5170                          const struct btf *need_btf, u32 need_type_id)
5171{
5172        const struct btf_type *type;
5173        int err;
5174
5175        /* Are we already done? */
5176        if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5177                return true;
5178
5179again:
5180        type = btf_type_by_id(btf, id);
5181        if (!type)
5182                return false;
5183        err = btf_struct_walk(log, btf, type, off, 1, &id);
5184        if (err != WALK_STRUCT)
5185                return false;
5186
5187        /* We found nested struct object. If it matches
5188         * the requested ID, we're done. Otherwise let's
5189         * continue the search with offset 0 in the new
5190         * type.
5191         */
5192        if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5193                off = 0;
5194                goto again;
5195        }
5196
5197        return true;
5198}
5199
5200static int __get_type_size(struct btf *btf, u32 btf_id,
5201                           const struct btf_type **bad_type)
5202{
5203        const struct btf_type *t;
5204
5205        if (!btf_id)
5206                /* void */
5207                return 0;
5208        t = btf_type_by_id(btf, btf_id);
5209        while (t && btf_type_is_modifier(t))
5210                t = btf_type_by_id(btf, t->type);
5211        if (!t) {
5212                *bad_type = btf_type_by_id(btf, 0);
5213                return -EINVAL;
5214        }
5215        if (btf_type_is_ptr(t))
5216                /* kernel size of pointer. Not BPF's size of pointer*/
5217                return sizeof(void *);
5218        if (btf_type_is_int(t) || btf_type_is_enum(t))
5219                return t->size;
5220        *bad_type = t;
5221        return -EINVAL;
5222}
5223
5224int btf_distill_func_proto(struct bpf_verifier_log *log,
5225                           struct btf *btf,
5226                           const struct btf_type *func,
5227                           const char *tname,
5228                           struct btf_func_model *m)
5229{
5230        const struct btf_param *args;
5231        const struct btf_type *t;
5232        u32 i, nargs;
5233        int ret;
5234
5235        if (!func) {
5236                /* BTF function prototype doesn't match the verifier types.
5237                 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5238                 */
5239                for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
5240                        m->arg_size[i] = 8;
5241                m->ret_size = 8;
5242                m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5243                return 0;
5244        }
5245        args = (const struct btf_param *)(func + 1);
5246        nargs = btf_type_vlen(func);
5247        if (nargs >= MAX_BPF_FUNC_ARGS) {
5248                bpf_log(log,
5249                        "The function %s has %d arguments. Too many.\n",
5250                        tname, nargs);
5251                return -EINVAL;
5252        }
5253        ret = __get_type_size(btf, func->type, &t);
5254        if (ret < 0) {
5255                bpf_log(log,
5256                        "The function %s return type %s is unsupported.\n",
5257                        tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5258                return -EINVAL;
5259        }
5260        m->ret_size = ret;
5261
5262        for (i = 0; i < nargs; i++) {
5263                if (i == nargs - 1 && args[i].type == 0) {
5264                        bpf_log(log,
5265                                "The function %s with variable args is unsupported.\n",
5266                                tname);
5267                        return -EINVAL;
5268                }
5269                ret = __get_type_size(btf, args[i].type, &t);
5270                if (ret < 0) {
5271                        bpf_log(log,
5272                                "The function %s arg%d type %s is unsupported.\n",
5273                                tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5274                        return -EINVAL;
5275                }
5276                if (ret == 0) {
5277                        bpf_log(log,
5278                                "The function %s has malformed void argument.\n",
5279                                tname);
5280                        return -EINVAL;
5281                }
5282                m->arg_size[i] = ret;
5283        }
5284        m->nr_args = nargs;
5285        return 0;
5286}
5287
5288/* Compare BTFs of two functions assuming only scalars and pointers to context.
5289 * t1 points to BTF_KIND_FUNC in btf1
5290 * t2 points to BTF_KIND_FUNC in btf2
5291 * Returns:
5292 * EINVAL - function prototype mismatch
5293 * EFAULT - verifier bug
5294 * 0 - 99% match. The last 1% is validated by the verifier.
5295 */
5296static int btf_check_func_type_match(struct bpf_verifier_log *log,
5297                                     struct btf *btf1, const struct btf_type *t1,
5298                                     struct btf *btf2, const struct btf_type *t2)
5299{
5300        const struct btf_param *args1, *args2;
5301        const char *fn1, *fn2, *s1, *s2;
5302        u32 nargs1, nargs2, i;
5303
5304        fn1 = btf_name_by_offset(btf1, t1->name_off);
5305        fn2 = btf_name_by_offset(btf2, t2->name_off);
5306
5307        if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5308                bpf_log(log, "%s() is not a global function\n", fn1);
5309                return -EINVAL;
5310        }
5311        if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5312                bpf_log(log, "%s() is not a global function\n", fn2);
5313                return -EINVAL;
5314        }
5315
5316        t1 = btf_type_by_id(btf1, t1->type);
5317        if (!t1 || !btf_type_is_func_proto(t1))
5318                return -EFAULT;
5319        t2 = btf_type_by_id(btf2, t2->type);
5320        if (!t2 || !btf_type_is_func_proto(t2))
5321                return -EFAULT;
5322
5323        args1 = (const struct btf_param *)(t1 + 1);
5324        nargs1 = btf_type_vlen(t1);
5325        args2 = (const struct btf_param *)(t2 + 1);
5326        nargs2 = btf_type_vlen(t2);
5327
5328        if (nargs1 != nargs2) {
5329                bpf_log(log, "%s() has %d args while %s() has %d args\n",
5330                        fn1, nargs1, fn2, nargs2);
5331                return -EINVAL;
5332        }
5333
5334        t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5335        t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5336        if (t1->info != t2->info) {
5337                bpf_log(log,
5338                        "Return type %s of %s() doesn't match type %s of %s()\n",
5339                        btf_type_str(t1), fn1,
5340                        btf_type_str(t2), fn2);
5341                return -EINVAL;
5342        }
5343
5344        for (i = 0; i < nargs1; i++) {
5345                t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5346                t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5347
5348                if (t1->info != t2->info) {
5349                        bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5350                                i, fn1, btf_type_str(t1),
5351                                fn2, btf_type_str(t2));
5352                        return -EINVAL;
5353                }
5354                if (btf_type_has_size(t1) && t1->size != t2->size) {
5355                        bpf_log(log,
5356                                "arg%d in %s() has size %d while %s() has %d\n",
5357                                i, fn1, t1->size,
5358                                fn2, t2->size);
5359                        return -EINVAL;
5360                }
5361
5362                /* global functions are validated with scalars and pointers
5363                 * to context only. And only global functions can be replaced.
5364                 * Hence type check only those types.
5365                 */
5366                if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5367                        continue;
5368                if (!btf_type_is_ptr(t1)) {
5369                        bpf_log(log,
5370                                "arg%d in %s() has unrecognized type\n",
5371                                i, fn1);
5372                        return -EINVAL;
5373                }
5374                t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5375                t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5376                if (!btf_type_is_struct(t1)) {
5377                        bpf_log(log,
5378                                "arg%d in %s() is not a pointer to context\n",
5379                                i, fn1);
5380                        return -EINVAL;
5381                }
5382                if (!btf_type_is_struct(t2)) {
5383                        bpf_log(log,
5384                                "arg%d in %s() is not a pointer to context\n",
5385                                i, fn2);
5386                        return -EINVAL;
5387                }
5388                /* This is an optional check to make program writing easier.
5389                 * Compare names of structs and report an error to the user.
5390                 * btf_prepare_func_args() already checked that t2 struct
5391                 * is a context type. btf_prepare_func_args() will check
5392                 * later that t1 struct is a context type as well.
5393                 */
5394                s1 = btf_name_by_offset(btf1, t1->name_off);
5395                s2 = btf_name_by_offset(btf2, t2->name_off);
5396                if (strcmp(s1, s2)) {
5397                        bpf_log(log,
5398                                "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5399                                i, fn1, s1, fn2, s2);
5400                        return -EINVAL;
5401                }
5402        }
5403        return 0;
5404}
5405
5406/* Compare BTFs of given program with BTF of target program */
5407int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5408                         struct btf *btf2, const struct btf_type *t2)
5409{
5410        struct btf *btf1 = prog->aux->btf;
5411        const struct btf_type *t1;
5412        u32 btf_id = 0;
5413
5414        if (!prog->aux->func_info) {
5415                bpf_log(log, "Program extension requires BTF\n");
5416                return -EINVAL;
5417        }
5418
5419        btf_id = prog->aux->func_info[0].type_id;
5420        if (!btf_id)
5421                return -EFAULT;
5422
5423        t1 = btf_type_by_id(btf1, btf_id);
5424        if (!t1 || !btf_type_is_func(t1))
5425                return -EFAULT;
5426
5427        return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5428}
5429
5430static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5431#ifdef CONFIG_NET
5432        [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5433        [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5434        [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5435#endif
5436};
5437
5438static int btf_check_func_arg_match(struct bpf_verifier_env *env,
5439                                    const struct btf *btf, u32 func_id,
5440                                    struct bpf_reg_state *regs,
5441                                    bool ptr_to_mem_ok)
5442{
5443        struct bpf_verifier_log *log = &env->log;
5444        const char *func_name, *ref_tname;
5445        const struct btf_type *t, *ref_t;
5446        const struct btf_param *args;
5447        u32 i, nargs, ref_id;
5448
5449        t = btf_type_by_id(btf, func_id);
5450        if (!t || !btf_type_is_func(t)) {
5451                /* These checks were already done by the verifier while loading
5452                 * struct bpf_func_info or in add_kfunc_call().
5453                 */
5454                bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
5455                        func_id);
5456                return -EFAULT;
5457        }
5458        func_name = btf_name_by_offset(btf, t->name_off);
5459
5460        t = btf_type_by_id(btf, t->type);
5461        if (!t || !btf_type_is_func_proto(t)) {
5462                bpf_log(log, "Invalid BTF of func %s\n", func_name);
5463                return -EFAULT;
5464        }
5465        args = (const struct btf_param *)(t + 1);
5466        nargs = btf_type_vlen(t);
5467        if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5468                bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
5469                        MAX_BPF_FUNC_REG_ARGS);
5470                return -EINVAL;
5471        }
5472
5473        /* check that BTF function arguments match actual types that the
5474         * verifier sees.
5475         */
5476        for (i = 0; i < nargs; i++) {
5477                u32 regno = i + 1;
5478                struct bpf_reg_state *reg = &regs[regno];
5479
5480                t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5481                if (btf_type_is_scalar(t)) {
5482                        if (reg->type == SCALAR_VALUE)
5483                                continue;
5484                        bpf_log(log, "R%d is not a scalar\n", regno);
5485                        return -EINVAL;
5486                }
5487
5488                if (!btf_type_is_ptr(t)) {
5489                        bpf_log(log, "Unrecognized arg#%d type %s\n",
5490                                i, btf_type_str(t));
5491                        return -EINVAL;
5492                }
5493
5494                ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
5495                ref_tname = btf_name_by_offset(btf, ref_t->name_off);
5496                if (btf_is_kernel(btf)) {
5497                        const struct btf_type *reg_ref_t;
5498                        const struct btf *reg_btf;
5499                        const char *reg_ref_tname;
5500                        u32 reg_ref_id;
5501
5502                        if (!btf_type_is_struct(ref_t)) {
5503                                bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
5504                                        func_name, i, btf_type_str(ref_t),
5505                                        ref_tname);
5506                                return -EINVAL;
5507                        }
5508
5509                        if (reg->type == PTR_TO_BTF_ID) {
5510                                reg_btf = reg->btf;
5511                                reg_ref_id = reg->btf_id;
5512                        } else if (reg2btf_ids[reg->type]) {
5513                                reg_btf = btf_vmlinux;
5514                                reg_ref_id = *reg2btf_ids[reg->type];
5515                        } else {
5516                                bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d is not a pointer to btf_id\n",
5517                                        func_name, i,
5518                                        btf_type_str(ref_t), ref_tname, regno);
5519                                return -EINVAL;
5520                        }
5521
5522                        reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
5523                                                            &reg_ref_id);
5524                        reg_ref_tname = btf_name_by_offset(reg_btf,
5525                                                           reg_ref_t->name_off);
5526                        if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
5527                                                  reg->off, btf, ref_id)) {
5528                                bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
5529                                        func_name, i,
5530                                        btf_type_str(ref_t), ref_tname,
5531                                        regno, btf_type_str(reg_ref_t),
5532                                        reg_ref_tname);
5533                                return -EINVAL;
5534                        }
5535                } else if (btf_get_prog_ctx_type(log, btf, t,
5536                                                 env->prog->type, i)) {
5537                        /* If function expects ctx type in BTF check that caller
5538                         * is passing PTR_TO_CTX.
5539                         */
5540                        if (reg->type != PTR_TO_CTX) {
5541                                bpf_log(log,
5542                                        "arg#%d expected pointer to ctx, but got %s\n",
5543                                        i, btf_type_str(t));
5544                                return -EINVAL;
5545                        }
5546                        if (check_ctx_reg(env, reg, regno))
5547                                return -EINVAL;
5548                } else if (ptr_to_mem_ok) {
5549                        const struct btf_type *resolve_ret;
5550                        u32 type_size;
5551
5552                        resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
5553                        if (IS_ERR(resolve_ret)) {
5554                                bpf_log(log,
5555                                        "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5556                                        i, btf_type_str(ref_t), ref_tname,
5557                                        PTR_ERR(resolve_ret));
5558                                return -EINVAL;
5559                        }
5560
5561                        if (check_mem_reg(env, reg, regno, type_size))
5562                                return -EINVAL;
5563                } else {
5564                        return -EINVAL;
5565                }
5566        }
5567
5568        return 0;
5569}
5570
5571/* Compare BTF of a function with given bpf_reg_state.
5572 * Returns:
5573 * EFAULT - there is a verifier bug. Abort verification.
5574 * EINVAL - there is a type mismatch or BTF is not available.
5575 * 0 - BTF matches with what bpf_reg_state expects.
5576 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5577 */
5578int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
5579                                struct bpf_reg_state *regs)
5580{
5581        struct bpf_prog *prog = env->prog;
5582        struct btf *btf = prog->aux->btf;
5583        bool is_global;
5584        u32 btf_id;
5585        int err;
5586
5587        if (!prog->aux->func_info)
5588                return -EINVAL;
5589
5590        btf_id = prog->aux->func_info[subprog].type_id;
5591        if (!btf_id)
5592                return -EFAULT;
5593
5594        if (prog->aux->func_info_aux[subprog].unreliable)
5595                return -EINVAL;
5596
5597        is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5598        err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
5599
5600        /* Compiler optimizations can remove arguments from static functions
5601         * or mismatched type can be passed into a global function.
5602         * In such cases mark the function as unreliable from BTF point of view.
5603         */
5604        if (err)
5605                prog->aux->func_info_aux[subprog].unreliable = true;
5606        return err;
5607}
5608
5609int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
5610                              const struct btf *btf, u32 func_id,
5611                              struct bpf_reg_state *regs)
5612{
5613        return btf_check_func_arg_match(env, btf, func_id, regs, false);
5614}
5615
5616/* Convert BTF of a function into bpf_reg_state if possible
5617 * Returns:
5618 * EFAULT - there is a verifier bug. Abort verification.
5619 * EINVAL - cannot convert BTF.
5620 * 0 - Successfully converted BTF into bpf_reg_state
5621 * (either PTR_TO_CTX or SCALAR_VALUE).
5622 */
5623int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5624                          struct bpf_reg_state *regs)
5625{
5626        struct bpf_verifier_log *log = &env->log;
5627        struct bpf_prog *prog = env->prog;
5628        enum bpf_prog_type prog_type = prog->type;
5629        struct btf *btf = prog->aux->btf;
5630        const struct btf_param *args;
5631        const struct btf_type *t, *ref_t;
5632        u32 i, nargs, btf_id;
5633        const char *tname;
5634
5635        if (!prog->aux->func_info ||
5636            prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5637                bpf_log(log, "Verifier bug\n");
5638                return -EFAULT;
5639        }
5640
5641        btf_id = prog->aux->func_info[subprog].type_id;
5642        if (!btf_id) {
5643                bpf_log(log, "Global functions need valid BTF\n");
5644                return -EFAULT;
5645        }
5646
5647        t = btf_type_by_id(btf, btf_id);
5648        if (!t || !btf_type_is_func(t)) {
5649                /* These checks were already done by the verifier while loading
5650                 * struct bpf_func_info
5651                 */
5652                bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5653                        subprog);
5654                return -EFAULT;
5655        }
5656        tname = btf_name_by_offset(btf, t->name_off);
5657
5658        if (log->level & BPF_LOG_LEVEL)
5659                bpf_log(log, "Validating %s() func#%d...\n",
5660                        tname, subprog);
5661
5662        if (prog->aux->func_info_aux[subprog].unreliable) {
5663                bpf_log(log, "Verifier bug in function %s()\n", tname);
5664                return -EFAULT;
5665        }
5666        if (prog_type == BPF_PROG_TYPE_EXT)
5667                prog_type = prog->aux->dst_prog->type;
5668
5669        t = btf_type_by_id(btf, t->type);
5670        if (!t || !btf_type_is_func_proto(t)) {
5671                bpf_log(log, "Invalid type of function %s()\n", tname);
5672                return -EFAULT;
5673        }
5674        args = (const struct btf_param *)(t + 1);
5675        nargs = btf_type_vlen(t);
5676        if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5677                bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
5678                        tname, nargs, MAX_BPF_FUNC_REG_ARGS);
5679                return -EINVAL;
5680        }
5681        /* check that function returns int */
5682        t = btf_type_by_id(btf, t->type);
5683        while (btf_type_is_modifier(t))
5684                t = btf_type_by_id(btf, t->type);
5685        if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5686                bpf_log(log,
5687                        "Global function %s() doesn't return scalar. Only those are supported.\n",
5688                        tname);
5689                return -EINVAL;
5690        }
5691        /* Convert BTF function arguments into verifier types.
5692         * Only PTR_TO_CTX and SCALAR are supported atm.
5693         */
5694        for (i = 0; i < nargs; i++) {
5695                struct bpf_reg_state *reg = &regs[i + 1];
5696
5697                t = btf_type_by_id(btf, args[i].type);
5698                while (btf_type_is_modifier(t))
5699                        t = btf_type_by_id(btf, t->type);
5700                if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5701                        reg->type = SCALAR_VALUE;
5702                        continue;
5703                }
5704                if (btf_type_is_ptr(t)) {
5705                        if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5706                                reg->type = PTR_TO_CTX;
5707                                continue;
5708                        }
5709
5710                        t = btf_type_skip_modifiers(btf, t->type, NULL);
5711
5712                        ref_t = btf_resolve_size(btf, t, &reg->mem_size);
5713                        if (IS_ERR(ref_t)) {
5714                                bpf_log(log,
5715                                    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5716                                    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
5717                                        PTR_ERR(ref_t));
5718                                return -EINVAL;
5719                        }
5720
5721                        reg->type = PTR_TO_MEM_OR_NULL;
5722                        reg->id = ++env->id_gen;
5723
5724                        continue;
5725                }
5726                bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5727                        i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5728                return -EINVAL;
5729        }
5730        return 0;
5731}
5732
5733static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5734                          struct btf_show *show)
5735{
5736        const struct btf_type *t = btf_type_by_id(btf, type_id);
5737
5738        show->btf = btf;
5739        memset(&show->state, 0, sizeof(show->state));
5740        memset(&show->obj, 0, sizeof(show->obj));
5741
5742        btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5743}
5744
5745static void btf_seq_show(struct btf_show *show, const char *fmt,
5746                         va_list args)
5747{
5748        seq_vprintf((struct seq_file *)show->target, fmt, args);
5749}
5750
5751int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5752                            void *obj, struct seq_file *m, u64 flags)
5753{
5754        struct btf_show sseq;
5755
5756        sseq.target = m;
5757        sseq.showfn = btf_seq_show;
5758        sseq.flags = flags;
5759
5760        btf_type_show(btf, type_id, obj, &sseq);
5761
5762        return sseq.state.status;
5763}
5764
5765void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5766                       struct seq_file *m)
5767{
5768        (void) btf_type_seq_show_flags(btf, type_id, obj, m,
5769                                       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5770                                       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5771}
5772
5773struct btf_show_snprintf {
5774        struct btf_show show;
5775        int len_left;           /* space left in string */
5776        int len;                /* length we would have written */
5777};
5778
5779static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5780                              va_list args)
5781{
5782        struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5783        int len;
5784
5785        len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5786
5787        if (len < 0) {
5788                ssnprintf->len_left = 0;
5789                ssnprintf->len = len;
5790        } else if (len > ssnprintf->len_left) {
5791                /* no space, drive on to get length we would have written */
5792                ssnprintf->len_left = 0;
5793                ssnprintf->len += len;
5794        } else {
5795                ssnprintf->len_left -= len;
5796                ssnprintf->len += len;
5797                show->target += len;
5798        }
5799}
5800
5801int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5802                           char *buf, int len, u64 flags)
5803{
5804        struct btf_show_snprintf ssnprintf;
5805
5806        ssnprintf.show.target = buf;
5807        ssnprintf.show.flags = flags;
5808        ssnprintf.show.showfn = btf_snprintf_show;
5809        ssnprintf.len_left = len;
5810        ssnprintf.len = 0;
5811
5812        btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5813
5814        /* If we encontered an error, return it. */
5815        if (ssnprintf.show.state.status)
5816                return ssnprintf.show.state.status;
5817
5818        /* Otherwise return length we would have written */
5819        return ssnprintf.len;
5820}
5821
5822#ifdef CONFIG_PROC_FS
5823static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5824{
5825        const struct btf *btf = filp->private_data;
5826
5827        seq_printf(m, "btf_id:\t%u\n", btf->id);
5828}
5829#endif
5830
5831static int btf_release(struct inode *inode, struct file *filp)
5832{
5833        btf_put(filp->private_data);
5834        return 0;
5835}
5836
5837const struct file_operations btf_fops = {
5838#ifdef CONFIG_PROC_FS
5839        .show_fdinfo    = bpf_btf_show_fdinfo,
5840#endif
5841        .release        = btf_release,
5842};
5843
5844static int __btf_new_fd(struct btf *btf)
5845{
5846        return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5847}
5848
5849int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
5850{
5851        struct btf *btf;
5852        int ret;
5853
5854        btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
5855                        attr->btf_size, attr->btf_log_level,
5856                        u64_to_user_ptr(attr->btf_log_buf),
5857                        attr->btf_log_size);
5858        if (IS_ERR(btf))
5859                return PTR_ERR(btf);
5860
5861        ret = btf_alloc_id(btf);
5862        if (ret) {
5863                btf_free(btf);
5864                return ret;
5865        }
5866
5867        /*
5868         * The BTF ID is published to the userspace.
5869         * All BTF free must go through call_rcu() from
5870         * now on (i.e. free by calling btf_put()).
5871         */
5872
5873        ret = __btf_new_fd(btf);
5874        if (ret < 0)
5875                btf_put(btf);
5876
5877        return ret;
5878}
5879
5880struct btf *btf_get_by_fd(int fd)
5881{
5882        struct btf *btf;
5883        struct fd f;
5884
5885        f = fdget(fd);
5886
5887        if (!f.file)
5888                return ERR_PTR(-EBADF);
5889
5890        if (f.file->f_op != &btf_fops) {
5891                fdput(f);
5892                return ERR_PTR(-EINVAL);
5893        }
5894
5895        btf = f.file->private_data;
5896        refcount_inc(&btf->refcnt);
5897        fdput(f);
5898
5899        return btf;
5900}
5901
5902int btf_get_info_by_fd(const struct btf *btf,
5903                       const union bpf_attr *attr,
5904                       union bpf_attr __user *uattr)
5905{
5906        struct bpf_btf_info __user *uinfo;
5907        struct bpf_btf_info info;
5908        u32 info_copy, btf_copy;
5909        void __user *ubtf;
5910        char __user *uname;
5911        u32 uinfo_len, uname_len, name_len;
5912        int ret = 0;
5913
5914        uinfo = u64_to_user_ptr(attr->info.info);
5915        uinfo_len = attr->info.info_len;
5916
5917        info_copy = min_t(u32, uinfo_len, sizeof(info));
5918        memset(&info, 0, sizeof(info));
5919        if (copy_from_user(&info, uinfo, info_copy))
5920                return -EFAULT;
5921
5922        info.id = btf->id;
5923        ubtf = u64_to_user_ptr(info.btf);
5924        btf_copy = min_t(u32, btf->data_size, info.btf_size);
5925        if (copy_to_user(ubtf, btf->data, btf_copy))
5926                return -EFAULT;
5927        info.btf_size = btf->data_size;
5928
5929        info.kernel_btf = btf->kernel_btf;
5930
5931        uname = u64_to_user_ptr(info.name);
5932        uname_len = info.name_len;
5933        if (!uname ^ !uname_len)
5934                return -EINVAL;
5935
5936        name_len = strlen(btf->name);
5937        info.name_len = name_len;
5938
5939        if (uname) {
5940                if (uname_len >= name_len + 1) {
5941                        if (copy_to_user(uname, btf->name, name_len + 1))
5942                                return -EFAULT;
5943                } else {
5944                        char zero = '\0';
5945
5946                        if (copy_to_user(uname, btf->name, uname_len - 1))
5947                                return -EFAULT;
5948                        if (put_user(zero, uname + uname_len - 1))
5949                                return -EFAULT;
5950                        /* let user-space know about too short buffer */
5951                        ret = -ENOSPC;
5952                }
5953        }
5954
5955        if (copy_to_user(uinfo, &info, info_copy) ||
5956            put_user(info_copy, &uattr->info.info_len))
5957                return -EFAULT;
5958
5959        return ret;
5960}
5961
5962int btf_get_fd_by_id(u32 id)
5963{
5964        struct btf *btf;
5965        int fd;
5966
5967        rcu_read_lock();
5968        btf = idr_find(&btf_idr, id);
5969        if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5970                btf = ERR_PTR(-ENOENT);
5971        rcu_read_unlock();
5972
5973        if (IS_ERR(btf))
5974                return PTR_ERR(btf);
5975
5976        fd = __btf_new_fd(btf);
5977        if (fd < 0)
5978                btf_put(btf);
5979
5980        return fd;
5981}
5982
5983u32 btf_obj_id(const struct btf *btf)
5984{
5985        return btf->id;
5986}
5987
5988bool btf_is_kernel(const struct btf *btf)
5989{
5990        return btf->kernel_btf;
5991}
5992
5993bool btf_is_module(const struct btf *btf)
5994{
5995        return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
5996}
5997
5998static int btf_id_cmp_func(const void *a, const void *b)
5999{
6000        const int *pa = a, *pb = b;
6001
6002        return *pa - *pb;
6003}
6004
6005bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
6006{
6007        return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
6008}
6009
6010#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6011struct btf_module {
6012        struct list_head list;
6013        struct module *module;
6014        struct btf *btf;
6015        struct bin_attribute *sysfs_attr;
6016};
6017
6018static LIST_HEAD(btf_modules);
6019static DEFINE_MUTEX(btf_module_mutex);
6020
6021static ssize_t
6022btf_module_read(struct file *file, struct kobject *kobj,
6023                struct bin_attribute *bin_attr,
6024                char *buf, loff_t off, size_t len)
6025{
6026        const struct btf *btf = bin_attr->private;
6027
6028        memcpy(buf, btf->data + off, len);
6029        return len;
6030}
6031
6032static int btf_module_notify(struct notifier_block *nb, unsigned long op,
6033                             void *module)
6034{
6035        struct btf_module *btf_mod, *tmp;
6036        struct module *mod = module;
6037        struct btf *btf;
6038        int err = 0;
6039
6040        if (mod->btf_data_size == 0 ||
6041            (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
6042                goto out;
6043
6044        switch (op) {
6045        case MODULE_STATE_COMING:
6046                btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
6047                if (!btf_mod) {
6048                        err = -ENOMEM;
6049                        goto out;
6050                }
6051                btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
6052                if (IS_ERR(btf)) {
6053                        pr_warn("failed to validate module [%s] BTF: %ld\n",
6054                                mod->name, PTR_ERR(btf));
6055                        kfree(btf_mod);
6056                        err = PTR_ERR(btf);
6057                        goto out;
6058                }
6059                err = btf_alloc_id(btf);
6060                if (err) {
6061                        btf_free(btf);
6062                        kfree(btf_mod);
6063                        goto out;
6064                }
6065
6066                mutex_lock(&btf_module_mutex);
6067                btf_mod->module = module;
6068                btf_mod->btf = btf;
6069                list_add(&btf_mod->list, &btf_modules);
6070                mutex_unlock(&btf_module_mutex);
6071
6072                if (IS_ENABLED(CONFIG_SYSFS)) {
6073                        struct bin_attribute *attr;
6074
6075                        attr = kzalloc(sizeof(*attr), GFP_KERNEL);
6076                        if (!attr)
6077                                goto out;
6078
6079                        sysfs_bin_attr_init(attr);
6080                        attr->attr.name = btf->name;
6081                        attr->attr.mode = 0444;
6082                        attr->size = btf->data_size;
6083                        attr->private = btf;
6084                        attr->read = btf_module_read;
6085
6086                        err = sysfs_create_bin_file(btf_kobj, attr);
6087                        if (err) {
6088                                pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
6089                                        mod->name, err);
6090                                kfree(attr);
6091                                err = 0;
6092                                goto out;
6093                        }
6094
6095                        btf_mod->sysfs_attr = attr;
6096                }
6097
6098                break;
6099        case MODULE_STATE_GOING:
6100                mutex_lock(&btf_module_mutex);
6101                list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6102                        if (btf_mod->module != module)
6103                                continue;
6104
6105                        list_del(&btf_mod->list);
6106                        if (btf_mod->sysfs_attr)
6107                                sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
6108                        btf_put(btf_mod->btf);
6109                        kfree(btf_mod->sysfs_attr);
6110                        kfree(btf_mod);
6111                        break;
6112                }
6113                mutex_unlock(&btf_module_mutex);
6114                break;
6115        }
6116out:
6117        return notifier_from_errno(err);
6118}
6119
6120static struct notifier_block btf_module_nb = {
6121        .notifier_call = btf_module_notify,
6122};
6123
6124static int __init btf_module_init(void)
6125{
6126        register_module_notifier(&btf_module_nb);
6127        return 0;
6128}
6129
6130fs_initcall(btf_module_init);
6131#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6132
6133struct module *btf_try_get_module(const struct btf *btf)
6134{
6135        struct module *res = NULL;
6136#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6137        struct btf_module *btf_mod, *tmp;
6138
6139        mutex_lock(&btf_module_mutex);
6140        list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6141                if (btf_mod->btf != btf)
6142                        continue;
6143
6144                if (try_module_get(btf_mod->module))
6145                        res = btf_mod->module;
6146
6147                break;
6148        }
6149        mutex_unlock(&btf_module_mutex);
6150#endif
6151
6152        return res;
6153}
6154
6155BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
6156{
6157        struct btf *btf;
6158        long ret;
6159
6160        if (flags)
6161                return -EINVAL;
6162
6163        if (name_sz <= 1 || name[name_sz - 1])
6164                return -EINVAL;
6165
6166        btf = bpf_get_btf_vmlinux();
6167        if (IS_ERR(btf))
6168                return PTR_ERR(btf);
6169
6170        ret = btf_find_by_name_kind(btf, name, kind);
6171        /* ret is never zero, since btf_find_by_name_kind returns
6172         * positive btf_id or negative error.
6173         */
6174        if (ret < 0) {
6175                struct btf *mod_btf;
6176                int id;
6177
6178                /* If name is not found in vmlinux's BTF then search in module's BTFs */
6179                spin_lock_bh(&btf_idr_lock);
6180                idr_for_each_entry(&btf_idr, mod_btf, id) {
6181                        if (!btf_is_module(mod_btf))
6182                                continue;
6183                        /* linear search could be slow hence unlock/lock
6184                         * the IDR to avoiding holding it for too long
6185                         */
6186                        btf_get(mod_btf);
6187                        spin_unlock_bh(&btf_idr_lock);
6188                        ret = btf_find_by_name_kind(mod_btf, name, kind);
6189                        if (ret > 0) {
6190                                int btf_obj_fd;
6191
6192                                btf_obj_fd = __btf_new_fd(mod_btf);
6193                                if (btf_obj_fd < 0) {
6194                                        btf_put(mod_btf);
6195                                        return btf_obj_fd;
6196                                }
6197                                return ret | (((u64)btf_obj_fd) << 32);
6198                        }
6199                        spin_lock_bh(&btf_idr_lock);
6200                        btf_put(mod_btf);
6201                }
6202                spin_unlock_bh(&btf_idr_lock);
6203        }
6204        return ret;
6205}
6206
6207const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
6208        .func           = bpf_btf_find_by_name_kind,
6209        .gpl_only       = false,
6210        .ret_type       = RET_INTEGER,
6211        .arg1_type      = ARG_PTR_TO_MEM,
6212        .arg2_type      = ARG_CONST_SIZE,
6213        .arg3_type      = ARG_ANYTHING,
6214        .arg4_type      = ARG_ANYTHING,
6215};
6216
6217BTF_ID_LIST_GLOBAL_SINGLE(btf_task_struct_ids, struct, task_struct)
6218