linux/kernel/cgroup/cpuset.c
<<
>>
Prefs
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/cpumask.h>
  27#include <linux/cpuset.h>
  28#include <linux/err.h>
  29#include <linux/errno.h>
  30#include <linux/file.h>
  31#include <linux/fs.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/kernel.h>
  35#include <linux/kmod.h>
  36#include <linux/list.h>
  37#include <linux/mempolicy.h>
  38#include <linux/mm.h>
  39#include <linux/memory.h>
  40#include <linux/export.h>
  41#include <linux/mount.h>
  42#include <linux/fs_context.h>
  43#include <linux/namei.h>
  44#include <linux/pagemap.h>
  45#include <linux/proc_fs.h>
  46#include <linux/rcupdate.h>
  47#include <linux/sched.h>
  48#include <linux/sched/deadline.h>
  49#include <linux/sched/mm.h>
  50#include <linux/sched/task.h>
  51#include <linux/seq_file.h>
  52#include <linux/security.h>
  53#include <linux/slab.h>
  54#include <linux/spinlock.h>
  55#include <linux/stat.h>
  56#include <linux/string.h>
  57#include <linux/time.h>
  58#include <linux/time64.h>
  59#include <linux/backing-dev.h>
  60#include <linux/sort.h>
  61#include <linux/oom.h>
  62#include <linux/sched/isolation.h>
  63#include <linux/uaccess.h>
  64#include <linux/atomic.h>
  65#include <linux/mutex.h>
  66#include <linux/cgroup.h>
  67#include <linux/wait.h>
  68
  69DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
  70DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
  71
  72/* See "Frequency meter" comments, below. */
  73
  74struct fmeter {
  75        int cnt;                /* unprocessed events count */
  76        int val;                /* most recent output value */
  77        time64_t time;          /* clock (secs) when val computed */
  78        spinlock_t lock;        /* guards read or write of above */
  79};
  80
  81struct cpuset {
  82        struct cgroup_subsys_state css;
  83
  84        unsigned long flags;            /* "unsigned long" so bitops work */
  85
  86        /*
  87         * On default hierarchy:
  88         *
  89         * The user-configured masks can only be changed by writing to
  90         * cpuset.cpus and cpuset.mems, and won't be limited by the
  91         * parent masks.
  92         *
  93         * The effective masks is the real masks that apply to the tasks
  94         * in the cpuset. They may be changed if the configured masks are
  95         * changed or hotplug happens.
  96         *
  97         * effective_mask == configured_mask & parent's effective_mask,
  98         * and if it ends up empty, it will inherit the parent's mask.
  99         *
 100         *
 101         * On legacy hierarchy:
 102         *
 103         * The user-configured masks are always the same with effective masks.
 104         */
 105
 106        /* user-configured CPUs and Memory Nodes allow to tasks */
 107        cpumask_var_t cpus_allowed;
 108        nodemask_t mems_allowed;
 109
 110        /* effective CPUs and Memory Nodes allow to tasks */
 111        cpumask_var_t effective_cpus;
 112        nodemask_t effective_mems;
 113
 114        /*
 115         * CPUs allocated to child sub-partitions (default hierarchy only)
 116         * - CPUs granted by the parent = effective_cpus U subparts_cpus
 117         * - effective_cpus and subparts_cpus are mutually exclusive.
 118         *
 119         * effective_cpus contains only onlined CPUs, but subparts_cpus
 120         * may have offlined ones.
 121         */
 122        cpumask_var_t subparts_cpus;
 123
 124        /*
 125         * This is old Memory Nodes tasks took on.
 126         *
 127         * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
 128         * - A new cpuset's old_mems_allowed is initialized when some
 129         *   task is moved into it.
 130         * - old_mems_allowed is used in cpuset_migrate_mm() when we change
 131         *   cpuset.mems_allowed and have tasks' nodemask updated, and
 132         *   then old_mems_allowed is updated to mems_allowed.
 133         */
 134        nodemask_t old_mems_allowed;
 135
 136        struct fmeter fmeter;           /* memory_pressure filter */
 137
 138        /*
 139         * Tasks are being attached to this cpuset.  Used to prevent
 140         * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
 141         */
 142        int attach_in_progress;
 143
 144        /* partition number for rebuild_sched_domains() */
 145        int pn;
 146
 147        /* for custom sched domain */
 148        int relax_domain_level;
 149
 150        /* number of CPUs in subparts_cpus */
 151        int nr_subparts_cpus;
 152
 153        /* partition root state */
 154        int partition_root_state;
 155
 156        /*
 157         * Default hierarchy only:
 158         * use_parent_ecpus - set if using parent's effective_cpus
 159         * child_ecpus_count - # of children with use_parent_ecpus set
 160         */
 161        int use_parent_ecpus;
 162        int child_ecpus_count;
 163
 164        /* Handle for cpuset.cpus.partition */
 165        struct cgroup_file partition_file;
 166};
 167
 168/*
 169 * Partition root states:
 170 *
 171 *   0 - not a partition root
 172 *
 173 *   1 - partition root
 174 *
 175 *  -1 - invalid partition root
 176 *       None of the cpus in cpus_allowed can be put into the parent's
 177 *       subparts_cpus. In this case, the cpuset is not a real partition
 178 *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
 179 *       and the cpuset can be restored back to a partition root if the
 180 *       parent cpuset can give more CPUs back to this child cpuset.
 181 */
 182#define PRS_DISABLED            0
 183#define PRS_ENABLED             1
 184#define PRS_ERROR               -1
 185
 186/*
 187 * Temporary cpumasks for working with partitions that are passed among
 188 * functions to avoid memory allocation in inner functions.
 189 */
 190struct tmpmasks {
 191        cpumask_var_t addmask, delmask; /* For partition root */
 192        cpumask_var_t new_cpus;         /* For update_cpumasks_hier() */
 193};
 194
 195static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
 196{
 197        return css ? container_of(css, struct cpuset, css) : NULL;
 198}
 199
 200/* Retrieve the cpuset for a task */
 201static inline struct cpuset *task_cs(struct task_struct *task)
 202{
 203        return css_cs(task_css(task, cpuset_cgrp_id));
 204}
 205
 206static inline struct cpuset *parent_cs(struct cpuset *cs)
 207{
 208        return css_cs(cs->css.parent);
 209}
 210
 211/* bits in struct cpuset flags field */
 212typedef enum {
 213        CS_ONLINE,
 214        CS_CPU_EXCLUSIVE,
 215        CS_MEM_EXCLUSIVE,
 216        CS_MEM_HARDWALL,
 217        CS_MEMORY_MIGRATE,
 218        CS_SCHED_LOAD_BALANCE,
 219        CS_SPREAD_PAGE,
 220        CS_SPREAD_SLAB,
 221} cpuset_flagbits_t;
 222
 223/* convenient tests for these bits */
 224static inline bool is_cpuset_online(struct cpuset *cs)
 225{
 226        return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
 227}
 228
 229static inline int is_cpu_exclusive(const struct cpuset *cs)
 230{
 231        return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 232}
 233
 234static inline int is_mem_exclusive(const struct cpuset *cs)
 235{
 236        return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 237}
 238
 239static inline int is_mem_hardwall(const struct cpuset *cs)
 240{
 241        return test_bit(CS_MEM_HARDWALL, &cs->flags);
 242}
 243
 244static inline int is_sched_load_balance(const struct cpuset *cs)
 245{
 246        return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 247}
 248
 249static inline int is_memory_migrate(const struct cpuset *cs)
 250{
 251        return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 252}
 253
 254static inline int is_spread_page(const struct cpuset *cs)
 255{
 256        return test_bit(CS_SPREAD_PAGE, &cs->flags);
 257}
 258
 259static inline int is_spread_slab(const struct cpuset *cs)
 260{
 261        return test_bit(CS_SPREAD_SLAB, &cs->flags);
 262}
 263
 264static inline int is_partition_root(const struct cpuset *cs)
 265{
 266        return cs->partition_root_state > 0;
 267}
 268
 269/*
 270 * Send notification event of whenever partition_root_state changes.
 271 */
 272static inline void notify_partition_change(struct cpuset *cs,
 273                                           int old_prs, int new_prs)
 274{
 275        if (old_prs != new_prs)
 276                cgroup_file_notify(&cs->partition_file);
 277}
 278
 279static struct cpuset top_cpuset = {
 280        .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
 281                  (1 << CS_MEM_EXCLUSIVE)),
 282        .partition_root_state = PRS_ENABLED,
 283};
 284
 285/**
 286 * cpuset_for_each_child - traverse online children of a cpuset
 287 * @child_cs: loop cursor pointing to the current child
 288 * @pos_css: used for iteration
 289 * @parent_cs: target cpuset to walk children of
 290 *
 291 * Walk @child_cs through the online children of @parent_cs.  Must be used
 292 * with RCU read locked.
 293 */
 294#define cpuset_for_each_child(child_cs, pos_css, parent_cs)             \
 295        css_for_each_child((pos_css), &(parent_cs)->css)                \
 296                if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
 297
 298/**
 299 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 300 * @des_cs: loop cursor pointing to the current descendant
 301 * @pos_css: used for iteration
 302 * @root_cs: target cpuset to walk ancestor of
 303 *
 304 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 305 * with RCU read locked.  The caller may modify @pos_css by calling
 306 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 307 * iteration and the first node to be visited.
 308 */
 309#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)        \
 310        css_for_each_descendant_pre((pos_css), &(root_cs)->css)         \
 311                if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
 312
 313/*
 314 * There are two global locks guarding cpuset structures - cpuset_rwsem and
 315 * callback_lock. We also require taking task_lock() when dereferencing a
 316 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 317 * comment.  The cpuset code uses only cpuset_rwsem write lock.  Other
 318 * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to
 319 * prevent change to cpuset structures.
 320 *
 321 * A task must hold both locks to modify cpusets.  If a task holds
 322 * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it
 323 * is the only task able to also acquire callback_lock and be able to
 324 * modify cpusets.  It can perform various checks on the cpuset structure
 325 * first, knowing nothing will change.  It can also allocate memory while
 326 * just holding cpuset_rwsem.  While it is performing these checks, various
 327 * callback routines can briefly acquire callback_lock to query cpusets.
 328 * Once it is ready to make the changes, it takes callback_lock, blocking
 329 * everyone else.
 330 *
 331 * Calls to the kernel memory allocator can not be made while holding
 332 * callback_lock, as that would risk double tripping on callback_lock
 333 * from one of the callbacks into the cpuset code from within
 334 * __alloc_pages().
 335 *
 336 * If a task is only holding callback_lock, then it has read-only
 337 * access to cpusets.
 338 *
 339 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 340 * by other task, we use alloc_lock in the task_struct fields to protect
 341 * them.
 342 *
 343 * The cpuset_common_file_read() handlers only hold callback_lock across
 344 * small pieces of code, such as when reading out possibly multi-word
 345 * cpumasks and nodemasks.
 346 *
 347 * Accessing a task's cpuset should be done in accordance with the
 348 * guidelines for accessing subsystem state in kernel/cgroup.c
 349 */
 350
 351DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
 352
 353void cpuset_read_lock(void)
 354{
 355        percpu_down_read(&cpuset_rwsem);
 356}
 357
 358void cpuset_read_unlock(void)
 359{
 360        percpu_up_read(&cpuset_rwsem);
 361}
 362
 363static DEFINE_SPINLOCK(callback_lock);
 364
 365static struct workqueue_struct *cpuset_migrate_mm_wq;
 366
 367/*
 368 * CPU / memory hotplug is handled asynchronously.
 369 */
 370static void cpuset_hotplug_workfn(struct work_struct *work);
 371static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
 372
 373static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
 374
 375/*
 376 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
 377 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
 378 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
 379 * With v2 behavior, "cpus" and "mems" are always what the users have
 380 * requested and won't be changed by hotplug events. Only the effective
 381 * cpus or mems will be affected.
 382 */
 383static inline bool is_in_v2_mode(void)
 384{
 385        return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
 386              (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
 387}
 388
 389/*
 390 * Return in pmask the portion of a task's cpusets's cpus_allowed that
 391 * are online and are capable of running the task.  If none are found,
 392 * walk up the cpuset hierarchy until we find one that does have some
 393 * appropriate cpus.
 394 *
 395 * One way or another, we guarantee to return some non-empty subset
 396 * of cpu_online_mask.
 397 *
 398 * Call with callback_lock or cpuset_rwsem held.
 399 */
 400static void guarantee_online_cpus(struct task_struct *tsk,
 401                                  struct cpumask *pmask)
 402{
 403        const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
 404        struct cpuset *cs;
 405
 406        if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
 407                cpumask_copy(pmask, cpu_online_mask);
 408
 409        rcu_read_lock();
 410        cs = task_cs(tsk);
 411
 412        while (!cpumask_intersects(cs->effective_cpus, pmask)) {
 413                cs = parent_cs(cs);
 414                if (unlikely(!cs)) {
 415                        /*
 416                         * The top cpuset doesn't have any online cpu as a
 417                         * consequence of a race between cpuset_hotplug_work
 418                         * and cpu hotplug notifier.  But we know the top
 419                         * cpuset's effective_cpus is on its way to be
 420                         * identical to cpu_online_mask.
 421                         */
 422                        goto out_unlock;
 423                }
 424        }
 425        cpumask_and(pmask, pmask, cs->effective_cpus);
 426
 427out_unlock:
 428        rcu_read_unlock();
 429}
 430
 431/*
 432 * Return in *pmask the portion of a cpusets's mems_allowed that
 433 * are online, with memory.  If none are online with memory, walk
 434 * up the cpuset hierarchy until we find one that does have some
 435 * online mems.  The top cpuset always has some mems online.
 436 *
 437 * One way or another, we guarantee to return some non-empty subset
 438 * of node_states[N_MEMORY].
 439 *
 440 * Call with callback_lock or cpuset_rwsem held.
 441 */
 442static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
 443{
 444        while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
 445                cs = parent_cs(cs);
 446        nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
 447}
 448
 449/*
 450 * update task's spread flag if cpuset's page/slab spread flag is set
 451 *
 452 * Call with callback_lock or cpuset_rwsem held.
 453 */
 454static void cpuset_update_task_spread_flag(struct cpuset *cs,
 455                                        struct task_struct *tsk)
 456{
 457        if (is_spread_page(cs))
 458                task_set_spread_page(tsk);
 459        else
 460                task_clear_spread_page(tsk);
 461
 462        if (is_spread_slab(cs))
 463                task_set_spread_slab(tsk);
 464        else
 465                task_clear_spread_slab(tsk);
 466}
 467
 468/*
 469 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 470 *
 471 * One cpuset is a subset of another if all its allowed CPUs and
 472 * Memory Nodes are a subset of the other, and its exclusive flags
 473 * are only set if the other's are set.  Call holding cpuset_rwsem.
 474 */
 475
 476static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 477{
 478        return  cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 479                nodes_subset(p->mems_allowed, q->mems_allowed) &&
 480                is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 481                is_mem_exclusive(p) <= is_mem_exclusive(q);
 482}
 483
 484/**
 485 * alloc_cpumasks - allocate three cpumasks for cpuset
 486 * @cs:  the cpuset that have cpumasks to be allocated.
 487 * @tmp: the tmpmasks structure pointer
 488 * Return: 0 if successful, -ENOMEM otherwise.
 489 *
 490 * Only one of the two input arguments should be non-NULL.
 491 */
 492static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
 493{
 494        cpumask_var_t *pmask1, *pmask2, *pmask3;
 495
 496        if (cs) {
 497                pmask1 = &cs->cpus_allowed;
 498                pmask2 = &cs->effective_cpus;
 499                pmask3 = &cs->subparts_cpus;
 500        } else {
 501                pmask1 = &tmp->new_cpus;
 502                pmask2 = &tmp->addmask;
 503                pmask3 = &tmp->delmask;
 504        }
 505
 506        if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
 507                return -ENOMEM;
 508
 509        if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
 510                goto free_one;
 511
 512        if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
 513                goto free_two;
 514
 515        return 0;
 516
 517free_two:
 518        free_cpumask_var(*pmask2);
 519free_one:
 520        free_cpumask_var(*pmask1);
 521        return -ENOMEM;
 522}
 523
 524/**
 525 * free_cpumasks - free cpumasks in a tmpmasks structure
 526 * @cs:  the cpuset that have cpumasks to be free.
 527 * @tmp: the tmpmasks structure pointer
 528 */
 529static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
 530{
 531        if (cs) {
 532                free_cpumask_var(cs->cpus_allowed);
 533                free_cpumask_var(cs->effective_cpus);
 534                free_cpumask_var(cs->subparts_cpus);
 535        }
 536        if (tmp) {
 537                free_cpumask_var(tmp->new_cpus);
 538                free_cpumask_var(tmp->addmask);
 539                free_cpumask_var(tmp->delmask);
 540        }
 541}
 542
 543/**
 544 * alloc_trial_cpuset - allocate a trial cpuset
 545 * @cs: the cpuset that the trial cpuset duplicates
 546 */
 547static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
 548{
 549        struct cpuset *trial;
 550
 551        trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 552        if (!trial)
 553                return NULL;
 554
 555        if (alloc_cpumasks(trial, NULL)) {
 556                kfree(trial);
 557                return NULL;
 558        }
 559
 560        cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 561        cpumask_copy(trial->effective_cpus, cs->effective_cpus);
 562        return trial;
 563}
 564
 565/**
 566 * free_cpuset - free the cpuset
 567 * @cs: the cpuset to be freed
 568 */
 569static inline void free_cpuset(struct cpuset *cs)
 570{
 571        free_cpumasks(cs, NULL);
 572        kfree(cs);
 573}
 574
 575/*
 576 * validate_change() - Used to validate that any proposed cpuset change
 577 *                     follows the structural rules for cpusets.
 578 *
 579 * If we replaced the flag and mask values of the current cpuset
 580 * (cur) with those values in the trial cpuset (trial), would
 581 * our various subset and exclusive rules still be valid?  Presumes
 582 * cpuset_rwsem held.
 583 *
 584 * 'cur' is the address of an actual, in-use cpuset.  Operations
 585 * such as list traversal that depend on the actual address of the
 586 * cpuset in the list must use cur below, not trial.
 587 *
 588 * 'trial' is the address of bulk structure copy of cur, with
 589 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 590 * or flags changed to new, trial values.
 591 *
 592 * Return 0 if valid, -errno if not.
 593 */
 594
 595static int validate_change(struct cpuset *cur, struct cpuset *trial)
 596{
 597        struct cgroup_subsys_state *css;
 598        struct cpuset *c, *par;
 599        int ret;
 600
 601        rcu_read_lock();
 602
 603        /* Each of our child cpusets must be a subset of us */
 604        ret = -EBUSY;
 605        cpuset_for_each_child(c, css, cur)
 606                if (!is_cpuset_subset(c, trial))
 607                        goto out;
 608
 609        /* Remaining checks don't apply to root cpuset */
 610        ret = 0;
 611        if (cur == &top_cpuset)
 612                goto out;
 613
 614        par = parent_cs(cur);
 615
 616        /* On legacy hierarchy, we must be a subset of our parent cpuset. */
 617        ret = -EACCES;
 618        if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
 619                goto out;
 620
 621        /*
 622         * If either I or some sibling (!= me) is exclusive, we can't
 623         * overlap
 624         */
 625        ret = -EINVAL;
 626        cpuset_for_each_child(c, css, par) {
 627                if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 628                    c != cur &&
 629                    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 630                        goto out;
 631                if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 632                    c != cur &&
 633                    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 634                        goto out;
 635        }
 636
 637        /*
 638         * Cpusets with tasks - existing or newly being attached - can't
 639         * be changed to have empty cpus_allowed or mems_allowed.
 640         */
 641        ret = -ENOSPC;
 642        if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
 643                if (!cpumask_empty(cur->cpus_allowed) &&
 644                    cpumask_empty(trial->cpus_allowed))
 645                        goto out;
 646                if (!nodes_empty(cur->mems_allowed) &&
 647                    nodes_empty(trial->mems_allowed))
 648                        goto out;
 649        }
 650
 651        /*
 652         * We can't shrink if we won't have enough room for SCHED_DEADLINE
 653         * tasks.
 654         */
 655        ret = -EBUSY;
 656        if (is_cpu_exclusive(cur) &&
 657            !cpuset_cpumask_can_shrink(cur->cpus_allowed,
 658                                       trial->cpus_allowed))
 659                goto out;
 660
 661        ret = 0;
 662out:
 663        rcu_read_unlock();
 664        return ret;
 665}
 666
 667#ifdef CONFIG_SMP
 668/*
 669 * Helper routine for generate_sched_domains().
 670 * Do cpusets a, b have overlapping effective cpus_allowed masks?
 671 */
 672static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 673{
 674        return cpumask_intersects(a->effective_cpus, b->effective_cpus);
 675}
 676
 677static void
 678update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 679{
 680        if (dattr->relax_domain_level < c->relax_domain_level)
 681                dattr->relax_domain_level = c->relax_domain_level;
 682        return;
 683}
 684
 685static void update_domain_attr_tree(struct sched_domain_attr *dattr,
 686                                    struct cpuset *root_cs)
 687{
 688        struct cpuset *cp;
 689        struct cgroup_subsys_state *pos_css;
 690
 691        rcu_read_lock();
 692        cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 693                /* skip the whole subtree if @cp doesn't have any CPU */
 694                if (cpumask_empty(cp->cpus_allowed)) {
 695                        pos_css = css_rightmost_descendant(pos_css);
 696                        continue;
 697                }
 698
 699                if (is_sched_load_balance(cp))
 700                        update_domain_attr(dattr, cp);
 701        }
 702        rcu_read_unlock();
 703}
 704
 705/* Must be called with cpuset_rwsem held.  */
 706static inline int nr_cpusets(void)
 707{
 708        /* jump label reference count + the top-level cpuset */
 709        return static_key_count(&cpusets_enabled_key.key) + 1;
 710}
 711
 712/*
 713 * generate_sched_domains()
 714 *
 715 * This function builds a partial partition of the systems CPUs
 716 * A 'partial partition' is a set of non-overlapping subsets whose
 717 * union is a subset of that set.
 718 * The output of this function needs to be passed to kernel/sched/core.c
 719 * partition_sched_domains() routine, which will rebuild the scheduler's
 720 * load balancing domains (sched domains) as specified by that partial
 721 * partition.
 722 *
 723 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
 724 * for a background explanation of this.
 725 *
 726 * Does not return errors, on the theory that the callers of this
 727 * routine would rather not worry about failures to rebuild sched
 728 * domains when operating in the severe memory shortage situations
 729 * that could cause allocation failures below.
 730 *
 731 * Must be called with cpuset_rwsem held.
 732 *
 733 * The three key local variables below are:
 734 *    cp - cpuset pointer, used (together with pos_css) to perform a
 735 *         top-down scan of all cpusets. For our purposes, rebuilding
 736 *         the schedulers sched domains, we can ignore !is_sched_load_
 737 *         balance cpusets.
 738 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 739 *         that need to be load balanced, for convenient iterative
 740 *         access by the subsequent code that finds the best partition,
 741 *         i.e the set of domains (subsets) of CPUs such that the
 742 *         cpus_allowed of every cpuset marked is_sched_load_balance
 743 *         is a subset of one of these domains, while there are as
 744 *         many such domains as possible, each as small as possible.
 745 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 746 *         the kernel/sched/core.c routine partition_sched_domains() in a
 747 *         convenient format, that can be easily compared to the prior
 748 *         value to determine what partition elements (sched domains)
 749 *         were changed (added or removed.)
 750 *
 751 * Finding the best partition (set of domains):
 752 *      The triple nested loops below over i, j, k scan over the
 753 *      load balanced cpusets (using the array of cpuset pointers in
 754 *      csa[]) looking for pairs of cpusets that have overlapping
 755 *      cpus_allowed, but which don't have the same 'pn' partition
 756 *      number and gives them in the same partition number.  It keeps
 757 *      looping on the 'restart' label until it can no longer find
 758 *      any such pairs.
 759 *
 760 *      The union of the cpus_allowed masks from the set of
 761 *      all cpusets having the same 'pn' value then form the one
 762 *      element of the partition (one sched domain) to be passed to
 763 *      partition_sched_domains().
 764 */
 765static int generate_sched_domains(cpumask_var_t **domains,
 766                        struct sched_domain_attr **attributes)
 767{
 768        struct cpuset *cp;      /* top-down scan of cpusets */
 769        struct cpuset **csa;    /* array of all cpuset ptrs */
 770        int csn;                /* how many cpuset ptrs in csa so far */
 771        int i, j, k;            /* indices for partition finding loops */
 772        cpumask_var_t *doms;    /* resulting partition; i.e. sched domains */
 773        struct sched_domain_attr *dattr;  /* attributes for custom domains */
 774        int ndoms = 0;          /* number of sched domains in result */
 775        int nslot;              /* next empty doms[] struct cpumask slot */
 776        struct cgroup_subsys_state *pos_css;
 777        bool root_load_balance = is_sched_load_balance(&top_cpuset);
 778
 779        doms = NULL;
 780        dattr = NULL;
 781        csa = NULL;
 782
 783        /* Special case for the 99% of systems with one, full, sched domain */
 784        if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
 785                ndoms = 1;
 786                doms = alloc_sched_domains(ndoms);
 787                if (!doms)
 788                        goto done;
 789
 790                dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 791                if (dattr) {
 792                        *dattr = SD_ATTR_INIT;
 793                        update_domain_attr_tree(dattr, &top_cpuset);
 794                }
 795                cpumask_and(doms[0], top_cpuset.effective_cpus,
 796                            housekeeping_cpumask(HK_FLAG_DOMAIN));
 797
 798                goto done;
 799        }
 800
 801        csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
 802        if (!csa)
 803                goto done;
 804        csn = 0;
 805
 806        rcu_read_lock();
 807        if (root_load_balance)
 808                csa[csn++] = &top_cpuset;
 809        cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
 810                if (cp == &top_cpuset)
 811                        continue;
 812                /*
 813                 * Continue traversing beyond @cp iff @cp has some CPUs and
 814                 * isn't load balancing.  The former is obvious.  The
 815                 * latter: All child cpusets contain a subset of the
 816                 * parent's cpus, so just skip them, and then we call
 817                 * update_domain_attr_tree() to calc relax_domain_level of
 818                 * the corresponding sched domain.
 819                 *
 820                 * If root is load-balancing, we can skip @cp if it
 821                 * is a subset of the root's effective_cpus.
 822                 */
 823                if (!cpumask_empty(cp->cpus_allowed) &&
 824                    !(is_sched_load_balance(cp) &&
 825                      cpumask_intersects(cp->cpus_allowed,
 826                                         housekeeping_cpumask(HK_FLAG_DOMAIN))))
 827                        continue;
 828
 829                if (root_load_balance &&
 830                    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
 831                        continue;
 832
 833                if (is_sched_load_balance(cp) &&
 834                    !cpumask_empty(cp->effective_cpus))
 835                        csa[csn++] = cp;
 836
 837                /* skip @cp's subtree if not a partition root */
 838                if (!is_partition_root(cp))
 839                        pos_css = css_rightmost_descendant(pos_css);
 840        }
 841        rcu_read_unlock();
 842
 843        for (i = 0; i < csn; i++)
 844                csa[i]->pn = i;
 845        ndoms = csn;
 846
 847restart:
 848        /* Find the best partition (set of sched domains) */
 849        for (i = 0; i < csn; i++) {
 850                struct cpuset *a = csa[i];
 851                int apn = a->pn;
 852
 853                for (j = 0; j < csn; j++) {
 854                        struct cpuset *b = csa[j];
 855                        int bpn = b->pn;
 856
 857                        if (apn != bpn && cpusets_overlap(a, b)) {
 858                                for (k = 0; k < csn; k++) {
 859                                        struct cpuset *c = csa[k];
 860
 861                                        if (c->pn == bpn)
 862                                                c->pn = apn;
 863                                }
 864                                ndoms--;        /* one less element */
 865                                goto restart;
 866                        }
 867                }
 868        }
 869
 870        /*
 871         * Now we know how many domains to create.
 872         * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 873         */
 874        doms = alloc_sched_domains(ndoms);
 875        if (!doms)
 876                goto done;
 877
 878        /*
 879         * The rest of the code, including the scheduler, can deal with
 880         * dattr==NULL case. No need to abort if alloc fails.
 881         */
 882        dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
 883                              GFP_KERNEL);
 884
 885        for (nslot = 0, i = 0; i < csn; i++) {
 886                struct cpuset *a = csa[i];
 887                struct cpumask *dp;
 888                int apn = a->pn;
 889
 890                if (apn < 0) {
 891                        /* Skip completed partitions */
 892                        continue;
 893                }
 894
 895                dp = doms[nslot];
 896
 897                if (nslot == ndoms) {
 898                        static int warnings = 10;
 899                        if (warnings) {
 900                                pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
 901                                        nslot, ndoms, csn, i, apn);
 902                                warnings--;
 903                        }
 904                        continue;
 905                }
 906
 907                cpumask_clear(dp);
 908                if (dattr)
 909                        *(dattr + nslot) = SD_ATTR_INIT;
 910                for (j = i; j < csn; j++) {
 911                        struct cpuset *b = csa[j];
 912
 913                        if (apn == b->pn) {
 914                                cpumask_or(dp, dp, b->effective_cpus);
 915                                cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
 916                                if (dattr)
 917                                        update_domain_attr_tree(dattr + nslot, b);
 918
 919                                /* Done with this partition */
 920                                b->pn = -1;
 921                        }
 922                }
 923                nslot++;
 924        }
 925        BUG_ON(nslot != ndoms);
 926
 927done:
 928        kfree(csa);
 929
 930        /*
 931         * Fallback to the default domain if kmalloc() failed.
 932         * See comments in partition_sched_domains().
 933         */
 934        if (doms == NULL)
 935                ndoms = 1;
 936
 937        *domains    = doms;
 938        *attributes = dattr;
 939        return ndoms;
 940}
 941
 942static void update_tasks_root_domain(struct cpuset *cs)
 943{
 944        struct css_task_iter it;
 945        struct task_struct *task;
 946
 947        css_task_iter_start(&cs->css, 0, &it);
 948
 949        while ((task = css_task_iter_next(&it)))
 950                dl_add_task_root_domain(task);
 951
 952        css_task_iter_end(&it);
 953}
 954
 955static void rebuild_root_domains(void)
 956{
 957        struct cpuset *cs = NULL;
 958        struct cgroup_subsys_state *pos_css;
 959
 960        percpu_rwsem_assert_held(&cpuset_rwsem);
 961        lockdep_assert_cpus_held();
 962        lockdep_assert_held(&sched_domains_mutex);
 963
 964        rcu_read_lock();
 965
 966        /*
 967         * Clear default root domain DL accounting, it will be computed again
 968         * if a task belongs to it.
 969         */
 970        dl_clear_root_domain(&def_root_domain);
 971
 972        cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
 973
 974                if (cpumask_empty(cs->effective_cpus)) {
 975                        pos_css = css_rightmost_descendant(pos_css);
 976                        continue;
 977                }
 978
 979                css_get(&cs->css);
 980
 981                rcu_read_unlock();
 982
 983                update_tasks_root_domain(cs);
 984
 985                rcu_read_lock();
 986                css_put(&cs->css);
 987        }
 988        rcu_read_unlock();
 989}
 990
 991static void
 992partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 993                                    struct sched_domain_attr *dattr_new)
 994{
 995        mutex_lock(&sched_domains_mutex);
 996        partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
 997        rebuild_root_domains();
 998        mutex_unlock(&sched_domains_mutex);
 999}
1000
1001/*
1002 * Rebuild scheduler domains.
1003 *
1004 * If the flag 'sched_load_balance' of any cpuset with non-empty
1005 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1006 * which has that flag enabled, or if any cpuset with a non-empty
1007 * 'cpus' is removed, then call this routine to rebuild the
1008 * scheduler's dynamic sched domains.
1009 *
1010 * Call with cpuset_rwsem held.  Takes cpus_read_lock().
1011 */
1012static void rebuild_sched_domains_locked(void)
1013{
1014        struct cgroup_subsys_state *pos_css;
1015        struct sched_domain_attr *attr;
1016        cpumask_var_t *doms;
1017        struct cpuset *cs;
1018        int ndoms;
1019
1020        lockdep_assert_cpus_held();
1021        percpu_rwsem_assert_held(&cpuset_rwsem);
1022
1023        /*
1024         * If we have raced with CPU hotplug, return early to avoid
1025         * passing doms with offlined cpu to partition_sched_domains().
1026         * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1027         *
1028         * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1029         * should be the same as the active CPUs, so checking only top_cpuset
1030         * is enough to detect racing CPU offlines.
1031         */
1032        if (!top_cpuset.nr_subparts_cpus &&
1033            !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1034                return;
1035
1036        /*
1037         * With subpartition CPUs, however, the effective CPUs of a partition
1038         * root should be only a subset of the active CPUs.  Since a CPU in any
1039         * partition root could be offlined, all must be checked.
1040         */
1041        if (top_cpuset.nr_subparts_cpus) {
1042                rcu_read_lock();
1043                cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1044                        if (!is_partition_root(cs)) {
1045                                pos_css = css_rightmost_descendant(pos_css);
1046                                continue;
1047                        }
1048                        if (!cpumask_subset(cs->effective_cpus,
1049                                            cpu_active_mask)) {
1050                                rcu_read_unlock();
1051                                return;
1052                        }
1053                }
1054                rcu_read_unlock();
1055        }
1056
1057        /* Generate domain masks and attrs */
1058        ndoms = generate_sched_domains(&doms, &attr);
1059
1060        /* Have scheduler rebuild the domains */
1061        partition_and_rebuild_sched_domains(ndoms, doms, attr);
1062}
1063#else /* !CONFIG_SMP */
1064static void rebuild_sched_domains_locked(void)
1065{
1066}
1067#endif /* CONFIG_SMP */
1068
1069void rebuild_sched_domains(void)
1070{
1071        cpus_read_lock();
1072        percpu_down_write(&cpuset_rwsem);
1073        rebuild_sched_domains_locked();
1074        percpu_up_write(&cpuset_rwsem);
1075        cpus_read_unlock();
1076}
1077
1078/**
1079 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1080 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1081 *
1082 * Iterate through each task of @cs updating its cpus_allowed to the
1083 * effective cpuset's.  As this function is called with cpuset_rwsem held,
1084 * cpuset membership stays stable.
1085 */
1086static void update_tasks_cpumask(struct cpuset *cs)
1087{
1088        struct css_task_iter it;
1089        struct task_struct *task;
1090
1091        css_task_iter_start(&cs->css, 0, &it);
1092        while ((task = css_task_iter_next(&it)))
1093                set_cpus_allowed_ptr(task, cs->effective_cpus);
1094        css_task_iter_end(&it);
1095}
1096
1097/**
1098 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1099 * @new_cpus: the temp variable for the new effective_cpus mask
1100 * @cs: the cpuset the need to recompute the new effective_cpus mask
1101 * @parent: the parent cpuset
1102 *
1103 * If the parent has subpartition CPUs, include them in the list of
1104 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1105 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1106 * to mask those out.
1107 */
1108static void compute_effective_cpumask(struct cpumask *new_cpus,
1109                                      struct cpuset *cs, struct cpuset *parent)
1110{
1111        if (parent->nr_subparts_cpus) {
1112                cpumask_or(new_cpus, parent->effective_cpus,
1113                           parent->subparts_cpus);
1114                cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1115                cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1116        } else {
1117                cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1118        }
1119}
1120
1121/*
1122 * Commands for update_parent_subparts_cpumask
1123 */
1124enum subparts_cmd {
1125        partcmd_enable,         /* Enable partition root         */
1126        partcmd_disable,        /* Disable partition root        */
1127        partcmd_update,         /* Update parent's subparts_cpus */
1128};
1129
1130/**
1131 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1132 * @cpuset:  The cpuset that requests change in partition root state
1133 * @cmd:     Partition root state change command
1134 * @newmask: Optional new cpumask for partcmd_update
1135 * @tmp:     Temporary addmask and delmask
1136 * Return:   0, 1 or an error code
1137 *
1138 * For partcmd_enable, the cpuset is being transformed from a non-partition
1139 * root to a partition root. The cpus_allowed mask of the given cpuset will
1140 * be put into parent's subparts_cpus and taken away from parent's
1141 * effective_cpus. The function will return 0 if all the CPUs listed in
1142 * cpus_allowed can be granted or an error code will be returned.
1143 *
1144 * For partcmd_disable, the cpuset is being transofrmed from a partition
1145 * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1146 * parent's subparts_cpus will be taken away from that cpumask and put back
1147 * into parent's effective_cpus. 0 should always be returned.
1148 *
1149 * For partcmd_update, if the optional newmask is specified, the cpu
1150 * list is to be changed from cpus_allowed to newmask. Otherwise,
1151 * cpus_allowed is assumed to remain the same. The cpuset should either
1152 * be a partition root or an invalid partition root. The partition root
1153 * state may change if newmask is NULL and none of the requested CPUs can
1154 * be granted by the parent. The function will return 1 if changes to
1155 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1156 * Error code should only be returned when newmask is non-NULL.
1157 *
1158 * The partcmd_enable and partcmd_disable commands are used by
1159 * update_prstate(). The partcmd_update command is used by
1160 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1161 * newmask set.
1162 *
1163 * The checking is more strict when enabling partition root than the
1164 * other two commands.
1165 *
1166 * Because of the implicit cpu exclusive nature of a partition root,
1167 * cpumask changes that violates the cpu exclusivity rule will not be
1168 * permitted when checked by validate_change(). The validate_change()
1169 * function will also prevent any changes to the cpu list if it is not
1170 * a superset of children's cpu lists.
1171 */
1172static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1173                                          struct cpumask *newmask,
1174                                          struct tmpmasks *tmp)
1175{
1176        struct cpuset *parent = parent_cs(cpuset);
1177        int adding;     /* Moving cpus from effective_cpus to subparts_cpus */
1178        int deleting;   /* Moving cpus from subparts_cpus to effective_cpus */
1179        int old_prs, new_prs;
1180        bool part_error = false;        /* Partition error? */
1181
1182        percpu_rwsem_assert_held(&cpuset_rwsem);
1183
1184        /*
1185         * The parent must be a partition root.
1186         * The new cpumask, if present, or the current cpus_allowed must
1187         * not be empty.
1188         */
1189        if (!is_partition_root(parent) ||
1190           (newmask && cpumask_empty(newmask)) ||
1191           (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1192                return -EINVAL;
1193
1194        /*
1195         * Enabling/disabling partition root is not allowed if there are
1196         * online children.
1197         */
1198        if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1199                return -EBUSY;
1200
1201        /*
1202         * Enabling partition root is not allowed if not all the CPUs
1203         * can be granted from parent's effective_cpus or at least one
1204         * CPU will be left after that.
1205         */
1206        if ((cmd == partcmd_enable) &&
1207           (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1208             cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1209                return -EINVAL;
1210
1211        /*
1212         * A cpumask update cannot make parent's effective_cpus become empty.
1213         */
1214        adding = deleting = false;
1215        old_prs = new_prs = cpuset->partition_root_state;
1216        if (cmd == partcmd_enable) {
1217                cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1218                adding = true;
1219        } else if (cmd == partcmd_disable) {
1220                deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1221                                       parent->subparts_cpus);
1222        } else if (newmask) {
1223                /*
1224                 * partcmd_update with newmask:
1225                 *
1226                 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1227                 * addmask = newmask & parent->effective_cpus
1228                 *                   & ~parent->subparts_cpus
1229                 */
1230                cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1231                deleting = cpumask_and(tmp->delmask, tmp->delmask,
1232                                       parent->subparts_cpus);
1233
1234                cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1235                adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1236                                        parent->subparts_cpus);
1237                /*
1238                 * Return error if the new effective_cpus could become empty.
1239                 */
1240                if (adding &&
1241                    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1242                        if (!deleting)
1243                                return -EINVAL;
1244                        /*
1245                         * As some of the CPUs in subparts_cpus might have
1246                         * been offlined, we need to compute the real delmask
1247                         * to confirm that.
1248                         */
1249                        if (!cpumask_and(tmp->addmask, tmp->delmask,
1250                                         cpu_active_mask))
1251                                return -EINVAL;
1252                        cpumask_copy(tmp->addmask, parent->effective_cpus);
1253                }
1254        } else {
1255                /*
1256                 * partcmd_update w/o newmask:
1257                 *
1258                 * addmask = cpus_allowed & parent->effective_cpus
1259                 *
1260                 * Note that parent's subparts_cpus may have been
1261                 * pre-shrunk in case there is a change in the cpu list.
1262                 * So no deletion is needed.
1263                 */
1264                adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1265                                     parent->effective_cpus);
1266                part_error = cpumask_equal(tmp->addmask,
1267                                           parent->effective_cpus);
1268        }
1269
1270        if (cmd == partcmd_update) {
1271                int prev_prs = cpuset->partition_root_state;
1272
1273                /*
1274                 * Check for possible transition between PRS_ENABLED
1275                 * and PRS_ERROR.
1276                 */
1277                switch (cpuset->partition_root_state) {
1278                case PRS_ENABLED:
1279                        if (part_error)
1280                                new_prs = PRS_ERROR;
1281                        break;
1282                case PRS_ERROR:
1283                        if (!part_error)
1284                                new_prs = PRS_ENABLED;
1285                        break;
1286                }
1287                /*
1288                 * Set part_error if previously in invalid state.
1289                 */
1290                part_error = (prev_prs == PRS_ERROR);
1291        }
1292
1293        if (!part_error && (new_prs == PRS_ERROR))
1294                return 0;       /* Nothing need to be done */
1295
1296        if (new_prs == PRS_ERROR) {
1297                /*
1298                 * Remove all its cpus from parent's subparts_cpus.
1299                 */
1300                adding = false;
1301                deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1302                                       parent->subparts_cpus);
1303        }
1304
1305        if (!adding && !deleting && (new_prs == old_prs))
1306                return 0;
1307
1308        /*
1309         * Change the parent's subparts_cpus.
1310         * Newly added CPUs will be removed from effective_cpus and
1311         * newly deleted ones will be added back to effective_cpus.
1312         */
1313        spin_lock_irq(&callback_lock);
1314        if (adding) {
1315                cpumask_or(parent->subparts_cpus,
1316                           parent->subparts_cpus, tmp->addmask);
1317                cpumask_andnot(parent->effective_cpus,
1318                               parent->effective_cpus, tmp->addmask);
1319        }
1320        if (deleting) {
1321                cpumask_andnot(parent->subparts_cpus,
1322                               parent->subparts_cpus, tmp->delmask);
1323                /*
1324                 * Some of the CPUs in subparts_cpus might have been offlined.
1325                 */
1326                cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1327                cpumask_or(parent->effective_cpus,
1328                           parent->effective_cpus, tmp->delmask);
1329        }
1330
1331        parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1332
1333        if (old_prs != new_prs)
1334                cpuset->partition_root_state = new_prs;
1335
1336        spin_unlock_irq(&callback_lock);
1337        notify_partition_change(cpuset, old_prs, new_prs);
1338
1339        return cmd == partcmd_update;
1340}
1341
1342/*
1343 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1344 * @cs:  the cpuset to consider
1345 * @tmp: temp variables for calculating effective_cpus & partition setup
1346 *
1347 * When configured cpumask is changed, the effective cpumasks of this cpuset
1348 * and all its descendants need to be updated.
1349 *
1350 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1351 *
1352 * Called with cpuset_rwsem held
1353 */
1354static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1355{
1356        struct cpuset *cp;
1357        struct cgroup_subsys_state *pos_css;
1358        bool need_rebuild_sched_domains = false;
1359        int old_prs, new_prs;
1360
1361        rcu_read_lock();
1362        cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1363                struct cpuset *parent = parent_cs(cp);
1364
1365                compute_effective_cpumask(tmp->new_cpus, cp, parent);
1366
1367                /*
1368                 * If it becomes empty, inherit the effective mask of the
1369                 * parent, which is guaranteed to have some CPUs.
1370                 */
1371                if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1372                        cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1373                        if (!cp->use_parent_ecpus) {
1374                                cp->use_parent_ecpus = true;
1375                                parent->child_ecpus_count++;
1376                        }
1377                } else if (cp->use_parent_ecpus) {
1378                        cp->use_parent_ecpus = false;
1379                        WARN_ON_ONCE(!parent->child_ecpus_count);
1380                        parent->child_ecpus_count--;
1381                }
1382
1383                /*
1384                 * Skip the whole subtree if the cpumask remains the same
1385                 * and has no partition root state.
1386                 */
1387                if (!cp->partition_root_state &&
1388                    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1389                        pos_css = css_rightmost_descendant(pos_css);
1390                        continue;
1391                }
1392
1393                /*
1394                 * update_parent_subparts_cpumask() should have been called
1395                 * for cs already in update_cpumask(). We should also call
1396                 * update_tasks_cpumask() again for tasks in the parent
1397                 * cpuset if the parent's subparts_cpus changes.
1398                 */
1399                old_prs = new_prs = cp->partition_root_state;
1400                if ((cp != cs) && old_prs) {
1401                        switch (parent->partition_root_state) {
1402                        case PRS_DISABLED:
1403                                /*
1404                                 * If parent is not a partition root or an
1405                                 * invalid partition root, clear its state
1406                                 * and its CS_CPU_EXCLUSIVE flag.
1407                                 */
1408                                WARN_ON_ONCE(cp->partition_root_state
1409                                             != PRS_ERROR);
1410                                new_prs = PRS_DISABLED;
1411
1412                                /*
1413                                 * clear_bit() is an atomic operation and
1414                                 * readers aren't interested in the state
1415                                 * of CS_CPU_EXCLUSIVE anyway. So we can
1416                                 * just update the flag without holding
1417                                 * the callback_lock.
1418                                 */
1419                                clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1420                                break;
1421
1422                        case PRS_ENABLED:
1423                                if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1424                                        update_tasks_cpumask(parent);
1425                                break;
1426
1427                        case PRS_ERROR:
1428                                /*
1429                                 * When parent is invalid, it has to be too.
1430                                 */
1431                                new_prs = PRS_ERROR;
1432                                break;
1433                        }
1434                }
1435
1436                if (!css_tryget_online(&cp->css))
1437                        continue;
1438                rcu_read_unlock();
1439
1440                spin_lock_irq(&callback_lock);
1441
1442                cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1443                if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1444                        cp->nr_subparts_cpus = 0;
1445                        cpumask_clear(cp->subparts_cpus);
1446                } else if (cp->nr_subparts_cpus) {
1447                        /*
1448                         * Make sure that effective_cpus & subparts_cpus
1449                         * are mutually exclusive.
1450                         *
1451                         * In the unlikely event that effective_cpus
1452                         * becomes empty. we clear cp->nr_subparts_cpus and
1453                         * let its child partition roots to compete for
1454                         * CPUs again.
1455                         */
1456                        cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1457                                       cp->subparts_cpus);
1458                        if (cpumask_empty(cp->effective_cpus)) {
1459                                cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1460                                cpumask_clear(cp->subparts_cpus);
1461                                cp->nr_subparts_cpus = 0;
1462                        } else if (!cpumask_subset(cp->subparts_cpus,
1463                                                   tmp->new_cpus)) {
1464                                cpumask_andnot(cp->subparts_cpus,
1465                                        cp->subparts_cpus, tmp->new_cpus);
1466                                cp->nr_subparts_cpus
1467                                        = cpumask_weight(cp->subparts_cpus);
1468                        }
1469                }
1470
1471                if (new_prs != old_prs)
1472                        cp->partition_root_state = new_prs;
1473
1474                spin_unlock_irq(&callback_lock);
1475                notify_partition_change(cp, old_prs, new_prs);
1476
1477                WARN_ON(!is_in_v2_mode() &&
1478                        !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1479
1480                update_tasks_cpumask(cp);
1481
1482                /*
1483                 * On legacy hierarchy, if the effective cpumask of any non-
1484                 * empty cpuset is changed, we need to rebuild sched domains.
1485                 * On default hierarchy, the cpuset needs to be a partition
1486                 * root as well.
1487                 */
1488                if (!cpumask_empty(cp->cpus_allowed) &&
1489                    is_sched_load_balance(cp) &&
1490                   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1491                    is_partition_root(cp)))
1492                        need_rebuild_sched_domains = true;
1493
1494                rcu_read_lock();
1495                css_put(&cp->css);
1496        }
1497        rcu_read_unlock();
1498
1499        if (need_rebuild_sched_domains)
1500                rebuild_sched_domains_locked();
1501}
1502
1503/**
1504 * update_sibling_cpumasks - Update siblings cpumasks
1505 * @parent:  Parent cpuset
1506 * @cs:      Current cpuset
1507 * @tmp:     Temp variables
1508 */
1509static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1510                                    struct tmpmasks *tmp)
1511{
1512        struct cpuset *sibling;
1513        struct cgroup_subsys_state *pos_css;
1514
1515        /*
1516         * Check all its siblings and call update_cpumasks_hier()
1517         * if their use_parent_ecpus flag is set in order for them
1518         * to use the right effective_cpus value.
1519         */
1520        rcu_read_lock();
1521        cpuset_for_each_child(sibling, pos_css, parent) {
1522                if (sibling == cs)
1523                        continue;
1524                if (!sibling->use_parent_ecpus)
1525                        continue;
1526
1527                update_cpumasks_hier(sibling, tmp);
1528        }
1529        rcu_read_unlock();
1530}
1531
1532/**
1533 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1534 * @cs: the cpuset to consider
1535 * @trialcs: trial cpuset
1536 * @buf: buffer of cpu numbers written to this cpuset
1537 */
1538static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1539                          const char *buf)
1540{
1541        int retval;
1542        struct tmpmasks tmp;
1543
1544        /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1545        if (cs == &top_cpuset)
1546                return -EACCES;
1547
1548        /*
1549         * An empty cpus_allowed is ok only if the cpuset has no tasks.
1550         * Since cpulist_parse() fails on an empty mask, we special case
1551         * that parsing.  The validate_change() call ensures that cpusets
1552         * with tasks have cpus.
1553         */
1554        if (!*buf) {
1555                cpumask_clear(trialcs->cpus_allowed);
1556        } else {
1557                retval = cpulist_parse(buf, trialcs->cpus_allowed);
1558                if (retval < 0)
1559                        return retval;
1560
1561                if (!cpumask_subset(trialcs->cpus_allowed,
1562                                    top_cpuset.cpus_allowed))
1563                        return -EINVAL;
1564        }
1565
1566        /* Nothing to do if the cpus didn't change */
1567        if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1568                return 0;
1569
1570        retval = validate_change(cs, trialcs);
1571        if (retval < 0)
1572                return retval;
1573
1574#ifdef CONFIG_CPUMASK_OFFSTACK
1575        /*
1576         * Use the cpumasks in trialcs for tmpmasks when they are pointers
1577         * to allocated cpumasks.
1578         */
1579        tmp.addmask  = trialcs->subparts_cpus;
1580        tmp.delmask  = trialcs->effective_cpus;
1581        tmp.new_cpus = trialcs->cpus_allowed;
1582#endif
1583
1584        if (cs->partition_root_state) {
1585                /* Cpumask of a partition root cannot be empty */
1586                if (cpumask_empty(trialcs->cpus_allowed))
1587                        return -EINVAL;
1588                if (update_parent_subparts_cpumask(cs, partcmd_update,
1589                                        trialcs->cpus_allowed, &tmp) < 0)
1590                        return -EINVAL;
1591        }
1592
1593        spin_lock_irq(&callback_lock);
1594        cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1595
1596        /*
1597         * Make sure that subparts_cpus is a subset of cpus_allowed.
1598         */
1599        if (cs->nr_subparts_cpus) {
1600                cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1601                               cs->cpus_allowed);
1602                cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1603        }
1604        spin_unlock_irq(&callback_lock);
1605
1606        update_cpumasks_hier(cs, &tmp);
1607
1608        if (cs->partition_root_state) {
1609                struct cpuset *parent = parent_cs(cs);
1610
1611                /*
1612                 * For partition root, update the cpumasks of sibling
1613                 * cpusets if they use parent's effective_cpus.
1614                 */
1615                if (parent->child_ecpus_count)
1616                        update_sibling_cpumasks(parent, cs, &tmp);
1617        }
1618        return 0;
1619}
1620
1621/*
1622 * Migrate memory region from one set of nodes to another.  This is
1623 * performed asynchronously as it can be called from process migration path
1624 * holding locks involved in process management.  All mm migrations are
1625 * performed in the queued order and can be waited for by flushing
1626 * cpuset_migrate_mm_wq.
1627 */
1628
1629struct cpuset_migrate_mm_work {
1630        struct work_struct      work;
1631        struct mm_struct        *mm;
1632        nodemask_t              from;
1633        nodemask_t              to;
1634};
1635
1636static void cpuset_migrate_mm_workfn(struct work_struct *work)
1637{
1638        struct cpuset_migrate_mm_work *mwork =
1639                container_of(work, struct cpuset_migrate_mm_work, work);
1640
1641        /* on a wq worker, no need to worry about %current's mems_allowed */
1642        do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1643        mmput(mwork->mm);
1644        kfree(mwork);
1645}
1646
1647static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1648                                                        const nodemask_t *to)
1649{
1650        struct cpuset_migrate_mm_work *mwork;
1651
1652        if (nodes_equal(*from, *to)) {
1653                mmput(mm);
1654                return;
1655        }
1656
1657        mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1658        if (mwork) {
1659                mwork->mm = mm;
1660                mwork->from = *from;
1661                mwork->to = *to;
1662                INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1663                queue_work(cpuset_migrate_mm_wq, &mwork->work);
1664        } else {
1665                mmput(mm);
1666        }
1667}
1668
1669static void cpuset_post_attach(void)
1670{
1671        flush_workqueue(cpuset_migrate_mm_wq);
1672}
1673
1674/*
1675 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1676 * @tsk: the task to change
1677 * @newmems: new nodes that the task will be set
1678 *
1679 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1680 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1681 * parallel, it might temporarily see an empty intersection, which results in
1682 * a seqlock check and retry before OOM or allocation failure.
1683 */
1684static void cpuset_change_task_nodemask(struct task_struct *tsk,
1685                                        nodemask_t *newmems)
1686{
1687        task_lock(tsk);
1688
1689        local_irq_disable();
1690        write_seqcount_begin(&tsk->mems_allowed_seq);
1691
1692        nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1693        mpol_rebind_task(tsk, newmems);
1694        tsk->mems_allowed = *newmems;
1695
1696        write_seqcount_end(&tsk->mems_allowed_seq);
1697        local_irq_enable();
1698
1699        task_unlock(tsk);
1700}
1701
1702static void *cpuset_being_rebound;
1703
1704/**
1705 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1706 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1707 *
1708 * Iterate through each task of @cs updating its mems_allowed to the
1709 * effective cpuset's.  As this function is called with cpuset_rwsem held,
1710 * cpuset membership stays stable.
1711 */
1712static void update_tasks_nodemask(struct cpuset *cs)
1713{
1714        static nodemask_t newmems;      /* protected by cpuset_rwsem */
1715        struct css_task_iter it;
1716        struct task_struct *task;
1717
1718        cpuset_being_rebound = cs;              /* causes mpol_dup() rebind */
1719
1720        guarantee_online_mems(cs, &newmems);
1721
1722        /*
1723         * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1724         * take while holding tasklist_lock.  Forks can happen - the
1725         * mpol_dup() cpuset_being_rebound check will catch such forks,
1726         * and rebind their vma mempolicies too.  Because we still hold
1727         * the global cpuset_rwsem, we know that no other rebind effort
1728         * will be contending for the global variable cpuset_being_rebound.
1729         * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1730         * is idempotent.  Also migrate pages in each mm to new nodes.
1731         */
1732        css_task_iter_start(&cs->css, 0, &it);
1733        while ((task = css_task_iter_next(&it))) {
1734                struct mm_struct *mm;
1735                bool migrate;
1736
1737                cpuset_change_task_nodemask(task, &newmems);
1738
1739                mm = get_task_mm(task);
1740                if (!mm)
1741                        continue;
1742
1743                migrate = is_memory_migrate(cs);
1744
1745                mpol_rebind_mm(mm, &cs->mems_allowed);
1746                if (migrate)
1747                        cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1748                else
1749                        mmput(mm);
1750        }
1751        css_task_iter_end(&it);
1752
1753        /*
1754         * All the tasks' nodemasks have been updated, update
1755         * cs->old_mems_allowed.
1756         */
1757        cs->old_mems_allowed = newmems;
1758
1759        /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1760        cpuset_being_rebound = NULL;
1761}
1762
1763/*
1764 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1765 * @cs: the cpuset to consider
1766 * @new_mems: a temp variable for calculating new effective_mems
1767 *
1768 * When configured nodemask is changed, the effective nodemasks of this cpuset
1769 * and all its descendants need to be updated.
1770 *
1771 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
1772 *
1773 * Called with cpuset_rwsem held
1774 */
1775static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1776{
1777        struct cpuset *cp;
1778        struct cgroup_subsys_state *pos_css;
1779
1780        rcu_read_lock();
1781        cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1782                struct cpuset *parent = parent_cs(cp);
1783
1784                nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1785
1786                /*
1787                 * If it becomes empty, inherit the effective mask of the
1788                 * parent, which is guaranteed to have some MEMs.
1789                 */
1790                if (is_in_v2_mode() && nodes_empty(*new_mems))
1791                        *new_mems = parent->effective_mems;
1792
1793                /* Skip the whole subtree if the nodemask remains the same. */
1794                if (nodes_equal(*new_mems, cp->effective_mems)) {
1795                        pos_css = css_rightmost_descendant(pos_css);
1796                        continue;
1797                }
1798
1799                if (!css_tryget_online(&cp->css))
1800                        continue;
1801                rcu_read_unlock();
1802
1803                spin_lock_irq(&callback_lock);
1804                cp->effective_mems = *new_mems;
1805                spin_unlock_irq(&callback_lock);
1806
1807                WARN_ON(!is_in_v2_mode() &&
1808                        !nodes_equal(cp->mems_allowed, cp->effective_mems));
1809
1810                update_tasks_nodemask(cp);
1811
1812                rcu_read_lock();
1813                css_put(&cp->css);
1814        }
1815        rcu_read_unlock();
1816}
1817
1818/*
1819 * Handle user request to change the 'mems' memory placement
1820 * of a cpuset.  Needs to validate the request, update the
1821 * cpusets mems_allowed, and for each task in the cpuset,
1822 * update mems_allowed and rebind task's mempolicy and any vma
1823 * mempolicies and if the cpuset is marked 'memory_migrate',
1824 * migrate the tasks pages to the new memory.
1825 *
1826 * Call with cpuset_rwsem held. May take callback_lock during call.
1827 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1828 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1829 * their mempolicies to the cpusets new mems_allowed.
1830 */
1831static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1832                           const char *buf)
1833{
1834        int retval;
1835
1836        /*
1837         * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1838         * it's read-only
1839         */
1840        if (cs == &top_cpuset) {
1841                retval = -EACCES;
1842                goto done;
1843        }
1844
1845        /*
1846         * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1847         * Since nodelist_parse() fails on an empty mask, we special case
1848         * that parsing.  The validate_change() call ensures that cpusets
1849         * with tasks have memory.
1850         */
1851        if (!*buf) {
1852                nodes_clear(trialcs->mems_allowed);
1853        } else {
1854                retval = nodelist_parse(buf, trialcs->mems_allowed);
1855                if (retval < 0)
1856                        goto done;
1857
1858                if (!nodes_subset(trialcs->mems_allowed,
1859                                  top_cpuset.mems_allowed)) {
1860                        retval = -EINVAL;
1861                        goto done;
1862                }
1863        }
1864
1865        if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1866                retval = 0;             /* Too easy - nothing to do */
1867                goto done;
1868        }
1869        retval = validate_change(cs, trialcs);
1870        if (retval < 0)
1871                goto done;
1872
1873        spin_lock_irq(&callback_lock);
1874        cs->mems_allowed = trialcs->mems_allowed;
1875        spin_unlock_irq(&callback_lock);
1876
1877        /* use trialcs->mems_allowed as a temp variable */
1878        update_nodemasks_hier(cs, &trialcs->mems_allowed);
1879done:
1880        return retval;
1881}
1882
1883bool current_cpuset_is_being_rebound(void)
1884{
1885        bool ret;
1886
1887        rcu_read_lock();
1888        ret = task_cs(current) == cpuset_being_rebound;
1889        rcu_read_unlock();
1890
1891        return ret;
1892}
1893
1894static int update_relax_domain_level(struct cpuset *cs, s64 val)
1895{
1896#ifdef CONFIG_SMP
1897        if (val < -1 || val >= sched_domain_level_max)
1898                return -EINVAL;
1899#endif
1900
1901        if (val != cs->relax_domain_level) {
1902                cs->relax_domain_level = val;
1903                if (!cpumask_empty(cs->cpus_allowed) &&
1904                    is_sched_load_balance(cs))
1905                        rebuild_sched_domains_locked();
1906        }
1907
1908        return 0;
1909}
1910
1911/**
1912 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1913 * @cs: the cpuset in which each task's spread flags needs to be changed
1914 *
1915 * Iterate through each task of @cs updating its spread flags.  As this
1916 * function is called with cpuset_rwsem held, cpuset membership stays
1917 * stable.
1918 */
1919static void update_tasks_flags(struct cpuset *cs)
1920{
1921        struct css_task_iter it;
1922        struct task_struct *task;
1923
1924        css_task_iter_start(&cs->css, 0, &it);
1925        while ((task = css_task_iter_next(&it)))
1926                cpuset_update_task_spread_flag(cs, task);
1927        css_task_iter_end(&it);
1928}
1929
1930/*
1931 * update_flag - read a 0 or a 1 in a file and update associated flag
1932 * bit:         the bit to update (see cpuset_flagbits_t)
1933 * cs:          the cpuset to update
1934 * turning_on:  whether the flag is being set or cleared
1935 *
1936 * Call with cpuset_rwsem held.
1937 */
1938
1939static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1940                       int turning_on)
1941{
1942        struct cpuset *trialcs;
1943        int balance_flag_changed;
1944        int spread_flag_changed;
1945        int err;
1946
1947        trialcs = alloc_trial_cpuset(cs);
1948        if (!trialcs)
1949                return -ENOMEM;
1950
1951        if (turning_on)
1952                set_bit(bit, &trialcs->flags);
1953        else
1954                clear_bit(bit, &trialcs->flags);
1955
1956        err = validate_change(cs, trialcs);
1957        if (err < 0)
1958                goto out;
1959
1960        balance_flag_changed = (is_sched_load_balance(cs) !=
1961                                is_sched_load_balance(trialcs));
1962
1963        spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1964                        || (is_spread_page(cs) != is_spread_page(trialcs)));
1965
1966        spin_lock_irq(&callback_lock);
1967        cs->flags = trialcs->flags;
1968        spin_unlock_irq(&callback_lock);
1969
1970        if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1971                rebuild_sched_domains_locked();
1972
1973        if (spread_flag_changed)
1974                update_tasks_flags(cs);
1975out:
1976        free_cpuset(trialcs);
1977        return err;
1978}
1979
1980/*
1981 * update_prstate - update partititon_root_state
1982 * cs: the cpuset to update
1983 * new_prs: new partition root state
1984 *
1985 * Call with cpuset_rwsem held.
1986 */
1987static int update_prstate(struct cpuset *cs, int new_prs)
1988{
1989        int err, old_prs = cs->partition_root_state;
1990        struct cpuset *parent = parent_cs(cs);
1991        struct tmpmasks tmpmask;
1992
1993        if (old_prs == new_prs)
1994                return 0;
1995
1996        /*
1997         * Cannot force a partial or invalid partition root to a full
1998         * partition root.
1999         */
2000        if (new_prs && (old_prs == PRS_ERROR))
2001                return -EINVAL;
2002
2003        if (alloc_cpumasks(NULL, &tmpmask))
2004                return -ENOMEM;
2005
2006        err = -EINVAL;
2007        if (!old_prs) {
2008                /*
2009                 * Turning on partition root requires setting the
2010                 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2011                 * cannot be NULL.
2012                 */
2013                if (cpumask_empty(cs->cpus_allowed))
2014                        goto out;
2015
2016                err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2017                if (err)
2018                        goto out;
2019
2020                err = update_parent_subparts_cpumask(cs, partcmd_enable,
2021                                                     NULL, &tmpmask);
2022                if (err) {
2023                        update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2024                        goto out;
2025                }
2026        } else {
2027                /*
2028                 * Turning off partition root will clear the
2029                 * CS_CPU_EXCLUSIVE bit.
2030                 */
2031                if (old_prs == PRS_ERROR) {
2032                        update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2033                        err = 0;
2034                        goto out;
2035                }
2036
2037                err = update_parent_subparts_cpumask(cs, partcmd_disable,
2038                                                     NULL, &tmpmask);
2039                if (err)
2040                        goto out;
2041
2042                /* Turning off CS_CPU_EXCLUSIVE will not return error */
2043                update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2044        }
2045
2046        /*
2047         * Update cpumask of parent's tasks except when it is the top
2048         * cpuset as some system daemons cannot be mapped to other CPUs.
2049         */
2050        if (parent != &top_cpuset)
2051                update_tasks_cpumask(parent);
2052
2053        if (parent->child_ecpus_count)
2054                update_sibling_cpumasks(parent, cs, &tmpmask);
2055
2056        rebuild_sched_domains_locked();
2057out:
2058        if (!err) {
2059                spin_lock_irq(&callback_lock);
2060                cs->partition_root_state = new_prs;
2061                spin_unlock_irq(&callback_lock);
2062                notify_partition_change(cs, old_prs, new_prs);
2063        }
2064
2065        free_cpumasks(NULL, &tmpmask);
2066        return err;
2067}
2068
2069/*
2070 * Frequency meter - How fast is some event occurring?
2071 *
2072 * These routines manage a digitally filtered, constant time based,
2073 * event frequency meter.  There are four routines:
2074 *   fmeter_init() - initialize a frequency meter.
2075 *   fmeter_markevent() - called each time the event happens.
2076 *   fmeter_getrate() - returns the recent rate of such events.
2077 *   fmeter_update() - internal routine used to update fmeter.
2078 *
2079 * A common data structure is passed to each of these routines,
2080 * which is used to keep track of the state required to manage the
2081 * frequency meter and its digital filter.
2082 *
2083 * The filter works on the number of events marked per unit time.
2084 * The filter is single-pole low-pass recursive (IIR).  The time unit
2085 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2086 * simulate 3 decimal digits of precision (multiplied by 1000).
2087 *
2088 * With an FM_COEF of 933, and a time base of 1 second, the filter
2089 * has a half-life of 10 seconds, meaning that if the events quit
2090 * happening, then the rate returned from the fmeter_getrate()
2091 * will be cut in half each 10 seconds, until it converges to zero.
2092 *
2093 * It is not worth doing a real infinitely recursive filter.  If more
2094 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2095 * just compute FM_MAXTICKS ticks worth, by which point the level
2096 * will be stable.
2097 *
2098 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2099 * arithmetic overflow in the fmeter_update() routine.
2100 *
2101 * Given the simple 32 bit integer arithmetic used, this meter works
2102 * best for reporting rates between one per millisecond (msec) and
2103 * one per 32 (approx) seconds.  At constant rates faster than one
2104 * per msec it maxes out at values just under 1,000,000.  At constant
2105 * rates between one per msec, and one per second it will stabilize
2106 * to a value N*1000, where N is the rate of events per second.
2107 * At constant rates between one per second and one per 32 seconds,
2108 * it will be choppy, moving up on the seconds that have an event,
2109 * and then decaying until the next event.  At rates slower than
2110 * about one in 32 seconds, it decays all the way back to zero between
2111 * each event.
2112 */
2113
2114#define FM_COEF 933             /* coefficient for half-life of 10 secs */
2115#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2116#define FM_MAXCNT 1000000       /* limit cnt to avoid overflow */
2117#define FM_SCALE 1000           /* faux fixed point scale */
2118
2119/* Initialize a frequency meter */
2120static void fmeter_init(struct fmeter *fmp)
2121{
2122        fmp->cnt = 0;
2123        fmp->val = 0;
2124        fmp->time = 0;
2125        spin_lock_init(&fmp->lock);
2126}
2127
2128/* Internal meter update - process cnt events and update value */
2129static void fmeter_update(struct fmeter *fmp)
2130{
2131        time64_t now;
2132        u32 ticks;
2133
2134        now = ktime_get_seconds();
2135        ticks = now - fmp->time;
2136
2137        if (ticks == 0)
2138                return;
2139
2140        ticks = min(FM_MAXTICKS, ticks);
2141        while (ticks-- > 0)
2142                fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2143        fmp->time = now;
2144
2145        fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2146        fmp->cnt = 0;
2147}
2148
2149/* Process any previous ticks, then bump cnt by one (times scale). */
2150static void fmeter_markevent(struct fmeter *fmp)
2151{
2152        spin_lock(&fmp->lock);
2153        fmeter_update(fmp);
2154        fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2155        spin_unlock(&fmp->lock);
2156}
2157
2158/* Process any previous ticks, then return current value. */
2159static int fmeter_getrate(struct fmeter *fmp)
2160{
2161        int val;
2162
2163        spin_lock(&fmp->lock);
2164        fmeter_update(fmp);
2165        val = fmp->val;
2166        spin_unlock(&fmp->lock);
2167        return val;
2168}
2169
2170static struct cpuset *cpuset_attach_old_cs;
2171
2172/* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */
2173static int cpuset_can_attach(struct cgroup_taskset *tset)
2174{
2175        struct cgroup_subsys_state *css;
2176        struct cpuset *cs;
2177        struct task_struct *task;
2178        int ret;
2179
2180        /* used later by cpuset_attach() */
2181        cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2182        cs = css_cs(css);
2183
2184        percpu_down_write(&cpuset_rwsem);
2185
2186        /* allow moving tasks into an empty cpuset if on default hierarchy */
2187        ret = -ENOSPC;
2188        if (!is_in_v2_mode() &&
2189            (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2190                goto out_unlock;
2191
2192        cgroup_taskset_for_each(task, css, tset) {
2193                ret = task_can_attach(task, cs->cpus_allowed);
2194                if (ret)
2195                        goto out_unlock;
2196                ret = security_task_setscheduler(task);
2197                if (ret)
2198                        goto out_unlock;
2199        }
2200
2201        /*
2202         * Mark attach is in progress.  This makes validate_change() fail
2203         * changes which zero cpus/mems_allowed.
2204         */
2205        cs->attach_in_progress++;
2206        ret = 0;
2207out_unlock:
2208        percpu_up_write(&cpuset_rwsem);
2209        return ret;
2210}
2211
2212static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2213{
2214        struct cgroup_subsys_state *css;
2215
2216        cgroup_taskset_first(tset, &css);
2217
2218        percpu_down_write(&cpuset_rwsem);
2219        css_cs(css)->attach_in_progress--;
2220        percpu_up_write(&cpuset_rwsem);
2221}
2222
2223/*
2224 * Protected by cpuset_rwsem.  cpus_attach is used only by cpuset_attach()
2225 * but we can't allocate it dynamically there.  Define it global and
2226 * allocate from cpuset_init().
2227 */
2228static cpumask_var_t cpus_attach;
2229
2230static void cpuset_attach(struct cgroup_taskset *tset)
2231{
2232        /* static buf protected by cpuset_rwsem */
2233        static nodemask_t cpuset_attach_nodemask_to;
2234        struct task_struct *task;
2235        struct task_struct *leader;
2236        struct cgroup_subsys_state *css;
2237        struct cpuset *cs;
2238        struct cpuset *oldcs = cpuset_attach_old_cs;
2239
2240        cgroup_taskset_first(tset, &css);
2241        cs = css_cs(css);
2242
2243        percpu_down_write(&cpuset_rwsem);
2244
2245        guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2246
2247        cgroup_taskset_for_each(task, css, tset) {
2248                if (cs != &top_cpuset)
2249                        guarantee_online_cpus(task, cpus_attach);
2250                else
2251                        cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2252                /*
2253                 * can_attach beforehand should guarantee that this doesn't
2254                 * fail.  TODO: have a better way to handle failure here
2255                 */
2256                WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2257
2258                cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2259                cpuset_update_task_spread_flag(cs, task);
2260        }
2261
2262        /*
2263         * Change mm for all threadgroup leaders. This is expensive and may
2264         * sleep and should be moved outside migration path proper.
2265         */
2266        cpuset_attach_nodemask_to = cs->effective_mems;
2267        cgroup_taskset_for_each_leader(leader, css, tset) {
2268                struct mm_struct *mm = get_task_mm(leader);
2269
2270                if (mm) {
2271                        mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2272
2273                        /*
2274                         * old_mems_allowed is the same with mems_allowed
2275                         * here, except if this task is being moved
2276                         * automatically due to hotplug.  In that case
2277                         * @mems_allowed has been updated and is empty, so
2278                         * @old_mems_allowed is the right nodesets that we
2279                         * migrate mm from.
2280                         */
2281                        if (is_memory_migrate(cs))
2282                                cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2283                                                  &cpuset_attach_nodemask_to);
2284                        else
2285                                mmput(mm);
2286                }
2287        }
2288
2289        cs->old_mems_allowed = cpuset_attach_nodemask_to;
2290
2291        cs->attach_in_progress--;
2292        if (!cs->attach_in_progress)
2293                wake_up(&cpuset_attach_wq);
2294
2295        percpu_up_write(&cpuset_rwsem);
2296}
2297
2298/* The various types of files and directories in a cpuset file system */
2299
2300typedef enum {
2301        FILE_MEMORY_MIGRATE,
2302        FILE_CPULIST,
2303        FILE_MEMLIST,
2304        FILE_EFFECTIVE_CPULIST,
2305        FILE_EFFECTIVE_MEMLIST,
2306        FILE_SUBPARTS_CPULIST,
2307        FILE_CPU_EXCLUSIVE,
2308        FILE_MEM_EXCLUSIVE,
2309        FILE_MEM_HARDWALL,
2310        FILE_SCHED_LOAD_BALANCE,
2311        FILE_PARTITION_ROOT,
2312        FILE_SCHED_RELAX_DOMAIN_LEVEL,
2313        FILE_MEMORY_PRESSURE_ENABLED,
2314        FILE_MEMORY_PRESSURE,
2315        FILE_SPREAD_PAGE,
2316        FILE_SPREAD_SLAB,
2317} cpuset_filetype_t;
2318
2319static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2320                            u64 val)
2321{
2322        struct cpuset *cs = css_cs(css);
2323        cpuset_filetype_t type = cft->private;
2324        int retval = 0;
2325
2326        cpus_read_lock();
2327        percpu_down_write(&cpuset_rwsem);
2328        if (!is_cpuset_online(cs)) {
2329                retval = -ENODEV;
2330                goto out_unlock;
2331        }
2332
2333        switch (type) {
2334        case FILE_CPU_EXCLUSIVE:
2335                retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2336                break;
2337        case FILE_MEM_EXCLUSIVE:
2338                retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2339                break;
2340        case FILE_MEM_HARDWALL:
2341                retval = update_flag(CS_MEM_HARDWALL, cs, val);
2342                break;
2343        case FILE_SCHED_LOAD_BALANCE:
2344                retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2345                break;
2346        case FILE_MEMORY_MIGRATE:
2347                retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2348                break;
2349        case FILE_MEMORY_PRESSURE_ENABLED:
2350                cpuset_memory_pressure_enabled = !!val;
2351                break;
2352        case FILE_SPREAD_PAGE:
2353                retval = update_flag(CS_SPREAD_PAGE, cs, val);
2354                break;
2355        case FILE_SPREAD_SLAB:
2356                retval = update_flag(CS_SPREAD_SLAB, cs, val);
2357                break;
2358        default:
2359                retval = -EINVAL;
2360                break;
2361        }
2362out_unlock:
2363        percpu_up_write(&cpuset_rwsem);
2364        cpus_read_unlock();
2365        return retval;
2366}
2367
2368static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2369                            s64 val)
2370{
2371        struct cpuset *cs = css_cs(css);
2372        cpuset_filetype_t type = cft->private;
2373        int retval = -ENODEV;
2374
2375        cpus_read_lock();
2376        percpu_down_write(&cpuset_rwsem);
2377        if (!is_cpuset_online(cs))
2378                goto out_unlock;
2379
2380        switch (type) {
2381        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2382                retval = update_relax_domain_level(cs, val);
2383                break;
2384        default:
2385                retval = -EINVAL;
2386                break;
2387        }
2388out_unlock:
2389        percpu_up_write(&cpuset_rwsem);
2390        cpus_read_unlock();
2391        return retval;
2392}
2393
2394/*
2395 * Common handling for a write to a "cpus" or "mems" file.
2396 */
2397static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2398                                    char *buf, size_t nbytes, loff_t off)
2399{
2400        struct cpuset *cs = css_cs(of_css(of));
2401        struct cpuset *trialcs;
2402        int retval = -ENODEV;
2403
2404        buf = strstrip(buf);
2405
2406        /*
2407         * CPU or memory hotunplug may leave @cs w/o any execution
2408         * resources, in which case the hotplug code asynchronously updates
2409         * configuration and transfers all tasks to the nearest ancestor
2410         * which can execute.
2411         *
2412         * As writes to "cpus" or "mems" may restore @cs's execution
2413         * resources, wait for the previously scheduled operations before
2414         * proceeding, so that we don't end up keep removing tasks added
2415         * after execution capability is restored.
2416         *
2417         * cpuset_hotplug_work calls back into cgroup core via
2418         * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2419         * operation like this one can lead to a deadlock through kernfs
2420         * active_ref protection.  Let's break the protection.  Losing the
2421         * protection is okay as we check whether @cs is online after
2422         * grabbing cpuset_rwsem anyway.  This only happens on the legacy
2423         * hierarchies.
2424         */
2425        css_get(&cs->css);
2426        kernfs_break_active_protection(of->kn);
2427        flush_work(&cpuset_hotplug_work);
2428
2429        cpus_read_lock();
2430        percpu_down_write(&cpuset_rwsem);
2431        if (!is_cpuset_online(cs))
2432                goto out_unlock;
2433
2434        trialcs = alloc_trial_cpuset(cs);
2435        if (!trialcs) {
2436                retval = -ENOMEM;
2437                goto out_unlock;
2438        }
2439
2440        switch (of_cft(of)->private) {
2441        case FILE_CPULIST:
2442                retval = update_cpumask(cs, trialcs, buf);
2443                break;
2444        case FILE_MEMLIST:
2445                retval = update_nodemask(cs, trialcs, buf);
2446                break;
2447        default:
2448                retval = -EINVAL;
2449                break;
2450        }
2451
2452        free_cpuset(trialcs);
2453out_unlock:
2454        percpu_up_write(&cpuset_rwsem);
2455        cpus_read_unlock();
2456        kernfs_unbreak_active_protection(of->kn);
2457        css_put(&cs->css);
2458        flush_workqueue(cpuset_migrate_mm_wq);
2459        return retval ?: nbytes;
2460}
2461
2462/*
2463 * These ascii lists should be read in a single call, by using a user
2464 * buffer large enough to hold the entire map.  If read in smaller
2465 * chunks, there is no guarantee of atomicity.  Since the display format
2466 * used, list of ranges of sequential numbers, is variable length,
2467 * and since these maps can change value dynamically, one could read
2468 * gibberish by doing partial reads while a list was changing.
2469 */
2470static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2471{
2472        struct cpuset *cs = css_cs(seq_css(sf));
2473        cpuset_filetype_t type = seq_cft(sf)->private;
2474        int ret = 0;
2475
2476        spin_lock_irq(&callback_lock);
2477
2478        switch (type) {
2479        case FILE_CPULIST:
2480                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2481                break;
2482        case FILE_MEMLIST:
2483                seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2484                break;
2485        case FILE_EFFECTIVE_CPULIST:
2486                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2487                break;
2488        case FILE_EFFECTIVE_MEMLIST:
2489                seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2490                break;
2491        case FILE_SUBPARTS_CPULIST:
2492                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2493                break;
2494        default:
2495                ret = -EINVAL;
2496        }
2497
2498        spin_unlock_irq(&callback_lock);
2499        return ret;
2500}
2501
2502static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2503{
2504        struct cpuset *cs = css_cs(css);
2505        cpuset_filetype_t type = cft->private;
2506        switch (type) {
2507        case FILE_CPU_EXCLUSIVE:
2508                return is_cpu_exclusive(cs);
2509        case FILE_MEM_EXCLUSIVE:
2510                return is_mem_exclusive(cs);
2511        case FILE_MEM_HARDWALL:
2512                return is_mem_hardwall(cs);
2513        case FILE_SCHED_LOAD_BALANCE:
2514                return is_sched_load_balance(cs);
2515        case FILE_MEMORY_MIGRATE:
2516                return is_memory_migrate(cs);
2517        case FILE_MEMORY_PRESSURE_ENABLED:
2518                return cpuset_memory_pressure_enabled;
2519        case FILE_MEMORY_PRESSURE:
2520                return fmeter_getrate(&cs->fmeter);
2521        case FILE_SPREAD_PAGE:
2522                return is_spread_page(cs);
2523        case FILE_SPREAD_SLAB:
2524                return is_spread_slab(cs);
2525        default:
2526                BUG();
2527        }
2528
2529        /* Unreachable but makes gcc happy */
2530        return 0;
2531}
2532
2533static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2534{
2535        struct cpuset *cs = css_cs(css);
2536        cpuset_filetype_t type = cft->private;
2537        switch (type) {
2538        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2539                return cs->relax_domain_level;
2540        default:
2541                BUG();
2542        }
2543
2544        /* Unreachable but makes gcc happy */
2545        return 0;
2546}
2547
2548static int sched_partition_show(struct seq_file *seq, void *v)
2549{
2550        struct cpuset *cs = css_cs(seq_css(seq));
2551
2552        switch (cs->partition_root_state) {
2553        case PRS_ENABLED:
2554                seq_puts(seq, "root\n");
2555                break;
2556        case PRS_DISABLED:
2557                seq_puts(seq, "member\n");
2558                break;
2559        case PRS_ERROR:
2560                seq_puts(seq, "root invalid\n");
2561                break;
2562        }
2563        return 0;
2564}
2565
2566static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2567                                     size_t nbytes, loff_t off)
2568{
2569        struct cpuset *cs = css_cs(of_css(of));
2570        int val;
2571        int retval = -ENODEV;
2572
2573        buf = strstrip(buf);
2574
2575        /*
2576         * Convert "root" to ENABLED, and convert "member" to DISABLED.
2577         */
2578        if (!strcmp(buf, "root"))
2579                val = PRS_ENABLED;
2580        else if (!strcmp(buf, "member"))
2581                val = PRS_DISABLED;
2582        else
2583                return -EINVAL;
2584
2585        css_get(&cs->css);
2586        cpus_read_lock();
2587        percpu_down_write(&cpuset_rwsem);
2588        if (!is_cpuset_online(cs))
2589                goto out_unlock;
2590
2591        retval = update_prstate(cs, val);
2592out_unlock:
2593        percpu_up_write(&cpuset_rwsem);
2594        cpus_read_unlock();
2595        css_put(&cs->css);
2596        return retval ?: nbytes;
2597}
2598
2599/*
2600 * for the common functions, 'private' gives the type of file
2601 */
2602
2603static struct cftype legacy_files[] = {
2604        {
2605                .name = "cpus",
2606                .seq_show = cpuset_common_seq_show,
2607                .write = cpuset_write_resmask,
2608                .max_write_len = (100U + 6 * NR_CPUS),
2609                .private = FILE_CPULIST,
2610        },
2611
2612        {
2613                .name = "mems",
2614                .seq_show = cpuset_common_seq_show,
2615                .write = cpuset_write_resmask,
2616                .max_write_len = (100U + 6 * MAX_NUMNODES),
2617                .private = FILE_MEMLIST,
2618        },
2619
2620        {
2621                .name = "effective_cpus",
2622                .seq_show = cpuset_common_seq_show,
2623                .private = FILE_EFFECTIVE_CPULIST,
2624        },
2625
2626        {
2627                .name = "effective_mems",
2628                .seq_show = cpuset_common_seq_show,
2629                .private = FILE_EFFECTIVE_MEMLIST,
2630        },
2631
2632        {
2633                .name = "cpu_exclusive",
2634                .read_u64 = cpuset_read_u64,
2635                .write_u64 = cpuset_write_u64,
2636                .private = FILE_CPU_EXCLUSIVE,
2637        },
2638
2639        {
2640                .name = "mem_exclusive",
2641                .read_u64 = cpuset_read_u64,
2642                .write_u64 = cpuset_write_u64,
2643                .private = FILE_MEM_EXCLUSIVE,
2644        },
2645
2646        {
2647                .name = "mem_hardwall",
2648                .read_u64 = cpuset_read_u64,
2649                .write_u64 = cpuset_write_u64,
2650                .private = FILE_MEM_HARDWALL,
2651        },
2652
2653        {
2654                .name = "sched_load_balance",
2655                .read_u64 = cpuset_read_u64,
2656                .write_u64 = cpuset_write_u64,
2657                .private = FILE_SCHED_LOAD_BALANCE,
2658        },
2659
2660        {
2661                .name = "sched_relax_domain_level",
2662                .read_s64 = cpuset_read_s64,
2663                .write_s64 = cpuset_write_s64,
2664                .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2665        },
2666
2667        {
2668                .name = "memory_migrate",
2669                .read_u64 = cpuset_read_u64,
2670                .write_u64 = cpuset_write_u64,
2671                .private = FILE_MEMORY_MIGRATE,
2672        },
2673
2674        {
2675                .name = "memory_pressure",
2676                .read_u64 = cpuset_read_u64,
2677                .private = FILE_MEMORY_PRESSURE,
2678        },
2679
2680        {
2681                .name = "memory_spread_page",
2682                .read_u64 = cpuset_read_u64,
2683                .write_u64 = cpuset_write_u64,
2684                .private = FILE_SPREAD_PAGE,
2685        },
2686
2687        {
2688                .name = "memory_spread_slab",
2689                .read_u64 = cpuset_read_u64,
2690                .write_u64 = cpuset_write_u64,
2691                .private = FILE_SPREAD_SLAB,
2692        },
2693
2694        {
2695                .name = "memory_pressure_enabled",
2696                .flags = CFTYPE_ONLY_ON_ROOT,
2697                .read_u64 = cpuset_read_u64,
2698                .write_u64 = cpuset_write_u64,
2699                .private = FILE_MEMORY_PRESSURE_ENABLED,
2700        },
2701
2702        { }     /* terminate */
2703};
2704
2705/*
2706 * This is currently a minimal set for the default hierarchy. It can be
2707 * expanded later on by migrating more features and control files from v1.
2708 */
2709static struct cftype dfl_files[] = {
2710        {
2711                .name = "cpus",
2712                .seq_show = cpuset_common_seq_show,
2713                .write = cpuset_write_resmask,
2714                .max_write_len = (100U + 6 * NR_CPUS),
2715                .private = FILE_CPULIST,
2716                .flags = CFTYPE_NOT_ON_ROOT,
2717        },
2718
2719        {
2720                .name = "mems",
2721                .seq_show = cpuset_common_seq_show,
2722                .write = cpuset_write_resmask,
2723                .max_write_len = (100U + 6 * MAX_NUMNODES),
2724                .private = FILE_MEMLIST,
2725                .flags = CFTYPE_NOT_ON_ROOT,
2726        },
2727
2728        {
2729                .name = "cpus.effective",
2730                .seq_show = cpuset_common_seq_show,
2731                .private = FILE_EFFECTIVE_CPULIST,
2732        },
2733
2734        {
2735                .name = "mems.effective",
2736                .seq_show = cpuset_common_seq_show,
2737                .private = FILE_EFFECTIVE_MEMLIST,
2738        },
2739
2740        {
2741                .name = "cpus.partition",
2742                .seq_show = sched_partition_show,
2743                .write = sched_partition_write,
2744                .private = FILE_PARTITION_ROOT,
2745                .flags = CFTYPE_NOT_ON_ROOT,
2746                .file_offset = offsetof(struct cpuset, partition_file),
2747        },
2748
2749        {
2750                .name = "cpus.subpartitions",
2751                .seq_show = cpuset_common_seq_show,
2752                .private = FILE_SUBPARTS_CPULIST,
2753                .flags = CFTYPE_DEBUG,
2754        },
2755
2756        { }     /* terminate */
2757};
2758
2759
2760/*
2761 *      cpuset_css_alloc - allocate a cpuset css
2762 *      cgrp:   control group that the new cpuset will be part of
2763 */
2764
2765static struct cgroup_subsys_state *
2766cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2767{
2768        struct cpuset *cs;
2769
2770        if (!parent_css)
2771                return &top_cpuset.css;
2772
2773        cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2774        if (!cs)
2775                return ERR_PTR(-ENOMEM);
2776
2777        if (alloc_cpumasks(cs, NULL)) {
2778                kfree(cs);
2779                return ERR_PTR(-ENOMEM);
2780        }
2781
2782        __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2783        nodes_clear(cs->mems_allowed);
2784        nodes_clear(cs->effective_mems);
2785        fmeter_init(&cs->fmeter);
2786        cs->relax_domain_level = -1;
2787
2788        /* Set CS_MEMORY_MIGRATE for default hierarchy */
2789        if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2790                __set_bit(CS_MEMORY_MIGRATE, &cs->flags);
2791
2792        return &cs->css;
2793}
2794
2795static int cpuset_css_online(struct cgroup_subsys_state *css)
2796{
2797        struct cpuset *cs = css_cs(css);
2798        struct cpuset *parent = parent_cs(cs);
2799        struct cpuset *tmp_cs;
2800        struct cgroup_subsys_state *pos_css;
2801
2802        if (!parent)
2803                return 0;
2804
2805        cpus_read_lock();
2806        percpu_down_write(&cpuset_rwsem);
2807
2808        set_bit(CS_ONLINE, &cs->flags);
2809        if (is_spread_page(parent))
2810                set_bit(CS_SPREAD_PAGE, &cs->flags);
2811        if (is_spread_slab(parent))
2812                set_bit(CS_SPREAD_SLAB, &cs->flags);
2813
2814        cpuset_inc();
2815
2816        spin_lock_irq(&callback_lock);
2817        if (is_in_v2_mode()) {
2818                cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2819                cs->effective_mems = parent->effective_mems;
2820                cs->use_parent_ecpus = true;
2821                parent->child_ecpus_count++;
2822        }
2823        spin_unlock_irq(&callback_lock);
2824
2825        if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2826                goto out_unlock;
2827
2828        /*
2829         * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2830         * set.  This flag handling is implemented in cgroup core for
2831         * histrical reasons - the flag may be specified during mount.
2832         *
2833         * Currently, if any sibling cpusets have exclusive cpus or mem, we
2834         * refuse to clone the configuration - thereby refusing the task to
2835         * be entered, and as a result refusing the sys_unshare() or
2836         * clone() which initiated it.  If this becomes a problem for some
2837         * users who wish to allow that scenario, then this could be
2838         * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2839         * (and likewise for mems) to the new cgroup.
2840         */
2841        rcu_read_lock();
2842        cpuset_for_each_child(tmp_cs, pos_css, parent) {
2843                if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2844                        rcu_read_unlock();
2845                        goto out_unlock;
2846                }
2847        }
2848        rcu_read_unlock();
2849
2850        spin_lock_irq(&callback_lock);
2851        cs->mems_allowed = parent->mems_allowed;
2852        cs->effective_mems = parent->mems_allowed;
2853        cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2854        cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2855        spin_unlock_irq(&callback_lock);
2856out_unlock:
2857        percpu_up_write(&cpuset_rwsem);
2858        cpus_read_unlock();
2859        return 0;
2860}
2861
2862/*
2863 * If the cpuset being removed has its flag 'sched_load_balance'
2864 * enabled, then simulate turning sched_load_balance off, which
2865 * will call rebuild_sched_domains_locked(). That is not needed
2866 * in the default hierarchy where only changes in partition
2867 * will cause repartitioning.
2868 *
2869 * If the cpuset has the 'sched.partition' flag enabled, simulate
2870 * turning 'sched.partition" off.
2871 */
2872
2873static void cpuset_css_offline(struct cgroup_subsys_state *css)
2874{
2875        struct cpuset *cs = css_cs(css);
2876
2877        cpus_read_lock();
2878        percpu_down_write(&cpuset_rwsem);
2879
2880        if (is_partition_root(cs))
2881                update_prstate(cs, 0);
2882
2883        if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2884            is_sched_load_balance(cs))
2885                update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2886
2887        if (cs->use_parent_ecpus) {
2888                struct cpuset *parent = parent_cs(cs);
2889
2890                cs->use_parent_ecpus = false;
2891                parent->child_ecpus_count--;
2892        }
2893
2894        cpuset_dec();
2895        clear_bit(CS_ONLINE, &cs->flags);
2896
2897        percpu_up_write(&cpuset_rwsem);
2898        cpus_read_unlock();
2899}
2900
2901static void cpuset_css_free(struct cgroup_subsys_state *css)
2902{
2903        struct cpuset *cs = css_cs(css);
2904
2905        free_cpuset(cs);
2906}
2907
2908static void cpuset_bind(struct cgroup_subsys_state *root_css)
2909{
2910        percpu_down_write(&cpuset_rwsem);
2911        spin_lock_irq(&callback_lock);
2912
2913        if (is_in_v2_mode()) {
2914                cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2915                top_cpuset.mems_allowed = node_possible_map;
2916        } else {
2917                cpumask_copy(top_cpuset.cpus_allowed,
2918                             top_cpuset.effective_cpus);
2919                top_cpuset.mems_allowed = top_cpuset.effective_mems;
2920        }
2921
2922        spin_unlock_irq(&callback_lock);
2923        percpu_up_write(&cpuset_rwsem);
2924}
2925
2926/*
2927 * Make sure the new task conform to the current state of its parent,
2928 * which could have been changed by cpuset just after it inherits the
2929 * state from the parent and before it sits on the cgroup's task list.
2930 */
2931static void cpuset_fork(struct task_struct *task)
2932{
2933        if (task_css_is_root(task, cpuset_cgrp_id))
2934                return;
2935
2936        set_cpus_allowed_ptr(task, current->cpus_ptr);
2937        task->mems_allowed = current->mems_allowed;
2938}
2939
2940struct cgroup_subsys cpuset_cgrp_subsys = {
2941        .css_alloc      = cpuset_css_alloc,
2942        .css_online     = cpuset_css_online,
2943        .css_offline    = cpuset_css_offline,
2944        .css_free       = cpuset_css_free,
2945        .can_attach     = cpuset_can_attach,
2946        .cancel_attach  = cpuset_cancel_attach,
2947        .attach         = cpuset_attach,
2948        .post_attach    = cpuset_post_attach,
2949        .bind           = cpuset_bind,
2950        .fork           = cpuset_fork,
2951        .legacy_cftypes = legacy_files,
2952        .dfl_cftypes    = dfl_files,
2953        .early_init     = true,
2954        .threaded       = true,
2955};
2956
2957/**
2958 * cpuset_init - initialize cpusets at system boot
2959 *
2960 * Description: Initialize top_cpuset
2961 **/
2962
2963int __init cpuset_init(void)
2964{
2965        BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2966
2967        BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2968        BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2969        BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2970
2971        cpumask_setall(top_cpuset.cpus_allowed);
2972        nodes_setall(top_cpuset.mems_allowed);
2973        cpumask_setall(top_cpuset.effective_cpus);
2974        nodes_setall(top_cpuset.effective_mems);
2975
2976        fmeter_init(&top_cpuset.fmeter);
2977        set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2978        top_cpuset.relax_domain_level = -1;
2979
2980        BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2981
2982        return 0;
2983}
2984
2985/*
2986 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2987 * or memory nodes, we need to walk over the cpuset hierarchy,
2988 * removing that CPU or node from all cpusets.  If this removes the
2989 * last CPU or node from a cpuset, then move the tasks in the empty
2990 * cpuset to its next-highest non-empty parent.
2991 */
2992static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2993{
2994        struct cpuset *parent;
2995
2996        /*
2997         * Find its next-highest non-empty parent, (top cpuset
2998         * has online cpus, so can't be empty).
2999         */
3000        parent = parent_cs(cs);
3001        while (cpumask_empty(parent->cpus_allowed) ||
3002                        nodes_empty(parent->mems_allowed))
3003                parent = parent_cs(parent);
3004
3005        if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3006                pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3007                pr_cont_cgroup_name(cs->css.cgroup);
3008                pr_cont("\n");
3009        }
3010}
3011
3012static void
3013hotplug_update_tasks_legacy(struct cpuset *cs,
3014                            struct cpumask *new_cpus, nodemask_t *new_mems,
3015                            bool cpus_updated, bool mems_updated)
3016{
3017        bool is_empty;
3018
3019        spin_lock_irq(&callback_lock);
3020        cpumask_copy(cs->cpus_allowed, new_cpus);
3021        cpumask_copy(cs->effective_cpus, new_cpus);
3022        cs->mems_allowed = *new_mems;
3023        cs->effective_mems = *new_mems;
3024        spin_unlock_irq(&callback_lock);
3025
3026        /*
3027         * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3028         * as the tasks will be migratecd to an ancestor.
3029         */
3030        if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3031                update_tasks_cpumask(cs);
3032        if (mems_updated && !nodes_empty(cs->mems_allowed))
3033                update_tasks_nodemask(cs);
3034
3035        is_empty = cpumask_empty(cs->cpus_allowed) ||
3036                   nodes_empty(cs->mems_allowed);
3037
3038        percpu_up_write(&cpuset_rwsem);
3039
3040        /*
3041         * Move tasks to the nearest ancestor with execution resources,
3042         * This is full cgroup operation which will also call back into
3043         * cpuset. Should be done outside any lock.
3044         */
3045        if (is_empty)
3046                remove_tasks_in_empty_cpuset(cs);
3047
3048        percpu_down_write(&cpuset_rwsem);
3049}
3050
3051static void
3052hotplug_update_tasks(struct cpuset *cs,
3053                     struct cpumask *new_cpus, nodemask_t *new_mems,
3054                     bool cpus_updated, bool mems_updated)
3055{
3056        if (cpumask_empty(new_cpus))
3057                cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3058        if (nodes_empty(*new_mems))
3059                *new_mems = parent_cs(cs)->effective_mems;
3060
3061        spin_lock_irq(&callback_lock);
3062        cpumask_copy(cs->effective_cpus, new_cpus);
3063        cs->effective_mems = *new_mems;
3064        spin_unlock_irq(&callback_lock);
3065
3066        if (cpus_updated)
3067                update_tasks_cpumask(cs);
3068        if (mems_updated)
3069                update_tasks_nodemask(cs);
3070}
3071
3072static bool force_rebuild;
3073
3074void cpuset_force_rebuild(void)
3075{
3076        force_rebuild = true;
3077}
3078
3079/**
3080 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3081 * @cs: cpuset in interest
3082 * @tmp: the tmpmasks structure pointer
3083 *
3084 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3085 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3086 * all its tasks are moved to the nearest ancestor with both resources.
3087 */
3088static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3089{
3090        static cpumask_t new_cpus;
3091        static nodemask_t new_mems;
3092        bool cpus_updated;
3093        bool mems_updated;
3094        struct cpuset *parent;
3095retry:
3096        wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3097
3098        percpu_down_write(&cpuset_rwsem);
3099
3100        /*
3101         * We have raced with task attaching. We wait until attaching
3102         * is finished, so we won't attach a task to an empty cpuset.
3103         */
3104        if (cs->attach_in_progress) {
3105                percpu_up_write(&cpuset_rwsem);
3106                goto retry;
3107        }
3108
3109        parent = parent_cs(cs);
3110        compute_effective_cpumask(&new_cpus, cs, parent);
3111        nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3112
3113        if (cs->nr_subparts_cpus)
3114                /*
3115                 * Make sure that CPUs allocated to child partitions
3116                 * do not show up in effective_cpus.
3117                 */
3118                cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3119
3120        if (!tmp || !cs->partition_root_state)
3121                goto update_tasks;
3122
3123        /*
3124         * In the unlikely event that a partition root has empty
3125         * effective_cpus or its parent becomes erroneous, we have to
3126         * transition it to the erroneous state.
3127         */
3128        if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3129           (parent->partition_root_state == PRS_ERROR))) {
3130                if (cs->nr_subparts_cpus) {
3131                        spin_lock_irq(&callback_lock);
3132                        cs->nr_subparts_cpus = 0;
3133                        cpumask_clear(cs->subparts_cpus);
3134                        spin_unlock_irq(&callback_lock);
3135                        compute_effective_cpumask(&new_cpus, cs, parent);
3136                }
3137
3138                /*
3139                 * If the effective_cpus is empty because the child
3140                 * partitions take away all the CPUs, we can keep
3141                 * the current partition and let the child partitions
3142                 * fight for available CPUs.
3143                 */
3144                if ((parent->partition_root_state == PRS_ERROR) ||
3145                     cpumask_empty(&new_cpus)) {
3146                        int old_prs;
3147
3148                        update_parent_subparts_cpumask(cs, partcmd_disable,
3149                                                       NULL, tmp);
3150                        old_prs = cs->partition_root_state;
3151                        if (old_prs != PRS_ERROR) {
3152                                spin_lock_irq(&callback_lock);
3153                                cs->partition_root_state = PRS_ERROR;
3154                                spin_unlock_irq(&callback_lock);
3155                                notify_partition_change(cs, old_prs, PRS_ERROR);
3156                        }
3157                }
3158                cpuset_force_rebuild();
3159        }
3160
3161        /*
3162         * On the other hand, an erroneous partition root may be transitioned
3163         * back to a regular one or a partition root with no CPU allocated
3164         * from the parent may change to erroneous.
3165         */
3166        if (is_partition_root(parent) &&
3167           ((cs->partition_root_state == PRS_ERROR) ||
3168            !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3169             update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3170                cpuset_force_rebuild();
3171
3172update_tasks:
3173        cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3174        mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3175
3176        if (is_in_v2_mode())
3177                hotplug_update_tasks(cs, &new_cpus, &new_mems,
3178                                     cpus_updated, mems_updated);
3179        else
3180                hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3181                                            cpus_updated, mems_updated);
3182
3183        percpu_up_write(&cpuset_rwsem);
3184}
3185
3186/**
3187 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3188 *
3189 * This function is called after either CPU or memory configuration has
3190 * changed and updates cpuset accordingly.  The top_cpuset is always
3191 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3192 * order to make cpusets transparent (of no affect) on systems that are
3193 * actively using CPU hotplug but making no active use of cpusets.
3194 *
3195 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3196 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3197 * all descendants.
3198 *
3199 * Note that CPU offlining during suspend is ignored.  We don't modify
3200 * cpusets across suspend/resume cycles at all.
3201 */
3202static void cpuset_hotplug_workfn(struct work_struct *work)
3203{
3204        static cpumask_t new_cpus;
3205        static nodemask_t new_mems;
3206        bool cpus_updated, mems_updated;
3207        bool on_dfl = is_in_v2_mode();
3208        struct tmpmasks tmp, *ptmp = NULL;
3209
3210        if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3211                ptmp = &tmp;
3212
3213        percpu_down_write(&cpuset_rwsem);
3214
3215        /* fetch the available cpus/mems and find out which changed how */
3216        cpumask_copy(&new_cpus, cpu_active_mask);
3217        new_mems = node_states[N_MEMORY];
3218
3219        /*
3220         * If subparts_cpus is populated, it is likely that the check below
3221         * will produce a false positive on cpus_updated when the cpu list
3222         * isn't changed. It is extra work, but it is better to be safe.
3223         */
3224        cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3225        mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3226
3227        /*
3228         * In the rare case that hotplug removes all the cpus in subparts_cpus,
3229         * we assumed that cpus are updated.
3230         */
3231        if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3232                cpus_updated = true;
3233
3234        /* synchronize cpus_allowed to cpu_active_mask */
3235        if (cpus_updated) {
3236                spin_lock_irq(&callback_lock);
3237                if (!on_dfl)
3238                        cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3239                /*
3240                 * Make sure that CPUs allocated to child partitions
3241                 * do not show up in effective_cpus. If no CPU is left,
3242                 * we clear the subparts_cpus & let the child partitions
3243                 * fight for the CPUs again.
3244                 */
3245                if (top_cpuset.nr_subparts_cpus) {
3246                        if (cpumask_subset(&new_cpus,
3247                                           top_cpuset.subparts_cpus)) {
3248                                top_cpuset.nr_subparts_cpus = 0;
3249                                cpumask_clear(top_cpuset.subparts_cpus);
3250                        } else {
3251                                cpumask_andnot(&new_cpus, &new_cpus,
3252                                               top_cpuset.subparts_cpus);
3253                        }
3254                }
3255                cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3256                spin_unlock_irq(&callback_lock);
3257                /* we don't mess with cpumasks of tasks in top_cpuset */
3258        }
3259
3260        /* synchronize mems_allowed to N_MEMORY */
3261        if (mems_updated) {
3262                spin_lock_irq(&callback_lock);
3263                if (!on_dfl)
3264                        top_cpuset.mems_allowed = new_mems;
3265                top_cpuset.effective_mems = new_mems;
3266                spin_unlock_irq(&callback_lock);
3267                update_tasks_nodemask(&top_cpuset);
3268        }
3269
3270        percpu_up_write(&cpuset_rwsem);
3271
3272        /* if cpus or mems changed, we need to propagate to descendants */
3273        if (cpus_updated || mems_updated) {
3274                struct cpuset *cs;
3275                struct cgroup_subsys_state *pos_css;
3276
3277                rcu_read_lock();
3278                cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3279                        if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3280                                continue;
3281                        rcu_read_unlock();
3282
3283                        cpuset_hotplug_update_tasks(cs, ptmp);
3284
3285                        rcu_read_lock();
3286                        css_put(&cs->css);
3287                }
3288                rcu_read_unlock();
3289        }
3290
3291        /* rebuild sched domains if cpus_allowed has changed */
3292        if (cpus_updated || force_rebuild) {
3293                force_rebuild = false;
3294                rebuild_sched_domains();
3295        }
3296
3297        free_cpumasks(NULL, ptmp);
3298}
3299
3300void cpuset_update_active_cpus(void)
3301{
3302        /*
3303         * We're inside cpu hotplug critical region which usually nests
3304         * inside cgroup synchronization.  Bounce actual hotplug processing
3305         * to a work item to avoid reverse locking order.
3306         */
3307        schedule_work(&cpuset_hotplug_work);
3308}
3309
3310void cpuset_wait_for_hotplug(void)
3311{
3312        flush_work(&cpuset_hotplug_work);
3313}
3314
3315/*
3316 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3317 * Call this routine anytime after node_states[N_MEMORY] changes.
3318 * See cpuset_update_active_cpus() for CPU hotplug handling.
3319 */
3320static int cpuset_track_online_nodes(struct notifier_block *self,
3321                                unsigned long action, void *arg)
3322{
3323        schedule_work(&cpuset_hotplug_work);
3324        return NOTIFY_OK;
3325}
3326
3327static struct notifier_block cpuset_track_online_nodes_nb = {
3328        .notifier_call = cpuset_track_online_nodes,
3329        .priority = 10,         /* ??! */
3330};
3331
3332/**
3333 * cpuset_init_smp - initialize cpus_allowed
3334 *
3335 * Description: Finish top cpuset after cpu, node maps are initialized
3336 */
3337void __init cpuset_init_smp(void)
3338{
3339        cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3340        top_cpuset.mems_allowed = node_states[N_MEMORY];
3341        top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3342
3343        cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3344        top_cpuset.effective_mems = node_states[N_MEMORY];
3345
3346        register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3347
3348        cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3349        BUG_ON(!cpuset_migrate_mm_wq);
3350}
3351
3352/**
3353 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3354 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3355 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3356 *
3357 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3358 * attached to the specified @tsk.  Guaranteed to return some non-empty
3359 * subset of cpu_online_mask, even if this means going outside the
3360 * tasks cpuset.
3361 **/
3362
3363void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3364{
3365        unsigned long flags;
3366
3367        spin_lock_irqsave(&callback_lock, flags);
3368        guarantee_online_cpus(tsk, pmask);
3369        spin_unlock_irqrestore(&callback_lock, flags);
3370}
3371
3372/**
3373 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3374 * @tsk: pointer to task_struct with which the scheduler is struggling
3375 *
3376 * Description: In the case that the scheduler cannot find an allowed cpu in
3377 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3378 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3379 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3380 * This is the absolute last resort for the scheduler and it is only used if
3381 * _every_ other avenue has been traveled.
3382 *
3383 * Returns true if the affinity of @tsk was changed, false otherwise.
3384 **/
3385
3386bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3387{
3388        const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3389        const struct cpumask *cs_mask;
3390        bool changed = false;
3391
3392        rcu_read_lock();
3393        cs_mask = task_cs(tsk)->cpus_allowed;
3394        if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3395                do_set_cpus_allowed(tsk, cs_mask);
3396                changed = true;
3397        }
3398        rcu_read_unlock();
3399
3400        /*
3401         * We own tsk->cpus_allowed, nobody can change it under us.
3402         *
3403         * But we used cs && cs->cpus_allowed lockless and thus can
3404         * race with cgroup_attach_task() or update_cpumask() and get
3405         * the wrong tsk->cpus_allowed. However, both cases imply the
3406         * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3407         * which takes task_rq_lock().
3408         *
3409         * If we are called after it dropped the lock we must see all
3410         * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3411         * set any mask even if it is not right from task_cs() pov,
3412         * the pending set_cpus_allowed_ptr() will fix things.
3413         *
3414         * select_fallback_rq() will fix things ups and set cpu_possible_mask
3415         * if required.
3416         */
3417        return changed;
3418}
3419
3420void __init cpuset_init_current_mems_allowed(void)
3421{
3422        nodes_setall(current->mems_allowed);
3423}
3424
3425/**
3426 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3427 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3428 *
3429 * Description: Returns the nodemask_t mems_allowed of the cpuset
3430 * attached to the specified @tsk.  Guaranteed to return some non-empty
3431 * subset of node_states[N_MEMORY], even if this means going outside the
3432 * tasks cpuset.
3433 **/
3434
3435nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3436{
3437        nodemask_t mask;
3438        unsigned long flags;
3439
3440        spin_lock_irqsave(&callback_lock, flags);
3441        rcu_read_lock();
3442        guarantee_online_mems(task_cs(tsk), &mask);
3443        rcu_read_unlock();
3444        spin_unlock_irqrestore(&callback_lock, flags);
3445
3446        return mask;
3447}
3448
3449/**
3450 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3451 * @nodemask: the nodemask to be checked
3452 *
3453 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3454 */
3455int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3456{
3457        return nodes_intersects(*nodemask, current->mems_allowed);
3458}
3459
3460/*
3461 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3462 * mem_hardwall ancestor to the specified cpuset.  Call holding
3463 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3464 * (an unusual configuration), then returns the root cpuset.
3465 */
3466static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3467{
3468        while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3469                cs = parent_cs(cs);
3470        return cs;
3471}
3472
3473/**
3474 * cpuset_node_allowed - Can we allocate on a memory node?
3475 * @node: is this an allowed node?
3476 * @gfp_mask: memory allocation flags
3477 *
3478 * If we're in interrupt, yes, we can always allocate.  If @node is set in
3479 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3480 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3481 * yes.  If current has access to memory reserves as an oom victim, yes.
3482 * Otherwise, no.
3483 *
3484 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3485 * and do not allow allocations outside the current tasks cpuset
3486 * unless the task has been OOM killed.
3487 * GFP_KERNEL allocations are not so marked, so can escape to the
3488 * nearest enclosing hardwalled ancestor cpuset.
3489 *
3490 * Scanning up parent cpusets requires callback_lock.  The
3491 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3492 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3493 * current tasks mems_allowed came up empty on the first pass over
3494 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3495 * cpuset are short of memory, might require taking the callback_lock.
3496 *
3497 * The first call here from mm/page_alloc:get_page_from_freelist()
3498 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3499 * so no allocation on a node outside the cpuset is allowed (unless
3500 * in interrupt, of course).
3501 *
3502 * The second pass through get_page_from_freelist() doesn't even call
3503 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3504 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3505 * in alloc_flags.  That logic and the checks below have the combined
3506 * affect that:
3507 *      in_interrupt - any node ok (current task context irrelevant)
3508 *      GFP_ATOMIC   - any node ok
3509 *      tsk_is_oom_victim   - any node ok
3510 *      GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3511 *      GFP_USER     - only nodes in current tasks mems allowed ok.
3512 */
3513bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3514{
3515        struct cpuset *cs;              /* current cpuset ancestors */
3516        int allowed;                    /* is allocation in zone z allowed? */
3517        unsigned long flags;
3518
3519        if (in_interrupt())
3520                return true;
3521        if (node_isset(node, current->mems_allowed))
3522                return true;
3523        /*
3524         * Allow tasks that have access to memory reserves because they have
3525         * been OOM killed to get memory anywhere.
3526         */
3527        if (unlikely(tsk_is_oom_victim(current)))
3528                return true;
3529        if (gfp_mask & __GFP_HARDWALL)  /* If hardwall request, stop here */
3530                return false;
3531
3532        if (current->flags & PF_EXITING) /* Let dying task have memory */
3533                return true;
3534
3535        /* Not hardwall and node outside mems_allowed: scan up cpusets */
3536        spin_lock_irqsave(&callback_lock, flags);
3537
3538        rcu_read_lock();
3539        cs = nearest_hardwall_ancestor(task_cs(current));
3540        allowed = node_isset(node, cs->mems_allowed);
3541        rcu_read_unlock();
3542
3543        spin_unlock_irqrestore(&callback_lock, flags);
3544        return allowed;
3545}
3546
3547/**
3548 * cpuset_mem_spread_node() - On which node to begin search for a file page
3549 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3550 *
3551 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3552 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3553 * and if the memory allocation used cpuset_mem_spread_node()
3554 * to determine on which node to start looking, as it will for
3555 * certain page cache or slab cache pages such as used for file
3556 * system buffers and inode caches, then instead of starting on the
3557 * local node to look for a free page, rather spread the starting
3558 * node around the tasks mems_allowed nodes.
3559 *
3560 * We don't have to worry about the returned node being offline
3561 * because "it can't happen", and even if it did, it would be ok.
3562 *
3563 * The routines calling guarantee_online_mems() are careful to
3564 * only set nodes in task->mems_allowed that are online.  So it
3565 * should not be possible for the following code to return an
3566 * offline node.  But if it did, that would be ok, as this routine
3567 * is not returning the node where the allocation must be, only
3568 * the node where the search should start.  The zonelist passed to
3569 * __alloc_pages() will include all nodes.  If the slab allocator
3570 * is passed an offline node, it will fall back to the local node.
3571 * See kmem_cache_alloc_node().
3572 */
3573
3574static int cpuset_spread_node(int *rotor)
3575{
3576        return *rotor = next_node_in(*rotor, current->mems_allowed);
3577}
3578
3579int cpuset_mem_spread_node(void)
3580{
3581        if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3582                current->cpuset_mem_spread_rotor =
3583                        node_random(&current->mems_allowed);
3584
3585        return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3586}
3587
3588int cpuset_slab_spread_node(void)
3589{
3590        if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3591                current->cpuset_slab_spread_rotor =
3592                        node_random(&current->mems_allowed);
3593
3594        return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3595}
3596
3597EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3598
3599/**
3600 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3601 * @tsk1: pointer to task_struct of some task.
3602 * @tsk2: pointer to task_struct of some other task.
3603 *
3604 * Description: Return true if @tsk1's mems_allowed intersects the
3605 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3606 * one of the task's memory usage might impact the memory available
3607 * to the other.
3608 **/
3609
3610int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3611                                   const struct task_struct *tsk2)
3612{
3613        return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3614}
3615
3616/**
3617 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3618 *
3619 * Description: Prints current's name, cpuset name, and cached copy of its
3620 * mems_allowed to the kernel log.
3621 */
3622void cpuset_print_current_mems_allowed(void)
3623{
3624        struct cgroup *cgrp;
3625
3626        rcu_read_lock();
3627
3628        cgrp = task_cs(current)->css.cgroup;
3629        pr_cont(",cpuset=");
3630        pr_cont_cgroup_name(cgrp);
3631        pr_cont(",mems_allowed=%*pbl",
3632                nodemask_pr_args(&current->mems_allowed));
3633
3634        rcu_read_unlock();
3635}
3636
3637/*
3638 * Collection of memory_pressure is suppressed unless
3639 * this flag is enabled by writing "1" to the special
3640 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3641 */
3642
3643int cpuset_memory_pressure_enabled __read_mostly;
3644
3645/**
3646 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3647 *
3648 * Keep a running average of the rate of synchronous (direct)
3649 * page reclaim efforts initiated by tasks in each cpuset.
3650 *
3651 * This represents the rate at which some task in the cpuset
3652 * ran low on memory on all nodes it was allowed to use, and
3653 * had to enter the kernels page reclaim code in an effort to
3654 * create more free memory by tossing clean pages or swapping
3655 * or writing dirty pages.
3656 *
3657 * Display to user space in the per-cpuset read-only file
3658 * "memory_pressure".  Value displayed is an integer
3659 * representing the recent rate of entry into the synchronous
3660 * (direct) page reclaim by any task attached to the cpuset.
3661 **/
3662
3663void __cpuset_memory_pressure_bump(void)
3664{
3665        rcu_read_lock();
3666        fmeter_markevent(&task_cs(current)->fmeter);
3667        rcu_read_unlock();
3668}
3669
3670#ifdef CONFIG_PROC_PID_CPUSET
3671/*
3672 * proc_cpuset_show()
3673 *  - Print tasks cpuset path into seq_file.
3674 *  - Used for /proc/<pid>/cpuset.
3675 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3676 *    doesn't really matter if tsk->cpuset changes after we read it,
3677 *    and we take cpuset_rwsem, keeping cpuset_attach() from changing it
3678 *    anyway.
3679 */
3680int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3681                     struct pid *pid, struct task_struct *tsk)
3682{
3683        char *buf;
3684        struct cgroup_subsys_state *css;
3685        int retval;
3686
3687        retval = -ENOMEM;
3688        buf = kmalloc(PATH_MAX, GFP_KERNEL);
3689        if (!buf)
3690                goto out;
3691
3692        css = task_get_css(tsk, cpuset_cgrp_id);
3693        retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3694                                current->nsproxy->cgroup_ns);
3695        css_put(css);
3696        if (retval >= PATH_MAX)
3697                retval = -ENAMETOOLONG;
3698        if (retval < 0)
3699                goto out_free;
3700        seq_puts(m, buf);
3701        seq_putc(m, '\n');
3702        retval = 0;
3703out_free:
3704        kfree(buf);
3705out:
3706        return retval;
3707}
3708#endif /* CONFIG_PROC_PID_CPUSET */
3709
3710/* Display task mems_allowed in /proc/<pid>/status file. */
3711void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3712{
3713        seq_printf(m, "Mems_allowed:\t%*pb\n",
3714                   nodemask_pr_args(&task->mems_allowed));
3715        seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3716                   nodemask_pr_args(&task->mems_allowed));
3717}
3718