linux/kernel/cpu.c
<<
>>
Prefs
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
   6#include <linux/sched/mm.h>
   7#include <linux/proc_fs.h>
   8#include <linux/smp.h>
   9#include <linux/init.h>
  10#include <linux/notifier.h>
  11#include <linux/sched/signal.h>
  12#include <linux/sched/hotplug.h>
  13#include <linux/sched/isolation.h>
  14#include <linux/sched/task.h>
  15#include <linux/sched/smt.h>
  16#include <linux/unistd.h>
  17#include <linux/cpu.h>
  18#include <linux/oom.h>
  19#include <linux/rcupdate.h>
  20#include <linux/export.h>
  21#include <linux/bug.h>
  22#include <linux/kthread.h>
  23#include <linux/stop_machine.h>
  24#include <linux/mutex.h>
  25#include <linux/gfp.h>
  26#include <linux/suspend.h>
  27#include <linux/lockdep.h>
  28#include <linux/tick.h>
  29#include <linux/irq.h>
  30#include <linux/nmi.h>
  31#include <linux/smpboot.h>
  32#include <linux/relay.h>
  33#include <linux/slab.h>
  34#include <linux/percpu-rwsem.h>
  35#include <linux/cpuset.h>
  36
  37#include <trace/events/power.h>
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/cpuhp.h>
  40
  41#include "smpboot.h"
  42
  43/**
  44 * struct cpuhp_cpu_state - Per cpu hotplug state storage
  45 * @state:      The current cpu state
  46 * @target:     The target state
  47 * @fail:       Current CPU hotplug callback state
  48 * @thread:     Pointer to the hotplug thread
  49 * @should_run: Thread should execute
  50 * @rollback:   Perform a rollback
  51 * @single:     Single callback invocation
  52 * @bringup:    Single callback bringup or teardown selector
  53 * @cpu:        CPU number
  54 * @node:       Remote CPU node; for multi-instance, do a
  55 *              single entry callback for install/remove
  56 * @last:       For multi-instance rollback, remember how far we got
  57 * @cb_state:   The state for a single callback (install/uninstall)
  58 * @result:     Result of the operation
  59 * @done_up:    Signal completion to the issuer of the task for cpu-up
  60 * @done_down:  Signal completion to the issuer of the task for cpu-down
  61 */
  62struct cpuhp_cpu_state {
  63        enum cpuhp_state        state;
  64        enum cpuhp_state        target;
  65        enum cpuhp_state        fail;
  66#ifdef CONFIG_SMP
  67        struct task_struct      *thread;
  68        bool                    should_run;
  69        bool                    rollback;
  70        bool                    single;
  71        bool                    bringup;
  72        int                     cpu;
  73        struct hlist_node       *node;
  74        struct hlist_node       *last;
  75        enum cpuhp_state        cb_state;
  76        int                     result;
  77        struct completion       done_up;
  78        struct completion       done_down;
  79#endif
  80};
  81
  82static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
  83        .fail = CPUHP_INVALID,
  84};
  85
  86#ifdef CONFIG_SMP
  87cpumask_t cpus_booted_once_mask;
  88#endif
  89
  90#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
  91static struct lockdep_map cpuhp_state_up_map =
  92        STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
  93static struct lockdep_map cpuhp_state_down_map =
  94        STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
  95
  96
  97static inline void cpuhp_lock_acquire(bool bringup)
  98{
  99        lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
 100}
 101
 102static inline void cpuhp_lock_release(bool bringup)
 103{
 104        lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
 105}
 106#else
 107
 108static inline void cpuhp_lock_acquire(bool bringup) { }
 109static inline void cpuhp_lock_release(bool bringup) { }
 110
 111#endif
 112
 113/**
 114 * struct cpuhp_step - Hotplug state machine step
 115 * @name:       Name of the step
 116 * @startup:    Startup function of the step
 117 * @teardown:   Teardown function of the step
 118 * @cant_stop:  Bringup/teardown can't be stopped at this step
 119 * @multi_instance:     State has multiple instances which get added afterwards
 120 */
 121struct cpuhp_step {
 122        const char              *name;
 123        union {
 124                int             (*single)(unsigned int cpu);
 125                int             (*multi)(unsigned int cpu,
 126                                         struct hlist_node *node);
 127        } startup;
 128        union {
 129                int             (*single)(unsigned int cpu);
 130                int             (*multi)(unsigned int cpu,
 131                                         struct hlist_node *node);
 132        } teardown;
 133        /* private: */
 134        struct hlist_head       list;
 135        /* public: */
 136        bool                    cant_stop;
 137        bool                    multi_instance;
 138};
 139
 140static DEFINE_MUTEX(cpuhp_state_mutex);
 141static struct cpuhp_step cpuhp_hp_states[];
 142
 143static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 144{
 145        return cpuhp_hp_states + state;
 146}
 147
 148static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
 149{
 150        return bringup ? !step->startup.single : !step->teardown.single;
 151}
 152
 153/**
 154 * cpuhp_invoke_callback - Invoke the callbacks for a given state
 155 * @cpu:        The cpu for which the callback should be invoked
 156 * @state:      The state to do callbacks for
 157 * @bringup:    True if the bringup callback should be invoked
 158 * @node:       For multi-instance, do a single entry callback for install/remove
 159 * @lastp:      For multi-instance rollback, remember how far we got
 160 *
 161 * Called from cpu hotplug and from the state register machinery.
 162 *
 163 * Return: %0 on success or a negative errno code
 164 */
 165static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 166                                 bool bringup, struct hlist_node *node,
 167                                 struct hlist_node **lastp)
 168{
 169        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 170        struct cpuhp_step *step = cpuhp_get_step(state);
 171        int (*cbm)(unsigned int cpu, struct hlist_node *node);
 172        int (*cb)(unsigned int cpu);
 173        int ret, cnt;
 174
 175        if (st->fail == state) {
 176                st->fail = CPUHP_INVALID;
 177                return -EAGAIN;
 178        }
 179
 180        if (cpuhp_step_empty(bringup, step)) {
 181                WARN_ON_ONCE(1);
 182                return 0;
 183        }
 184
 185        if (!step->multi_instance) {
 186                WARN_ON_ONCE(lastp && *lastp);
 187                cb = bringup ? step->startup.single : step->teardown.single;
 188
 189                trace_cpuhp_enter(cpu, st->target, state, cb);
 190                ret = cb(cpu);
 191                trace_cpuhp_exit(cpu, st->state, state, ret);
 192                return ret;
 193        }
 194        cbm = bringup ? step->startup.multi : step->teardown.multi;
 195
 196        /* Single invocation for instance add/remove */
 197        if (node) {
 198                WARN_ON_ONCE(lastp && *lastp);
 199                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 200                ret = cbm(cpu, node);
 201                trace_cpuhp_exit(cpu, st->state, state, ret);
 202                return ret;
 203        }
 204
 205        /* State transition. Invoke on all instances */
 206        cnt = 0;
 207        hlist_for_each(node, &step->list) {
 208                if (lastp && node == *lastp)
 209                        break;
 210
 211                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 212                ret = cbm(cpu, node);
 213                trace_cpuhp_exit(cpu, st->state, state, ret);
 214                if (ret) {
 215                        if (!lastp)
 216                                goto err;
 217
 218                        *lastp = node;
 219                        return ret;
 220                }
 221                cnt++;
 222        }
 223        if (lastp)
 224                *lastp = NULL;
 225        return 0;
 226err:
 227        /* Rollback the instances if one failed */
 228        cbm = !bringup ? step->startup.multi : step->teardown.multi;
 229        if (!cbm)
 230                return ret;
 231
 232        hlist_for_each(node, &step->list) {
 233                if (!cnt--)
 234                        break;
 235
 236                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 237                ret = cbm(cpu, node);
 238                trace_cpuhp_exit(cpu, st->state, state, ret);
 239                /*
 240                 * Rollback must not fail,
 241                 */
 242                WARN_ON_ONCE(ret);
 243        }
 244        return ret;
 245}
 246
 247#ifdef CONFIG_SMP
 248static bool cpuhp_is_ap_state(enum cpuhp_state state)
 249{
 250        /*
 251         * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 252         * purposes as that state is handled explicitly in cpu_down.
 253         */
 254        return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 255}
 256
 257static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 258{
 259        struct completion *done = bringup ? &st->done_up : &st->done_down;
 260        wait_for_completion(done);
 261}
 262
 263static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 264{
 265        struct completion *done = bringup ? &st->done_up : &st->done_down;
 266        complete(done);
 267}
 268
 269/*
 270 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 271 */
 272static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 273{
 274        return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 275}
 276
 277/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 278static DEFINE_MUTEX(cpu_add_remove_lock);
 279bool cpuhp_tasks_frozen;
 280EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 281
 282/*
 283 * The following two APIs (cpu_maps_update_begin/done) must be used when
 284 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 285 */
 286void cpu_maps_update_begin(void)
 287{
 288        mutex_lock(&cpu_add_remove_lock);
 289}
 290
 291void cpu_maps_update_done(void)
 292{
 293        mutex_unlock(&cpu_add_remove_lock);
 294}
 295
 296/*
 297 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 298 * Should always be manipulated under cpu_add_remove_lock
 299 */
 300static int cpu_hotplug_disabled;
 301
 302#ifdef CONFIG_HOTPLUG_CPU
 303
 304DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 305
 306void cpus_read_lock(void)
 307{
 308        percpu_down_read(&cpu_hotplug_lock);
 309}
 310EXPORT_SYMBOL_GPL(cpus_read_lock);
 311
 312int cpus_read_trylock(void)
 313{
 314        return percpu_down_read_trylock(&cpu_hotplug_lock);
 315}
 316EXPORT_SYMBOL_GPL(cpus_read_trylock);
 317
 318void cpus_read_unlock(void)
 319{
 320        percpu_up_read(&cpu_hotplug_lock);
 321}
 322EXPORT_SYMBOL_GPL(cpus_read_unlock);
 323
 324void cpus_write_lock(void)
 325{
 326        percpu_down_write(&cpu_hotplug_lock);
 327}
 328
 329void cpus_write_unlock(void)
 330{
 331        percpu_up_write(&cpu_hotplug_lock);
 332}
 333
 334void lockdep_assert_cpus_held(void)
 335{
 336        /*
 337         * We can't have hotplug operations before userspace starts running,
 338         * and some init codepaths will knowingly not take the hotplug lock.
 339         * This is all valid, so mute lockdep until it makes sense to report
 340         * unheld locks.
 341         */
 342        if (system_state < SYSTEM_RUNNING)
 343                return;
 344
 345        percpu_rwsem_assert_held(&cpu_hotplug_lock);
 346}
 347
 348#ifdef CONFIG_LOCKDEP
 349int lockdep_is_cpus_held(void)
 350{
 351        return percpu_rwsem_is_held(&cpu_hotplug_lock);
 352}
 353#endif
 354
 355static void lockdep_acquire_cpus_lock(void)
 356{
 357        rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
 358}
 359
 360static void lockdep_release_cpus_lock(void)
 361{
 362        rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
 363}
 364
 365/*
 366 * Wait for currently running CPU hotplug operations to complete (if any) and
 367 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 368 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 369 * hotplug path before performing hotplug operations. So acquiring that lock
 370 * guarantees mutual exclusion from any currently running hotplug operations.
 371 */
 372void cpu_hotplug_disable(void)
 373{
 374        cpu_maps_update_begin();
 375        cpu_hotplug_disabled++;
 376        cpu_maps_update_done();
 377}
 378EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 379
 380static void __cpu_hotplug_enable(void)
 381{
 382        if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 383                return;
 384        cpu_hotplug_disabled--;
 385}
 386
 387void cpu_hotplug_enable(void)
 388{
 389        cpu_maps_update_begin();
 390        __cpu_hotplug_enable();
 391        cpu_maps_update_done();
 392}
 393EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 394
 395#else
 396
 397static void lockdep_acquire_cpus_lock(void)
 398{
 399}
 400
 401static void lockdep_release_cpus_lock(void)
 402{
 403}
 404
 405#endif  /* CONFIG_HOTPLUG_CPU */
 406
 407/*
 408 * Architectures that need SMT-specific errata handling during SMT hotplug
 409 * should override this.
 410 */
 411void __weak arch_smt_update(void) { }
 412
 413#ifdef CONFIG_HOTPLUG_SMT
 414enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
 415
 416void __init cpu_smt_disable(bool force)
 417{
 418        if (!cpu_smt_possible())
 419                return;
 420
 421        if (force) {
 422                pr_info("SMT: Force disabled\n");
 423                cpu_smt_control = CPU_SMT_FORCE_DISABLED;
 424        } else {
 425                pr_info("SMT: disabled\n");
 426                cpu_smt_control = CPU_SMT_DISABLED;
 427        }
 428}
 429
 430/*
 431 * The decision whether SMT is supported can only be done after the full
 432 * CPU identification. Called from architecture code.
 433 */
 434void __init cpu_smt_check_topology(void)
 435{
 436        if (!topology_smt_supported())
 437                cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
 438}
 439
 440static int __init smt_cmdline_disable(char *str)
 441{
 442        cpu_smt_disable(str && !strcmp(str, "force"));
 443        return 0;
 444}
 445early_param("nosmt", smt_cmdline_disable);
 446
 447static inline bool cpu_smt_allowed(unsigned int cpu)
 448{
 449        if (cpu_smt_control == CPU_SMT_ENABLED)
 450                return true;
 451
 452        if (topology_is_primary_thread(cpu))
 453                return true;
 454
 455        /*
 456         * On x86 it's required to boot all logical CPUs at least once so
 457         * that the init code can get a chance to set CR4.MCE on each
 458         * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
 459         * core will shutdown the machine.
 460         */
 461        return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
 462}
 463
 464/* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
 465bool cpu_smt_possible(void)
 466{
 467        return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
 468                cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
 469}
 470EXPORT_SYMBOL_GPL(cpu_smt_possible);
 471#else
 472static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
 473#endif
 474
 475static inline enum cpuhp_state
 476cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 477{
 478        enum cpuhp_state prev_state = st->state;
 479        bool bringup = st->state < target;
 480
 481        st->rollback = false;
 482        st->last = NULL;
 483
 484        st->target = target;
 485        st->single = false;
 486        st->bringup = bringup;
 487        if (cpu_dying(st->cpu) != !bringup)
 488                set_cpu_dying(st->cpu, !bringup);
 489
 490        return prev_state;
 491}
 492
 493static inline void
 494cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
 495{
 496        bool bringup = !st->bringup;
 497
 498        st->target = prev_state;
 499
 500        /*
 501         * Already rolling back. No need invert the bringup value or to change
 502         * the current state.
 503         */
 504        if (st->rollback)
 505                return;
 506
 507        st->rollback = true;
 508
 509        /*
 510         * If we have st->last we need to undo partial multi_instance of this
 511         * state first. Otherwise start undo at the previous state.
 512         */
 513        if (!st->last) {
 514                if (st->bringup)
 515                        st->state--;
 516                else
 517                        st->state++;
 518        }
 519
 520        st->bringup = bringup;
 521        if (cpu_dying(st->cpu) != !bringup)
 522                set_cpu_dying(st->cpu, !bringup);
 523}
 524
 525/* Regular hotplug invocation of the AP hotplug thread */
 526static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 527{
 528        if (!st->single && st->state == st->target)
 529                return;
 530
 531        st->result = 0;
 532        /*
 533         * Make sure the above stores are visible before should_run becomes
 534         * true. Paired with the mb() above in cpuhp_thread_fun()
 535         */
 536        smp_mb();
 537        st->should_run = true;
 538        wake_up_process(st->thread);
 539        wait_for_ap_thread(st, st->bringup);
 540}
 541
 542static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 543{
 544        enum cpuhp_state prev_state;
 545        int ret;
 546
 547        prev_state = cpuhp_set_state(st, target);
 548        __cpuhp_kick_ap(st);
 549        if ((ret = st->result)) {
 550                cpuhp_reset_state(st, prev_state);
 551                __cpuhp_kick_ap(st);
 552        }
 553
 554        return ret;
 555}
 556
 557static int bringup_wait_for_ap(unsigned int cpu)
 558{
 559        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 560
 561        /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 562        wait_for_ap_thread(st, true);
 563        if (WARN_ON_ONCE((!cpu_online(cpu))))
 564                return -ECANCELED;
 565
 566        /* Unpark the hotplug thread of the target cpu */
 567        kthread_unpark(st->thread);
 568
 569        /*
 570         * SMT soft disabling on X86 requires to bring the CPU out of the
 571         * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
 572         * CPU marked itself as booted_once in notify_cpu_starting() so the
 573         * cpu_smt_allowed() check will now return false if this is not the
 574         * primary sibling.
 575         */
 576        if (!cpu_smt_allowed(cpu))
 577                return -ECANCELED;
 578
 579        if (st->target <= CPUHP_AP_ONLINE_IDLE)
 580                return 0;
 581
 582        return cpuhp_kick_ap(st, st->target);
 583}
 584
 585static int bringup_cpu(unsigned int cpu)
 586{
 587        struct task_struct *idle = idle_thread_get(cpu);
 588        int ret;
 589
 590        /*
 591         * Some architectures have to walk the irq descriptors to
 592         * setup the vector space for the cpu which comes online.
 593         * Prevent irq alloc/free across the bringup.
 594         */
 595        irq_lock_sparse();
 596
 597        /* Arch-specific enabling code. */
 598        ret = __cpu_up(cpu, idle);
 599        irq_unlock_sparse();
 600        if (ret)
 601                return ret;
 602        return bringup_wait_for_ap(cpu);
 603}
 604
 605static int finish_cpu(unsigned int cpu)
 606{
 607        struct task_struct *idle = idle_thread_get(cpu);
 608        struct mm_struct *mm = idle->active_mm;
 609
 610        /*
 611         * idle_task_exit() will have switched to &init_mm, now
 612         * clean up any remaining active_mm state.
 613         */
 614        if (mm != &init_mm)
 615                idle->active_mm = &init_mm;
 616        mmdrop(mm);
 617        return 0;
 618}
 619
 620/*
 621 * Hotplug state machine related functions
 622 */
 623
 624/*
 625 * Get the next state to run. Empty ones will be skipped. Returns true if a
 626 * state must be run.
 627 *
 628 * st->state will be modified ahead of time, to match state_to_run, as if it
 629 * has already ran.
 630 */
 631static bool cpuhp_next_state(bool bringup,
 632                             enum cpuhp_state *state_to_run,
 633                             struct cpuhp_cpu_state *st,
 634                             enum cpuhp_state target)
 635{
 636        do {
 637                if (bringup) {
 638                        if (st->state >= target)
 639                                return false;
 640
 641                        *state_to_run = ++st->state;
 642                } else {
 643                        if (st->state <= target)
 644                                return false;
 645
 646                        *state_to_run = st->state--;
 647                }
 648
 649                if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
 650                        break;
 651        } while (true);
 652
 653        return true;
 654}
 655
 656static int cpuhp_invoke_callback_range(bool bringup,
 657                                       unsigned int cpu,
 658                                       struct cpuhp_cpu_state *st,
 659                                       enum cpuhp_state target)
 660{
 661        enum cpuhp_state state;
 662        int err = 0;
 663
 664        while (cpuhp_next_state(bringup, &state, st, target)) {
 665                err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
 666                if (err)
 667                        break;
 668        }
 669
 670        return err;
 671}
 672
 673static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
 674{
 675        if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
 676                return true;
 677        /*
 678         * When CPU hotplug is disabled, then taking the CPU down is not
 679         * possible because takedown_cpu() and the architecture and
 680         * subsystem specific mechanisms are not available. So the CPU
 681         * which would be completely unplugged again needs to stay around
 682         * in the current state.
 683         */
 684        return st->state <= CPUHP_BRINGUP_CPU;
 685}
 686
 687static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 688                              enum cpuhp_state target)
 689{
 690        enum cpuhp_state prev_state = st->state;
 691        int ret = 0;
 692
 693        ret = cpuhp_invoke_callback_range(true, cpu, st, target);
 694        if (ret) {
 695                pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
 696                         ret, cpu, cpuhp_get_step(st->state)->name,
 697                         st->state);
 698
 699                cpuhp_reset_state(st, prev_state);
 700                if (can_rollback_cpu(st))
 701                        WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
 702                                                            prev_state));
 703        }
 704        return ret;
 705}
 706
 707/*
 708 * The cpu hotplug threads manage the bringup and teardown of the cpus
 709 */
 710static void cpuhp_create(unsigned int cpu)
 711{
 712        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 713
 714        init_completion(&st->done_up);
 715        init_completion(&st->done_down);
 716        st->cpu = cpu;
 717}
 718
 719static int cpuhp_should_run(unsigned int cpu)
 720{
 721        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 722
 723        return st->should_run;
 724}
 725
 726/*
 727 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 728 * callbacks when a state gets [un]installed at runtime.
 729 *
 730 * Each invocation of this function by the smpboot thread does a single AP
 731 * state callback.
 732 *
 733 * It has 3 modes of operation:
 734 *  - single: runs st->cb_state
 735 *  - up:     runs ++st->state, while st->state < st->target
 736 *  - down:   runs st->state--, while st->state > st->target
 737 *
 738 * When complete or on error, should_run is cleared and the completion is fired.
 739 */
 740static void cpuhp_thread_fun(unsigned int cpu)
 741{
 742        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 743        bool bringup = st->bringup;
 744        enum cpuhp_state state;
 745
 746        if (WARN_ON_ONCE(!st->should_run))
 747                return;
 748
 749        /*
 750         * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
 751         * that if we see ->should_run we also see the rest of the state.
 752         */
 753        smp_mb();
 754
 755        /*
 756         * The BP holds the hotplug lock, but we're now running on the AP,
 757         * ensure that anybody asserting the lock is held, will actually find
 758         * it so.
 759         */
 760        lockdep_acquire_cpus_lock();
 761        cpuhp_lock_acquire(bringup);
 762
 763        if (st->single) {
 764                state = st->cb_state;
 765                st->should_run = false;
 766        } else {
 767                st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
 768                if (!st->should_run)
 769                        goto end;
 770        }
 771
 772        WARN_ON_ONCE(!cpuhp_is_ap_state(state));
 773
 774        if (cpuhp_is_atomic_state(state)) {
 775                local_irq_disable();
 776                st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 777                local_irq_enable();
 778
 779                /*
 780                 * STARTING/DYING must not fail!
 781                 */
 782                WARN_ON_ONCE(st->result);
 783        } else {
 784                st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 785        }
 786
 787        if (st->result) {
 788                /*
 789                 * If we fail on a rollback, we're up a creek without no
 790                 * paddle, no way forward, no way back. We loose, thanks for
 791                 * playing.
 792                 */
 793                WARN_ON_ONCE(st->rollback);
 794                st->should_run = false;
 795        }
 796
 797end:
 798        cpuhp_lock_release(bringup);
 799        lockdep_release_cpus_lock();
 800
 801        if (!st->should_run)
 802                complete_ap_thread(st, bringup);
 803}
 804
 805/* Invoke a single callback on a remote cpu */
 806static int
 807cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 808                         struct hlist_node *node)
 809{
 810        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 811        int ret;
 812
 813        if (!cpu_online(cpu))
 814                return 0;
 815
 816        cpuhp_lock_acquire(false);
 817        cpuhp_lock_release(false);
 818
 819        cpuhp_lock_acquire(true);
 820        cpuhp_lock_release(true);
 821
 822        /*
 823         * If we are up and running, use the hotplug thread. For early calls
 824         * we invoke the thread function directly.
 825         */
 826        if (!st->thread)
 827                return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 828
 829        st->rollback = false;
 830        st->last = NULL;
 831
 832        st->node = node;
 833        st->bringup = bringup;
 834        st->cb_state = state;
 835        st->single = true;
 836
 837        __cpuhp_kick_ap(st);
 838
 839        /*
 840         * If we failed and did a partial, do a rollback.
 841         */
 842        if ((ret = st->result) && st->last) {
 843                st->rollback = true;
 844                st->bringup = !bringup;
 845
 846                __cpuhp_kick_ap(st);
 847        }
 848
 849        /*
 850         * Clean up the leftovers so the next hotplug operation wont use stale
 851         * data.
 852         */
 853        st->node = st->last = NULL;
 854        return ret;
 855}
 856
 857static int cpuhp_kick_ap_work(unsigned int cpu)
 858{
 859        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 860        enum cpuhp_state prev_state = st->state;
 861        int ret;
 862
 863        cpuhp_lock_acquire(false);
 864        cpuhp_lock_release(false);
 865
 866        cpuhp_lock_acquire(true);
 867        cpuhp_lock_release(true);
 868
 869        trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
 870        ret = cpuhp_kick_ap(st, st->target);
 871        trace_cpuhp_exit(cpu, st->state, prev_state, ret);
 872
 873        return ret;
 874}
 875
 876static struct smp_hotplug_thread cpuhp_threads = {
 877        .store                  = &cpuhp_state.thread,
 878        .create                 = &cpuhp_create,
 879        .thread_should_run      = cpuhp_should_run,
 880        .thread_fn              = cpuhp_thread_fun,
 881        .thread_comm            = "cpuhp/%u",
 882        .selfparking            = true,
 883};
 884
 885void __init cpuhp_threads_init(void)
 886{
 887        BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 888        kthread_unpark(this_cpu_read(cpuhp_state.thread));
 889}
 890
 891/*
 892 *
 893 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
 894 * protected region.
 895 *
 896 * The operation is still serialized against concurrent CPU hotplug via
 897 * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
 898 * serialized against other hotplug related activity like adding or
 899 * removing of state callbacks and state instances, which invoke either the
 900 * startup or the teardown callback of the affected state.
 901 *
 902 * This is required for subsystems which are unfixable vs. CPU hotplug and
 903 * evade lock inversion problems by scheduling work which has to be
 904 * completed _before_ cpu_up()/_cpu_down() returns.
 905 *
 906 * Don't even think about adding anything to this for any new code or even
 907 * drivers. It's only purpose is to keep existing lock order trainwrecks
 908 * working.
 909 *
 910 * For cpu_down() there might be valid reasons to finish cleanups which are
 911 * not required to be done under cpu_hotplug_lock, but that's a different
 912 * story and would be not invoked via this.
 913 */
 914static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
 915{
 916        /*
 917         * cpusets delegate hotplug operations to a worker to "solve" the
 918         * lock order problems. Wait for the worker, but only if tasks are
 919         * _not_ frozen (suspend, hibernate) as that would wait forever.
 920         *
 921         * The wait is required because otherwise the hotplug operation
 922         * returns with inconsistent state, which could even be observed in
 923         * user space when a new CPU is brought up. The CPU plug uevent
 924         * would be delivered and user space reacting on it would fail to
 925         * move tasks to the newly plugged CPU up to the point where the
 926         * work has finished because up to that point the newly plugged CPU
 927         * is not assignable in cpusets/cgroups. On unplug that's not
 928         * necessarily a visible issue, but it is still inconsistent state,
 929         * which is the real problem which needs to be "fixed". This can't
 930         * prevent the transient state between scheduling the work and
 931         * returning from waiting for it.
 932         */
 933        if (!tasks_frozen)
 934                cpuset_wait_for_hotplug();
 935}
 936
 937#ifdef CONFIG_HOTPLUG_CPU
 938#ifndef arch_clear_mm_cpumask_cpu
 939#define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
 940#endif
 941
 942/**
 943 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 944 * @cpu: a CPU id
 945 *
 946 * This function walks all processes, finds a valid mm struct for each one and
 947 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 948 * trivial, there are various non-obvious corner cases, which this function
 949 * tries to solve in a safe manner.
 950 *
 951 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 952 * be called only for an already offlined CPU.
 953 */
 954void clear_tasks_mm_cpumask(int cpu)
 955{
 956        struct task_struct *p;
 957
 958        /*
 959         * This function is called after the cpu is taken down and marked
 960         * offline, so its not like new tasks will ever get this cpu set in
 961         * their mm mask. -- Peter Zijlstra
 962         * Thus, we may use rcu_read_lock() here, instead of grabbing
 963         * full-fledged tasklist_lock.
 964         */
 965        WARN_ON(cpu_online(cpu));
 966        rcu_read_lock();
 967        for_each_process(p) {
 968                struct task_struct *t;
 969
 970                /*
 971                 * Main thread might exit, but other threads may still have
 972                 * a valid mm. Find one.
 973                 */
 974                t = find_lock_task_mm(p);
 975                if (!t)
 976                        continue;
 977                arch_clear_mm_cpumask_cpu(cpu, t->mm);
 978                task_unlock(t);
 979        }
 980        rcu_read_unlock();
 981}
 982
 983/* Take this CPU down. */
 984static int take_cpu_down(void *_param)
 985{
 986        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 987        enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 988        int err, cpu = smp_processor_id();
 989        int ret;
 990
 991        /* Ensure this CPU doesn't handle any more interrupts. */
 992        err = __cpu_disable();
 993        if (err < 0)
 994                return err;
 995
 996        /*
 997         * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
 998         * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
 999         */
1000        WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1001
1002        /* Invoke the former CPU_DYING callbacks */
1003        ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1004
1005        /*
1006         * DYING must not fail!
1007         */
1008        WARN_ON_ONCE(ret);
1009
1010        /* Give up timekeeping duties */
1011        tick_handover_do_timer();
1012        /* Remove CPU from timer broadcasting */
1013        tick_offline_cpu(cpu);
1014        /* Park the stopper thread */
1015        stop_machine_park(cpu);
1016        return 0;
1017}
1018
1019static int takedown_cpu(unsigned int cpu)
1020{
1021        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1022        int err;
1023
1024        /* Park the smpboot threads */
1025        kthread_park(st->thread);
1026
1027        /*
1028         * Prevent irq alloc/free while the dying cpu reorganizes the
1029         * interrupt affinities.
1030         */
1031        irq_lock_sparse();
1032
1033        /*
1034         * So now all preempt/rcu users must observe !cpu_active().
1035         */
1036        err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1037        if (err) {
1038                /* CPU refused to die */
1039                irq_unlock_sparse();
1040                /* Unpark the hotplug thread so we can rollback there */
1041                kthread_unpark(st->thread);
1042                return err;
1043        }
1044        BUG_ON(cpu_online(cpu));
1045
1046        /*
1047         * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1048         * all runnable tasks from the CPU, there's only the idle task left now
1049         * that the migration thread is done doing the stop_machine thing.
1050         *
1051         * Wait for the stop thread to go away.
1052         */
1053        wait_for_ap_thread(st, false);
1054        BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1055
1056        /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1057        irq_unlock_sparse();
1058
1059        hotplug_cpu__broadcast_tick_pull(cpu);
1060        /* This actually kills the CPU. */
1061        __cpu_die(cpu);
1062
1063        tick_cleanup_dead_cpu(cpu);
1064        rcutree_migrate_callbacks(cpu);
1065        return 0;
1066}
1067
1068static void cpuhp_complete_idle_dead(void *arg)
1069{
1070        struct cpuhp_cpu_state *st = arg;
1071
1072        complete_ap_thread(st, false);
1073}
1074
1075void cpuhp_report_idle_dead(void)
1076{
1077        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1078
1079        BUG_ON(st->state != CPUHP_AP_OFFLINE);
1080        rcu_report_dead(smp_processor_id());
1081        st->state = CPUHP_AP_IDLE_DEAD;
1082        /*
1083         * We cannot call complete after rcu_report_dead() so we delegate it
1084         * to an online cpu.
1085         */
1086        smp_call_function_single(cpumask_first(cpu_online_mask),
1087                                 cpuhp_complete_idle_dead, st, 0);
1088}
1089
1090static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1091                                enum cpuhp_state target)
1092{
1093        enum cpuhp_state prev_state = st->state;
1094        int ret = 0;
1095
1096        ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1097        if (ret) {
1098                pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1099                         ret, cpu, cpuhp_get_step(st->state)->name,
1100                         st->state);
1101
1102                cpuhp_reset_state(st, prev_state);
1103
1104                if (st->state < prev_state)
1105                        WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1106                                                            prev_state));
1107        }
1108
1109        return ret;
1110}
1111
1112/* Requires cpu_add_remove_lock to be held */
1113static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1114                           enum cpuhp_state target)
1115{
1116        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1117        int prev_state, ret = 0;
1118
1119        if (num_online_cpus() == 1)
1120                return -EBUSY;
1121
1122        if (!cpu_present(cpu))
1123                return -EINVAL;
1124
1125        cpus_write_lock();
1126
1127        cpuhp_tasks_frozen = tasks_frozen;
1128
1129        prev_state = cpuhp_set_state(st, target);
1130        /*
1131         * If the current CPU state is in the range of the AP hotplug thread,
1132         * then we need to kick the thread.
1133         */
1134        if (st->state > CPUHP_TEARDOWN_CPU) {
1135                st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1136                ret = cpuhp_kick_ap_work(cpu);
1137                /*
1138                 * The AP side has done the error rollback already. Just
1139                 * return the error code..
1140                 */
1141                if (ret)
1142                        goto out;
1143
1144                /*
1145                 * We might have stopped still in the range of the AP hotplug
1146                 * thread. Nothing to do anymore.
1147                 */
1148                if (st->state > CPUHP_TEARDOWN_CPU)
1149                        goto out;
1150
1151                st->target = target;
1152        }
1153        /*
1154         * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1155         * to do the further cleanups.
1156         */
1157        ret = cpuhp_down_callbacks(cpu, st, target);
1158        if (ret && st->state < prev_state) {
1159                if (st->state == CPUHP_TEARDOWN_CPU) {
1160                        cpuhp_reset_state(st, prev_state);
1161                        __cpuhp_kick_ap(st);
1162                } else {
1163                        WARN(1, "DEAD callback error for CPU%d", cpu);
1164                }
1165        }
1166
1167out:
1168        cpus_write_unlock();
1169        /*
1170         * Do post unplug cleanup. This is still protected against
1171         * concurrent CPU hotplug via cpu_add_remove_lock.
1172         */
1173        lockup_detector_cleanup();
1174        arch_smt_update();
1175        cpu_up_down_serialize_trainwrecks(tasks_frozen);
1176        return ret;
1177}
1178
1179static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1180{
1181        if (cpu_hotplug_disabled)
1182                return -EBUSY;
1183        return _cpu_down(cpu, 0, target);
1184}
1185
1186static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1187{
1188        int err;
1189
1190        cpu_maps_update_begin();
1191        err = cpu_down_maps_locked(cpu, target);
1192        cpu_maps_update_done();
1193        return err;
1194}
1195
1196/**
1197 * cpu_device_down - Bring down a cpu device
1198 * @dev: Pointer to the cpu device to offline
1199 *
1200 * This function is meant to be used by device core cpu subsystem only.
1201 *
1202 * Other subsystems should use remove_cpu() instead.
1203 *
1204 * Return: %0 on success or a negative errno code
1205 */
1206int cpu_device_down(struct device *dev)
1207{
1208        return cpu_down(dev->id, CPUHP_OFFLINE);
1209}
1210
1211int remove_cpu(unsigned int cpu)
1212{
1213        int ret;
1214
1215        lock_device_hotplug();
1216        ret = device_offline(get_cpu_device(cpu));
1217        unlock_device_hotplug();
1218
1219        return ret;
1220}
1221EXPORT_SYMBOL_GPL(remove_cpu);
1222
1223void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1224{
1225        unsigned int cpu;
1226        int error;
1227
1228        cpu_maps_update_begin();
1229
1230        /*
1231         * Make certain the cpu I'm about to reboot on is online.
1232         *
1233         * This is inline to what migrate_to_reboot_cpu() already do.
1234         */
1235        if (!cpu_online(primary_cpu))
1236                primary_cpu = cpumask_first(cpu_online_mask);
1237
1238        for_each_online_cpu(cpu) {
1239                if (cpu == primary_cpu)
1240                        continue;
1241
1242                error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1243                if (error) {
1244                        pr_err("Failed to offline CPU%d - error=%d",
1245                                cpu, error);
1246                        break;
1247                }
1248        }
1249
1250        /*
1251         * Ensure all but the reboot CPU are offline.
1252         */
1253        BUG_ON(num_online_cpus() > 1);
1254
1255        /*
1256         * Make sure the CPUs won't be enabled by someone else after this
1257         * point. Kexec will reboot to a new kernel shortly resetting
1258         * everything along the way.
1259         */
1260        cpu_hotplug_disabled++;
1261
1262        cpu_maps_update_done();
1263}
1264
1265#else
1266#define takedown_cpu            NULL
1267#endif /*CONFIG_HOTPLUG_CPU*/
1268
1269/**
1270 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1271 * @cpu: cpu that just started
1272 *
1273 * It must be called by the arch code on the new cpu, before the new cpu
1274 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1275 */
1276void notify_cpu_starting(unsigned int cpu)
1277{
1278        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1279        enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1280        int ret;
1281
1282        rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1283        cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1284        ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1285
1286        /*
1287         * STARTING must not fail!
1288         */
1289        WARN_ON_ONCE(ret);
1290}
1291
1292/*
1293 * Called from the idle task. Wake up the controlling task which brings the
1294 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1295 * online bringup to the hotplug thread.
1296 */
1297void cpuhp_online_idle(enum cpuhp_state state)
1298{
1299        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1300
1301        /* Happens for the boot cpu */
1302        if (state != CPUHP_AP_ONLINE_IDLE)
1303                return;
1304
1305        /*
1306         * Unpart the stopper thread before we start the idle loop (and start
1307         * scheduling); this ensures the stopper task is always available.
1308         */
1309        stop_machine_unpark(smp_processor_id());
1310
1311        st->state = CPUHP_AP_ONLINE_IDLE;
1312        complete_ap_thread(st, true);
1313}
1314
1315/* Requires cpu_add_remove_lock to be held */
1316static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1317{
1318        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1319        struct task_struct *idle;
1320        int ret = 0;
1321
1322        cpus_write_lock();
1323
1324        if (!cpu_present(cpu)) {
1325                ret = -EINVAL;
1326                goto out;
1327        }
1328
1329        /*
1330         * The caller of cpu_up() might have raced with another
1331         * caller. Nothing to do.
1332         */
1333        if (st->state >= target)
1334                goto out;
1335
1336        if (st->state == CPUHP_OFFLINE) {
1337                /* Let it fail before we try to bring the cpu up */
1338                idle = idle_thread_get(cpu);
1339                if (IS_ERR(idle)) {
1340                        ret = PTR_ERR(idle);
1341                        goto out;
1342                }
1343        }
1344
1345        cpuhp_tasks_frozen = tasks_frozen;
1346
1347        cpuhp_set_state(st, target);
1348        /*
1349         * If the current CPU state is in the range of the AP hotplug thread,
1350         * then we need to kick the thread once more.
1351         */
1352        if (st->state > CPUHP_BRINGUP_CPU) {
1353                ret = cpuhp_kick_ap_work(cpu);
1354                /*
1355                 * The AP side has done the error rollback already. Just
1356                 * return the error code..
1357                 */
1358                if (ret)
1359                        goto out;
1360        }
1361
1362        /*
1363         * Try to reach the target state. We max out on the BP at
1364         * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1365         * responsible for bringing it up to the target state.
1366         */
1367        target = min((int)target, CPUHP_BRINGUP_CPU);
1368        ret = cpuhp_up_callbacks(cpu, st, target);
1369out:
1370        cpus_write_unlock();
1371        arch_smt_update();
1372        cpu_up_down_serialize_trainwrecks(tasks_frozen);
1373        return ret;
1374}
1375
1376static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1377{
1378        int err = 0;
1379
1380        if (!cpu_possible(cpu)) {
1381                pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1382                       cpu);
1383#if defined(CONFIG_IA64)
1384                pr_err("please check additional_cpus= boot parameter\n");
1385#endif
1386                return -EINVAL;
1387        }
1388
1389        err = try_online_node(cpu_to_node(cpu));
1390        if (err)
1391                return err;
1392
1393        cpu_maps_update_begin();
1394
1395        if (cpu_hotplug_disabled) {
1396                err = -EBUSY;
1397                goto out;
1398        }
1399        if (!cpu_smt_allowed(cpu)) {
1400                err = -EPERM;
1401                goto out;
1402        }
1403
1404        err = _cpu_up(cpu, 0, target);
1405out:
1406        cpu_maps_update_done();
1407        return err;
1408}
1409
1410/**
1411 * cpu_device_up - Bring up a cpu device
1412 * @dev: Pointer to the cpu device to online
1413 *
1414 * This function is meant to be used by device core cpu subsystem only.
1415 *
1416 * Other subsystems should use add_cpu() instead.
1417 *
1418 * Return: %0 on success or a negative errno code
1419 */
1420int cpu_device_up(struct device *dev)
1421{
1422        return cpu_up(dev->id, CPUHP_ONLINE);
1423}
1424
1425int add_cpu(unsigned int cpu)
1426{
1427        int ret;
1428
1429        lock_device_hotplug();
1430        ret = device_online(get_cpu_device(cpu));
1431        unlock_device_hotplug();
1432
1433        return ret;
1434}
1435EXPORT_SYMBOL_GPL(add_cpu);
1436
1437/**
1438 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1439 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1440 *
1441 * On some architectures like arm64, we can hibernate on any CPU, but on
1442 * wake up the CPU we hibernated on might be offline as a side effect of
1443 * using maxcpus= for example.
1444 *
1445 * Return: %0 on success or a negative errno code
1446 */
1447int bringup_hibernate_cpu(unsigned int sleep_cpu)
1448{
1449        int ret;
1450
1451        if (!cpu_online(sleep_cpu)) {
1452                pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1453                ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1454                if (ret) {
1455                        pr_err("Failed to bring hibernate-CPU up!\n");
1456                        return ret;
1457                }
1458        }
1459        return 0;
1460}
1461
1462void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1463{
1464        unsigned int cpu;
1465
1466        for_each_present_cpu(cpu) {
1467                if (num_online_cpus() >= setup_max_cpus)
1468                        break;
1469                if (!cpu_online(cpu))
1470                        cpu_up(cpu, CPUHP_ONLINE);
1471        }
1472}
1473
1474#ifdef CONFIG_PM_SLEEP_SMP
1475static cpumask_var_t frozen_cpus;
1476
1477int freeze_secondary_cpus(int primary)
1478{
1479        int cpu, error = 0;
1480
1481        cpu_maps_update_begin();
1482        if (primary == -1) {
1483                primary = cpumask_first(cpu_online_mask);
1484                if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1485                        primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1486        } else {
1487                if (!cpu_online(primary))
1488                        primary = cpumask_first(cpu_online_mask);
1489        }
1490
1491        /*
1492         * We take down all of the non-boot CPUs in one shot to avoid races
1493         * with the userspace trying to use the CPU hotplug at the same time
1494         */
1495        cpumask_clear(frozen_cpus);
1496
1497        pr_info("Disabling non-boot CPUs ...\n");
1498        for_each_online_cpu(cpu) {
1499                if (cpu == primary)
1500                        continue;
1501
1502                if (pm_wakeup_pending()) {
1503                        pr_info("Wakeup pending. Abort CPU freeze\n");
1504                        error = -EBUSY;
1505                        break;
1506                }
1507
1508                trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1509                error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1510                trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1511                if (!error)
1512                        cpumask_set_cpu(cpu, frozen_cpus);
1513                else {
1514                        pr_err("Error taking CPU%d down: %d\n", cpu, error);
1515                        break;
1516                }
1517        }
1518
1519        if (!error)
1520                BUG_ON(num_online_cpus() > 1);
1521        else
1522                pr_err("Non-boot CPUs are not disabled\n");
1523
1524        /*
1525         * Make sure the CPUs won't be enabled by someone else. We need to do
1526         * this even in case of failure as all freeze_secondary_cpus() users are
1527         * supposed to do thaw_secondary_cpus() on the failure path.
1528         */
1529        cpu_hotplug_disabled++;
1530
1531        cpu_maps_update_done();
1532        return error;
1533}
1534
1535void __weak arch_thaw_secondary_cpus_begin(void)
1536{
1537}
1538
1539void __weak arch_thaw_secondary_cpus_end(void)
1540{
1541}
1542
1543void thaw_secondary_cpus(void)
1544{
1545        int cpu, error;
1546
1547        /* Allow everyone to use the CPU hotplug again */
1548        cpu_maps_update_begin();
1549        __cpu_hotplug_enable();
1550        if (cpumask_empty(frozen_cpus))
1551                goto out;
1552
1553        pr_info("Enabling non-boot CPUs ...\n");
1554
1555        arch_thaw_secondary_cpus_begin();
1556
1557        for_each_cpu(cpu, frozen_cpus) {
1558                trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1559                error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1560                trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1561                if (!error) {
1562                        pr_info("CPU%d is up\n", cpu);
1563                        continue;
1564                }
1565                pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1566        }
1567
1568        arch_thaw_secondary_cpus_end();
1569
1570        cpumask_clear(frozen_cpus);
1571out:
1572        cpu_maps_update_done();
1573}
1574
1575static int __init alloc_frozen_cpus(void)
1576{
1577        if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1578                return -ENOMEM;
1579        return 0;
1580}
1581core_initcall(alloc_frozen_cpus);
1582
1583/*
1584 * When callbacks for CPU hotplug notifications are being executed, we must
1585 * ensure that the state of the system with respect to the tasks being frozen
1586 * or not, as reported by the notification, remains unchanged *throughout the
1587 * duration* of the execution of the callbacks.
1588 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1589 *
1590 * This synchronization is implemented by mutually excluding regular CPU
1591 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1592 * Hibernate notifications.
1593 */
1594static int
1595cpu_hotplug_pm_callback(struct notifier_block *nb,
1596                        unsigned long action, void *ptr)
1597{
1598        switch (action) {
1599
1600        case PM_SUSPEND_PREPARE:
1601        case PM_HIBERNATION_PREPARE:
1602                cpu_hotplug_disable();
1603                break;
1604
1605        case PM_POST_SUSPEND:
1606        case PM_POST_HIBERNATION:
1607                cpu_hotplug_enable();
1608                break;
1609
1610        default:
1611                return NOTIFY_DONE;
1612        }
1613
1614        return NOTIFY_OK;
1615}
1616
1617
1618static int __init cpu_hotplug_pm_sync_init(void)
1619{
1620        /*
1621         * cpu_hotplug_pm_callback has higher priority than x86
1622         * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1623         * to disable cpu hotplug to avoid cpu hotplug race.
1624         */
1625        pm_notifier(cpu_hotplug_pm_callback, 0);
1626        return 0;
1627}
1628core_initcall(cpu_hotplug_pm_sync_init);
1629
1630#endif /* CONFIG_PM_SLEEP_SMP */
1631
1632int __boot_cpu_id;
1633
1634#endif /* CONFIG_SMP */
1635
1636/* Boot processor state steps */
1637static struct cpuhp_step cpuhp_hp_states[] = {
1638        [CPUHP_OFFLINE] = {
1639                .name                   = "offline",
1640                .startup.single         = NULL,
1641                .teardown.single        = NULL,
1642        },
1643#ifdef CONFIG_SMP
1644        [CPUHP_CREATE_THREADS]= {
1645                .name                   = "threads:prepare",
1646                .startup.single         = smpboot_create_threads,
1647                .teardown.single        = NULL,
1648                .cant_stop              = true,
1649        },
1650        [CPUHP_PERF_PREPARE] = {
1651                .name                   = "perf:prepare",
1652                .startup.single         = perf_event_init_cpu,
1653                .teardown.single        = perf_event_exit_cpu,
1654        },
1655        [CPUHP_WORKQUEUE_PREP] = {
1656                .name                   = "workqueue:prepare",
1657                .startup.single         = workqueue_prepare_cpu,
1658                .teardown.single        = NULL,
1659        },
1660        [CPUHP_HRTIMERS_PREPARE] = {
1661                .name                   = "hrtimers:prepare",
1662                .startup.single         = hrtimers_prepare_cpu,
1663                .teardown.single        = hrtimers_dead_cpu,
1664        },
1665        [CPUHP_SMPCFD_PREPARE] = {
1666                .name                   = "smpcfd:prepare",
1667                .startup.single         = smpcfd_prepare_cpu,
1668                .teardown.single        = smpcfd_dead_cpu,
1669        },
1670        [CPUHP_RELAY_PREPARE] = {
1671                .name                   = "relay:prepare",
1672                .startup.single         = relay_prepare_cpu,
1673                .teardown.single        = NULL,
1674        },
1675        [CPUHP_SLAB_PREPARE] = {
1676                .name                   = "slab:prepare",
1677                .startup.single         = slab_prepare_cpu,
1678                .teardown.single        = slab_dead_cpu,
1679        },
1680        [CPUHP_RCUTREE_PREP] = {
1681                .name                   = "RCU/tree:prepare",
1682                .startup.single         = rcutree_prepare_cpu,
1683                .teardown.single        = rcutree_dead_cpu,
1684        },
1685        /*
1686         * On the tear-down path, timers_dead_cpu() must be invoked
1687         * before blk_mq_queue_reinit_notify() from notify_dead(),
1688         * otherwise a RCU stall occurs.
1689         */
1690        [CPUHP_TIMERS_PREPARE] = {
1691                .name                   = "timers:prepare",
1692                .startup.single         = timers_prepare_cpu,
1693                .teardown.single        = timers_dead_cpu,
1694        },
1695        /* Kicks the plugged cpu into life */
1696        [CPUHP_BRINGUP_CPU] = {
1697                .name                   = "cpu:bringup",
1698                .startup.single         = bringup_cpu,
1699                .teardown.single        = finish_cpu,
1700                .cant_stop              = true,
1701        },
1702        /* Final state before CPU kills itself */
1703        [CPUHP_AP_IDLE_DEAD] = {
1704                .name                   = "idle:dead",
1705        },
1706        /*
1707         * Last state before CPU enters the idle loop to die. Transient state
1708         * for synchronization.
1709         */
1710        [CPUHP_AP_OFFLINE] = {
1711                .name                   = "ap:offline",
1712                .cant_stop              = true,
1713        },
1714        /* First state is scheduler control. Interrupts are disabled */
1715        [CPUHP_AP_SCHED_STARTING] = {
1716                .name                   = "sched:starting",
1717                .startup.single         = sched_cpu_starting,
1718                .teardown.single        = sched_cpu_dying,
1719        },
1720        [CPUHP_AP_RCUTREE_DYING] = {
1721                .name                   = "RCU/tree:dying",
1722                .startup.single         = NULL,
1723                .teardown.single        = rcutree_dying_cpu,
1724        },
1725        [CPUHP_AP_SMPCFD_DYING] = {
1726                .name                   = "smpcfd:dying",
1727                .startup.single         = NULL,
1728                .teardown.single        = smpcfd_dying_cpu,
1729        },
1730        /* Entry state on starting. Interrupts enabled from here on. Transient
1731         * state for synchronsization */
1732        [CPUHP_AP_ONLINE] = {
1733                .name                   = "ap:online",
1734        },
1735        /*
1736         * Handled on control processor until the plugged processor manages
1737         * this itself.
1738         */
1739        [CPUHP_TEARDOWN_CPU] = {
1740                .name                   = "cpu:teardown",
1741                .startup.single         = NULL,
1742                .teardown.single        = takedown_cpu,
1743                .cant_stop              = true,
1744        },
1745
1746        [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1747                .name                   = "sched:waitempty",
1748                .startup.single         = NULL,
1749                .teardown.single        = sched_cpu_wait_empty,
1750        },
1751
1752        /* Handle smpboot threads park/unpark */
1753        [CPUHP_AP_SMPBOOT_THREADS] = {
1754                .name                   = "smpboot/threads:online",
1755                .startup.single         = smpboot_unpark_threads,
1756                .teardown.single        = smpboot_park_threads,
1757        },
1758        [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1759                .name                   = "irq/affinity:online",
1760                .startup.single         = irq_affinity_online_cpu,
1761                .teardown.single        = NULL,
1762        },
1763        [CPUHP_AP_PERF_ONLINE] = {
1764                .name                   = "perf:online",
1765                .startup.single         = perf_event_init_cpu,
1766                .teardown.single        = perf_event_exit_cpu,
1767        },
1768        [CPUHP_AP_WATCHDOG_ONLINE] = {
1769                .name                   = "lockup_detector:online",
1770                .startup.single         = lockup_detector_online_cpu,
1771                .teardown.single        = lockup_detector_offline_cpu,
1772        },
1773        [CPUHP_AP_WORKQUEUE_ONLINE] = {
1774                .name                   = "workqueue:online",
1775                .startup.single         = workqueue_online_cpu,
1776                .teardown.single        = workqueue_offline_cpu,
1777        },
1778        [CPUHP_AP_RCUTREE_ONLINE] = {
1779                .name                   = "RCU/tree:online",
1780                .startup.single         = rcutree_online_cpu,
1781                .teardown.single        = rcutree_offline_cpu,
1782        },
1783#endif
1784        /*
1785         * The dynamically registered state space is here
1786         */
1787
1788#ifdef CONFIG_SMP
1789        /* Last state is scheduler control setting the cpu active */
1790        [CPUHP_AP_ACTIVE] = {
1791                .name                   = "sched:active",
1792                .startup.single         = sched_cpu_activate,
1793                .teardown.single        = sched_cpu_deactivate,
1794        },
1795#endif
1796
1797        /* CPU is fully up and running. */
1798        [CPUHP_ONLINE] = {
1799                .name                   = "online",
1800                .startup.single         = NULL,
1801                .teardown.single        = NULL,
1802        },
1803};
1804
1805/* Sanity check for callbacks */
1806static int cpuhp_cb_check(enum cpuhp_state state)
1807{
1808        if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1809                return -EINVAL;
1810        return 0;
1811}
1812
1813/*
1814 * Returns a free for dynamic slot assignment of the Online state. The states
1815 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1816 * by having no name assigned.
1817 */
1818static int cpuhp_reserve_state(enum cpuhp_state state)
1819{
1820        enum cpuhp_state i, end;
1821        struct cpuhp_step *step;
1822
1823        switch (state) {
1824        case CPUHP_AP_ONLINE_DYN:
1825                step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1826                end = CPUHP_AP_ONLINE_DYN_END;
1827                break;
1828        case CPUHP_BP_PREPARE_DYN:
1829                step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1830                end = CPUHP_BP_PREPARE_DYN_END;
1831                break;
1832        default:
1833                return -EINVAL;
1834        }
1835
1836        for (i = state; i <= end; i++, step++) {
1837                if (!step->name)
1838                        return i;
1839        }
1840        WARN(1, "No more dynamic states available for CPU hotplug\n");
1841        return -ENOSPC;
1842}
1843
1844static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1845                                 int (*startup)(unsigned int cpu),
1846                                 int (*teardown)(unsigned int cpu),
1847                                 bool multi_instance)
1848{
1849        /* (Un)Install the callbacks for further cpu hotplug operations */
1850        struct cpuhp_step *sp;
1851        int ret = 0;
1852
1853        /*
1854         * If name is NULL, then the state gets removed.
1855         *
1856         * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1857         * the first allocation from these dynamic ranges, so the removal
1858         * would trigger a new allocation and clear the wrong (already
1859         * empty) state, leaving the callbacks of the to be cleared state
1860         * dangling, which causes wreckage on the next hotplug operation.
1861         */
1862        if (name && (state == CPUHP_AP_ONLINE_DYN ||
1863                     state == CPUHP_BP_PREPARE_DYN)) {
1864                ret = cpuhp_reserve_state(state);
1865                if (ret < 0)
1866                        return ret;
1867                state = ret;
1868        }
1869        sp = cpuhp_get_step(state);
1870        if (name && sp->name)
1871                return -EBUSY;
1872
1873        sp->startup.single = startup;
1874        sp->teardown.single = teardown;
1875        sp->name = name;
1876        sp->multi_instance = multi_instance;
1877        INIT_HLIST_HEAD(&sp->list);
1878        return ret;
1879}
1880
1881static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1882{
1883        return cpuhp_get_step(state)->teardown.single;
1884}
1885
1886/*
1887 * Call the startup/teardown function for a step either on the AP or
1888 * on the current CPU.
1889 */
1890static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1891                            struct hlist_node *node)
1892{
1893        struct cpuhp_step *sp = cpuhp_get_step(state);
1894        int ret;
1895
1896        /*
1897         * If there's nothing to do, we done.
1898         * Relies on the union for multi_instance.
1899         */
1900        if (cpuhp_step_empty(bringup, sp))
1901                return 0;
1902        /*
1903         * The non AP bound callbacks can fail on bringup. On teardown
1904         * e.g. module removal we crash for now.
1905         */
1906#ifdef CONFIG_SMP
1907        if (cpuhp_is_ap_state(state))
1908                ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1909        else
1910                ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1911#else
1912        ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1913#endif
1914        BUG_ON(ret && !bringup);
1915        return ret;
1916}
1917
1918/*
1919 * Called from __cpuhp_setup_state on a recoverable failure.
1920 *
1921 * Note: The teardown callbacks for rollback are not allowed to fail!
1922 */
1923static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1924                                   struct hlist_node *node)
1925{
1926        int cpu;
1927
1928        /* Roll back the already executed steps on the other cpus */
1929        for_each_present_cpu(cpu) {
1930                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1931                int cpustate = st->state;
1932
1933                if (cpu >= failedcpu)
1934                        break;
1935
1936                /* Did we invoke the startup call on that cpu ? */
1937                if (cpustate >= state)
1938                        cpuhp_issue_call(cpu, state, false, node);
1939        }
1940}
1941
1942int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1943                                          struct hlist_node *node,
1944                                          bool invoke)
1945{
1946        struct cpuhp_step *sp;
1947        int cpu;
1948        int ret;
1949
1950        lockdep_assert_cpus_held();
1951
1952        sp = cpuhp_get_step(state);
1953        if (sp->multi_instance == false)
1954                return -EINVAL;
1955
1956        mutex_lock(&cpuhp_state_mutex);
1957
1958        if (!invoke || !sp->startup.multi)
1959                goto add_node;
1960
1961        /*
1962         * Try to call the startup callback for each present cpu
1963         * depending on the hotplug state of the cpu.
1964         */
1965        for_each_present_cpu(cpu) {
1966                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1967                int cpustate = st->state;
1968
1969                if (cpustate < state)
1970                        continue;
1971
1972                ret = cpuhp_issue_call(cpu, state, true, node);
1973                if (ret) {
1974                        if (sp->teardown.multi)
1975                                cpuhp_rollback_install(cpu, state, node);
1976                        goto unlock;
1977                }
1978        }
1979add_node:
1980        ret = 0;
1981        hlist_add_head(node, &sp->list);
1982unlock:
1983        mutex_unlock(&cpuhp_state_mutex);
1984        return ret;
1985}
1986
1987int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1988                               bool invoke)
1989{
1990        int ret;
1991
1992        cpus_read_lock();
1993        ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1994        cpus_read_unlock();
1995        return ret;
1996}
1997EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1998
1999/**
2000 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2001 * @state:              The state to setup
2002 * @name:               Name of the step
2003 * @invoke:             If true, the startup function is invoked for cpus where
2004 *                      cpu state >= @state
2005 * @startup:            startup callback function
2006 * @teardown:           teardown callback function
2007 * @multi_instance:     State is set up for multiple instances which get
2008 *                      added afterwards.
2009 *
2010 * The caller needs to hold cpus read locked while calling this function.
2011 * Return:
2012 *   On success:
2013 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2014 *      0 for all other states
2015 *   On failure: proper (negative) error code
2016 */
2017int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2018                                   const char *name, bool invoke,
2019                                   int (*startup)(unsigned int cpu),
2020                                   int (*teardown)(unsigned int cpu),
2021                                   bool multi_instance)
2022{
2023        int cpu, ret = 0;
2024        bool dynstate;
2025
2026        lockdep_assert_cpus_held();
2027
2028        if (cpuhp_cb_check(state) || !name)
2029                return -EINVAL;
2030
2031        mutex_lock(&cpuhp_state_mutex);
2032
2033        ret = cpuhp_store_callbacks(state, name, startup, teardown,
2034                                    multi_instance);
2035
2036        dynstate = state == CPUHP_AP_ONLINE_DYN;
2037        if (ret > 0 && dynstate) {
2038                state = ret;
2039                ret = 0;
2040        }
2041
2042        if (ret || !invoke || !startup)
2043                goto out;
2044
2045        /*
2046         * Try to call the startup callback for each present cpu
2047         * depending on the hotplug state of the cpu.
2048         */
2049        for_each_present_cpu(cpu) {
2050                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2051                int cpustate = st->state;
2052
2053                if (cpustate < state)
2054                        continue;
2055
2056                ret = cpuhp_issue_call(cpu, state, true, NULL);
2057                if (ret) {
2058                        if (teardown)
2059                                cpuhp_rollback_install(cpu, state, NULL);
2060                        cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2061                        goto out;
2062                }
2063        }
2064out:
2065        mutex_unlock(&cpuhp_state_mutex);
2066        /*
2067         * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2068         * dynamically allocated state in case of success.
2069         */
2070        if (!ret && dynstate)
2071                return state;
2072        return ret;
2073}
2074EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2075
2076int __cpuhp_setup_state(enum cpuhp_state state,
2077                        const char *name, bool invoke,
2078                        int (*startup)(unsigned int cpu),
2079                        int (*teardown)(unsigned int cpu),
2080                        bool multi_instance)
2081{
2082        int ret;
2083
2084        cpus_read_lock();
2085        ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2086                                             teardown, multi_instance);
2087        cpus_read_unlock();
2088        return ret;
2089}
2090EXPORT_SYMBOL(__cpuhp_setup_state);
2091
2092int __cpuhp_state_remove_instance(enum cpuhp_state state,
2093                                  struct hlist_node *node, bool invoke)
2094{
2095        struct cpuhp_step *sp = cpuhp_get_step(state);
2096        int cpu;
2097
2098        BUG_ON(cpuhp_cb_check(state));
2099
2100        if (!sp->multi_instance)
2101                return -EINVAL;
2102
2103        cpus_read_lock();
2104        mutex_lock(&cpuhp_state_mutex);
2105
2106        if (!invoke || !cpuhp_get_teardown_cb(state))
2107                goto remove;
2108        /*
2109         * Call the teardown callback for each present cpu depending
2110         * on the hotplug state of the cpu. This function is not
2111         * allowed to fail currently!
2112         */
2113        for_each_present_cpu(cpu) {
2114                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2115                int cpustate = st->state;
2116
2117                if (cpustate >= state)
2118                        cpuhp_issue_call(cpu, state, false, node);
2119        }
2120
2121remove:
2122        hlist_del(node);
2123        mutex_unlock(&cpuhp_state_mutex);
2124        cpus_read_unlock();
2125
2126        return 0;
2127}
2128EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2129
2130/**
2131 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2132 * @state:      The state to remove
2133 * @invoke:     If true, the teardown function is invoked for cpus where
2134 *              cpu state >= @state
2135 *
2136 * The caller needs to hold cpus read locked while calling this function.
2137 * The teardown callback is currently not allowed to fail. Think
2138 * about module removal!
2139 */
2140void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2141{
2142        struct cpuhp_step *sp = cpuhp_get_step(state);
2143        int cpu;
2144
2145        BUG_ON(cpuhp_cb_check(state));
2146
2147        lockdep_assert_cpus_held();
2148
2149        mutex_lock(&cpuhp_state_mutex);
2150        if (sp->multi_instance) {
2151                WARN(!hlist_empty(&sp->list),
2152                     "Error: Removing state %d which has instances left.\n",
2153                     state);
2154                goto remove;
2155        }
2156
2157        if (!invoke || !cpuhp_get_teardown_cb(state))
2158                goto remove;
2159
2160        /*
2161         * Call the teardown callback for each present cpu depending
2162         * on the hotplug state of the cpu. This function is not
2163         * allowed to fail currently!
2164         */
2165        for_each_present_cpu(cpu) {
2166                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2167                int cpustate = st->state;
2168
2169                if (cpustate >= state)
2170                        cpuhp_issue_call(cpu, state, false, NULL);
2171        }
2172remove:
2173        cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2174        mutex_unlock(&cpuhp_state_mutex);
2175}
2176EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2177
2178void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2179{
2180        cpus_read_lock();
2181        __cpuhp_remove_state_cpuslocked(state, invoke);
2182        cpus_read_unlock();
2183}
2184EXPORT_SYMBOL(__cpuhp_remove_state);
2185
2186#ifdef CONFIG_HOTPLUG_SMT
2187static void cpuhp_offline_cpu_device(unsigned int cpu)
2188{
2189        struct device *dev = get_cpu_device(cpu);
2190
2191        dev->offline = true;
2192        /* Tell user space about the state change */
2193        kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2194}
2195
2196static void cpuhp_online_cpu_device(unsigned int cpu)
2197{
2198        struct device *dev = get_cpu_device(cpu);
2199
2200        dev->offline = false;
2201        /* Tell user space about the state change */
2202        kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2203}
2204
2205int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2206{
2207        int cpu, ret = 0;
2208
2209        cpu_maps_update_begin();
2210        for_each_online_cpu(cpu) {
2211                if (topology_is_primary_thread(cpu))
2212                        continue;
2213                ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2214                if (ret)
2215                        break;
2216                /*
2217                 * As this needs to hold the cpu maps lock it's impossible
2218                 * to call device_offline() because that ends up calling
2219                 * cpu_down() which takes cpu maps lock. cpu maps lock
2220                 * needs to be held as this might race against in kernel
2221                 * abusers of the hotplug machinery (thermal management).
2222                 *
2223                 * So nothing would update device:offline state. That would
2224                 * leave the sysfs entry stale and prevent onlining after
2225                 * smt control has been changed to 'off' again. This is
2226                 * called under the sysfs hotplug lock, so it is properly
2227                 * serialized against the regular offline usage.
2228                 */
2229                cpuhp_offline_cpu_device(cpu);
2230        }
2231        if (!ret)
2232                cpu_smt_control = ctrlval;
2233        cpu_maps_update_done();
2234        return ret;
2235}
2236
2237int cpuhp_smt_enable(void)
2238{
2239        int cpu, ret = 0;
2240
2241        cpu_maps_update_begin();
2242        cpu_smt_control = CPU_SMT_ENABLED;
2243        for_each_present_cpu(cpu) {
2244                /* Skip online CPUs and CPUs on offline nodes */
2245                if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2246                        continue;
2247                ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2248                if (ret)
2249                        break;
2250                /* See comment in cpuhp_smt_disable() */
2251                cpuhp_online_cpu_device(cpu);
2252        }
2253        cpu_maps_update_done();
2254        return ret;
2255}
2256#endif
2257
2258#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2259static ssize_t state_show(struct device *dev,
2260                          struct device_attribute *attr, char *buf)
2261{
2262        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2263
2264        return sprintf(buf, "%d\n", st->state);
2265}
2266static DEVICE_ATTR_RO(state);
2267
2268static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2269                            const char *buf, size_t count)
2270{
2271        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2272        struct cpuhp_step *sp;
2273        int target, ret;
2274
2275        ret = kstrtoint(buf, 10, &target);
2276        if (ret)
2277                return ret;
2278
2279#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2280        if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2281                return -EINVAL;
2282#else
2283        if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2284                return -EINVAL;
2285#endif
2286
2287        ret = lock_device_hotplug_sysfs();
2288        if (ret)
2289                return ret;
2290
2291        mutex_lock(&cpuhp_state_mutex);
2292        sp = cpuhp_get_step(target);
2293        ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2294        mutex_unlock(&cpuhp_state_mutex);
2295        if (ret)
2296                goto out;
2297
2298        if (st->state < target)
2299                ret = cpu_up(dev->id, target);
2300        else
2301                ret = cpu_down(dev->id, target);
2302out:
2303        unlock_device_hotplug();
2304        return ret ? ret : count;
2305}
2306
2307static ssize_t target_show(struct device *dev,
2308                           struct device_attribute *attr, char *buf)
2309{
2310        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2311
2312        return sprintf(buf, "%d\n", st->target);
2313}
2314static DEVICE_ATTR_RW(target);
2315
2316static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2317                          const char *buf, size_t count)
2318{
2319        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2320        struct cpuhp_step *sp;
2321        int fail, ret;
2322
2323        ret = kstrtoint(buf, 10, &fail);
2324        if (ret)
2325                return ret;
2326
2327        if (fail == CPUHP_INVALID) {
2328                st->fail = fail;
2329                return count;
2330        }
2331
2332        if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2333                return -EINVAL;
2334
2335        /*
2336         * Cannot fail STARTING/DYING callbacks.
2337         */
2338        if (cpuhp_is_atomic_state(fail))
2339                return -EINVAL;
2340
2341        /*
2342         * DEAD callbacks cannot fail...
2343         * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2344         * triggering STARTING callbacks, a failure in this state would
2345         * hinder rollback.
2346         */
2347        if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2348                return -EINVAL;
2349
2350        /*
2351         * Cannot fail anything that doesn't have callbacks.
2352         */
2353        mutex_lock(&cpuhp_state_mutex);
2354        sp = cpuhp_get_step(fail);
2355        if (!sp->startup.single && !sp->teardown.single)
2356                ret = -EINVAL;
2357        mutex_unlock(&cpuhp_state_mutex);
2358        if (ret)
2359                return ret;
2360
2361        st->fail = fail;
2362
2363        return count;
2364}
2365
2366static ssize_t fail_show(struct device *dev,
2367                         struct device_attribute *attr, char *buf)
2368{
2369        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2370
2371        return sprintf(buf, "%d\n", st->fail);
2372}
2373
2374static DEVICE_ATTR_RW(fail);
2375
2376static struct attribute *cpuhp_cpu_attrs[] = {
2377        &dev_attr_state.attr,
2378        &dev_attr_target.attr,
2379        &dev_attr_fail.attr,
2380        NULL
2381};
2382
2383static const struct attribute_group cpuhp_cpu_attr_group = {
2384        .attrs = cpuhp_cpu_attrs,
2385        .name = "hotplug",
2386        NULL
2387};
2388
2389static ssize_t states_show(struct device *dev,
2390                                 struct device_attribute *attr, char *buf)
2391{
2392        ssize_t cur, res = 0;
2393        int i;
2394
2395        mutex_lock(&cpuhp_state_mutex);
2396        for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2397                struct cpuhp_step *sp = cpuhp_get_step(i);
2398
2399                if (sp->name) {
2400                        cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2401                        buf += cur;
2402                        res += cur;
2403                }
2404        }
2405        mutex_unlock(&cpuhp_state_mutex);
2406        return res;
2407}
2408static DEVICE_ATTR_RO(states);
2409
2410static struct attribute *cpuhp_cpu_root_attrs[] = {
2411        &dev_attr_states.attr,
2412        NULL
2413};
2414
2415static const struct attribute_group cpuhp_cpu_root_attr_group = {
2416        .attrs = cpuhp_cpu_root_attrs,
2417        .name = "hotplug",
2418        NULL
2419};
2420
2421#ifdef CONFIG_HOTPLUG_SMT
2422
2423static ssize_t
2424__store_smt_control(struct device *dev, struct device_attribute *attr,
2425                    const char *buf, size_t count)
2426{
2427        int ctrlval, ret;
2428
2429        if (sysfs_streq(buf, "on"))
2430                ctrlval = CPU_SMT_ENABLED;
2431        else if (sysfs_streq(buf, "off"))
2432                ctrlval = CPU_SMT_DISABLED;
2433        else if (sysfs_streq(buf, "forceoff"))
2434                ctrlval = CPU_SMT_FORCE_DISABLED;
2435        else
2436                return -EINVAL;
2437
2438        if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2439                return -EPERM;
2440
2441        if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2442                return -ENODEV;
2443
2444        ret = lock_device_hotplug_sysfs();
2445        if (ret)
2446                return ret;
2447
2448        if (ctrlval != cpu_smt_control) {
2449                switch (ctrlval) {
2450                case CPU_SMT_ENABLED:
2451                        ret = cpuhp_smt_enable();
2452                        break;
2453                case CPU_SMT_DISABLED:
2454                case CPU_SMT_FORCE_DISABLED:
2455                        ret = cpuhp_smt_disable(ctrlval);
2456                        break;
2457                }
2458        }
2459
2460        unlock_device_hotplug();
2461        return ret ? ret : count;
2462}
2463
2464#else /* !CONFIG_HOTPLUG_SMT */
2465static ssize_t
2466__store_smt_control(struct device *dev, struct device_attribute *attr,
2467                    const char *buf, size_t count)
2468{
2469        return -ENODEV;
2470}
2471#endif /* CONFIG_HOTPLUG_SMT */
2472
2473static const char *smt_states[] = {
2474        [CPU_SMT_ENABLED]               = "on",
2475        [CPU_SMT_DISABLED]              = "off",
2476        [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2477        [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2478        [CPU_SMT_NOT_IMPLEMENTED]       = "notimplemented",
2479};
2480
2481static ssize_t control_show(struct device *dev,
2482                            struct device_attribute *attr, char *buf)
2483{
2484        const char *state = smt_states[cpu_smt_control];
2485
2486        return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2487}
2488
2489static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2490                             const char *buf, size_t count)
2491{
2492        return __store_smt_control(dev, attr, buf, count);
2493}
2494static DEVICE_ATTR_RW(control);
2495
2496static ssize_t active_show(struct device *dev,
2497                           struct device_attribute *attr, char *buf)
2498{
2499        return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2500}
2501static DEVICE_ATTR_RO(active);
2502
2503static struct attribute *cpuhp_smt_attrs[] = {
2504        &dev_attr_control.attr,
2505        &dev_attr_active.attr,
2506        NULL
2507};
2508
2509static const struct attribute_group cpuhp_smt_attr_group = {
2510        .attrs = cpuhp_smt_attrs,
2511        .name = "smt",
2512        NULL
2513};
2514
2515static int __init cpu_smt_sysfs_init(void)
2516{
2517        return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2518                                  &cpuhp_smt_attr_group);
2519}
2520
2521static int __init cpuhp_sysfs_init(void)
2522{
2523        int cpu, ret;
2524
2525        ret = cpu_smt_sysfs_init();
2526        if (ret)
2527                return ret;
2528
2529        ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2530                                 &cpuhp_cpu_root_attr_group);
2531        if (ret)
2532                return ret;
2533
2534        for_each_possible_cpu(cpu) {
2535                struct device *dev = get_cpu_device(cpu);
2536
2537                if (!dev)
2538                        continue;
2539                ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2540                if (ret)
2541                        return ret;
2542        }
2543        return 0;
2544}
2545device_initcall(cpuhp_sysfs_init);
2546#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2547
2548/*
2549 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2550 * represents all NR_CPUS bits binary values of 1<<nr.
2551 *
2552 * It is used by cpumask_of() to get a constant address to a CPU
2553 * mask value that has a single bit set only.
2554 */
2555
2556/* cpu_bit_bitmap[0] is empty - so we can back into it */
2557#define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
2558#define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2559#define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2560#define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2561
2562const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2563
2564        MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
2565        MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
2566#if BITS_PER_LONG > 32
2567        MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
2568        MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
2569#endif
2570};
2571EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2572
2573const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2574EXPORT_SYMBOL(cpu_all_bits);
2575
2576#ifdef CONFIG_INIT_ALL_POSSIBLE
2577struct cpumask __cpu_possible_mask __read_mostly
2578        = {CPU_BITS_ALL};
2579#else
2580struct cpumask __cpu_possible_mask __read_mostly;
2581#endif
2582EXPORT_SYMBOL(__cpu_possible_mask);
2583
2584struct cpumask __cpu_online_mask __read_mostly;
2585EXPORT_SYMBOL(__cpu_online_mask);
2586
2587struct cpumask __cpu_present_mask __read_mostly;
2588EXPORT_SYMBOL(__cpu_present_mask);
2589
2590struct cpumask __cpu_active_mask __read_mostly;
2591EXPORT_SYMBOL(__cpu_active_mask);
2592
2593struct cpumask __cpu_dying_mask __read_mostly;
2594EXPORT_SYMBOL(__cpu_dying_mask);
2595
2596atomic_t __num_online_cpus __read_mostly;
2597EXPORT_SYMBOL(__num_online_cpus);
2598
2599void init_cpu_present(const struct cpumask *src)
2600{
2601        cpumask_copy(&__cpu_present_mask, src);
2602}
2603
2604void init_cpu_possible(const struct cpumask *src)
2605{
2606        cpumask_copy(&__cpu_possible_mask, src);
2607}
2608
2609void init_cpu_online(const struct cpumask *src)
2610{
2611        cpumask_copy(&__cpu_online_mask, src);
2612}
2613
2614void set_cpu_online(unsigned int cpu, bool online)
2615{
2616        /*
2617         * atomic_inc/dec() is required to handle the horrid abuse of this
2618         * function by the reboot and kexec code which invoke it from
2619         * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2620         * regular CPU hotplug is properly serialized.
2621         *
2622         * Note, that the fact that __num_online_cpus is of type atomic_t
2623         * does not protect readers which are not serialized against
2624         * concurrent hotplug operations.
2625         */
2626        if (online) {
2627                if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2628                        atomic_inc(&__num_online_cpus);
2629        } else {
2630                if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2631                        atomic_dec(&__num_online_cpus);
2632        }
2633}
2634
2635/*
2636 * Activate the first processor.
2637 */
2638void __init boot_cpu_init(void)
2639{
2640        int cpu = smp_processor_id();
2641
2642        /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2643        set_cpu_online(cpu, true);
2644        set_cpu_active(cpu, true);
2645        set_cpu_present(cpu, true);
2646        set_cpu_possible(cpu, true);
2647
2648#ifdef CONFIG_SMP
2649        __boot_cpu_id = cpu;
2650#endif
2651}
2652
2653/*
2654 * Must be called _AFTER_ setting up the per_cpu areas
2655 */
2656void __init boot_cpu_hotplug_init(void)
2657{
2658#ifdef CONFIG_SMP
2659        cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2660#endif
2661        this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2662}
2663
2664/*
2665 * These are used for a global "mitigations=" cmdline option for toggling
2666 * optional CPU mitigations.
2667 */
2668enum cpu_mitigations {
2669        CPU_MITIGATIONS_OFF,
2670        CPU_MITIGATIONS_AUTO,
2671        CPU_MITIGATIONS_AUTO_NOSMT,
2672};
2673
2674static enum cpu_mitigations cpu_mitigations __ro_after_init =
2675        CPU_MITIGATIONS_AUTO;
2676
2677static int __init mitigations_parse_cmdline(char *arg)
2678{
2679        if (!strcmp(arg, "off"))
2680                cpu_mitigations = CPU_MITIGATIONS_OFF;
2681        else if (!strcmp(arg, "auto"))
2682                cpu_mitigations = CPU_MITIGATIONS_AUTO;
2683        else if (!strcmp(arg, "auto,nosmt"))
2684                cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2685        else
2686                pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2687                        arg);
2688
2689        return 0;
2690}
2691early_param("mitigations", mitigations_parse_cmdline);
2692
2693/* mitigations=off */
2694bool cpu_mitigations_off(void)
2695{
2696        return cpu_mitigations == CPU_MITIGATIONS_OFF;
2697}
2698EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2699
2700/* mitigations=auto,nosmt */
2701bool cpu_mitigations_auto_nosmt(void)
2702{
2703        return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2704}
2705EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2706