linux/kernel/events/uprobes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * User-space Probes (UProbes)
   4 *
   5 * Copyright (C) IBM Corporation, 2008-2012
   6 * Authors:
   7 *      Srikar Dronamraju
   8 *      Jim Keniston
   9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/highmem.h>
  14#include <linux/pagemap.h>      /* read_mapping_page */
  15#include <linux/slab.h>
  16#include <linux/sched.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/coredump.h>
  19#include <linux/export.h>
  20#include <linux/rmap.h>         /* anon_vma_prepare */
  21#include <linux/mmu_notifier.h> /* set_pte_at_notify */
  22#include <linux/swap.h>         /* try_to_free_swap */
  23#include <linux/ptrace.h>       /* user_enable_single_step */
  24#include <linux/kdebug.h>       /* notifier mechanism */
  25#include "../../mm/internal.h"  /* munlock_vma_page */
  26#include <linux/percpu-rwsem.h>
  27#include <linux/task_work.h>
  28#include <linux/shmem_fs.h>
  29#include <linux/khugepaged.h>
  30
  31#include <linux/uprobes.h>
  32
  33#define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
  34#define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
  35
  36static struct rb_root uprobes_tree = RB_ROOT;
  37/*
  38 * allows us to skip the uprobe_mmap if there are no uprobe events active
  39 * at this time.  Probably a fine grained per inode count is better?
  40 */
  41#define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
  42
  43static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
  44
  45#define UPROBES_HASH_SZ 13
  46/* serialize uprobe->pending_list */
  47static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
  48#define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  49
  50DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
  51
  52/* Have a copy of original instruction */
  53#define UPROBE_COPY_INSN        0
  54
  55struct uprobe {
  56        struct rb_node          rb_node;        /* node in the rb tree */
  57        refcount_t              ref;
  58        struct rw_semaphore     register_rwsem;
  59        struct rw_semaphore     consumer_rwsem;
  60        struct list_head        pending_list;
  61        struct uprobe_consumer  *consumers;
  62        struct inode            *inode;         /* Also hold a ref to inode */
  63        loff_t                  offset;
  64        loff_t                  ref_ctr_offset;
  65        unsigned long           flags;
  66
  67        /*
  68         * The generic code assumes that it has two members of unknown type
  69         * owned by the arch-specific code:
  70         *
  71         *      insn -  copy_insn() saves the original instruction here for
  72         *              arch_uprobe_analyze_insn().
  73         *
  74         *      ixol -  potentially modified instruction to execute out of
  75         *              line, copied to xol_area by xol_get_insn_slot().
  76         */
  77        struct arch_uprobe      arch;
  78};
  79
  80struct delayed_uprobe {
  81        struct list_head list;
  82        struct uprobe *uprobe;
  83        struct mm_struct *mm;
  84};
  85
  86static DEFINE_MUTEX(delayed_uprobe_lock);
  87static LIST_HEAD(delayed_uprobe_list);
  88
  89/*
  90 * Execute out of line area: anonymous executable mapping installed
  91 * by the probed task to execute the copy of the original instruction
  92 * mangled by set_swbp().
  93 *
  94 * On a breakpoint hit, thread contests for a slot.  It frees the
  95 * slot after singlestep. Currently a fixed number of slots are
  96 * allocated.
  97 */
  98struct xol_area {
  99        wait_queue_head_t               wq;             /* if all slots are busy */
 100        atomic_t                        slot_count;     /* number of in-use slots */
 101        unsigned long                   *bitmap;        /* 0 = free slot */
 102
 103        struct vm_special_mapping       xol_mapping;
 104        struct page                     *pages[2];
 105        /*
 106         * We keep the vma's vm_start rather than a pointer to the vma
 107         * itself.  The probed process or a naughty kernel module could make
 108         * the vma go away, and we must handle that reasonably gracefully.
 109         */
 110        unsigned long                   vaddr;          /* Page(s) of instruction slots */
 111};
 112
 113/*
 114 * valid_vma: Verify if the specified vma is an executable vma
 115 * Relax restrictions while unregistering: vm_flags might have
 116 * changed after breakpoint was inserted.
 117 *      - is_register: indicates if we are in register context.
 118 *      - Return 1 if the specified virtual address is in an
 119 *        executable vma.
 120 */
 121static bool valid_vma(struct vm_area_struct *vma, bool is_register)
 122{
 123        vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
 124
 125        if (is_register)
 126                flags |= VM_WRITE;
 127
 128        return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
 129}
 130
 131static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
 132{
 133        return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 134}
 135
 136static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
 137{
 138        return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
 139}
 140
 141/**
 142 * __replace_page - replace page in vma by new page.
 143 * based on replace_page in mm/ksm.c
 144 *
 145 * @vma:      vma that holds the pte pointing to page
 146 * @addr:     address the old @page is mapped at
 147 * @old_page: the page we are replacing by new_page
 148 * @new_page: the modified page we replace page by
 149 *
 150 * If @new_page is NULL, only unmap @old_page.
 151 *
 152 * Returns 0 on success, negative error code otherwise.
 153 */
 154static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
 155                                struct page *old_page, struct page *new_page)
 156{
 157        struct mm_struct *mm = vma->vm_mm;
 158        struct page_vma_mapped_walk pvmw = {
 159                .page = compound_head(old_page),
 160                .vma = vma,
 161                .address = addr,
 162        };
 163        int err;
 164        struct mmu_notifier_range range;
 165
 166        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
 167                                addr + PAGE_SIZE);
 168
 169        if (new_page) {
 170                err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL);
 171                if (err)
 172                        return err;
 173        }
 174
 175        /* For try_to_free_swap() and munlock_vma_page() below */
 176        lock_page(old_page);
 177
 178        mmu_notifier_invalidate_range_start(&range);
 179        err = -EAGAIN;
 180        if (!page_vma_mapped_walk(&pvmw))
 181                goto unlock;
 182        VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
 183
 184        if (new_page) {
 185                get_page(new_page);
 186                page_add_new_anon_rmap(new_page, vma, addr, false);
 187                lru_cache_add_inactive_or_unevictable(new_page, vma);
 188        } else
 189                /* no new page, just dec_mm_counter for old_page */
 190                dec_mm_counter(mm, MM_ANONPAGES);
 191
 192        if (!PageAnon(old_page)) {
 193                dec_mm_counter(mm, mm_counter_file(old_page));
 194                inc_mm_counter(mm, MM_ANONPAGES);
 195        }
 196
 197        flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
 198        ptep_clear_flush_notify(vma, addr, pvmw.pte);
 199        if (new_page)
 200                set_pte_at_notify(mm, addr, pvmw.pte,
 201                                  mk_pte(new_page, vma->vm_page_prot));
 202
 203        page_remove_rmap(old_page, false);
 204        if (!page_mapped(old_page))
 205                try_to_free_swap(old_page);
 206        page_vma_mapped_walk_done(&pvmw);
 207
 208        if ((vma->vm_flags & VM_LOCKED) && !PageCompound(old_page))
 209                munlock_vma_page(old_page);
 210        put_page(old_page);
 211
 212        err = 0;
 213 unlock:
 214        mmu_notifier_invalidate_range_end(&range);
 215        unlock_page(old_page);
 216        return err;
 217}
 218
 219/**
 220 * is_swbp_insn - check if instruction is breakpoint instruction.
 221 * @insn: instruction to be checked.
 222 * Default implementation of is_swbp_insn
 223 * Returns true if @insn is a breakpoint instruction.
 224 */
 225bool __weak is_swbp_insn(uprobe_opcode_t *insn)
 226{
 227        return *insn == UPROBE_SWBP_INSN;
 228}
 229
 230/**
 231 * is_trap_insn - check if instruction is breakpoint instruction.
 232 * @insn: instruction to be checked.
 233 * Default implementation of is_trap_insn
 234 * Returns true if @insn is a breakpoint instruction.
 235 *
 236 * This function is needed for the case where an architecture has multiple
 237 * trap instructions (like powerpc).
 238 */
 239bool __weak is_trap_insn(uprobe_opcode_t *insn)
 240{
 241        return is_swbp_insn(insn);
 242}
 243
 244static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
 245{
 246        void *kaddr = kmap_atomic(page);
 247        memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
 248        kunmap_atomic(kaddr);
 249}
 250
 251static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
 252{
 253        void *kaddr = kmap_atomic(page);
 254        memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
 255        kunmap_atomic(kaddr);
 256}
 257
 258static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
 259{
 260        uprobe_opcode_t old_opcode;
 261        bool is_swbp;
 262
 263        /*
 264         * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
 265         * We do not check if it is any other 'trap variant' which could
 266         * be conditional trap instruction such as the one powerpc supports.
 267         *
 268         * The logic is that we do not care if the underlying instruction
 269         * is a trap variant; uprobes always wins over any other (gdb)
 270         * breakpoint.
 271         */
 272        copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
 273        is_swbp = is_swbp_insn(&old_opcode);
 274
 275        if (is_swbp_insn(new_opcode)) {
 276                if (is_swbp)            /* register: already installed? */
 277                        return 0;
 278        } else {
 279                if (!is_swbp)           /* unregister: was it changed by us? */
 280                        return 0;
 281        }
 282
 283        return 1;
 284}
 285
 286static struct delayed_uprobe *
 287delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
 288{
 289        struct delayed_uprobe *du;
 290
 291        list_for_each_entry(du, &delayed_uprobe_list, list)
 292                if (du->uprobe == uprobe && du->mm == mm)
 293                        return du;
 294        return NULL;
 295}
 296
 297static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
 298{
 299        struct delayed_uprobe *du;
 300
 301        if (delayed_uprobe_check(uprobe, mm))
 302                return 0;
 303
 304        du  = kzalloc(sizeof(*du), GFP_KERNEL);
 305        if (!du)
 306                return -ENOMEM;
 307
 308        du->uprobe = uprobe;
 309        du->mm = mm;
 310        list_add(&du->list, &delayed_uprobe_list);
 311        return 0;
 312}
 313
 314static void delayed_uprobe_delete(struct delayed_uprobe *du)
 315{
 316        if (WARN_ON(!du))
 317                return;
 318        list_del(&du->list);
 319        kfree(du);
 320}
 321
 322static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
 323{
 324        struct list_head *pos, *q;
 325        struct delayed_uprobe *du;
 326
 327        if (!uprobe && !mm)
 328                return;
 329
 330        list_for_each_safe(pos, q, &delayed_uprobe_list) {
 331                du = list_entry(pos, struct delayed_uprobe, list);
 332
 333                if (uprobe && du->uprobe != uprobe)
 334                        continue;
 335                if (mm && du->mm != mm)
 336                        continue;
 337
 338                delayed_uprobe_delete(du);
 339        }
 340}
 341
 342static bool valid_ref_ctr_vma(struct uprobe *uprobe,
 343                              struct vm_area_struct *vma)
 344{
 345        unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
 346
 347        return uprobe->ref_ctr_offset &&
 348                vma->vm_file &&
 349                file_inode(vma->vm_file) == uprobe->inode &&
 350                (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
 351                vma->vm_start <= vaddr &&
 352                vma->vm_end > vaddr;
 353}
 354
 355static struct vm_area_struct *
 356find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
 357{
 358        struct vm_area_struct *tmp;
 359
 360        for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
 361                if (valid_ref_ctr_vma(uprobe, tmp))
 362                        return tmp;
 363
 364        return NULL;
 365}
 366
 367static int
 368__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
 369{
 370        void *kaddr;
 371        struct page *page;
 372        struct vm_area_struct *vma;
 373        int ret;
 374        short *ptr;
 375
 376        if (!vaddr || !d)
 377                return -EINVAL;
 378
 379        ret = get_user_pages_remote(mm, vaddr, 1,
 380                        FOLL_WRITE, &page, &vma, NULL);
 381        if (unlikely(ret <= 0)) {
 382                /*
 383                 * We are asking for 1 page. If get_user_pages_remote() fails,
 384                 * it may return 0, in that case we have to return error.
 385                 */
 386                return ret == 0 ? -EBUSY : ret;
 387        }
 388
 389        kaddr = kmap_atomic(page);
 390        ptr = kaddr + (vaddr & ~PAGE_MASK);
 391
 392        if (unlikely(*ptr + d < 0)) {
 393                pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
 394                        "curr val: %d, delta: %d\n", vaddr, *ptr, d);
 395                ret = -EINVAL;
 396                goto out;
 397        }
 398
 399        *ptr += d;
 400        ret = 0;
 401out:
 402        kunmap_atomic(kaddr);
 403        put_page(page);
 404        return ret;
 405}
 406
 407static void update_ref_ctr_warn(struct uprobe *uprobe,
 408                                struct mm_struct *mm, short d)
 409{
 410        pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
 411                "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
 412                d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
 413                (unsigned long long) uprobe->offset,
 414                (unsigned long long) uprobe->ref_ctr_offset, mm);
 415}
 416
 417static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
 418                          short d)
 419{
 420        struct vm_area_struct *rc_vma;
 421        unsigned long rc_vaddr;
 422        int ret = 0;
 423
 424        rc_vma = find_ref_ctr_vma(uprobe, mm);
 425
 426        if (rc_vma) {
 427                rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
 428                ret = __update_ref_ctr(mm, rc_vaddr, d);
 429                if (ret)
 430                        update_ref_ctr_warn(uprobe, mm, d);
 431
 432                if (d > 0)
 433                        return ret;
 434        }
 435
 436        mutex_lock(&delayed_uprobe_lock);
 437        if (d > 0)
 438                ret = delayed_uprobe_add(uprobe, mm);
 439        else
 440                delayed_uprobe_remove(uprobe, mm);
 441        mutex_unlock(&delayed_uprobe_lock);
 442
 443        return ret;
 444}
 445
 446/*
 447 * NOTE:
 448 * Expect the breakpoint instruction to be the smallest size instruction for
 449 * the architecture. If an arch has variable length instruction and the
 450 * breakpoint instruction is not of the smallest length instruction
 451 * supported by that architecture then we need to modify is_trap_at_addr and
 452 * uprobe_write_opcode accordingly. This would never be a problem for archs
 453 * that have fixed length instructions.
 454 *
 455 * uprobe_write_opcode - write the opcode at a given virtual address.
 456 * @auprobe: arch specific probepoint information.
 457 * @mm: the probed process address space.
 458 * @vaddr: the virtual address to store the opcode.
 459 * @opcode: opcode to be written at @vaddr.
 460 *
 461 * Called with mm->mmap_lock held for write.
 462 * Return 0 (success) or a negative errno.
 463 */
 464int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
 465                        unsigned long vaddr, uprobe_opcode_t opcode)
 466{
 467        struct uprobe *uprobe;
 468        struct page *old_page, *new_page;
 469        struct vm_area_struct *vma;
 470        int ret, is_register, ref_ctr_updated = 0;
 471        bool orig_page_huge = false;
 472        unsigned int gup_flags = FOLL_FORCE;
 473
 474        is_register = is_swbp_insn(&opcode);
 475        uprobe = container_of(auprobe, struct uprobe, arch);
 476
 477retry:
 478        if (is_register)
 479                gup_flags |= FOLL_SPLIT_PMD;
 480        /* Read the page with vaddr into memory */
 481        ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
 482                                    &old_page, &vma, NULL);
 483        if (ret <= 0)
 484                return ret;
 485
 486        ret = verify_opcode(old_page, vaddr, &opcode);
 487        if (ret <= 0)
 488                goto put_old;
 489
 490        if (WARN(!is_register && PageCompound(old_page),
 491                 "uprobe unregister should never work on compound page\n")) {
 492                ret = -EINVAL;
 493                goto put_old;
 494        }
 495
 496        /* We are going to replace instruction, update ref_ctr. */
 497        if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
 498                ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
 499                if (ret)
 500                        goto put_old;
 501
 502                ref_ctr_updated = 1;
 503        }
 504
 505        ret = 0;
 506        if (!is_register && !PageAnon(old_page))
 507                goto put_old;
 508
 509        ret = anon_vma_prepare(vma);
 510        if (ret)
 511                goto put_old;
 512
 513        ret = -ENOMEM;
 514        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
 515        if (!new_page)
 516                goto put_old;
 517
 518        __SetPageUptodate(new_page);
 519        copy_highpage(new_page, old_page);
 520        copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
 521
 522        if (!is_register) {
 523                struct page *orig_page;
 524                pgoff_t index;
 525
 526                VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
 527
 528                index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
 529                orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
 530                                          index);
 531
 532                if (orig_page) {
 533                        if (PageUptodate(orig_page) &&
 534                            pages_identical(new_page, orig_page)) {
 535                                /* let go new_page */
 536                                put_page(new_page);
 537                                new_page = NULL;
 538
 539                                if (PageCompound(orig_page))
 540                                        orig_page_huge = true;
 541                        }
 542                        put_page(orig_page);
 543                }
 544        }
 545
 546        ret = __replace_page(vma, vaddr, old_page, new_page);
 547        if (new_page)
 548                put_page(new_page);
 549put_old:
 550        put_page(old_page);
 551
 552        if (unlikely(ret == -EAGAIN))
 553                goto retry;
 554
 555        /* Revert back reference counter if instruction update failed. */
 556        if (ret && is_register && ref_ctr_updated)
 557                update_ref_ctr(uprobe, mm, -1);
 558
 559        /* try collapse pmd for compound page */
 560        if (!ret && orig_page_huge)
 561                collapse_pte_mapped_thp(mm, vaddr);
 562
 563        return ret;
 564}
 565
 566/**
 567 * set_swbp - store breakpoint at a given address.
 568 * @auprobe: arch specific probepoint information.
 569 * @mm: the probed process address space.
 570 * @vaddr: the virtual address to insert the opcode.
 571 *
 572 * For mm @mm, store the breakpoint instruction at @vaddr.
 573 * Return 0 (success) or a negative errno.
 574 */
 575int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 576{
 577        return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
 578}
 579
 580/**
 581 * set_orig_insn - Restore the original instruction.
 582 * @mm: the probed process address space.
 583 * @auprobe: arch specific probepoint information.
 584 * @vaddr: the virtual address to insert the opcode.
 585 *
 586 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 587 * Return 0 (success) or a negative errno.
 588 */
 589int __weak
 590set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 591{
 592        return uprobe_write_opcode(auprobe, mm, vaddr,
 593                        *(uprobe_opcode_t *)&auprobe->insn);
 594}
 595
 596static struct uprobe *get_uprobe(struct uprobe *uprobe)
 597{
 598        refcount_inc(&uprobe->ref);
 599        return uprobe;
 600}
 601
 602static void put_uprobe(struct uprobe *uprobe)
 603{
 604        if (refcount_dec_and_test(&uprobe->ref)) {
 605                /*
 606                 * If application munmap(exec_vma) before uprobe_unregister()
 607                 * gets called, we don't get a chance to remove uprobe from
 608                 * delayed_uprobe_list from remove_breakpoint(). Do it here.
 609                 */
 610                mutex_lock(&delayed_uprobe_lock);
 611                delayed_uprobe_remove(uprobe, NULL);
 612                mutex_unlock(&delayed_uprobe_lock);
 613                kfree(uprobe);
 614        }
 615}
 616
 617static __always_inline
 618int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
 619               const struct uprobe *r)
 620{
 621        if (l_inode < r->inode)
 622                return -1;
 623
 624        if (l_inode > r->inode)
 625                return 1;
 626
 627        if (l_offset < r->offset)
 628                return -1;
 629
 630        if (l_offset > r->offset)
 631                return 1;
 632
 633        return 0;
 634}
 635
 636#define __node_2_uprobe(node) \
 637        rb_entry((node), struct uprobe, rb_node)
 638
 639struct __uprobe_key {
 640        struct inode *inode;
 641        loff_t offset;
 642};
 643
 644static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
 645{
 646        const struct __uprobe_key *a = key;
 647        return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
 648}
 649
 650static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
 651{
 652        struct uprobe *u = __node_2_uprobe(a);
 653        return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
 654}
 655
 656static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
 657{
 658        struct __uprobe_key key = {
 659                .inode = inode,
 660                .offset = offset,
 661        };
 662        struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
 663
 664        if (node)
 665                return get_uprobe(__node_2_uprobe(node));
 666
 667        return NULL;
 668}
 669
 670/*
 671 * Find a uprobe corresponding to a given inode:offset
 672 * Acquires uprobes_treelock
 673 */
 674static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
 675{
 676        struct uprobe *uprobe;
 677
 678        spin_lock(&uprobes_treelock);
 679        uprobe = __find_uprobe(inode, offset);
 680        spin_unlock(&uprobes_treelock);
 681
 682        return uprobe;
 683}
 684
 685static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
 686{
 687        struct rb_node *node;
 688
 689        node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
 690        if (node)
 691                return get_uprobe(__node_2_uprobe(node));
 692
 693        /* get access + creation ref */
 694        refcount_set(&uprobe->ref, 2);
 695        return NULL;
 696}
 697
 698/*
 699 * Acquire uprobes_treelock.
 700 * Matching uprobe already exists in rbtree;
 701 *      increment (access refcount) and return the matching uprobe.
 702 *
 703 * No matching uprobe; insert the uprobe in rb_tree;
 704 *      get a double refcount (access + creation) and return NULL.
 705 */
 706static struct uprobe *insert_uprobe(struct uprobe *uprobe)
 707{
 708        struct uprobe *u;
 709
 710        spin_lock(&uprobes_treelock);
 711        u = __insert_uprobe(uprobe);
 712        spin_unlock(&uprobes_treelock);
 713
 714        return u;
 715}
 716
 717static void
 718ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
 719{
 720        pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
 721                "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
 722                uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
 723                (unsigned long long) cur_uprobe->ref_ctr_offset,
 724                (unsigned long long) uprobe->ref_ctr_offset);
 725}
 726
 727static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
 728                                   loff_t ref_ctr_offset)
 729{
 730        struct uprobe *uprobe, *cur_uprobe;
 731
 732        uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
 733        if (!uprobe)
 734                return NULL;
 735
 736        uprobe->inode = inode;
 737        uprobe->offset = offset;
 738        uprobe->ref_ctr_offset = ref_ctr_offset;
 739        init_rwsem(&uprobe->register_rwsem);
 740        init_rwsem(&uprobe->consumer_rwsem);
 741
 742        /* add to uprobes_tree, sorted on inode:offset */
 743        cur_uprobe = insert_uprobe(uprobe);
 744        /* a uprobe exists for this inode:offset combination */
 745        if (cur_uprobe) {
 746                if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
 747                        ref_ctr_mismatch_warn(cur_uprobe, uprobe);
 748                        put_uprobe(cur_uprobe);
 749                        kfree(uprobe);
 750                        return ERR_PTR(-EINVAL);
 751                }
 752                kfree(uprobe);
 753                uprobe = cur_uprobe;
 754        }
 755
 756        return uprobe;
 757}
 758
 759static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
 760{
 761        down_write(&uprobe->consumer_rwsem);
 762        uc->next = uprobe->consumers;
 763        uprobe->consumers = uc;
 764        up_write(&uprobe->consumer_rwsem);
 765}
 766
 767/*
 768 * For uprobe @uprobe, delete the consumer @uc.
 769 * Return true if the @uc is deleted successfully
 770 * or return false.
 771 */
 772static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
 773{
 774        struct uprobe_consumer **con;
 775        bool ret = false;
 776
 777        down_write(&uprobe->consumer_rwsem);
 778        for (con = &uprobe->consumers; *con; con = &(*con)->next) {
 779                if (*con == uc) {
 780                        *con = uc->next;
 781                        ret = true;
 782                        break;
 783                }
 784        }
 785        up_write(&uprobe->consumer_rwsem);
 786
 787        return ret;
 788}
 789
 790static int __copy_insn(struct address_space *mapping, struct file *filp,
 791                        void *insn, int nbytes, loff_t offset)
 792{
 793        struct page *page;
 794        /*
 795         * Ensure that the page that has the original instruction is populated
 796         * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
 797         * see uprobe_register().
 798         */
 799        if (mapping->a_ops->readpage)
 800                page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
 801        else
 802                page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 803        if (IS_ERR(page))
 804                return PTR_ERR(page);
 805
 806        copy_from_page(page, offset, insn, nbytes);
 807        put_page(page);
 808
 809        return 0;
 810}
 811
 812static int copy_insn(struct uprobe *uprobe, struct file *filp)
 813{
 814        struct address_space *mapping = uprobe->inode->i_mapping;
 815        loff_t offs = uprobe->offset;
 816        void *insn = &uprobe->arch.insn;
 817        int size = sizeof(uprobe->arch.insn);
 818        int len, err = -EIO;
 819
 820        /* Copy only available bytes, -EIO if nothing was read */
 821        do {
 822                if (offs >= i_size_read(uprobe->inode))
 823                        break;
 824
 825                len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
 826                err = __copy_insn(mapping, filp, insn, len, offs);
 827                if (err)
 828                        break;
 829
 830                insn += len;
 831                offs += len;
 832                size -= len;
 833        } while (size);
 834
 835        return err;
 836}
 837
 838static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
 839                                struct mm_struct *mm, unsigned long vaddr)
 840{
 841        int ret = 0;
 842
 843        if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 844                return ret;
 845
 846        /* TODO: move this into _register, until then we abuse this sem. */
 847        down_write(&uprobe->consumer_rwsem);
 848        if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 849                goto out;
 850
 851        ret = copy_insn(uprobe, file);
 852        if (ret)
 853                goto out;
 854
 855        ret = -ENOTSUPP;
 856        if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
 857                goto out;
 858
 859        ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
 860        if (ret)
 861                goto out;
 862
 863        smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
 864        set_bit(UPROBE_COPY_INSN, &uprobe->flags);
 865
 866 out:
 867        up_write(&uprobe->consumer_rwsem);
 868
 869        return ret;
 870}
 871
 872static inline bool consumer_filter(struct uprobe_consumer *uc,
 873                                   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 874{
 875        return !uc->filter || uc->filter(uc, ctx, mm);
 876}
 877
 878static bool filter_chain(struct uprobe *uprobe,
 879                         enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 880{
 881        struct uprobe_consumer *uc;
 882        bool ret = false;
 883
 884        down_read(&uprobe->consumer_rwsem);
 885        for (uc = uprobe->consumers; uc; uc = uc->next) {
 886                ret = consumer_filter(uc, ctx, mm);
 887                if (ret)
 888                        break;
 889        }
 890        up_read(&uprobe->consumer_rwsem);
 891
 892        return ret;
 893}
 894
 895static int
 896install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
 897                        struct vm_area_struct *vma, unsigned long vaddr)
 898{
 899        bool first_uprobe;
 900        int ret;
 901
 902        ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
 903        if (ret)
 904                return ret;
 905
 906        /*
 907         * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
 908         * the task can hit this breakpoint right after __replace_page().
 909         */
 910        first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
 911        if (first_uprobe)
 912                set_bit(MMF_HAS_UPROBES, &mm->flags);
 913
 914        ret = set_swbp(&uprobe->arch, mm, vaddr);
 915        if (!ret)
 916                clear_bit(MMF_RECALC_UPROBES, &mm->flags);
 917        else if (first_uprobe)
 918                clear_bit(MMF_HAS_UPROBES, &mm->flags);
 919
 920        return ret;
 921}
 922
 923static int
 924remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
 925{
 926        set_bit(MMF_RECALC_UPROBES, &mm->flags);
 927        return set_orig_insn(&uprobe->arch, mm, vaddr);
 928}
 929
 930static inline bool uprobe_is_active(struct uprobe *uprobe)
 931{
 932        return !RB_EMPTY_NODE(&uprobe->rb_node);
 933}
 934/*
 935 * There could be threads that have already hit the breakpoint. They
 936 * will recheck the current insn and restart if find_uprobe() fails.
 937 * See find_active_uprobe().
 938 */
 939static void delete_uprobe(struct uprobe *uprobe)
 940{
 941        if (WARN_ON(!uprobe_is_active(uprobe)))
 942                return;
 943
 944        spin_lock(&uprobes_treelock);
 945        rb_erase(&uprobe->rb_node, &uprobes_tree);
 946        spin_unlock(&uprobes_treelock);
 947        RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
 948        put_uprobe(uprobe);
 949}
 950
 951struct map_info {
 952        struct map_info *next;
 953        struct mm_struct *mm;
 954        unsigned long vaddr;
 955};
 956
 957static inline struct map_info *free_map_info(struct map_info *info)
 958{
 959        struct map_info *next = info->next;
 960        kfree(info);
 961        return next;
 962}
 963
 964static struct map_info *
 965build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
 966{
 967        unsigned long pgoff = offset >> PAGE_SHIFT;
 968        struct vm_area_struct *vma;
 969        struct map_info *curr = NULL;
 970        struct map_info *prev = NULL;
 971        struct map_info *info;
 972        int more = 0;
 973
 974 again:
 975        i_mmap_lock_read(mapping);
 976        vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 977                if (!valid_vma(vma, is_register))
 978                        continue;
 979
 980                if (!prev && !more) {
 981                        /*
 982                         * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
 983                         * reclaim. This is optimistic, no harm done if it fails.
 984                         */
 985                        prev = kmalloc(sizeof(struct map_info),
 986                                        GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 987                        if (prev)
 988                                prev->next = NULL;
 989                }
 990                if (!prev) {
 991                        more++;
 992                        continue;
 993                }
 994
 995                if (!mmget_not_zero(vma->vm_mm))
 996                        continue;
 997
 998                info = prev;
 999                prev = prev->next;
1000                info->next = curr;
1001                curr = info;
1002
1003                info->mm = vma->vm_mm;
1004                info->vaddr = offset_to_vaddr(vma, offset);
1005        }
1006        i_mmap_unlock_read(mapping);
1007
1008        if (!more)
1009                goto out;
1010
1011        prev = curr;
1012        while (curr) {
1013                mmput(curr->mm);
1014                curr = curr->next;
1015        }
1016
1017        do {
1018                info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1019                if (!info) {
1020                        curr = ERR_PTR(-ENOMEM);
1021                        goto out;
1022                }
1023                info->next = prev;
1024                prev = info;
1025        } while (--more);
1026
1027        goto again;
1028 out:
1029        while (prev)
1030                prev = free_map_info(prev);
1031        return curr;
1032}
1033
1034static int
1035register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1036{
1037        bool is_register = !!new;
1038        struct map_info *info;
1039        int err = 0;
1040
1041        percpu_down_write(&dup_mmap_sem);
1042        info = build_map_info(uprobe->inode->i_mapping,
1043                                        uprobe->offset, is_register);
1044        if (IS_ERR(info)) {
1045                err = PTR_ERR(info);
1046                goto out;
1047        }
1048
1049        while (info) {
1050                struct mm_struct *mm = info->mm;
1051                struct vm_area_struct *vma;
1052
1053                if (err && is_register)
1054                        goto free;
1055
1056                mmap_write_lock(mm);
1057                vma = find_vma(mm, info->vaddr);
1058                if (!vma || !valid_vma(vma, is_register) ||
1059                    file_inode(vma->vm_file) != uprobe->inode)
1060                        goto unlock;
1061
1062                if (vma->vm_start > info->vaddr ||
1063                    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1064                        goto unlock;
1065
1066                if (is_register) {
1067                        /* consult only the "caller", new consumer. */
1068                        if (consumer_filter(new,
1069                                        UPROBE_FILTER_REGISTER, mm))
1070                                err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1071                } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1072                        if (!filter_chain(uprobe,
1073                                        UPROBE_FILTER_UNREGISTER, mm))
1074                                err |= remove_breakpoint(uprobe, mm, info->vaddr);
1075                }
1076
1077 unlock:
1078                mmap_write_unlock(mm);
1079 free:
1080                mmput(mm);
1081                info = free_map_info(info);
1082        }
1083 out:
1084        percpu_up_write(&dup_mmap_sem);
1085        return err;
1086}
1087
1088static void
1089__uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1090{
1091        int err;
1092
1093        if (WARN_ON(!consumer_del(uprobe, uc)))
1094                return;
1095
1096        err = register_for_each_vma(uprobe, NULL);
1097        /* TODO : cant unregister? schedule a worker thread */
1098        if (!uprobe->consumers && !err)
1099                delete_uprobe(uprobe);
1100}
1101
1102/*
1103 * uprobe_unregister - unregister an already registered probe.
1104 * @inode: the file in which the probe has to be removed.
1105 * @offset: offset from the start of the file.
1106 * @uc: identify which probe if multiple probes are colocated.
1107 */
1108void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1109{
1110        struct uprobe *uprobe;
1111
1112        uprobe = find_uprobe(inode, offset);
1113        if (WARN_ON(!uprobe))
1114                return;
1115
1116        down_write(&uprobe->register_rwsem);
1117        __uprobe_unregister(uprobe, uc);
1118        up_write(&uprobe->register_rwsem);
1119        put_uprobe(uprobe);
1120}
1121EXPORT_SYMBOL_GPL(uprobe_unregister);
1122
1123/*
1124 * __uprobe_register - register a probe
1125 * @inode: the file in which the probe has to be placed.
1126 * @offset: offset from the start of the file.
1127 * @uc: information on howto handle the probe..
1128 *
1129 * Apart from the access refcount, __uprobe_register() takes a creation
1130 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1131 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1132 * tuple).  Creation refcount stops uprobe_unregister from freeing the
1133 * @uprobe even before the register operation is complete. Creation
1134 * refcount is released when the last @uc for the @uprobe
1135 * unregisters. Caller of __uprobe_register() is required to keep @inode
1136 * (and the containing mount) referenced.
1137 *
1138 * Return errno if it cannot successully install probes
1139 * else return 0 (success)
1140 */
1141static int __uprobe_register(struct inode *inode, loff_t offset,
1142                             loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1143{
1144        struct uprobe *uprobe;
1145        int ret;
1146
1147        /* Uprobe must have at least one set consumer */
1148        if (!uc->handler && !uc->ret_handler)
1149                return -EINVAL;
1150
1151        /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1152        if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1153                return -EIO;
1154        /* Racy, just to catch the obvious mistakes */
1155        if (offset > i_size_read(inode))
1156                return -EINVAL;
1157
1158        /*
1159         * This ensures that copy_from_page(), copy_to_page() and
1160         * __update_ref_ctr() can't cross page boundary.
1161         */
1162        if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1163                return -EINVAL;
1164        if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1165                return -EINVAL;
1166
1167 retry:
1168        uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1169        if (!uprobe)
1170                return -ENOMEM;
1171        if (IS_ERR(uprobe))
1172                return PTR_ERR(uprobe);
1173
1174        /*
1175         * We can race with uprobe_unregister()->delete_uprobe().
1176         * Check uprobe_is_active() and retry if it is false.
1177         */
1178        down_write(&uprobe->register_rwsem);
1179        ret = -EAGAIN;
1180        if (likely(uprobe_is_active(uprobe))) {
1181                consumer_add(uprobe, uc);
1182                ret = register_for_each_vma(uprobe, uc);
1183                if (ret)
1184                        __uprobe_unregister(uprobe, uc);
1185        }
1186        up_write(&uprobe->register_rwsem);
1187        put_uprobe(uprobe);
1188
1189        if (unlikely(ret == -EAGAIN))
1190                goto retry;
1191        return ret;
1192}
1193
1194int uprobe_register(struct inode *inode, loff_t offset,
1195                    struct uprobe_consumer *uc)
1196{
1197        return __uprobe_register(inode, offset, 0, uc);
1198}
1199EXPORT_SYMBOL_GPL(uprobe_register);
1200
1201int uprobe_register_refctr(struct inode *inode, loff_t offset,
1202                           loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1203{
1204        return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1205}
1206EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1207
1208/*
1209 * uprobe_apply - unregister an already registered probe.
1210 * @inode: the file in which the probe has to be removed.
1211 * @offset: offset from the start of the file.
1212 * @uc: consumer which wants to add more or remove some breakpoints
1213 * @add: add or remove the breakpoints
1214 */
1215int uprobe_apply(struct inode *inode, loff_t offset,
1216                        struct uprobe_consumer *uc, bool add)
1217{
1218        struct uprobe *uprobe;
1219        struct uprobe_consumer *con;
1220        int ret = -ENOENT;
1221
1222        uprobe = find_uprobe(inode, offset);
1223        if (WARN_ON(!uprobe))
1224                return ret;
1225
1226        down_write(&uprobe->register_rwsem);
1227        for (con = uprobe->consumers; con && con != uc ; con = con->next)
1228                ;
1229        if (con)
1230                ret = register_for_each_vma(uprobe, add ? uc : NULL);
1231        up_write(&uprobe->register_rwsem);
1232        put_uprobe(uprobe);
1233
1234        return ret;
1235}
1236
1237static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1238{
1239        struct vm_area_struct *vma;
1240        int err = 0;
1241
1242        mmap_read_lock(mm);
1243        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1244                unsigned long vaddr;
1245                loff_t offset;
1246
1247                if (!valid_vma(vma, false) ||
1248                    file_inode(vma->vm_file) != uprobe->inode)
1249                        continue;
1250
1251                offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1252                if (uprobe->offset <  offset ||
1253                    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1254                        continue;
1255
1256                vaddr = offset_to_vaddr(vma, uprobe->offset);
1257                err |= remove_breakpoint(uprobe, mm, vaddr);
1258        }
1259        mmap_read_unlock(mm);
1260
1261        return err;
1262}
1263
1264static struct rb_node *
1265find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1266{
1267        struct rb_node *n = uprobes_tree.rb_node;
1268
1269        while (n) {
1270                struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1271
1272                if (inode < u->inode) {
1273                        n = n->rb_left;
1274                } else if (inode > u->inode) {
1275                        n = n->rb_right;
1276                } else {
1277                        if (max < u->offset)
1278                                n = n->rb_left;
1279                        else if (min > u->offset)
1280                                n = n->rb_right;
1281                        else
1282                                break;
1283                }
1284        }
1285
1286        return n;
1287}
1288
1289/*
1290 * For a given range in vma, build a list of probes that need to be inserted.
1291 */
1292static void build_probe_list(struct inode *inode,
1293                                struct vm_area_struct *vma,
1294                                unsigned long start, unsigned long end,
1295                                struct list_head *head)
1296{
1297        loff_t min, max;
1298        struct rb_node *n, *t;
1299        struct uprobe *u;
1300
1301        INIT_LIST_HEAD(head);
1302        min = vaddr_to_offset(vma, start);
1303        max = min + (end - start) - 1;
1304
1305        spin_lock(&uprobes_treelock);
1306        n = find_node_in_range(inode, min, max);
1307        if (n) {
1308                for (t = n; t; t = rb_prev(t)) {
1309                        u = rb_entry(t, struct uprobe, rb_node);
1310                        if (u->inode != inode || u->offset < min)
1311                                break;
1312                        list_add(&u->pending_list, head);
1313                        get_uprobe(u);
1314                }
1315                for (t = n; (t = rb_next(t)); ) {
1316                        u = rb_entry(t, struct uprobe, rb_node);
1317                        if (u->inode != inode || u->offset > max)
1318                                break;
1319                        list_add(&u->pending_list, head);
1320                        get_uprobe(u);
1321                }
1322        }
1323        spin_unlock(&uprobes_treelock);
1324}
1325
1326/* @vma contains reference counter, not the probed instruction. */
1327static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1328{
1329        struct list_head *pos, *q;
1330        struct delayed_uprobe *du;
1331        unsigned long vaddr;
1332        int ret = 0, err = 0;
1333
1334        mutex_lock(&delayed_uprobe_lock);
1335        list_for_each_safe(pos, q, &delayed_uprobe_list) {
1336                du = list_entry(pos, struct delayed_uprobe, list);
1337
1338                if (du->mm != vma->vm_mm ||
1339                    !valid_ref_ctr_vma(du->uprobe, vma))
1340                        continue;
1341
1342                vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1343                ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1344                if (ret) {
1345                        update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1346                        if (!err)
1347                                err = ret;
1348                }
1349                delayed_uprobe_delete(du);
1350        }
1351        mutex_unlock(&delayed_uprobe_lock);
1352        return err;
1353}
1354
1355/*
1356 * Called from mmap_region/vma_adjust with mm->mmap_lock acquired.
1357 *
1358 * Currently we ignore all errors and always return 0, the callers
1359 * can't handle the failure anyway.
1360 */
1361int uprobe_mmap(struct vm_area_struct *vma)
1362{
1363        struct list_head tmp_list;
1364        struct uprobe *uprobe, *u;
1365        struct inode *inode;
1366
1367        if (no_uprobe_events())
1368                return 0;
1369
1370        if (vma->vm_file &&
1371            (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1372            test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1373                delayed_ref_ctr_inc(vma);
1374
1375        if (!valid_vma(vma, true))
1376                return 0;
1377
1378        inode = file_inode(vma->vm_file);
1379        if (!inode)
1380                return 0;
1381
1382        mutex_lock(uprobes_mmap_hash(inode));
1383        build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1384        /*
1385         * We can race with uprobe_unregister(), this uprobe can be already
1386         * removed. But in this case filter_chain() must return false, all
1387         * consumers have gone away.
1388         */
1389        list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1390                if (!fatal_signal_pending(current) &&
1391                    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1392                        unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1393                        install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1394                }
1395                put_uprobe(uprobe);
1396        }
1397        mutex_unlock(uprobes_mmap_hash(inode));
1398
1399        return 0;
1400}
1401
1402static bool
1403vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1404{
1405        loff_t min, max;
1406        struct inode *inode;
1407        struct rb_node *n;
1408
1409        inode = file_inode(vma->vm_file);
1410
1411        min = vaddr_to_offset(vma, start);
1412        max = min + (end - start) - 1;
1413
1414        spin_lock(&uprobes_treelock);
1415        n = find_node_in_range(inode, min, max);
1416        spin_unlock(&uprobes_treelock);
1417
1418        return !!n;
1419}
1420
1421/*
1422 * Called in context of a munmap of a vma.
1423 */
1424void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1425{
1426        if (no_uprobe_events() || !valid_vma(vma, false))
1427                return;
1428
1429        if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1430                return;
1431
1432        if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1433             test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1434                return;
1435
1436        if (vma_has_uprobes(vma, start, end))
1437                set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1438}
1439
1440/* Slot allocation for XOL */
1441static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1442{
1443        struct vm_area_struct *vma;
1444        int ret;
1445
1446        if (mmap_write_lock_killable(mm))
1447                return -EINTR;
1448
1449        if (mm->uprobes_state.xol_area) {
1450                ret = -EALREADY;
1451                goto fail;
1452        }
1453
1454        if (!area->vaddr) {
1455                /* Try to map as high as possible, this is only a hint. */
1456                area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1457                                                PAGE_SIZE, 0, 0);
1458                if (IS_ERR_VALUE(area->vaddr)) {
1459                        ret = area->vaddr;
1460                        goto fail;
1461                }
1462        }
1463
1464        vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1465                                VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1466                                &area->xol_mapping);
1467        if (IS_ERR(vma)) {
1468                ret = PTR_ERR(vma);
1469                goto fail;
1470        }
1471
1472        ret = 0;
1473        /* pairs with get_xol_area() */
1474        smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1475 fail:
1476        mmap_write_unlock(mm);
1477
1478        return ret;
1479}
1480
1481static struct xol_area *__create_xol_area(unsigned long vaddr)
1482{
1483        struct mm_struct *mm = current->mm;
1484        uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1485        struct xol_area *area;
1486
1487        area = kmalloc(sizeof(*area), GFP_KERNEL);
1488        if (unlikely(!area))
1489                goto out;
1490
1491        area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1492                               GFP_KERNEL);
1493        if (!area->bitmap)
1494                goto free_area;
1495
1496        area->xol_mapping.name = "[uprobes]";
1497        area->xol_mapping.fault = NULL;
1498        area->xol_mapping.pages = area->pages;
1499        area->pages[0] = alloc_page(GFP_HIGHUSER);
1500        if (!area->pages[0])
1501                goto free_bitmap;
1502        area->pages[1] = NULL;
1503
1504        area->vaddr = vaddr;
1505        init_waitqueue_head(&area->wq);
1506        /* Reserve the 1st slot for get_trampoline_vaddr() */
1507        set_bit(0, area->bitmap);
1508        atomic_set(&area->slot_count, 1);
1509        arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1510
1511        if (!xol_add_vma(mm, area))
1512                return area;
1513
1514        __free_page(area->pages[0]);
1515 free_bitmap:
1516        kfree(area->bitmap);
1517 free_area:
1518        kfree(area);
1519 out:
1520        return NULL;
1521}
1522
1523/*
1524 * get_xol_area - Allocate process's xol_area if necessary.
1525 * This area will be used for storing instructions for execution out of line.
1526 *
1527 * Returns the allocated area or NULL.
1528 */
1529static struct xol_area *get_xol_area(void)
1530{
1531        struct mm_struct *mm = current->mm;
1532        struct xol_area *area;
1533
1534        if (!mm->uprobes_state.xol_area)
1535                __create_xol_area(0);
1536
1537        /* Pairs with xol_add_vma() smp_store_release() */
1538        area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1539        return area;
1540}
1541
1542/*
1543 * uprobe_clear_state - Free the area allocated for slots.
1544 */
1545void uprobe_clear_state(struct mm_struct *mm)
1546{
1547        struct xol_area *area = mm->uprobes_state.xol_area;
1548
1549        mutex_lock(&delayed_uprobe_lock);
1550        delayed_uprobe_remove(NULL, mm);
1551        mutex_unlock(&delayed_uprobe_lock);
1552
1553        if (!area)
1554                return;
1555
1556        put_page(area->pages[0]);
1557        kfree(area->bitmap);
1558        kfree(area);
1559}
1560
1561void uprobe_start_dup_mmap(void)
1562{
1563        percpu_down_read(&dup_mmap_sem);
1564}
1565
1566void uprobe_end_dup_mmap(void)
1567{
1568        percpu_up_read(&dup_mmap_sem);
1569}
1570
1571void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1572{
1573        if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1574                set_bit(MMF_HAS_UPROBES, &newmm->flags);
1575                /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1576                set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1577        }
1578}
1579
1580/*
1581 *  - search for a free slot.
1582 */
1583static unsigned long xol_take_insn_slot(struct xol_area *area)
1584{
1585        unsigned long slot_addr;
1586        int slot_nr;
1587
1588        do {
1589                slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1590                if (slot_nr < UINSNS_PER_PAGE) {
1591                        if (!test_and_set_bit(slot_nr, area->bitmap))
1592                                break;
1593
1594                        slot_nr = UINSNS_PER_PAGE;
1595                        continue;
1596                }
1597                wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1598        } while (slot_nr >= UINSNS_PER_PAGE);
1599
1600        slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1601        atomic_inc(&area->slot_count);
1602
1603        return slot_addr;
1604}
1605
1606/*
1607 * xol_get_insn_slot - allocate a slot for xol.
1608 * Returns the allocated slot address or 0.
1609 */
1610static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1611{
1612        struct xol_area *area;
1613        unsigned long xol_vaddr;
1614
1615        area = get_xol_area();
1616        if (!area)
1617                return 0;
1618
1619        xol_vaddr = xol_take_insn_slot(area);
1620        if (unlikely(!xol_vaddr))
1621                return 0;
1622
1623        arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1624                              &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1625
1626        return xol_vaddr;
1627}
1628
1629/*
1630 * xol_free_insn_slot - If slot was earlier allocated by
1631 * @xol_get_insn_slot(), make the slot available for
1632 * subsequent requests.
1633 */
1634static void xol_free_insn_slot(struct task_struct *tsk)
1635{
1636        struct xol_area *area;
1637        unsigned long vma_end;
1638        unsigned long slot_addr;
1639
1640        if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1641                return;
1642
1643        slot_addr = tsk->utask->xol_vaddr;
1644        if (unlikely(!slot_addr))
1645                return;
1646
1647        area = tsk->mm->uprobes_state.xol_area;
1648        vma_end = area->vaddr + PAGE_SIZE;
1649        if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1650                unsigned long offset;
1651                int slot_nr;
1652
1653                offset = slot_addr - area->vaddr;
1654                slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1655                if (slot_nr >= UINSNS_PER_PAGE)
1656                        return;
1657
1658                clear_bit(slot_nr, area->bitmap);
1659                atomic_dec(&area->slot_count);
1660                smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1661                if (waitqueue_active(&area->wq))
1662                        wake_up(&area->wq);
1663
1664                tsk->utask->xol_vaddr = 0;
1665        }
1666}
1667
1668void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1669                                  void *src, unsigned long len)
1670{
1671        /* Initialize the slot */
1672        copy_to_page(page, vaddr, src, len);
1673
1674        /*
1675         * We probably need flush_icache_user_page() but it needs vma.
1676         * This should work on most of architectures by default. If
1677         * architecture needs to do something different it can define
1678         * its own version of the function.
1679         */
1680        flush_dcache_page(page);
1681}
1682
1683/**
1684 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1685 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1686 * instruction.
1687 * Return the address of the breakpoint instruction.
1688 */
1689unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1690{
1691        return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1692}
1693
1694unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1695{
1696        struct uprobe_task *utask = current->utask;
1697
1698        if (unlikely(utask && utask->active_uprobe))
1699                return utask->vaddr;
1700
1701        return instruction_pointer(regs);
1702}
1703
1704static struct return_instance *free_ret_instance(struct return_instance *ri)
1705{
1706        struct return_instance *next = ri->next;
1707        put_uprobe(ri->uprobe);
1708        kfree(ri);
1709        return next;
1710}
1711
1712/*
1713 * Called with no locks held.
1714 * Called in context of an exiting or an exec-ing thread.
1715 */
1716void uprobe_free_utask(struct task_struct *t)
1717{
1718        struct uprobe_task *utask = t->utask;
1719        struct return_instance *ri;
1720
1721        if (!utask)
1722                return;
1723
1724        if (utask->active_uprobe)
1725                put_uprobe(utask->active_uprobe);
1726
1727        ri = utask->return_instances;
1728        while (ri)
1729                ri = free_ret_instance(ri);
1730
1731        xol_free_insn_slot(t);
1732        kfree(utask);
1733        t->utask = NULL;
1734}
1735
1736/*
1737 * Allocate a uprobe_task object for the task if necessary.
1738 * Called when the thread hits a breakpoint.
1739 *
1740 * Returns:
1741 * - pointer to new uprobe_task on success
1742 * - NULL otherwise
1743 */
1744static struct uprobe_task *get_utask(void)
1745{
1746        if (!current->utask)
1747                current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1748        return current->utask;
1749}
1750
1751static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1752{
1753        struct uprobe_task *n_utask;
1754        struct return_instance **p, *o, *n;
1755
1756        n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1757        if (!n_utask)
1758                return -ENOMEM;
1759        t->utask = n_utask;
1760
1761        p = &n_utask->return_instances;
1762        for (o = o_utask->return_instances; o; o = o->next) {
1763                n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1764                if (!n)
1765                        return -ENOMEM;
1766
1767                *n = *o;
1768                get_uprobe(n->uprobe);
1769                n->next = NULL;
1770
1771                *p = n;
1772                p = &n->next;
1773                n_utask->depth++;
1774        }
1775
1776        return 0;
1777}
1778
1779static void uprobe_warn(struct task_struct *t, const char *msg)
1780{
1781        pr_warn("uprobe: %s:%d failed to %s\n",
1782                        current->comm, current->pid, msg);
1783}
1784
1785static void dup_xol_work(struct callback_head *work)
1786{
1787        if (current->flags & PF_EXITING)
1788                return;
1789
1790        if (!__create_xol_area(current->utask->dup_xol_addr) &&
1791                        !fatal_signal_pending(current))
1792                uprobe_warn(current, "dup xol area");
1793}
1794
1795/*
1796 * Called in context of a new clone/fork from copy_process.
1797 */
1798void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1799{
1800        struct uprobe_task *utask = current->utask;
1801        struct mm_struct *mm = current->mm;
1802        struct xol_area *area;
1803
1804        t->utask = NULL;
1805
1806        if (!utask || !utask->return_instances)
1807                return;
1808
1809        if (mm == t->mm && !(flags & CLONE_VFORK))
1810                return;
1811
1812        if (dup_utask(t, utask))
1813                return uprobe_warn(t, "dup ret instances");
1814
1815        /* The task can fork() after dup_xol_work() fails */
1816        area = mm->uprobes_state.xol_area;
1817        if (!area)
1818                return uprobe_warn(t, "dup xol area");
1819
1820        if (mm == t->mm)
1821                return;
1822
1823        t->utask->dup_xol_addr = area->vaddr;
1824        init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1825        task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1826}
1827
1828/*
1829 * Current area->vaddr notion assume the trampoline address is always
1830 * equal area->vaddr.
1831 *
1832 * Returns -1 in case the xol_area is not allocated.
1833 */
1834static unsigned long get_trampoline_vaddr(void)
1835{
1836        struct xol_area *area;
1837        unsigned long trampoline_vaddr = -1;
1838
1839        /* Pairs with xol_add_vma() smp_store_release() */
1840        area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1841        if (area)
1842                trampoline_vaddr = area->vaddr;
1843
1844        return trampoline_vaddr;
1845}
1846
1847static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1848                                        struct pt_regs *regs)
1849{
1850        struct return_instance *ri = utask->return_instances;
1851        enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1852
1853        while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1854                ri = free_ret_instance(ri);
1855                utask->depth--;
1856        }
1857        utask->return_instances = ri;
1858}
1859
1860static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1861{
1862        struct return_instance *ri;
1863        struct uprobe_task *utask;
1864        unsigned long orig_ret_vaddr, trampoline_vaddr;
1865        bool chained;
1866
1867        if (!get_xol_area())
1868                return;
1869
1870        utask = get_utask();
1871        if (!utask)
1872                return;
1873
1874        if (utask->depth >= MAX_URETPROBE_DEPTH) {
1875                printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1876                                " nestedness limit pid/tgid=%d/%d\n",
1877                                current->pid, current->tgid);
1878                return;
1879        }
1880
1881        ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1882        if (!ri)
1883                return;
1884
1885        trampoline_vaddr = get_trampoline_vaddr();
1886        orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1887        if (orig_ret_vaddr == -1)
1888                goto fail;
1889
1890        /* drop the entries invalidated by longjmp() */
1891        chained = (orig_ret_vaddr == trampoline_vaddr);
1892        cleanup_return_instances(utask, chained, regs);
1893
1894        /*
1895         * We don't want to keep trampoline address in stack, rather keep the
1896         * original return address of first caller thru all the consequent
1897         * instances. This also makes breakpoint unwrapping easier.
1898         */
1899        if (chained) {
1900                if (!utask->return_instances) {
1901                        /*
1902                         * This situation is not possible. Likely we have an
1903                         * attack from user-space.
1904                         */
1905                        uprobe_warn(current, "handle tail call");
1906                        goto fail;
1907                }
1908                orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1909        }
1910
1911        ri->uprobe = get_uprobe(uprobe);
1912        ri->func = instruction_pointer(regs);
1913        ri->stack = user_stack_pointer(regs);
1914        ri->orig_ret_vaddr = orig_ret_vaddr;
1915        ri->chained = chained;
1916
1917        utask->depth++;
1918        ri->next = utask->return_instances;
1919        utask->return_instances = ri;
1920
1921        return;
1922 fail:
1923        kfree(ri);
1924}
1925
1926/* Prepare to single-step probed instruction out of line. */
1927static int
1928pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1929{
1930        struct uprobe_task *utask;
1931        unsigned long xol_vaddr;
1932        int err;
1933
1934        utask = get_utask();
1935        if (!utask)
1936                return -ENOMEM;
1937
1938        xol_vaddr = xol_get_insn_slot(uprobe);
1939        if (!xol_vaddr)
1940                return -ENOMEM;
1941
1942        utask->xol_vaddr = xol_vaddr;
1943        utask->vaddr = bp_vaddr;
1944
1945        err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1946        if (unlikely(err)) {
1947                xol_free_insn_slot(current);
1948                return err;
1949        }
1950
1951        utask->active_uprobe = uprobe;
1952        utask->state = UTASK_SSTEP;
1953        return 0;
1954}
1955
1956/*
1957 * If we are singlestepping, then ensure this thread is not connected to
1958 * non-fatal signals until completion of singlestep.  When xol insn itself
1959 * triggers the signal,  restart the original insn even if the task is
1960 * already SIGKILL'ed (since coredump should report the correct ip).  This
1961 * is even more important if the task has a handler for SIGSEGV/etc, The
1962 * _same_ instruction should be repeated again after return from the signal
1963 * handler, and SSTEP can never finish in this case.
1964 */
1965bool uprobe_deny_signal(void)
1966{
1967        struct task_struct *t = current;
1968        struct uprobe_task *utask = t->utask;
1969
1970        if (likely(!utask || !utask->active_uprobe))
1971                return false;
1972
1973        WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1974
1975        if (task_sigpending(t)) {
1976                spin_lock_irq(&t->sighand->siglock);
1977                clear_tsk_thread_flag(t, TIF_SIGPENDING);
1978                spin_unlock_irq(&t->sighand->siglock);
1979
1980                if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1981                        utask->state = UTASK_SSTEP_TRAPPED;
1982                        set_tsk_thread_flag(t, TIF_UPROBE);
1983                }
1984        }
1985
1986        return true;
1987}
1988
1989static void mmf_recalc_uprobes(struct mm_struct *mm)
1990{
1991        struct vm_area_struct *vma;
1992
1993        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1994                if (!valid_vma(vma, false))
1995                        continue;
1996                /*
1997                 * This is not strictly accurate, we can race with
1998                 * uprobe_unregister() and see the already removed
1999                 * uprobe if delete_uprobe() was not yet called.
2000                 * Or this uprobe can be filtered out.
2001                 */
2002                if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2003                        return;
2004        }
2005
2006        clear_bit(MMF_HAS_UPROBES, &mm->flags);
2007}
2008
2009static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2010{
2011        struct page *page;
2012        uprobe_opcode_t opcode;
2013        int result;
2014
2015        if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2016                return -EINVAL;
2017
2018        pagefault_disable();
2019        result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2020        pagefault_enable();
2021
2022        if (likely(result == 0))
2023                goto out;
2024
2025        /*
2026         * The NULL 'tsk' here ensures that any faults that occur here
2027         * will not be accounted to the task.  'mm' *is* current->mm,
2028         * but we treat this as a 'remote' access since it is
2029         * essentially a kernel access to the memory.
2030         */
2031        result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
2032                        NULL, NULL);
2033        if (result < 0)
2034                return result;
2035
2036        copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2037        put_page(page);
2038 out:
2039        /* This needs to return true for any variant of the trap insn */
2040        return is_trap_insn(&opcode);
2041}
2042
2043static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2044{
2045        struct mm_struct *mm = current->mm;
2046        struct uprobe *uprobe = NULL;
2047        struct vm_area_struct *vma;
2048
2049        mmap_read_lock(mm);
2050        vma = vma_lookup(mm, bp_vaddr);
2051        if (vma) {
2052                if (valid_vma(vma, false)) {
2053                        struct inode *inode = file_inode(vma->vm_file);
2054                        loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2055
2056                        uprobe = find_uprobe(inode, offset);
2057                }
2058
2059                if (!uprobe)
2060                        *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2061        } else {
2062                *is_swbp = -EFAULT;
2063        }
2064
2065        if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2066                mmf_recalc_uprobes(mm);
2067        mmap_read_unlock(mm);
2068
2069        return uprobe;
2070}
2071
2072static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2073{
2074        struct uprobe_consumer *uc;
2075        int remove = UPROBE_HANDLER_REMOVE;
2076        bool need_prep = false; /* prepare return uprobe, when needed */
2077
2078        down_read(&uprobe->register_rwsem);
2079        for (uc = uprobe->consumers; uc; uc = uc->next) {
2080                int rc = 0;
2081
2082                if (uc->handler) {
2083                        rc = uc->handler(uc, regs);
2084                        WARN(rc & ~UPROBE_HANDLER_MASK,
2085                                "bad rc=0x%x from %ps()\n", rc, uc->handler);
2086                }
2087
2088                if (uc->ret_handler)
2089                        need_prep = true;
2090
2091                remove &= rc;
2092        }
2093
2094        if (need_prep && !remove)
2095                prepare_uretprobe(uprobe, regs); /* put bp at return */
2096
2097        if (remove && uprobe->consumers) {
2098                WARN_ON(!uprobe_is_active(uprobe));
2099                unapply_uprobe(uprobe, current->mm);
2100        }
2101        up_read(&uprobe->register_rwsem);
2102}
2103
2104static void
2105handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2106{
2107        struct uprobe *uprobe = ri->uprobe;
2108        struct uprobe_consumer *uc;
2109
2110        down_read(&uprobe->register_rwsem);
2111        for (uc = uprobe->consumers; uc; uc = uc->next) {
2112                if (uc->ret_handler)
2113                        uc->ret_handler(uc, ri->func, regs);
2114        }
2115        up_read(&uprobe->register_rwsem);
2116}
2117
2118static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2119{
2120        bool chained;
2121
2122        do {
2123                chained = ri->chained;
2124                ri = ri->next;  /* can't be NULL if chained */
2125        } while (chained);
2126
2127        return ri;
2128}
2129
2130static void handle_trampoline(struct pt_regs *regs)
2131{
2132        struct uprobe_task *utask;
2133        struct return_instance *ri, *next;
2134        bool valid;
2135
2136        utask = current->utask;
2137        if (!utask)
2138                goto sigill;
2139
2140        ri = utask->return_instances;
2141        if (!ri)
2142                goto sigill;
2143
2144        do {
2145                /*
2146                 * We should throw out the frames invalidated by longjmp().
2147                 * If this chain is valid, then the next one should be alive
2148                 * or NULL; the latter case means that nobody but ri->func
2149                 * could hit this trampoline on return. TODO: sigaltstack().
2150                 */
2151                next = find_next_ret_chain(ri);
2152                valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2153
2154                instruction_pointer_set(regs, ri->orig_ret_vaddr);
2155                do {
2156                        if (valid)
2157                                handle_uretprobe_chain(ri, regs);
2158                        ri = free_ret_instance(ri);
2159                        utask->depth--;
2160                } while (ri != next);
2161        } while (!valid);
2162
2163        utask->return_instances = ri;
2164        return;
2165
2166 sigill:
2167        uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2168        force_sig(SIGILL);
2169
2170}
2171
2172bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2173{
2174        return false;
2175}
2176
2177bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2178                                        struct pt_regs *regs)
2179{
2180        return true;
2181}
2182
2183/*
2184 * Run handler and ask thread to singlestep.
2185 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2186 */
2187static void handle_swbp(struct pt_regs *regs)
2188{
2189        struct uprobe *uprobe;
2190        unsigned long bp_vaddr;
2191        int is_swbp;
2192
2193        bp_vaddr = uprobe_get_swbp_addr(regs);
2194        if (bp_vaddr == get_trampoline_vaddr())
2195                return handle_trampoline(regs);
2196
2197        uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2198        if (!uprobe) {
2199                if (is_swbp > 0) {
2200                        /* No matching uprobe; signal SIGTRAP. */
2201                        force_sig(SIGTRAP);
2202                } else {
2203                        /*
2204                         * Either we raced with uprobe_unregister() or we can't
2205                         * access this memory. The latter is only possible if
2206                         * another thread plays with our ->mm. In both cases
2207                         * we can simply restart. If this vma was unmapped we
2208                         * can pretend this insn was not executed yet and get
2209                         * the (correct) SIGSEGV after restart.
2210                         */
2211                        instruction_pointer_set(regs, bp_vaddr);
2212                }
2213                return;
2214        }
2215
2216        /* change it in advance for ->handler() and restart */
2217        instruction_pointer_set(regs, bp_vaddr);
2218
2219        /*
2220         * TODO: move copy_insn/etc into _register and remove this hack.
2221         * After we hit the bp, _unregister + _register can install the
2222         * new and not-yet-analyzed uprobe at the same address, restart.
2223         */
2224        if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2225                goto out;
2226
2227        /*
2228         * Pairs with the smp_wmb() in prepare_uprobe().
2229         *
2230         * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2231         * we must also see the stores to &uprobe->arch performed by the
2232         * prepare_uprobe() call.
2233         */
2234        smp_rmb();
2235
2236        /* Tracing handlers use ->utask to communicate with fetch methods */
2237        if (!get_utask())
2238                goto out;
2239
2240        if (arch_uprobe_ignore(&uprobe->arch, regs))
2241                goto out;
2242
2243        handler_chain(uprobe, regs);
2244
2245        if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2246                goto out;
2247
2248        if (!pre_ssout(uprobe, regs, bp_vaddr))
2249                return;
2250
2251        /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2252out:
2253        put_uprobe(uprobe);
2254}
2255
2256/*
2257 * Perform required fix-ups and disable singlestep.
2258 * Allow pending signals to take effect.
2259 */
2260static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2261{
2262        struct uprobe *uprobe;
2263        int err = 0;
2264
2265        uprobe = utask->active_uprobe;
2266        if (utask->state == UTASK_SSTEP_ACK)
2267                err = arch_uprobe_post_xol(&uprobe->arch, regs);
2268        else if (utask->state == UTASK_SSTEP_TRAPPED)
2269                arch_uprobe_abort_xol(&uprobe->arch, regs);
2270        else
2271                WARN_ON_ONCE(1);
2272
2273        put_uprobe(uprobe);
2274        utask->active_uprobe = NULL;
2275        utask->state = UTASK_RUNNING;
2276        xol_free_insn_slot(current);
2277
2278        spin_lock_irq(&current->sighand->siglock);
2279        recalc_sigpending(); /* see uprobe_deny_signal() */
2280        spin_unlock_irq(&current->sighand->siglock);
2281
2282        if (unlikely(err)) {
2283                uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2284                force_sig(SIGILL);
2285        }
2286}
2287
2288/*
2289 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2290 * allows the thread to return from interrupt. After that handle_swbp()
2291 * sets utask->active_uprobe.
2292 *
2293 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2294 * and allows the thread to return from interrupt.
2295 *
2296 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2297 * uprobe_notify_resume().
2298 */
2299void uprobe_notify_resume(struct pt_regs *regs)
2300{
2301        struct uprobe_task *utask;
2302
2303        clear_thread_flag(TIF_UPROBE);
2304
2305        utask = current->utask;
2306        if (utask && utask->active_uprobe)
2307                handle_singlestep(utask, regs);
2308        else
2309                handle_swbp(regs);
2310}
2311
2312/*
2313 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2314 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2315 */
2316int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2317{
2318        if (!current->mm)
2319                return 0;
2320
2321        if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2322            (!current->utask || !current->utask->return_instances))
2323                return 0;
2324
2325        set_thread_flag(TIF_UPROBE);
2326        return 1;
2327}
2328
2329/*
2330 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2331 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2332 */
2333int uprobe_post_sstep_notifier(struct pt_regs *regs)
2334{
2335        struct uprobe_task *utask = current->utask;
2336
2337        if (!current->mm || !utask || !utask->active_uprobe)
2338                /* task is currently not uprobed */
2339                return 0;
2340
2341        utask->state = UTASK_SSTEP_ACK;
2342        set_thread_flag(TIF_UPROBE);
2343        return 1;
2344}
2345
2346static struct notifier_block uprobe_exception_nb = {
2347        .notifier_call          = arch_uprobe_exception_notify,
2348        .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2349};
2350
2351void __init uprobes_init(void)
2352{
2353        int i;
2354
2355        for (i = 0; i < UPROBES_HASH_SZ; i++)
2356                mutex_init(&uprobes_mmap_mutex[i]);
2357
2358        BUG_ON(register_die_notifier(&uprobe_exception_nb));
2359}
2360