linux/kernel/kexec_file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha2.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/syscalls.h>
  29#include <linux/vmalloc.h>
  30#include "kexec_internal.h"
  31
  32static int kexec_calculate_store_digests(struct kimage *image);
  33
  34/*
  35 * Currently this is the only default function that is exported as some
  36 * architectures need it to do additional handlings.
  37 * In the future, other default functions may be exported too if required.
  38 */
  39int kexec_image_probe_default(struct kimage *image, void *buf,
  40                              unsigned long buf_len)
  41{
  42        const struct kexec_file_ops * const *fops;
  43        int ret = -ENOEXEC;
  44
  45        for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  46                ret = (*fops)->probe(buf, buf_len);
  47                if (!ret) {
  48                        image->fops = *fops;
  49                        return ret;
  50                }
  51        }
  52
  53        return ret;
  54}
  55
  56/* Architectures can provide this probe function */
  57int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  58                                         unsigned long buf_len)
  59{
  60        return kexec_image_probe_default(image, buf, buf_len);
  61}
  62
  63static void *kexec_image_load_default(struct kimage *image)
  64{
  65        if (!image->fops || !image->fops->load)
  66                return ERR_PTR(-ENOEXEC);
  67
  68        return image->fops->load(image, image->kernel_buf,
  69                                 image->kernel_buf_len, image->initrd_buf,
  70                                 image->initrd_buf_len, image->cmdline_buf,
  71                                 image->cmdline_buf_len);
  72}
  73
  74void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  75{
  76        return kexec_image_load_default(image);
  77}
  78
  79int kexec_image_post_load_cleanup_default(struct kimage *image)
  80{
  81        if (!image->fops || !image->fops->cleanup)
  82                return 0;
  83
  84        return image->fops->cleanup(image->image_loader_data);
  85}
  86
  87int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  88{
  89        return kexec_image_post_load_cleanup_default(image);
  90}
  91
  92#ifdef CONFIG_KEXEC_SIG
  93static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  94                                          unsigned long buf_len)
  95{
  96        if (!image->fops || !image->fops->verify_sig) {
  97                pr_debug("kernel loader does not support signature verification.\n");
  98                return -EKEYREJECTED;
  99        }
 100
 101        return image->fops->verify_sig(buf, buf_len);
 102}
 103
 104int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 105                                        unsigned long buf_len)
 106{
 107        return kexec_image_verify_sig_default(image, buf, buf_len);
 108}
 109#endif
 110
 111/*
 112 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 113 * @pi:         Purgatory to be relocated.
 114 * @section:    Section relocations applying to.
 115 * @relsec:     Section containing RELAs.
 116 * @symtab:     Corresponding symtab.
 117 *
 118 * Return: 0 on success, negative errno on error.
 119 */
 120int __weak
 121arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 122                                 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 123{
 124        pr_err("RELA relocation unsupported.\n");
 125        return -ENOEXEC;
 126}
 127
 128/*
 129 * arch_kexec_apply_relocations - apply relocations of type REL
 130 * @pi:         Purgatory to be relocated.
 131 * @section:    Section relocations applying to.
 132 * @relsec:     Section containing RELs.
 133 * @symtab:     Corresponding symtab.
 134 *
 135 * Return: 0 on success, negative errno on error.
 136 */
 137int __weak
 138arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 139                             const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 140{
 141        pr_err("REL relocation unsupported.\n");
 142        return -ENOEXEC;
 143}
 144
 145/*
 146 * Free up memory used by kernel, initrd, and command line. This is temporary
 147 * memory allocation which is not needed any more after these buffers have
 148 * been loaded into separate segments and have been copied elsewhere.
 149 */
 150void kimage_file_post_load_cleanup(struct kimage *image)
 151{
 152        struct purgatory_info *pi = &image->purgatory_info;
 153
 154        vfree(image->kernel_buf);
 155        image->kernel_buf = NULL;
 156
 157        vfree(image->initrd_buf);
 158        image->initrd_buf = NULL;
 159
 160        kfree(image->cmdline_buf);
 161        image->cmdline_buf = NULL;
 162
 163        vfree(pi->purgatory_buf);
 164        pi->purgatory_buf = NULL;
 165
 166        vfree(pi->sechdrs);
 167        pi->sechdrs = NULL;
 168
 169#ifdef CONFIG_IMA_KEXEC
 170        vfree(image->ima_buffer);
 171        image->ima_buffer = NULL;
 172#endif /* CONFIG_IMA_KEXEC */
 173
 174        /* See if architecture has anything to cleanup post load */
 175        arch_kimage_file_post_load_cleanup(image);
 176
 177        /*
 178         * Above call should have called into bootloader to free up
 179         * any data stored in kimage->image_loader_data. It should
 180         * be ok now to free it up.
 181         */
 182        kfree(image->image_loader_data);
 183        image->image_loader_data = NULL;
 184}
 185
 186#ifdef CONFIG_KEXEC_SIG
 187static int
 188kimage_validate_signature(struct kimage *image)
 189{
 190        int ret;
 191
 192        ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 193                                           image->kernel_buf_len);
 194        if (ret) {
 195
 196                if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
 197                        pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 198                        return ret;
 199                }
 200
 201                /*
 202                 * If IMA is guaranteed to appraise a signature on the kexec
 203                 * image, permit it even if the kernel is otherwise locked
 204                 * down.
 205                 */
 206                if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 207                    security_locked_down(LOCKDOWN_KEXEC))
 208                        return -EPERM;
 209
 210                pr_debug("kernel signature verification failed (%d).\n", ret);
 211        }
 212
 213        return 0;
 214}
 215#endif
 216
 217/*
 218 * In file mode list of segments is prepared by kernel. Copy relevant
 219 * data from user space, do error checking, prepare segment list
 220 */
 221static int
 222kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 223                             const char __user *cmdline_ptr,
 224                             unsigned long cmdline_len, unsigned flags)
 225{
 226        int ret;
 227        void *ldata;
 228
 229        ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
 230                                       INT_MAX, NULL, READING_KEXEC_IMAGE);
 231        if (ret < 0)
 232                return ret;
 233        image->kernel_buf_len = ret;
 234
 235        /* Call arch image probe handlers */
 236        ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 237                                            image->kernel_buf_len);
 238        if (ret)
 239                goto out;
 240
 241#ifdef CONFIG_KEXEC_SIG
 242        ret = kimage_validate_signature(image);
 243
 244        if (ret)
 245                goto out;
 246#endif
 247        /* It is possible that there no initramfs is being loaded */
 248        if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 249                ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
 250                                               INT_MAX, NULL,
 251                                               READING_KEXEC_INITRAMFS);
 252                if (ret < 0)
 253                        goto out;
 254                image->initrd_buf_len = ret;
 255                ret = 0;
 256        }
 257
 258        if (cmdline_len) {
 259                image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 260                if (IS_ERR(image->cmdline_buf)) {
 261                        ret = PTR_ERR(image->cmdline_buf);
 262                        image->cmdline_buf = NULL;
 263                        goto out;
 264                }
 265
 266                image->cmdline_buf_len = cmdline_len;
 267
 268                /* command line should be a string with last byte null */
 269                if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 270                        ret = -EINVAL;
 271                        goto out;
 272                }
 273
 274                ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 275                                  image->cmdline_buf_len - 1);
 276        }
 277
 278        /* IMA needs to pass the measurement list to the next kernel. */
 279        ima_add_kexec_buffer(image);
 280
 281        /* Call arch image load handlers */
 282        ldata = arch_kexec_kernel_image_load(image);
 283
 284        if (IS_ERR(ldata)) {
 285                ret = PTR_ERR(ldata);
 286                goto out;
 287        }
 288
 289        image->image_loader_data = ldata;
 290out:
 291        /* In case of error, free up all allocated memory in this function */
 292        if (ret)
 293                kimage_file_post_load_cleanup(image);
 294        return ret;
 295}
 296
 297static int
 298kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 299                       int initrd_fd, const char __user *cmdline_ptr,
 300                       unsigned long cmdline_len, unsigned long flags)
 301{
 302        int ret;
 303        struct kimage *image;
 304        bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 305
 306        image = do_kimage_alloc_init();
 307        if (!image)
 308                return -ENOMEM;
 309
 310        image->file_mode = 1;
 311
 312        if (kexec_on_panic) {
 313                /* Enable special crash kernel control page alloc policy. */
 314                image->control_page = crashk_res.start;
 315                image->type = KEXEC_TYPE_CRASH;
 316        }
 317
 318        ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 319                                           cmdline_ptr, cmdline_len, flags);
 320        if (ret)
 321                goto out_free_image;
 322
 323        ret = sanity_check_segment_list(image);
 324        if (ret)
 325                goto out_free_post_load_bufs;
 326
 327        ret = -ENOMEM;
 328        image->control_code_page = kimage_alloc_control_pages(image,
 329                                           get_order(KEXEC_CONTROL_PAGE_SIZE));
 330        if (!image->control_code_page) {
 331                pr_err("Could not allocate control_code_buffer\n");
 332                goto out_free_post_load_bufs;
 333        }
 334
 335        if (!kexec_on_panic) {
 336                image->swap_page = kimage_alloc_control_pages(image, 0);
 337                if (!image->swap_page) {
 338                        pr_err("Could not allocate swap buffer\n");
 339                        goto out_free_control_pages;
 340                }
 341        }
 342
 343        *rimage = image;
 344        return 0;
 345out_free_control_pages:
 346        kimage_free_page_list(&image->control_pages);
 347out_free_post_load_bufs:
 348        kimage_file_post_load_cleanup(image);
 349out_free_image:
 350        kfree(image);
 351        return ret;
 352}
 353
 354SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 355                unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 356                unsigned long, flags)
 357{
 358        int ret = 0, i;
 359        struct kimage **dest_image, *image;
 360
 361        /* We only trust the superuser with rebooting the system. */
 362        if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 363                return -EPERM;
 364
 365        /* Make sure we have a legal set of flags */
 366        if (flags != (flags & KEXEC_FILE_FLAGS))
 367                return -EINVAL;
 368
 369        image = NULL;
 370
 371        if (!mutex_trylock(&kexec_mutex))
 372                return -EBUSY;
 373
 374        dest_image = &kexec_image;
 375        if (flags & KEXEC_FILE_ON_CRASH) {
 376                dest_image = &kexec_crash_image;
 377                if (kexec_crash_image)
 378                        arch_kexec_unprotect_crashkres();
 379        }
 380
 381        if (flags & KEXEC_FILE_UNLOAD)
 382                goto exchange;
 383
 384        /*
 385         * In case of crash, new kernel gets loaded in reserved region. It is
 386         * same memory where old crash kernel might be loaded. Free any
 387         * current crash dump kernel before we corrupt it.
 388         */
 389        if (flags & KEXEC_FILE_ON_CRASH)
 390                kimage_free(xchg(&kexec_crash_image, NULL));
 391
 392        ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 393                                     cmdline_len, flags);
 394        if (ret)
 395                goto out;
 396
 397        ret = machine_kexec_prepare(image);
 398        if (ret)
 399                goto out;
 400
 401        /*
 402         * Some architecture(like S390) may touch the crash memory before
 403         * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 404         */
 405        ret = kimage_crash_copy_vmcoreinfo(image);
 406        if (ret)
 407                goto out;
 408
 409        ret = kexec_calculate_store_digests(image);
 410        if (ret)
 411                goto out;
 412
 413        for (i = 0; i < image->nr_segments; i++) {
 414                struct kexec_segment *ksegment;
 415
 416                ksegment = &image->segment[i];
 417                pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 418                         i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 419                         ksegment->memsz);
 420
 421                ret = kimage_load_segment(image, &image->segment[i]);
 422                if (ret)
 423                        goto out;
 424        }
 425
 426        kimage_terminate(image);
 427
 428        ret = machine_kexec_post_load(image);
 429        if (ret)
 430                goto out;
 431
 432        /*
 433         * Free up any temporary buffers allocated which are not needed
 434         * after image has been loaded
 435         */
 436        kimage_file_post_load_cleanup(image);
 437exchange:
 438        image = xchg(dest_image, image);
 439out:
 440        if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 441                arch_kexec_protect_crashkres();
 442
 443        mutex_unlock(&kexec_mutex);
 444        kimage_free(image);
 445        return ret;
 446}
 447
 448static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 449                                    struct kexec_buf *kbuf)
 450{
 451        struct kimage *image = kbuf->image;
 452        unsigned long temp_start, temp_end;
 453
 454        temp_end = min(end, kbuf->buf_max);
 455        temp_start = temp_end - kbuf->memsz;
 456
 457        do {
 458                /* align down start */
 459                temp_start = temp_start & (~(kbuf->buf_align - 1));
 460
 461                if (temp_start < start || temp_start < kbuf->buf_min)
 462                        return 0;
 463
 464                temp_end = temp_start + kbuf->memsz - 1;
 465
 466                /*
 467                 * Make sure this does not conflict with any of existing
 468                 * segments
 469                 */
 470                if (kimage_is_destination_range(image, temp_start, temp_end)) {
 471                        temp_start = temp_start - PAGE_SIZE;
 472                        continue;
 473                }
 474
 475                /* We found a suitable memory range */
 476                break;
 477        } while (1);
 478
 479        /* If we are here, we found a suitable memory range */
 480        kbuf->mem = temp_start;
 481
 482        /* Success, stop navigating through remaining System RAM ranges */
 483        return 1;
 484}
 485
 486static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 487                                     struct kexec_buf *kbuf)
 488{
 489        struct kimage *image = kbuf->image;
 490        unsigned long temp_start, temp_end;
 491
 492        temp_start = max(start, kbuf->buf_min);
 493
 494        do {
 495                temp_start = ALIGN(temp_start, kbuf->buf_align);
 496                temp_end = temp_start + kbuf->memsz - 1;
 497
 498                if (temp_end > end || temp_end > kbuf->buf_max)
 499                        return 0;
 500                /*
 501                 * Make sure this does not conflict with any of existing
 502                 * segments
 503                 */
 504                if (kimage_is_destination_range(image, temp_start, temp_end)) {
 505                        temp_start = temp_start + PAGE_SIZE;
 506                        continue;
 507                }
 508
 509                /* We found a suitable memory range */
 510                break;
 511        } while (1);
 512
 513        /* If we are here, we found a suitable memory range */
 514        kbuf->mem = temp_start;
 515
 516        /* Success, stop navigating through remaining System RAM ranges */
 517        return 1;
 518}
 519
 520static int locate_mem_hole_callback(struct resource *res, void *arg)
 521{
 522        struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 523        u64 start = res->start, end = res->end;
 524        unsigned long sz = end - start + 1;
 525
 526        /* Returning 0 will take to next memory range */
 527
 528        /* Don't use memory that will be detected and handled by a driver. */
 529        if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
 530                return 0;
 531
 532        if (sz < kbuf->memsz)
 533                return 0;
 534
 535        if (end < kbuf->buf_min || start > kbuf->buf_max)
 536                return 0;
 537
 538        /*
 539         * Allocate memory top down with-in ram range. Otherwise bottom up
 540         * allocation.
 541         */
 542        if (kbuf->top_down)
 543                return locate_mem_hole_top_down(start, end, kbuf);
 544        return locate_mem_hole_bottom_up(start, end, kbuf);
 545}
 546
 547#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 548static int kexec_walk_memblock(struct kexec_buf *kbuf,
 549                               int (*func)(struct resource *, void *))
 550{
 551        int ret = 0;
 552        u64 i;
 553        phys_addr_t mstart, mend;
 554        struct resource res = { };
 555
 556        if (kbuf->image->type == KEXEC_TYPE_CRASH)
 557                return func(&crashk_res, kbuf);
 558
 559        if (kbuf->top_down) {
 560                for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 561                                                &mstart, &mend, NULL) {
 562                        /*
 563                         * In memblock, end points to the first byte after the
 564                         * range while in kexec, end points to the last byte
 565                         * in the range.
 566                         */
 567                        res.start = mstart;
 568                        res.end = mend - 1;
 569                        ret = func(&res, kbuf);
 570                        if (ret)
 571                                break;
 572                }
 573        } else {
 574                for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 575                                        &mstart, &mend, NULL) {
 576                        /*
 577                         * In memblock, end points to the first byte after the
 578                         * range while in kexec, end points to the last byte
 579                         * in the range.
 580                         */
 581                        res.start = mstart;
 582                        res.end = mend - 1;
 583                        ret = func(&res, kbuf);
 584                        if (ret)
 585                                break;
 586                }
 587        }
 588
 589        return ret;
 590}
 591#else
 592static int kexec_walk_memblock(struct kexec_buf *kbuf,
 593                               int (*func)(struct resource *, void *))
 594{
 595        return 0;
 596}
 597#endif
 598
 599/**
 600 * kexec_walk_resources - call func(data) on free memory regions
 601 * @kbuf:       Context info for the search. Also passed to @func.
 602 * @func:       Function to call for each memory region.
 603 *
 604 * Return: The memory walk will stop when func returns a non-zero value
 605 * and that value will be returned. If all free regions are visited without
 606 * func returning non-zero, then zero will be returned.
 607 */
 608static int kexec_walk_resources(struct kexec_buf *kbuf,
 609                                int (*func)(struct resource *, void *))
 610{
 611        if (kbuf->image->type == KEXEC_TYPE_CRASH)
 612                return walk_iomem_res_desc(crashk_res.desc,
 613                                           IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 614                                           crashk_res.start, crashk_res.end,
 615                                           kbuf, func);
 616        else
 617                return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 618}
 619
 620/**
 621 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 622 * @kbuf:       Parameters for the memory search.
 623 *
 624 * On success, kbuf->mem will have the start address of the memory region found.
 625 *
 626 * Return: 0 on success, negative errno on error.
 627 */
 628int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 629{
 630        int ret;
 631
 632        /* Arch knows where to place */
 633        if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 634                return 0;
 635
 636        if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 637                ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 638        else
 639                ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 640
 641        return ret == 1 ? 0 : -EADDRNOTAVAIL;
 642}
 643
 644/**
 645 * arch_kexec_locate_mem_hole - Find free memory to place the segments.
 646 * @kbuf:                       Parameters for the memory search.
 647 *
 648 * On success, kbuf->mem will have the start address of the memory region found.
 649 *
 650 * Return: 0 on success, negative errno on error.
 651 */
 652int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
 653{
 654        return kexec_locate_mem_hole(kbuf);
 655}
 656
 657/**
 658 * kexec_add_buffer - place a buffer in a kexec segment
 659 * @kbuf:       Buffer contents and memory parameters.
 660 *
 661 * This function assumes that kexec_mutex is held.
 662 * On successful return, @kbuf->mem will have the physical address of
 663 * the buffer in memory.
 664 *
 665 * Return: 0 on success, negative errno on error.
 666 */
 667int kexec_add_buffer(struct kexec_buf *kbuf)
 668{
 669        struct kexec_segment *ksegment;
 670        int ret;
 671
 672        /* Currently adding segment this way is allowed only in file mode */
 673        if (!kbuf->image->file_mode)
 674                return -EINVAL;
 675
 676        if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 677                return -EINVAL;
 678
 679        /*
 680         * Make sure we are not trying to add buffer after allocating
 681         * control pages. All segments need to be placed first before
 682         * any control pages are allocated. As control page allocation
 683         * logic goes through list of segments to make sure there are
 684         * no destination overlaps.
 685         */
 686        if (!list_empty(&kbuf->image->control_pages)) {
 687                WARN_ON(1);
 688                return -EINVAL;
 689        }
 690
 691        /* Ensure minimum alignment needed for segments. */
 692        kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 693        kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 694
 695        /* Walk the RAM ranges and allocate a suitable range for the buffer */
 696        ret = arch_kexec_locate_mem_hole(kbuf);
 697        if (ret)
 698                return ret;
 699
 700        /* Found a suitable memory range */
 701        ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 702        ksegment->kbuf = kbuf->buffer;
 703        ksegment->bufsz = kbuf->bufsz;
 704        ksegment->mem = kbuf->mem;
 705        ksegment->memsz = kbuf->memsz;
 706        kbuf->image->nr_segments++;
 707        return 0;
 708}
 709
 710/* Calculate and store the digest of segments */
 711static int kexec_calculate_store_digests(struct kimage *image)
 712{
 713        struct crypto_shash *tfm;
 714        struct shash_desc *desc;
 715        int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 716        size_t desc_size, nullsz;
 717        char *digest;
 718        void *zero_buf;
 719        struct kexec_sha_region *sha_regions;
 720        struct purgatory_info *pi = &image->purgatory_info;
 721
 722        if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 723                return 0;
 724
 725        zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 726        zero_buf_sz = PAGE_SIZE;
 727
 728        tfm = crypto_alloc_shash("sha256", 0, 0);
 729        if (IS_ERR(tfm)) {
 730                ret = PTR_ERR(tfm);
 731                goto out;
 732        }
 733
 734        desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 735        desc = kzalloc(desc_size, GFP_KERNEL);
 736        if (!desc) {
 737                ret = -ENOMEM;
 738                goto out_free_tfm;
 739        }
 740
 741        sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 742        sha_regions = vzalloc(sha_region_sz);
 743        if (!sha_regions) {
 744                ret = -ENOMEM;
 745                goto out_free_desc;
 746        }
 747
 748        desc->tfm   = tfm;
 749
 750        ret = crypto_shash_init(desc);
 751        if (ret < 0)
 752                goto out_free_sha_regions;
 753
 754        digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 755        if (!digest) {
 756                ret = -ENOMEM;
 757                goto out_free_sha_regions;
 758        }
 759
 760        for (j = i = 0; i < image->nr_segments; i++) {
 761                struct kexec_segment *ksegment;
 762
 763                ksegment = &image->segment[i];
 764                /*
 765                 * Skip purgatory as it will be modified once we put digest
 766                 * info in purgatory.
 767                 */
 768                if (ksegment->kbuf == pi->purgatory_buf)
 769                        continue;
 770
 771                ret = crypto_shash_update(desc, ksegment->kbuf,
 772                                          ksegment->bufsz);
 773                if (ret)
 774                        break;
 775
 776                /*
 777                 * Assume rest of the buffer is filled with zero and
 778                 * update digest accordingly.
 779                 */
 780                nullsz = ksegment->memsz - ksegment->bufsz;
 781                while (nullsz) {
 782                        unsigned long bytes = nullsz;
 783
 784                        if (bytes > zero_buf_sz)
 785                                bytes = zero_buf_sz;
 786                        ret = crypto_shash_update(desc, zero_buf, bytes);
 787                        if (ret)
 788                                break;
 789                        nullsz -= bytes;
 790                }
 791
 792                if (ret)
 793                        break;
 794
 795                sha_regions[j].start = ksegment->mem;
 796                sha_regions[j].len = ksegment->memsz;
 797                j++;
 798        }
 799
 800        if (!ret) {
 801                ret = crypto_shash_final(desc, digest);
 802                if (ret)
 803                        goto out_free_digest;
 804                ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 805                                                     sha_regions, sha_region_sz, 0);
 806                if (ret)
 807                        goto out_free_digest;
 808
 809                ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 810                                                     digest, SHA256_DIGEST_SIZE, 0);
 811                if (ret)
 812                        goto out_free_digest;
 813        }
 814
 815out_free_digest:
 816        kfree(digest);
 817out_free_sha_regions:
 818        vfree(sha_regions);
 819out_free_desc:
 820        kfree(desc);
 821out_free_tfm:
 822        kfree(tfm);
 823out:
 824        return ret;
 825}
 826
 827#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 828/*
 829 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 830 * @pi:         Purgatory to be loaded.
 831 * @kbuf:       Buffer to setup.
 832 *
 833 * Allocates the memory needed for the buffer. Caller is responsible to free
 834 * the memory after use.
 835 *
 836 * Return: 0 on success, negative errno on error.
 837 */
 838static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 839                                      struct kexec_buf *kbuf)
 840{
 841        const Elf_Shdr *sechdrs;
 842        unsigned long bss_align;
 843        unsigned long bss_sz;
 844        unsigned long align;
 845        int i, ret;
 846
 847        sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 848        kbuf->buf_align = bss_align = 1;
 849        kbuf->bufsz = bss_sz = 0;
 850
 851        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 852                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 853                        continue;
 854
 855                align = sechdrs[i].sh_addralign;
 856                if (sechdrs[i].sh_type != SHT_NOBITS) {
 857                        if (kbuf->buf_align < align)
 858                                kbuf->buf_align = align;
 859                        kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 860                        kbuf->bufsz += sechdrs[i].sh_size;
 861                } else {
 862                        if (bss_align < align)
 863                                bss_align = align;
 864                        bss_sz = ALIGN(bss_sz, align);
 865                        bss_sz += sechdrs[i].sh_size;
 866                }
 867        }
 868        kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 869        kbuf->memsz = kbuf->bufsz + bss_sz;
 870        if (kbuf->buf_align < bss_align)
 871                kbuf->buf_align = bss_align;
 872
 873        kbuf->buffer = vzalloc(kbuf->bufsz);
 874        if (!kbuf->buffer)
 875                return -ENOMEM;
 876        pi->purgatory_buf = kbuf->buffer;
 877
 878        ret = kexec_add_buffer(kbuf);
 879        if (ret)
 880                goto out;
 881
 882        return 0;
 883out:
 884        vfree(pi->purgatory_buf);
 885        pi->purgatory_buf = NULL;
 886        return ret;
 887}
 888
 889/*
 890 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 891 * @pi:         Purgatory to be loaded.
 892 * @kbuf:       Buffer prepared to store purgatory.
 893 *
 894 * Allocates the memory needed for the buffer. Caller is responsible to free
 895 * the memory after use.
 896 *
 897 * Return: 0 on success, negative errno on error.
 898 */
 899static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 900                                         struct kexec_buf *kbuf)
 901{
 902        unsigned long bss_addr;
 903        unsigned long offset;
 904        Elf_Shdr *sechdrs;
 905        int i;
 906
 907        /*
 908         * The section headers in kexec_purgatory are read-only. In order to
 909         * have them modifiable make a temporary copy.
 910         */
 911        sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 912        if (!sechdrs)
 913                return -ENOMEM;
 914        memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 915               pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 916        pi->sechdrs = sechdrs;
 917
 918        offset = 0;
 919        bss_addr = kbuf->mem + kbuf->bufsz;
 920        kbuf->image->start = pi->ehdr->e_entry;
 921
 922        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 923                unsigned long align;
 924                void *src, *dst;
 925
 926                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 927                        continue;
 928
 929                align = sechdrs[i].sh_addralign;
 930                if (sechdrs[i].sh_type == SHT_NOBITS) {
 931                        bss_addr = ALIGN(bss_addr, align);
 932                        sechdrs[i].sh_addr = bss_addr;
 933                        bss_addr += sechdrs[i].sh_size;
 934                        continue;
 935                }
 936
 937                offset = ALIGN(offset, align);
 938                if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 939                    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 940                    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 941                                         + sechdrs[i].sh_size)) {
 942                        kbuf->image->start -= sechdrs[i].sh_addr;
 943                        kbuf->image->start += kbuf->mem + offset;
 944                }
 945
 946                src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 947                dst = pi->purgatory_buf + offset;
 948                memcpy(dst, src, sechdrs[i].sh_size);
 949
 950                sechdrs[i].sh_addr = kbuf->mem + offset;
 951                sechdrs[i].sh_offset = offset;
 952                offset += sechdrs[i].sh_size;
 953        }
 954
 955        return 0;
 956}
 957
 958static int kexec_apply_relocations(struct kimage *image)
 959{
 960        int i, ret;
 961        struct purgatory_info *pi = &image->purgatory_info;
 962        const Elf_Shdr *sechdrs;
 963
 964        sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 965
 966        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 967                const Elf_Shdr *relsec;
 968                const Elf_Shdr *symtab;
 969                Elf_Shdr *section;
 970
 971                relsec = sechdrs + i;
 972
 973                if (relsec->sh_type != SHT_RELA &&
 974                    relsec->sh_type != SHT_REL)
 975                        continue;
 976
 977                /*
 978                 * For section of type SHT_RELA/SHT_REL,
 979                 * ->sh_link contains section header index of associated
 980                 * symbol table. And ->sh_info contains section header
 981                 * index of section to which relocations apply.
 982                 */
 983                if (relsec->sh_info >= pi->ehdr->e_shnum ||
 984                    relsec->sh_link >= pi->ehdr->e_shnum)
 985                        return -ENOEXEC;
 986
 987                section = pi->sechdrs + relsec->sh_info;
 988                symtab = sechdrs + relsec->sh_link;
 989
 990                if (!(section->sh_flags & SHF_ALLOC))
 991                        continue;
 992
 993                /*
 994                 * symtab->sh_link contain section header index of associated
 995                 * string table.
 996                 */
 997                if (symtab->sh_link >= pi->ehdr->e_shnum)
 998                        /* Invalid section number? */
 999                        continue;
1000
1001                /*
1002                 * Respective architecture needs to provide support for applying
1003                 * relocations of type SHT_RELA/SHT_REL.
1004                 */
1005                if (relsec->sh_type == SHT_RELA)
1006                        ret = arch_kexec_apply_relocations_add(pi, section,
1007                                                               relsec, symtab);
1008                else if (relsec->sh_type == SHT_REL)
1009                        ret = arch_kexec_apply_relocations(pi, section,
1010                                                           relsec, symtab);
1011                if (ret)
1012                        return ret;
1013        }
1014
1015        return 0;
1016}
1017
1018/*
1019 * kexec_load_purgatory - Load and relocate the purgatory object.
1020 * @image:      Image to add the purgatory to.
1021 * @kbuf:       Memory parameters to use.
1022 *
1023 * Allocates the memory needed for image->purgatory_info.sechdrs and
1024 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1025 * to free the memory after use.
1026 *
1027 * Return: 0 on success, negative errno on error.
1028 */
1029int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1030{
1031        struct purgatory_info *pi = &image->purgatory_info;
1032        int ret;
1033
1034        if (kexec_purgatory_size <= 0)
1035                return -EINVAL;
1036
1037        pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1038
1039        ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1040        if (ret)
1041                return ret;
1042
1043        ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1044        if (ret)
1045                goto out_free_kbuf;
1046
1047        ret = kexec_apply_relocations(image);
1048        if (ret)
1049                goto out;
1050
1051        return 0;
1052out:
1053        vfree(pi->sechdrs);
1054        pi->sechdrs = NULL;
1055out_free_kbuf:
1056        vfree(pi->purgatory_buf);
1057        pi->purgatory_buf = NULL;
1058        return ret;
1059}
1060
1061/*
1062 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1063 * @pi:         Purgatory to search in.
1064 * @name:       Name of the symbol.
1065 *
1066 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1067 */
1068static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1069                                                  const char *name)
1070{
1071        const Elf_Shdr *sechdrs;
1072        const Elf_Ehdr *ehdr;
1073        const Elf_Sym *syms;
1074        const char *strtab;
1075        int i, k;
1076
1077        if (!pi->ehdr)
1078                return NULL;
1079
1080        ehdr = pi->ehdr;
1081        sechdrs = (void *)ehdr + ehdr->e_shoff;
1082
1083        for (i = 0; i < ehdr->e_shnum; i++) {
1084                if (sechdrs[i].sh_type != SHT_SYMTAB)
1085                        continue;
1086
1087                if (sechdrs[i].sh_link >= ehdr->e_shnum)
1088                        /* Invalid strtab section number */
1089                        continue;
1090                strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1091                syms = (void *)ehdr + sechdrs[i].sh_offset;
1092
1093                /* Go through symbols for a match */
1094                for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1095                        if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1096                                continue;
1097
1098                        if (strcmp(strtab + syms[k].st_name, name) != 0)
1099                                continue;
1100
1101                        if (syms[k].st_shndx == SHN_UNDEF ||
1102                            syms[k].st_shndx >= ehdr->e_shnum) {
1103                                pr_debug("Symbol: %s has bad section index %d.\n",
1104                                                name, syms[k].st_shndx);
1105                                return NULL;
1106                        }
1107
1108                        /* Found the symbol we are looking for */
1109                        return &syms[k];
1110                }
1111        }
1112
1113        return NULL;
1114}
1115
1116void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1117{
1118        struct purgatory_info *pi = &image->purgatory_info;
1119        const Elf_Sym *sym;
1120        Elf_Shdr *sechdr;
1121
1122        sym = kexec_purgatory_find_symbol(pi, name);
1123        if (!sym)
1124                return ERR_PTR(-EINVAL);
1125
1126        sechdr = &pi->sechdrs[sym->st_shndx];
1127
1128        /*
1129         * Returns the address where symbol will finally be loaded after
1130         * kexec_load_segment()
1131         */
1132        return (void *)(sechdr->sh_addr + sym->st_value);
1133}
1134
1135/*
1136 * Get or set value of a symbol. If "get_value" is true, symbol value is
1137 * returned in buf otherwise symbol value is set based on value in buf.
1138 */
1139int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1140                                   void *buf, unsigned int size, bool get_value)
1141{
1142        struct purgatory_info *pi = &image->purgatory_info;
1143        const Elf_Sym *sym;
1144        Elf_Shdr *sec;
1145        char *sym_buf;
1146
1147        sym = kexec_purgatory_find_symbol(pi, name);
1148        if (!sym)
1149                return -EINVAL;
1150
1151        if (sym->st_size != size) {
1152                pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1153                       name, (unsigned long)sym->st_size, size);
1154                return -EINVAL;
1155        }
1156
1157        sec = pi->sechdrs + sym->st_shndx;
1158
1159        if (sec->sh_type == SHT_NOBITS) {
1160                pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1161                       get_value ? "get" : "set");
1162                return -EINVAL;
1163        }
1164
1165        sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1166
1167        if (get_value)
1168                memcpy((void *)buf, sym_buf, size);
1169        else
1170                memcpy((void *)sym_buf, buf, size);
1171
1172        return 0;
1173}
1174#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1175
1176int crash_exclude_mem_range(struct crash_mem *mem,
1177                            unsigned long long mstart, unsigned long long mend)
1178{
1179        int i, j;
1180        unsigned long long start, end, p_start, p_end;
1181        struct crash_mem_range temp_range = {0, 0};
1182
1183        for (i = 0; i < mem->nr_ranges; i++) {
1184                start = mem->ranges[i].start;
1185                end = mem->ranges[i].end;
1186                p_start = mstart;
1187                p_end = mend;
1188
1189                if (mstart > end || mend < start)
1190                        continue;
1191
1192                /* Truncate any area outside of range */
1193                if (mstart < start)
1194                        p_start = start;
1195                if (mend > end)
1196                        p_end = end;
1197
1198                /* Found completely overlapping range */
1199                if (p_start == start && p_end == end) {
1200                        mem->ranges[i].start = 0;
1201                        mem->ranges[i].end = 0;
1202                        if (i < mem->nr_ranges - 1) {
1203                                /* Shift rest of the ranges to left */
1204                                for (j = i; j < mem->nr_ranges - 1; j++) {
1205                                        mem->ranges[j].start =
1206                                                mem->ranges[j+1].start;
1207                                        mem->ranges[j].end =
1208                                                        mem->ranges[j+1].end;
1209                                }
1210
1211                                /*
1212                                 * Continue to check if there are another overlapping ranges
1213                                 * from the current position because of shifting the above
1214                                 * mem ranges.
1215                                 */
1216                                i--;
1217                                mem->nr_ranges--;
1218                                continue;
1219                        }
1220                        mem->nr_ranges--;
1221                        return 0;
1222                }
1223
1224                if (p_start > start && p_end < end) {
1225                        /* Split original range */
1226                        mem->ranges[i].end = p_start - 1;
1227                        temp_range.start = p_end + 1;
1228                        temp_range.end = end;
1229                } else if (p_start != start)
1230                        mem->ranges[i].end = p_start - 1;
1231                else
1232                        mem->ranges[i].start = p_end + 1;
1233                break;
1234        }
1235
1236        /* If a split happened, add the split to array */
1237        if (!temp_range.end)
1238                return 0;
1239
1240        /* Split happened */
1241        if (i == mem->max_nr_ranges - 1)
1242                return -ENOMEM;
1243
1244        /* Location where new range should go */
1245        j = i + 1;
1246        if (j < mem->nr_ranges) {
1247                /* Move over all ranges one slot towards the end */
1248                for (i = mem->nr_ranges - 1; i >= j; i--)
1249                        mem->ranges[i + 1] = mem->ranges[i];
1250        }
1251
1252        mem->ranges[j].start = temp_range.start;
1253        mem->ranges[j].end = temp_range.end;
1254        mem->nr_ranges++;
1255        return 0;
1256}
1257
1258int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1259                          void **addr, unsigned long *sz)
1260{
1261        Elf64_Ehdr *ehdr;
1262        Elf64_Phdr *phdr;
1263        unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1264        unsigned char *buf;
1265        unsigned int cpu, i;
1266        unsigned long long notes_addr;
1267        unsigned long mstart, mend;
1268
1269        /* extra phdr for vmcoreinfo ELF note */
1270        nr_phdr = nr_cpus + 1;
1271        nr_phdr += mem->nr_ranges;
1272
1273        /*
1274         * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1275         * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1276         * I think this is required by tools like gdb. So same physical
1277         * memory will be mapped in two ELF headers. One will contain kernel
1278         * text virtual addresses and other will have __va(physical) addresses.
1279         */
1280
1281        nr_phdr++;
1282        elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1283        elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1284
1285        buf = vzalloc(elf_sz);
1286        if (!buf)
1287                return -ENOMEM;
1288
1289        ehdr = (Elf64_Ehdr *)buf;
1290        phdr = (Elf64_Phdr *)(ehdr + 1);
1291        memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1292        ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1293        ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1294        ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1295        ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1296        memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1297        ehdr->e_type = ET_CORE;
1298        ehdr->e_machine = ELF_ARCH;
1299        ehdr->e_version = EV_CURRENT;
1300        ehdr->e_phoff = sizeof(Elf64_Ehdr);
1301        ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1302        ehdr->e_phentsize = sizeof(Elf64_Phdr);
1303
1304        /* Prepare one phdr of type PT_NOTE for each present CPU */
1305        for_each_present_cpu(cpu) {
1306                phdr->p_type = PT_NOTE;
1307                notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1308                phdr->p_offset = phdr->p_paddr = notes_addr;
1309                phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1310                (ehdr->e_phnum)++;
1311                phdr++;
1312        }
1313
1314        /* Prepare one PT_NOTE header for vmcoreinfo */
1315        phdr->p_type = PT_NOTE;
1316        phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1317        phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1318        (ehdr->e_phnum)++;
1319        phdr++;
1320
1321        /* Prepare PT_LOAD type program header for kernel text region */
1322        if (kernel_map) {
1323                phdr->p_type = PT_LOAD;
1324                phdr->p_flags = PF_R|PF_W|PF_X;
1325                phdr->p_vaddr = (unsigned long) _text;
1326                phdr->p_filesz = phdr->p_memsz = _end - _text;
1327                phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1328                ehdr->e_phnum++;
1329                phdr++;
1330        }
1331
1332        /* Go through all the ranges in mem->ranges[] and prepare phdr */
1333        for (i = 0; i < mem->nr_ranges; i++) {
1334                mstart = mem->ranges[i].start;
1335                mend = mem->ranges[i].end;
1336
1337                phdr->p_type = PT_LOAD;
1338                phdr->p_flags = PF_R|PF_W|PF_X;
1339                phdr->p_offset  = mstart;
1340
1341                phdr->p_paddr = mstart;
1342                phdr->p_vaddr = (unsigned long) __va(mstart);
1343                phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1344                phdr->p_align = 0;
1345                ehdr->e_phnum++;
1346                pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1347                        phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1348                        ehdr->e_phnum, phdr->p_offset);
1349                phdr++;
1350        }
1351
1352        *addr = buf;
1353        *sz = elf_sz;
1354        return 0;
1355}
1356