linux/kernel/kthread.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Kernel thread helper functions.
   3 *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
   4 *   Copyright (C) 2009 Red Hat, Inc.
   5 *
   6 * Creation is done via kthreadd, so that we get a clean environment
   7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
   8 * etc.).
   9 */
  10#include <uapi/linux/sched/types.h>
  11#include <linux/mm.h>
  12#include <linux/mmu_context.h>
  13#include <linux/sched.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/task.h>
  16#include <linux/kthread.h>
  17#include <linux/completion.h>
  18#include <linux/err.h>
  19#include <linux/cgroup.h>
  20#include <linux/cpuset.h>
  21#include <linux/unistd.h>
  22#include <linux/file.h>
  23#include <linux/export.h>
  24#include <linux/mutex.h>
  25#include <linux/slab.h>
  26#include <linux/freezer.h>
  27#include <linux/ptrace.h>
  28#include <linux/uaccess.h>
  29#include <linux/numa.h>
  30#include <linux/sched/isolation.h>
  31#include <trace/events/sched.h>
  32
  33
  34static DEFINE_SPINLOCK(kthread_create_lock);
  35static LIST_HEAD(kthread_create_list);
  36struct task_struct *kthreadd_task;
  37
  38struct kthread_create_info
  39{
  40        /* Information passed to kthread() from kthreadd. */
  41        int (*threadfn)(void *data);
  42        void *data;
  43        int node;
  44
  45        /* Result passed back to kthread_create() from kthreadd. */
  46        struct task_struct *result;
  47        struct completion *done;
  48
  49        struct list_head list;
  50};
  51
  52struct kthread {
  53        unsigned long flags;
  54        unsigned int cpu;
  55        int (*threadfn)(void *);
  56        void *data;
  57        mm_segment_t oldfs;
  58        struct completion parked;
  59        struct completion exited;
  60#ifdef CONFIG_BLK_CGROUP
  61        struct cgroup_subsys_state *blkcg_css;
  62#endif
  63};
  64
  65enum KTHREAD_BITS {
  66        KTHREAD_IS_PER_CPU = 0,
  67        KTHREAD_SHOULD_STOP,
  68        KTHREAD_SHOULD_PARK,
  69};
  70
  71static inline struct kthread *to_kthread(struct task_struct *k)
  72{
  73        WARN_ON(!(k->flags & PF_KTHREAD));
  74        return (__force void *)k->set_child_tid;
  75}
  76
  77/*
  78 * Variant of to_kthread() that doesn't assume @p is a kthread.
  79 *
  80 * Per construction; when:
  81 *
  82 *   (p->flags & PF_KTHREAD) && p->set_child_tid
  83 *
  84 * the task is both a kthread and struct kthread is persistent. However
  85 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
  86 * begin_new_exec()).
  87 */
  88static inline struct kthread *__to_kthread(struct task_struct *p)
  89{
  90        void *kthread = (__force void *)p->set_child_tid;
  91        if (kthread && !(p->flags & PF_KTHREAD))
  92                kthread = NULL;
  93        return kthread;
  94}
  95
  96void set_kthread_struct(struct task_struct *p)
  97{
  98        struct kthread *kthread;
  99
 100        if (__to_kthread(p))
 101                return;
 102
 103        kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
 104        /*
 105         * We abuse ->set_child_tid to avoid the new member and because it
 106         * can't be wrongly copied by copy_process(). We also rely on fact
 107         * that the caller can't exec, so PF_KTHREAD can't be cleared.
 108         */
 109        p->set_child_tid = (__force void __user *)kthread;
 110}
 111
 112void free_kthread_struct(struct task_struct *k)
 113{
 114        struct kthread *kthread;
 115
 116        /*
 117         * Can be NULL if this kthread was created by kernel_thread()
 118         * or if kmalloc() in kthread() failed.
 119         */
 120        kthread = to_kthread(k);
 121#ifdef CONFIG_BLK_CGROUP
 122        WARN_ON_ONCE(kthread && kthread->blkcg_css);
 123#endif
 124        kfree(kthread);
 125}
 126
 127/**
 128 * kthread_should_stop - should this kthread return now?
 129 *
 130 * When someone calls kthread_stop() on your kthread, it will be woken
 131 * and this will return true.  You should then return, and your return
 132 * value will be passed through to kthread_stop().
 133 */
 134bool kthread_should_stop(void)
 135{
 136        return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
 137}
 138EXPORT_SYMBOL(kthread_should_stop);
 139
 140bool __kthread_should_park(struct task_struct *k)
 141{
 142        return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
 143}
 144EXPORT_SYMBOL_GPL(__kthread_should_park);
 145
 146/**
 147 * kthread_should_park - should this kthread park now?
 148 *
 149 * When someone calls kthread_park() on your kthread, it will be woken
 150 * and this will return true.  You should then do the necessary
 151 * cleanup and call kthread_parkme()
 152 *
 153 * Similar to kthread_should_stop(), but this keeps the thread alive
 154 * and in a park position. kthread_unpark() "restarts" the thread and
 155 * calls the thread function again.
 156 */
 157bool kthread_should_park(void)
 158{
 159        return __kthread_should_park(current);
 160}
 161EXPORT_SYMBOL_GPL(kthread_should_park);
 162
 163/**
 164 * kthread_freezable_should_stop - should this freezable kthread return now?
 165 * @was_frozen: optional out parameter, indicates whether %current was frozen
 166 *
 167 * kthread_should_stop() for freezable kthreads, which will enter
 168 * refrigerator if necessary.  This function is safe from kthread_stop() /
 169 * freezer deadlock and freezable kthreads should use this function instead
 170 * of calling try_to_freeze() directly.
 171 */
 172bool kthread_freezable_should_stop(bool *was_frozen)
 173{
 174        bool frozen = false;
 175
 176        might_sleep();
 177
 178        if (unlikely(freezing(current)))
 179                frozen = __refrigerator(true);
 180
 181        if (was_frozen)
 182                *was_frozen = frozen;
 183
 184        return kthread_should_stop();
 185}
 186EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
 187
 188/**
 189 * kthread_func - return the function specified on kthread creation
 190 * @task: kthread task in question
 191 *
 192 * Returns NULL if the task is not a kthread.
 193 */
 194void *kthread_func(struct task_struct *task)
 195{
 196        struct kthread *kthread = __to_kthread(task);
 197        if (kthread)
 198                return kthread->threadfn;
 199        return NULL;
 200}
 201EXPORT_SYMBOL_GPL(kthread_func);
 202
 203/**
 204 * kthread_data - return data value specified on kthread creation
 205 * @task: kthread task in question
 206 *
 207 * Return the data value specified when kthread @task was created.
 208 * The caller is responsible for ensuring the validity of @task when
 209 * calling this function.
 210 */
 211void *kthread_data(struct task_struct *task)
 212{
 213        return to_kthread(task)->data;
 214}
 215EXPORT_SYMBOL_GPL(kthread_data);
 216
 217/**
 218 * kthread_probe_data - speculative version of kthread_data()
 219 * @task: possible kthread task in question
 220 *
 221 * @task could be a kthread task.  Return the data value specified when it
 222 * was created if accessible.  If @task isn't a kthread task or its data is
 223 * inaccessible for any reason, %NULL is returned.  This function requires
 224 * that @task itself is safe to dereference.
 225 */
 226void *kthread_probe_data(struct task_struct *task)
 227{
 228        struct kthread *kthread = __to_kthread(task);
 229        void *data = NULL;
 230
 231        if (kthread)
 232                copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
 233        return data;
 234}
 235
 236static void __kthread_parkme(struct kthread *self)
 237{
 238        for (;;) {
 239                /*
 240                 * TASK_PARKED is a special state; we must serialize against
 241                 * possible pending wakeups to avoid store-store collisions on
 242                 * task->state.
 243                 *
 244                 * Such a collision might possibly result in the task state
 245                 * changin from TASK_PARKED and us failing the
 246                 * wait_task_inactive() in kthread_park().
 247                 */
 248                set_special_state(TASK_PARKED);
 249                if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
 250                        break;
 251
 252                /*
 253                 * Thread is going to call schedule(), do not preempt it,
 254                 * or the caller of kthread_park() may spend more time in
 255                 * wait_task_inactive().
 256                 */
 257                preempt_disable();
 258                complete(&self->parked);
 259                schedule_preempt_disabled();
 260                preempt_enable();
 261        }
 262        __set_current_state(TASK_RUNNING);
 263}
 264
 265void kthread_parkme(void)
 266{
 267        __kthread_parkme(to_kthread(current));
 268}
 269EXPORT_SYMBOL_GPL(kthread_parkme);
 270
 271static int kthread(void *_create)
 272{
 273        /* Copy data: it's on kthread's stack */
 274        struct kthread_create_info *create = _create;
 275        int (*threadfn)(void *data) = create->threadfn;
 276        void *data = create->data;
 277        struct completion *done;
 278        struct kthread *self;
 279        int ret;
 280
 281        set_kthread_struct(current);
 282        self = to_kthread(current);
 283
 284        /* If user was SIGKILLed, I release the structure. */
 285        done = xchg(&create->done, NULL);
 286        if (!done) {
 287                kfree(create);
 288                do_exit(-EINTR);
 289        }
 290
 291        if (!self) {
 292                create->result = ERR_PTR(-ENOMEM);
 293                complete(done);
 294                do_exit(-ENOMEM);
 295        }
 296
 297        self->threadfn = threadfn;
 298        self->data = data;
 299        init_completion(&self->exited);
 300        init_completion(&self->parked);
 301        current->vfork_done = &self->exited;
 302
 303        /* OK, tell user we're spawned, wait for stop or wakeup */
 304        __set_current_state(TASK_UNINTERRUPTIBLE);
 305        create->result = current;
 306        /*
 307         * Thread is going to call schedule(), do not preempt it,
 308         * or the creator may spend more time in wait_task_inactive().
 309         */
 310        preempt_disable();
 311        complete(done);
 312        schedule_preempt_disabled();
 313        preempt_enable();
 314
 315        ret = -EINTR;
 316        if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
 317                cgroup_kthread_ready();
 318                __kthread_parkme(self);
 319                ret = threadfn(data);
 320        }
 321        do_exit(ret);
 322}
 323
 324/* called from kernel_clone() to get node information for about to be created task */
 325int tsk_fork_get_node(struct task_struct *tsk)
 326{
 327#ifdef CONFIG_NUMA
 328        if (tsk == kthreadd_task)
 329                return tsk->pref_node_fork;
 330#endif
 331        return NUMA_NO_NODE;
 332}
 333
 334static void create_kthread(struct kthread_create_info *create)
 335{
 336        int pid;
 337
 338#ifdef CONFIG_NUMA
 339        current->pref_node_fork = create->node;
 340#endif
 341        /* We want our own signal handler (we take no signals by default). */
 342        pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
 343        if (pid < 0) {
 344                /* If user was SIGKILLed, I release the structure. */
 345                struct completion *done = xchg(&create->done, NULL);
 346
 347                if (!done) {
 348                        kfree(create);
 349                        return;
 350                }
 351                create->result = ERR_PTR(pid);
 352                complete(done);
 353        }
 354}
 355
 356static __printf(4, 0)
 357struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
 358                                                    void *data, int node,
 359                                                    const char namefmt[],
 360                                                    va_list args)
 361{
 362        DECLARE_COMPLETION_ONSTACK(done);
 363        struct task_struct *task;
 364        struct kthread_create_info *create = kmalloc(sizeof(*create),
 365                                                     GFP_KERNEL);
 366
 367        if (!create)
 368                return ERR_PTR(-ENOMEM);
 369        create->threadfn = threadfn;
 370        create->data = data;
 371        create->node = node;
 372        create->done = &done;
 373
 374        spin_lock(&kthread_create_lock);
 375        list_add_tail(&create->list, &kthread_create_list);
 376        spin_unlock(&kthread_create_lock);
 377
 378        wake_up_process(kthreadd_task);
 379        /*
 380         * Wait for completion in killable state, for I might be chosen by
 381         * the OOM killer while kthreadd is trying to allocate memory for
 382         * new kernel thread.
 383         */
 384        if (unlikely(wait_for_completion_killable(&done))) {
 385                /*
 386                 * If I was SIGKILLed before kthreadd (or new kernel thread)
 387                 * calls complete(), leave the cleanup of this structure to
 388                 * that thread.
 389                 */
 390                if (xchg(&create->done, NULL))
 391                        return ERR_PTR(-EINTR);
 392                /*
 393                 * kthreadd (or new kernel thread) will call complete()
 394                 * shortly.
 395                 */
 396                wait_for_completion(&done);
 397        }
 398        task = create->result;
 399        if (!IS_ERR(task)) {
 400                static const struct sched_param param = { .sched_priority = 0 };
 401                char name[TASK_COMM_LEN];
 402
 403                /*
 404                 * task is already visible to other tasks, so updating
 405                 * COMM must be protected.
 406                 */
 407                vsnprintf(name, sizeof(name), namefmt, args);
 408                set_task_comm(task, name);
 409                /*
 410                 * root may have changed our (kthreadd's) priority or CPU mask.
 411                 * The kernel thread should not inherit these properties.
 412                 */
 413                sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
 414                set_cpus_allowed_ptr(task,
 415                                     housekeeping_cpumask(HK_FLAG_KTHREAD));
 416        }
 417        kfree(create);
 418        return task;
 419}
 420
 421/**
 422 * kthread_create_on_node - create a kthread.
 423 * @threadfn: the function to run until signal_pending(current).
 424 * @data: data ptr for @threadfn.
 425 * @node: task and thread structures for the thread are allocated on this node
 426 * @namefmt: printf-style name for the thread.
 427 *
 428 * Description: This helper function creates and names a kernel
 429 * thread.  The thread will be stopped: use wake_up_process() to start
 430 * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
 431 * is affine to all CPUs.
 432 *
 433 * If thread is going to be bound on a particular cpu, give its node
 434 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
 435 * When woken, the thread will run @threadfn() with @data as its
 436 * argument. @threadfn() can either call do_exit() directly if it is a
 437 * standalone thread for which no one will call kthread_stop(), or
 438 * return when 'kthread_should_stop()' is true (which means
 439 * kthread_stop() has been called).  The return value should be zero
 440 * or a negative error number; it will be passed to kthread_stop().
 441 *
 442 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
 443 */
 444struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
 445                                           void *data, int node,
 446                                           const char namefmt[],
 447                                           ...)
 448{
 449        struct task_struct *task;
 450        va_list args;
 451
 452        va_start(args, namefmt);
 453        task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
 454        va_end(args);
 455
 456        return task;
 457}
 458EXPORT_SYMBOL(kthread_create_on_node);
 459
 460static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
 461{
 462        unsigned long flags;
 463
 464        if (!wait_task_inactive(p, state)) {
 465                WARN_ON(1);
 466                return;
 467        }
 468
 469        /* It's safe because the task is inactive. */
 470        raw_spin_lock_irqsave(&p->pi_lock, flags);
 471        do_set_cpus_allowed(p, mask);
 472        p->flags |= PF_NO_SETAFFINITY;
 473        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 474}
 475
 476static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
 477{
 478        __kthread_bind_mask(p, cpumask_of(cpu), state);
 479}
 480
 481void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
 482{
 483        __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
 484}
 485
 486/**
 487 * kthread_bind - bind a just-created kthread to a cpu.
 488 * @p: thread created by kthread_create().
 489 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 490 *
 491 * Description: This function is equivalent to set_cpus_allowed(),
 492 * except that @cpu doesn't need to be online, and the thread must be
 493 * stopped (i.e., just returned from kthread_create()).
 494 */
 495void kthread_bind(struct task_struct *p, unsigned int cpu)
 496{
 497        __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
 498}
 499EXPORT_SYMBOL(kthread_bind);
 500
 501/**
 502 * kthread_create_on_cpu - Create a cpu bound kthread
 503 * @threadfn: the function to run until signal_pending(current).
 504 * @data: data ptr for @threadfn.
 505 * @cpu: The cpu on which the thread should be bound,
 506 * @namefmt: printf-style name for the thread. Format is restricted
 507 *           to "name.*%u". Code fills in cpu number.
 508 *
 509 * Description: This helper function creates and names a kernel thread
 510 */
 511struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
 512                                          void *data, unsigned int cpu,
 513                                          const char *namefmt)
 514{
 515        struct task_struct *p;
 516
 517        p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
 518                                   cpu);
 519        if (IS_ERR(p))
 520                return p;
 521        kthread_bind(p, cpu);
 522        /* CPU hotplug need to bind once again when unparking the thread. */
 523        to_kthread(p)->cpu = cpu;
 524        return p;
 525}
 526
 527void kthread_set_per_cpu(struct task_struct *k, int cpu)
 528{
 529        struct kthread *kthread = to_kthread(k);
 530        if (!kthread)
 531                return;
 532
 533        WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
 534
 535        if (cpu < 0) {
 536                clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 537                return;
 538        }
 539
 540        kthread->cpu = cpu;
 541        set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 542}
 543
 544bool kthread_is_per_cpu(struct task_struct *p)
 545{
 546        struct kthread *kthread = __to_kthread(p);
 547        if (!kthread)
 548                return false;
 549
 550        return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 551}
 552
 553/**
 554 * kthread_unpark - unpark a thread created by kthread_create().
 555 * @k:          thread created by kthread_create().
 556 *
 557 * Sets kthread_should_park() for @k to return false, wakes it, and
 558 * waits for it to return. If the thread is marked percpu then its
 559 * bound to the cpu again.
 560 */
 561void kthread_unpark(struct task_struct *k)
 562{
 563        struct kthread *kthread = to_kthread(k);
 564
 565        /*
 566         * Newly created kthread was parked when the CPU was offline.
 567         * The binding was lost and we need to set it again.
 568         */
 569        if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
 570                __kthread_bind(k, kthread->cpu, TASK_PARKED);
 571
 572        clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 573        /*
 574         * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
 575         */
 576        wake_up_state(k, TASK_PARKED);
 577}
 578EXPORT_SYMBOL_GPL(kthread_unpark);
 579
 580/**
 581 * kthread_park - park a thread created by kthread_create().
 582 * @k: thread created by kthread_create().
 583 *
 584 * Sets kthread_should_park() for @k to return true, wakes it, and
 585 * waits for it to return. This can also be called after kthread_create()
 586 * instead of calling wake_up_process(): the thread will park without
 587 * calling threadfn().
 588 *
 589 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
 590 * If called by the kthread itself just the park bit is set.
 591 */
 592int kthread_park(struct task_struct *k)
 593{
 594        struct kthread *kthread = to_kthread(k);
 595
 596        if (WARN_ON(k->flags & PF_EXITING))
 597                return -ENOSYS;
 598
 599        if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
 600                return -EBUSY;
 601
 602        set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 603        if (k != current) {
 604                wake_up_process(k);
 605                /*
 606                 * Wait for __kthread_parkme() to complete(), this means we
 607                 * _will_ have TASK_PARKED and are about to call schedule().
 608                 */
 609                wait_for_completion(&kthread->parked);
 610                /*
 611                 * Now wait for that schedule() to complete and the task to
 612                 * get scheduled out.
 613                 */
 614                WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
 615        }
 616
 617        return 0;
 618}
 619EXPORT_SYMBOL_GPL(kthread_park);
 620
 621/**
 622 * kthread_stop - stop a thread created by kthread_create().
 623 * @k: thread created by kthread_create().
 624 *
 625 * Sets kthread_should_stop() for @k to return true, wakes it, and
 626 * waits for it to exit. This can also be called after kthread_create()
 627 * instead of calling wake_up_process(): the thread will exit without
 628 * calling threadfn().
 629 *
 630 * If threadfn() may call do_exit() itself, the caller must ensure
 631 * task_struct can't go away.
 632 *
 633 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
 634 * was never called.
 635 */
 636int kthread_stop(struct task_struct *k)
 637{
 638        struct kthread *kthread;
 639        int ret;
 640
 641        trace_sched_kthread_stop(k);
 642
 643        get_task_struct(k);
 644        kthread = to_kthread(k);
 645        set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
 646        kthread_unpark(k);
 647        wake_up_process(k);
 648        wait_for_completion(&kthread->exited);
 649        ret = k->exit_code;
 650        put_task_struct(k);
 651
 652        trace_sched_kthread_stop_ret(ret);
 653        return ret;
 654}
 655EXPORT_SYMBOL(kthread_stop);
 656
 657int kthreadd(void *unused)
 658{
 659        struct task_struct *tsk = current;
 660
 661        /* Setup a clean context for our children to inherit. */
 662        set_task_comm(tsk, "kthreadd");
 663        ignore_signals(tsk);
 664        set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD));
 665        set_mems_allowed(node_states[N_MEMORY]);
 666
 667        current->flags |= PF_NOFREEZE;
 668        cgroup_init_kthreadd();
 669
 670        for (;;) {
 671                set_current_state(TASK_INTERRUPTIBLE);
 672                if (list_empty(&kthread_create_list))
 673                        schedule();
 674                __set_current_state(TASK_RUNNING);
 675
 676                spin_lock(&kthread_create_lock);
 677                while (!list_empty(&kthread_create_list)) {
 678                        struct kthread_create_info *create;
 679
 680                        create = list_entry(kthread_create_list.next,
 681                                            struct kthread_create_info, list);
 682                        list_del_init(&create->list);
 683                        spin_unlock(&kthread_create_lock);
 684
 685                        create_kthread(create);
 686
 687                        spin_lock(&kthread_create_lock);
 688                }
 689                spin_unlock(&kthread_create_lock);
 690        }
 691
 692        return 0;
 693}
 694
 695void __kthread_init_worker(struct kthread_worker *worker,
 696                                const char *name,
 697                                struct lock_class_key *key)
 698{
 699        memset(worker, 0, sizeof(struct kthread_worker));
 700        raw_spin_lock_init(&worker->lock);
 701        lockdep_set_class_and_name(&worker->lock, key, name);
 702        INIT_LIST_HEAD(&worker->work_list);
 703        INIT_LIST_HEAD(&worker->delayed_work_list);
 704}
 705EXPORT_SYMBOL_GPL(__kthread_init_worker);
 706
 707/**
 708 * kthread_worker_fn - kthread function to process kthread_worker
 709 * @worker_ptr: pointer to initialized kthread_worker
 710 *
 711 * This function implements the main cycle of kthread worker. It processes
 712 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
 713 * is empty.
 714 *
 715 * The works are not allowed to keep any locks, disable preemption or interrupts
 716 * when they finish. There is defined a safe point for freezing when one work
 717 * finishes and before a new one is started.
 718 *
 719 * Also the works must not be handled by more than one worker at the same time,
 720 * see also kthread_queue_work().
 721 */
 722int kthread_worker_fn(void *worker_ptr)
 723{
 724        struct kthread_worker *worker = worker_ptr;
 725        struct kthread_work *work;
 726
 727        /*
 728         * FIXME: Update the check and remove the assignment when all kthread
 729         * worker users are created using kthread_create_worker*() functions.
 730         */
 731        WARN_ON(worker->task && worker->task != current);
 732        worker->task = current;
 733
 734        if (worker->flags & KTW_FREEZABLE)
 735                set_freezable();
 736
 737repeat:
 738        set_current_state(TASK_INTERRUPTIBLE);  /* mb paired w/ kthread_stop */
 739
 740        if (kthread_should_stop()) {
 741                __set_current_state(TASK_RUNNING);
 742                raw_spin_lock_irq(&worker->lock);
 743                worker->task = NULL;
 744                raw_spin_unlock_irq(&worker->lock);
 745                return 0;
 746        }
 747
 748        work = NULL;
 749        raw_spin_lock_irq(&worker->lock);
 750        if (!list_empty(&worker->work_list)) {
 751                work = list_first_entry(&worker->work_list,
 752                                        struct kthread_work, node);
 753                list_del_init(&work->node);
 754        }
 755        worker->current_work = work;
 756        raw_spin_unlock_irq(&worker->lock);
 757
 758        if (work) {
 759                kthread_work_func_t func = work->func;
 760                __set_current_state(TASK_RUNNING);
 761                trace_sched_kthread_work_execute_start(work);
 762                work->func(work);
 763                /*
 764                 * Avoid dereferencing work after this point.  The trace
 765                 * event only cares about the address.
 766                 */
 767                trace_sched_kthread_work_execute_end(work, func);
 768        } else if (!freezing(current))
 769                schedule();
 770
 771        try_to_freeze();
 772        cond_resched();
 773        goto repeat;
 774}
 775EXPORT_SYMBOL_GPL(kthread_worker_fn);
 776
 777static __printf(3, 0) struct kthread_worker *
 778__kthread_create_worker(int cpu, unsigned int flags,
 779                        const char namefmt[], va_list args)
 780{
 781        struct kthread_worker *worker;
 782        struct task_struct *task;
 783        int node = NUMA_NO_NODE;
 784
 785        worker = kzalloc(sizeof(*worker), GFP_KERNEL);
 786        if (!worker)
 787                return ERR_PTR(-ENOMEM);
 788
 789        kthread_init_worker(worker);
 790
 791        if (cpu >= 0)
 792                node = cpu_to_node(cpu);
 793
 794        task = __kthread_create_on_node(kthread_worker_fn, worker,
 795                                                node, namefmt, args);
 796        if (IS_ERR(task))
 797                goto fail_task;
 798
 799        if (cpu >= 0)
 800                kthread_bind(task, cpu);
 801
 802        worker->flags = flags;
 803        worker->task = task;
 804        wake_up_process(task);
 805        return worker;
 806
 807fail_task:
 808        kfree(worker);
 809        return ERR_CAST(task);
 810}
 811
 812/**
 813 * kthread_create_worker - create a kthread worker
 814 * @flags: flags modifying the default behavior of the worker
 815 * @namefmt: printf-style name for the kthread worker (task).
 816 *
 817 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 818 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 819 * when the worker was SIGKILLed.
 820 */
 821struct kthread_worker *
 822kthread_create_worker(unsigned int flags, const char namefmt[], ...)
 823{
 824        struct kthread_worker *worker;
 825        va_list args;
 826
 827        va_start(args, namefmt);
 828        worker = __kthread_create_worker(-1, flags, namefmt, args);
 829        va_end(args);
 830
 831        return worker;
 832}
 833EXPORT_SYMBOL(kthread_create_worker);
 834
 835/**
 836 * kthread_create_worker_on_cpu - create a kthread worker and bind it
 837 *      to a given CPU and the associated NUMA node.
 838 * @cpu: CPU number
 839 * @flags: flags modifying the default behavior of the worker
 840 * @namefmt: printf-style name for the kthread worker (task).
 841 *
 842 * Use a valid CPU number if you want to bind the kthread worker
 843 * to the given CPU and the associated NUMA node.
 844 *
 845 * A good practice is to add the cpu number also into the worker name.
 846 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
 847 *
 848 * CPU hotplug:
 849 * The kthread worker API is simple and generic. It just provides a way
 850 * to create, use, and destroy workers.
 851 *
 852 * It is up to the API user how to handle CPU hotplug. They have to decide
 853 * how to handle pending work items, prevent queuing new ones, and
 854 * restore the functionality when the CPU goes off and on. There are a
 855 * few catches:
 856 *
 857 *    - CPU affinity gets lost when it is scheduled on an offline CPU.
 858 *
 859 *    - The worker might not exist when the CPU was off when the user
 860 *      created the workers.
 861 *
 862 * Good practice is to implement two CPU hotplug callbacks and to
 863 * destroy/create the worker when the CPU goes down/up.
 864 *
 865 * Return:
 866 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 867 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 868 * when the worker was SIGKILLed.
 869 */
 870struct kthread_worker *
 871kthread_create_worker_on_cpu(int cpu, unsigned int flags,
 872                             const char namefmt[], ...)
 873{
 874        struct kthread_worker *worker;
 875        va_list args;
 876
 877        va_start(args, namefmt);
 878        worker = __kthread_create_worker(cpu, flags, namefmt, args);
 879        va_end(args);
 880
 881        return worker;
 882}
 883EXPORT_SYMBOL(kthread_create_worker_on_cpu);
 884
 885/*
 886 * Returns true when the work could not be queued at the moment.
 887 * It happens when it is already pending in a worker list
 888 * or when it is being cancelled.
 889 */
 890static inline bool queuing_blocked(struct kthread_worker *worker,
 891                                   struct kthread_work *work)
 892{
 893        lockdep_assert_held(&worker->lock);
 894
 895        return !list_empty(&work->node) || work->canceling;
 896}
 897
 898static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
 899                                             struct kthread_work *work)
 900{
 901        lockdep_assert_held(&worker->lock);
 902        WARN_ON_ONCE(!list_empty(&work->node));
 903        /* Do not use a work with >1 worker, see kthread_queue_work() */
 904        WARN_ON_ONCE(work->worker && work->worker != worker);
 905}
 906
 907/* insert @work before @pos in @worker */
 908static void kthread_insert_work(struct kthread_worker *worker,
 909                                struct kthread_work *work,
 910                                struct list_head *pos)
 911{
 912        kthread_insert_work_sanity_check(worker, work);
 913
 914        trace_sched_kthread_work_queue_work(worker, work);
 915
 916        list_add_tail(&work->node, pos);
 917        work->worker = worker;
 918        if (!worker->current_work && likely(worker->task))
 919                wake_up_process(worker->task);
 920}
 921
 922/**
 923 * kthread_queue_work - queue a kthread_work
 924 * @worker: target kthread_worker
 925 * @work: kthread_work to queue
 926 *
 927 * Queue @work to work processor @task for async execution.  @task
 928 * must have been created with kthread_worker_create().  Returns %true
 929 * if @work was successfully queued, %false if it was already pending.
 930 *
 931 * Reinitialize the work if it needs to be used by another worker.
 932 * For example, when the worker was stopped and started again.
 933 */
 934bool kthread_queue_work(struct kthread_worker *worker,
 935                        struct kthread_work *work)
 936{
 937        bool ret = false;
 938        unsigned long flags;
 939
 940        raw_spin_lock_irqsave(&worker->lock, flags);
 941        if (!queuing_blocked(worker, work)) {
 942                kthread_insert_work(worker, work, &worker->work_list);
 943                ret = true;
 944        }
 945        raw_spin_unlock_irqrestore(&worker->lock, flags);
 946        return ret;
 947}
 948EXPORT_SYMBOL_GPL(kthread_queue_work);
 949
 950/**
 951 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
 952 *      delayed work when the timer expires.
 953 * @t: pointer to the expired timer
 954 *
 955 * The format of the function is defined by struct timer_list.
 956 * It should have been called from irqsafe timer with irq already off.
 957 */
 958void kthread_delayed_work_timer_fn(struct timer_list *t)
 959{
 960        struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
 961        struct kthread_work *work = &dwork->work;
 962        struct kthread_worker *worker = work->worker;
 963        unsigned long flags;
 964
 965        /*
 966         * This might happen when a pending work is reinitialized.
 967         * It means that it is used a wrong way.
 968         */
 969        if (WARN_ON_ONCE(!worker))
 970                return;
 971
 972        raw_spin_lock_irqsave(&worker->lock, flags);
 973        /* Work must not be used with >1 worker, see kthread_queue_work(). */
 974        WARN_ON_ONCE(work->worker != worker);
 975
 976        /* Move the work from worker->delayed_work_list. */
 977        WARN_ON_ONCE(list_empty(&work->node));
 978        list_del_init(&work->node);
 979        if (!work->canceling)
 980                kthread_insert_work(worker, work, &worker->work_list);
 981
 982        raw_spin_unlock_irqrestore(&worker->lock, flags);
 983}
 984EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
 985
 986static void __kthread_queue_delayed_work(struct kthread_worker *worker,
 987                                         struct kthread_delayed_work *dwork,
 988                                         unsigned long delay)
 989{
 990        struct timer_list *timer = &dwork->timer;
 991        struct kthread_work *work = &dwork->work;
 992
 993        WARN_ON_FUNCTION_MISMATCH(timer->function,
 994                                  kthread_delayed_work_timer_fn);
 995
 996        /*
 997         * If @delay is 0, queue @dwork->work immediately.  This is for
 998         * both optimization and correctness.  The earliest @timer can
 999         * expire is on the closest next tick and delayed_work users depend
1000         * on that there's no such delay when @delay is 0.
1001         */
1002        if (!delay) {
1003                kthread_insert_work(worker, work, &worker->work_list);
1004                return;
1005        }
1006
1007        /* Be paranoid and try to detect possible races already now. */
1008        kthread_insert_work_sanity_check(worker, work);
1009
1010        list_add(&work->node, &worker->delayed_work_list);
1011        work->worker = worker;
1012        timer->expires = jiffies + delay;
1013        add_timer(timer);
1014}
1015
1016/**
1017 * kthread_queue_delayed_work - queue the associated kthread work
1018 *      after a delay.
1019 * @worker: target kthread_worker
1020 * @dwork: kthread_delayed_work to queue
1021 * @delay: number of jiffies to wait before queuing
1022 *
1023 * If the work has not been pending it starts a timer that will queue
1024 * the work after the given @delay. If @delay is zero, it queues the
1025 * work immediately.
1026 *
1027 * Return: %false if the @work has already been pending. It means that
1028 * either the timer was running or the work was queued. It returns %true
1029 * otherwise.
1030 */
1031bool kthread_queue_delayed_work(struct kthread_worker *worker,
1032                                struct kthread_delayed_work *dwork,
1033                                unsigned long delay)
1034{
1035        struct kthread_work *work = &dwork->work;
1036        unsigned long flags;
1037        bool ret = false;
1038
1039        raw_spin_lock_irqsave(&worker->lock, flags);
1040
1041        if (!queuing_blocked(worker, work)) {
1042                __kthread_queue_delayed_work(worker, dwork, delay);
1043                ret = true;
1044        }
1045
1046        raw_spin_unlock_irqrestore(&worker->lock, flags);
1047        return ret;
1048}
1049EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1050
1051struct kthread_flush_work {
1052        struct kthread_work     work;
1053        struct completion       done;
1054};
1055
1056static void kthread_flush_work_fn(struct kthread_work *work)
1057{
1058        struct kthread_flush_work *fwork =
1059                container_of(work, struct kthread_flush_work, work);
1060        complete(&fwork->done);
1061}
1062
1063/**
1064 * kthread_flush_work - flush a kthread_work
1065 * @work: work to flush
1066 *
1067 * If @work is queued or executing, wait for it to finish execution.
1068 */
1069void kthread_flush_work(struct kthread_work *work)
1070{
1071        struct kthread_flush_work fwork = {
1072                KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1073                COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1074        };
1075        struct kthread_worker *worker;
1076        bool noop = false;
1077
1078        worker = work->worker;
1079        if (!worker)
1080                return;
1081
1082        raw_spin_lock_irq(&worker->lock);
1083        /* Work must not be used with >1 worker, see kthread_queue_work(). */
1084        WARN_ON_ONCE(work->worker != worker);
1085
1086        if (!list_empty(&work->node))
1087                kthread_insert_work(worker, &fwork.work, work->node.next);
1088        else if (worker->current_work == work)
1089                kthread_insert_work(worker, &fwork.work,
1090                                    worker->work_list.next);
1091        else
1092                noop = true;
1093
1094        raw_spin_unlock_irq(&worker->lock);
1095
1096        if (!noop)
1097                wait_for_completion(&fwork.done);
1098}
1099EXPORT_SYMBOL_GPL(kthread_flush_work);
1100
1101/*
1102 * Make sure that the timer is neither set nor running and could
1103 * not manipulate the work list_head any longer.
1104 *
1105 * The function is called under worker->lock. The lock is temporary
1106 * released but the timer can't be set again in the meantime.
1107 */
1108static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1109                                              unsigned long *flags)
1110{
1111        struct kthread_delayed_work *dwork =
1112                container_of(work, struct kthread_delayed_work, work);
1113        struct kthread_worker *worker = work->worker;
1114
1115        /*
1116         * del_timer_sync() must be called to make sure that the timer
1117         * callback is not running. The lock must be temporary released
1118         * to avoid a deadlock with the callback. In the meantime,
1119         * any queuing is blocked by setting the canceling counter.
1120         */
1121        work->canceling++;
1122        raw_spin_unlock_irqrestore(&worker->lock, *flags);
1123        del_timer_sync(&dwork->timer);
1124        raw_spin_lock_irqsave(&worker->lock, *flags);
1125        work->canceling--;
1126}
1127
1128/*
1129 * This function removes the work from the worker queue.
1130 *
1131 * It is called under worker->lock. The caller must make sure that
1132 * the timer used by delayed work is not running, e.g. by calling
1133 * kthread_cancel_delayed_work_timer().
1134 *
1135 * The work might still be in use when this function finishes. See the
1136 * current_work proceed by the worker.
1137 *
1138 * Return: %true if @work was pending and successfully canceled,
1139 *      %false if @work was not pending
1140 */
1141static bool __kthread_cancel_work(struct kthread_work *work)
1142{
1143        /*
1144         * Try to remove the work from a worker list. It might either
1145         * be from worker->work_list or from worker->delayed_work_list.
1146         */
1147        if (!list_empty(&work->node)) {
1148                list_del_init(&work->node);
1149                return true;
1150        }
1151
1152        return false;
1153}
1154
1155/**
1156 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1157 * @worker: kthread worker to use
1158 * @dwork: kthread delayed work to queue
1159 * @delay: number of jiffies to wait before queuing
1160 *
1161 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1162 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1163 * @work is guaranteed to be queued immediately.
1164 *
1165 * Return: %false if @dwork was idle and queued, %true otherwise.
1166 *
1167 * A special case is when the work is being canceled in parallel.
1168 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1169 * or yet another kthread_mod_delayed_work() call. We let the other command
1170 * win and return %true here. The return value can be used for reference
1171 * counting and the number of queued works stays the same. Anyway, the caller
1172 * is supposed to synchronize these operations a reasonable way.
1173 *
1174 * This function is safe to call from any context including IRQ handler.
1175 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1176 * for details.
1177 */
1178bool kthread_mod_delayed_work(struct kthread_worker *worker,
1179                              struct kthread_delayed_work *dwork,
1180                              unsigned long delay)
1181{
1182        struct kthread_work *work = &dwork->work;
1183        unsigned long flags;
1184        int ret;
1185
1186        raw_spin_lock_irqsave(&worker->lock, flags);
1187
1188        /* Do not bother with canceling when never queued. */
1189        if (!work->worker) {
1190                ret = false;
1191                goto fast_queue;
1192        }
1193
1194        /* Work must not be used with >1 worker, see kthread_queue_work() */
1195        WARN_ON_ONCE(work->worker != worker);
1196
1197        /*
1198         * Temporary cancel the work but do not fight with another command
1199         * that is canceling the work as well.
1200         *
1201         * It is a bit tricky because of possible races with another
1202         * mod_delayed_work() and cancel_delayed_work() callers.
1203         *
1204         * The timer must be canceled first because worker->lock is released
1205         * when doing so. But the work can be removed from the queue (list)
1206         * only when it can be queued again so that the return value can
1207         * be used for reference counting.
1208         */
1209        kthread_cancel_delayed_work_timer(work, &flags);
1210        if (work->canceling) {
1211                /* The number of works in the queue does not change. */
1212                ret = true;
1213                goto out;
1214        }
1215        ret = __kthread_cancel_work(work);
1216
1217fast_queue:
1218        __kthread_queue_delayed_work(worker, dwork, delay);
1219out:
1220        raw_spin_unlock_irqrestore(&worker->lock, flags);
1221        return ret;
1222}
1223EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1224
1225static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1226{
1227        struct kthread_worker *worker = work->worker;
1228        unsigned long flags;
1229        int ret = false;
1230
1231        if (!worker)
1232                goto out;
1233
1234        raw_spin_lock_irqsave(&worker->lock, flags);
1235        /* Work must not be used with >1 worker, see kthread_queue_work(). */
1236        WARN_ON_ONCE(work->worker != worker);
1237
1238        if (is_dwork)
1239                kthread_cancel_delayed_work_timer(work, &flags);
1240
1241        ret = __kthread_cancel_work(work);
1242
1243        if (worker->current_work != work)
1244                goto out_fast;
1245
1246        /*
1247         * The work is in progress and we need to wait with the lock released.
1248         * In the meantime, block any queuing by setting the canceling counter.
1249         */
1250        work->canceling++;
1251        raw_spin_unlock_irqrestore(&worker->lock, flags);
1252        kthread_flush_work(work);
1253        raw_spin_lock_irqsave(&worker->lock, flags);
1254        work->canceling--;
1255
1256out_fast:
1257        raw_spin_unlock_irqrestore(&worker->lock, flags);
1258out:
1259        return ret;
1260}
1261
1262/**
1263 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1264 * @work: the kthread work to cancel
1265 *
1266 * Cancel @work and wait for its execution to finish.  This function
1267 * can be used even if the work re-queues itself. On return from this
1268 * function, @work is guaranteed to be not pending or executing on any CPU.
1269 *
1270 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1271 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1272 *
1273 * The caller must ensure that the worker on which @work was last
1274 * queued can't be destroyed before this function returns.
1275 *
1276 * Return: %true if @work was pending, %false otherwise.
1277 */
1278bool kthread_cancel_work_sync(struct kthread_work *work)
1279{
1280        return __kthread_cancel_work_sync(work, false);
1281}
1282EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1283
1284/**
1285 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1286 *      wait for it to finish.
1287 * @dwork: the kthread delayed work to cancel
1288 *
1289 * This is kthread_cancel_work_sync() for delayed works.
1290 *
1291 * Return: %true if @dwork was pending, %false otherwise.
1292 */
1293bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1294{
1295        return __kthread_cancel_work_sync(&dwork->work, true);
1296}
1297EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1298
1299/**
1300 * kthread_flush_worker - flush all current works on a kthread_worker
1301 * @worker: worker to flush
1302 *
1303 * Wait until all currently executing or pending works on @worker are
1304 * finished.
1305 */
1306void kthread_flush_worker(struct kthread_worker *worker)
1307{
1308        struct kthread_flush_work fwork = {
1309                KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1310                COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1311        };
1312
1313        kthread_queue_work(worker, &fwork.work);
1314        wait_for_completion(&fwork.done);
1315}
1316EXPORT_SYMBOL_GPL(kthread_flush_worker);
1317
1318/**
1319 * kthread_destroy_worker - destroy a kthread worker
1320 * @worker: worker to be destroyed
1321 *
1322 * Flush and destroy @worker.  The simple flush is enough because the kthread
1323 * worker API is used only in trivial scenarios.  There are no multi-step state
1324 * machines needed.
1325 */
1326void kthread_destroy_worker(struct kthread_worker *worker)
1327{
1328        struct task_struct *task;
1329
1330        task = worker->task;
1331        if (WARN_ON(!task))
1332                return;
1333
1334        kthread_flush_worker(worker);
1335        kthread_stop(task);
1336        WARN_ON(!list_empty(&worker->work_list));
1337        kfree(worker);
1338}
1339EXPORT_SYMBOL(kthread_destroy_worker);
1340
1341/**
1342 * kthread_use_mm - make the calling kthread operate on an address space
1343 * @mm: address space to operate on
1344 */
1345void kthread_use_mm(struct mm_struct *mm)
1346{
1347        struct mm_struct *active_mm;
1348        struct task_struct *tsk = current;
1349
1350        WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1351        WARN_ON_ONCE(tsk->mm);
1352
1353        task_lock(tsk);
1354        /* Hold off tlb flush IPIs while switching mm's */
1355        local_irq_disable();
1356        active_mm = tsk->active_mm;
1357        if (active_mm != mm) {
1358                mmgrab(mm);
1359                tsk->active_mm = mm;
1360        }
1361        tsk->mm = mm;
1362        membarrier_update_current_mm(mm);
1363        switch_mm_irqs_off(active_mm, mm, tsk);
1364        local_irq_enable();
1365        task_unlock(tsk);
1366#ifdef finish_arch_post_lock_switch
1367        finish_arch_post_lock_switch();
1368#endif
1369
1370        /*
1371         * When a kthread starts operating on an address space, the loop
1372         * in membarrier_{private,global}_expedited() may not observe
1373         * that tsk->mm, and not issue an IPI. Membarrier requires a
1374         * memory barrier after storing to tsk->mm, before accessing
1375         * user-space memory. A full memory barrier for membarrier
1376         * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1377         * mmdrop(), or explicitly with smp_mb().
1378         */
1379        if (active_mm != mm)
1380                mmdrop(active_mm);
1381        else
1382                smp_mb();
1383
1384        to_kthread(tsk)->oldfs = force_uaccess_begin();
1385}
1386EXPORT_SYMBOL_GPL(kthread_use_mm);
1387
1388/**
1389 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1390 * @mm: address space to operate on
1391 */
1392void kthread_unuse_mm(struct mm_struct *mm)
1393{
1394        struct task_struct *tsk = current;
1395
1396        WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1397        WARN_ON_ONCE(!tsk->mm);
1398
1399        force_uaccess_end(to_kthread(tsk)->oldfs);
1400
1401        task_lock(tsk);
1402        /*
1403         * When a kthread stops operating on an address space, the loop
1404         * in membarrier_{private,global}_expedited() may not observe
1405         * that tsk->mm, and not issue an IPI. Membarrier requires a
1406         * memory barrier after accessing user-space memory, before
1407         * clearing tsk->mm.
1408         */
1409        smp_mb__after_spinlock();
1410        sync_mm_rss(mm);
1411        local_irq_disable();
1412        tsk->mm = NULL;
1413        membarrier_update_current_mm(NULL);
1414        /* active_mm is still 'mm' */
1415        enter_lazy_tlb(mm, tsk);
1416        local_irq_enable();
1417        task_unlock(tsk);
1418}
1419EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1420
1421#ifdef CONFIG_BLK_CGROUP
1422/**
1423 * kthread_associate_blkcg - associate blkcg to current kthread
1424 * @css: the cgroup info
1425 *
1426 * Current thread must be a kthread. The thread is running jobs on behalf of
1427 * other threads. In some cases, we expect the jobs attach cgroup info of
1428 * original threads instead of that of current thread. This function stores
1429 * original thread's cgroup info in current kthread context for later
1430 * retrieval.
1431 */
1432void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1433{
1434        struct kthread *kthread;
1435
1436        if (!(current->flags & PF_KTHREAD))
1437                return;
1438        kthread = to_kthread(current);
1439        if (!kthread)
1440                return;
1441
1442        if (kthread->blkcg_css) {
1443                css_put(kthread->blkcg_css);
1444                kthread->blkcg_css = NULL;
1445        }
1446        if (css) {
1447                css_get(css);
1448                kthread->blkcg_css = css;
1449        }
1450}
1451EXPORT_SYMBOL(kthread_associate_blkcg);
1452
1453/**
1454 * kthread_blkcg - get associated blkcg css of current kthread
1455 *
1456 * Current thread must be a kthread.
1457 */
1458struct cgroup_subsys_state *kthread_blkcg(void)
1459{
1460        struct kthread *kthread;
1461
1462        if (current->flags & PF_KTHREAD) {
1463                kthread = to_kthread(current);
1464                if (kthread)
1465                        return kthread->blkcg_css;
1466        }
1467        return NULL;
1468}
1469EXPORT_SYMBOL(kthread_blkcg);
1470#endif
1471