linux/kernel/locking/qspinlock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Queued spinlock
   4 *
   5 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
   6 * (C) Copyright 2013-2014,2018 Red Hat, Inc.
   7 * (C) Copyright 2015 Intel Corp.
   8 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
   9 *
  10 * Authors: Waiman Long <longman@redhat.com>
  11 *          Peter Zijlstra <peterz@infradead.org>
  12 */
  13
  14#ifndef _GEN_PV_LOCK_SLOWPATH
  15
  16#include <linux/smp.h>
  17#include <linux/bug.h>
  18#include <linux/cpumask.h>
  19#include <linux/percpu.h>
  20#include <linux/hardirq.h>
  21#include <linux/mutex.h>
  22#include <linux/prefetch.h>
  23#include <asm/byteorder.h>
  24#include <asm/qspinlock.h>
  25
  26/*
  27 * Include queued spinlock statistics code
  28 */
  29#include "qspinlock_stat.h"
  30
  31/*
  32 * The basic principle of a queue-based spinlock can best be understood
  33 * by studying a classic queue-based spinlock implementation called the
  34 * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable
  35 * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and
  36 * Scott") is available at
  37 *
  38 * https://bugzilla.kernel.org/show_bug.cgi?id=206115
  39 *
  40 * This queued spinlock implementation is based on the MCS lock, however to
  41 * make it fit the 4 bytes we assume spinlock_t to be, and preserve its
  42 * existing API, we must modify it somehow.
  43 *
  44 * In particular; where the traditional MCS lock consists of a tail pointer
  45 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
  46 * unlock the next pending (next->locked), we compress both these: {tail,
  47 * next->locked} into a single u32 value.
  48 *
  49 * Since a spinlock disables recursion of its own context and there is a limit
  50 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
  51 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
  52 * we can encode the tail by combining the 2-bit nesting level with the cpu
  53 * number. With one byte for the lock value and 3 bytes for the tail, only a
  54 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
  55 * we extend it to a full byte to achieve better performance for architectures
  56 * that support atomic byte write.
  57 *
  58 * We also change the first spinner to spin on the lock bit instead of its
  59 * node; whereby avoiding the need to carry a node from lock to unlock, and
  60 * preserving existing lock API. This also makes the unlock code simpler and
  61 * faster.
  62 *
  63 * N.B. The current implementation only supports architectures that allow
  64 *      atomic operations on smaller 8-bit and 16-bit data types.
  65 *
  66 */
  67
  68#include "mcs_spinlock.h"
  69#define MAX_NODES       4
  70
  71/*
  72 * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
  73 * size and four of them will fit nicely in one 64-byte cacheline. For
  74 * pvqspinlock, however, we need more space for extra data. To accommodate
  75 * that, we insert two more long words to pad it up to 32 bytes. IOW, only
  76 * two of them can fit in a cacheline in this case. That is OK as it is rare
  77 * to have more than 2 levels of slowpath nesting in actual use. We don't
  78 * want to penalize pvqspinlocks to optimize for a rare case in native
  79 * qspinlocks.
  80 */
  81struct qnode {
  82        struct mcs_spinlock mcs;
  83#ifdef CONFIG_PARAVIRT_SPINLOCKS
  84        long reserved[2];
  85#endif
  86};
  87
  88/*
  89 * The pending bit spinning loop count.
  90 * This heuristic is used to limit the number of lockword accesses
  91 * made by atomic_cond_read_relaxed when waiting for the lock to
  92 * transition out of the "== _Q_PENDING_VAL" state. We don't spin
  93 * indefinitely because there's no guarantee that we'll make forward
  94 * progress.
  95 */
  96#ifndef _Q_PENDING_LOOPS
  97#define _Q_PENDING_LOOPS        1
  98#endif
  99
 100/*
 101 * Per-CPU queue node structures; we can never have more than 4 nested
 102 * contexts: task, softirq, hardirq, nmi.
 103 *
 104 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
 105 *
 106 * PV doubles the storage and uses the second cacheline for PV state.
 107 */
 108static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
 109
 110/*
 111 * We must be able to distinguish between no-tail and the tail at 0:0,
 112 * therefore increment the cpu number by one.
 113 */
 114
 115static inline __pure u32 encode_tail(int cpu, int idx)
 116{
 117        u32 tail;
 118
 119        tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
 120        tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
 121
 122        return tail;
 123}
 124
 125static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
 126{
 127        int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
 128        int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
 129
 130        return per_cpu_ptr(&qnodes[idx].mcs, cpu);
 131}
 132
 133static inline __pure
 134struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
 135{
 136        return &((struct qnode *)base + idx)->mcs;
 137}
 138
 139#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
 140
 141#if _Q_PENDING_BITS == 8
 142/**
 143 * clear_pending - clear the pending bit.
 144 * @lock: Pointer to queued spinlock structure
 145 *
 146 * *,1,* -> *,0,*
 147 */
 148static __always_inline void clear_pending(struct qspinlock *lock)
 149{
 150        WRITE_ONCE(lock->pending, 0);
 151}
 152
 153/**
 154 * clear_pending_set_locked - take ownership and clear the pending bit.
 155 * @lock: Pointer to queued spinlock structure
 156 *
 157 * *,1,0 -> *,0,1
 158 *
 159 * Lock stealing is not allowed if this function is used.
 160 */
 161static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
 162{
 163        WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
 164}
 165
 166/*
 167 * xchg_tail - Put in the new queue tail code word & retrieve previous one
 168 * @lock : Pointer to queued spinlock structure
 169 * @tail : The new queue tail code word
 170 * Return: The previous queue tail code word
 171 *
 172 * xchg(lock, tail), which heads an address dependency
 173 *
 174 * p,*,* -> n,*,* ; prev = xchg(lock, node)
 175 */
 176static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
 177{
 178        /*
 179         * We can use relaxed semantics since the caller ensures that the
 180         * MCS node is properly initialized before updating the tail.
 181         */
 182        return (u32)xchg_relaxed(&lock->tail,
 183                                 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
 184}
 185
 186#else /* _Q_PENDING_BITS == 8 */
 187
 188/**
 189 * clear_pending - clear the pending bit.
 190 * @lock: Pointer to queued spinlock structure
 191 *
 192 * *,1,* -> *,0,*
 193 */
 194static __always_inline void clear_pending(struct qspinlock *lock)
 195{
 196        atomic_andnot(_Q_PENDING_VAL, &lock->val);
 197}
 198
 199/**
 200 * clear_pending_set_locked - take ownership and clear the pending bit.
 201 * @lock: Pointer to queued spinlock structure
 202 *
 203 * *,1,0 -> *,0,1
 204 */
 205static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
 206{
 207        atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
 208}
 209
 210/**
 211 * xchg_tail - Put in the new queue tail code word & retrieve previous one
 212 * @lock : Pointer to queued spinlock structure
 213 * @tail : The new queue tail code word
 214 * Return: The previous queue tail code word
 215 *
 216 * xchg(lock, tail)
 217 *
 218 * p,*,* -> n,*,* ; prev = xchg(lock, node)
 219 */
 220static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
 221{
 222        u32 old, new, val = atomic_read(&lock->val);
 223
 224        for (;;) {
 225                new = (val & _Q_LOCKED_PENDING_MASK) | tail;
 226                /*
 227                 * We can use relaxed semantics since the caller ensures that
 228                 * the MCS node is properly initialized before updating the
 229                 * tail.
 230                 */
 231                old = atomic_cmpxchg_relaxed(&lock->val, val, new);
 232                if (old == val)
 233                        break;
 234
 235                val = old;
 236        }
 237        return old;
 238}
 239#endif /* _Q_PENDING_BITS == 8 */
 240
 241/**
 242 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
 243 * @lock : Pointer to queued spinlock structure
 244 * Return: The previous lock value
 245 *
 246 * *,*,* -> *,1,*
 247 */
 248#ifndef queued_fetch_set_pending_acquire
 249static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
 250{
 251        return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
 252}
 253#endif
 254
 255/**
 256 * set_locked - Set the lock bit and own the lock
 257 * @lock: Pointer to queued spinlock structure
 258 *
 259 * *,*,0 -> *,0,1
 260 */
 261static __always_inline void set_locked(struct qspinlock *lock)
 262{
 263        WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
 264}
 265
 266
 267/*
 268 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
 269 * all the PV callbacks.
 270 */
 271
 272static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
 273static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
 274                                           struct mcs_spinlock *prev) { }
 275static __always_inline void __pv_kick_node(struct qspinlock *lock,
 276                                           struct mcs_spinlock *node) { }
 277static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
 278                                                   struct mcs_spinlock *node)
 279                                                   { return 0; }
 280
 281#define pv_enabled()            false
 282
 283#define pv_init_node            __pv_init_node
 284#define pv_wait_node            __pv_wait_node
 285#define pv_kick_node            __pv_kick_node
 286#define pv_wait_head_or_lock    __pv_wait_head_or_lock
 287
 288#ifdef CONFIG_PARAVIRT_SPINLOCKS
 289#define queued_spin_lock_slowpath       native_queued_spin_lock_slowpath
 290#endif
 291
 292#endif /* _GEN_PV_LOCK_SLOWPATH */
 293
 294/**
 295 * queued_spin_lock_slowpath - acquire the queued spinlock
 296 * @lock: Pointer to queued spinlock structure
 297 * @val: Current value of the queued spinlock 32-bit word
 298 *
 299 * (queue tail, pending bit, lock value)
 300 *
 301 *              fast     :    slow                                  :    unlock
 302 *                       :                                          :
 303 * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
 304 *                       :       | ^--------.------.             /  :
 305 *                       :       v           \      \            |  :
 306 * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
 307 *                       :       | ^--'              |           |  :
 308 *                       :       v                   |           |  :
 309 * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
 310 *   queue               :       | ^--'                          |  :
 311 *                       :       v                               |  :
 312 * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
 313 *   queue               :         ^--'                             :
 314 */
 315void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
 316{
 317        struct mcs_spinlock *prev, *next, *node;
 318        u32 old, tail;
 319        int idx;
 320
 321        BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
 322
 323        if (pv_enabled())
 324                goto pv_queue;
 325
 326        if (virt_spin_lock(lock))
 327                return;
 328
 329        /*
 330         * Wait for in-progress pending->locked hand-overs with a bounded
 331         * number of spins so that we guarantee forward progress.
 332         *
 333         * 0,1,0 -> 0,0,1
 334         */
 335        if (val == _Q_PENDING_VAL) {
 336                int cnt = _Q_PENDING_LOOPS;
 337                val = atomic_cond_read_relaxed(&lock->val,
 338                                               (VAL != _Q_PENDING_VAL) || !cnt--);
 339        }
 340
 341        /*
 342         * If we observe any contention; queue.
 343         */
 344        if (val & ~_Q_LOCKED_MASK)
 345                goto queue;
 346
 347        /*
 348         * trylock || pending
 349         *
 350         * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
 351         */
 352        val = queued_fetch_set_pending_acquire(lock);
 353
 354        /*
 355         * If we observe contention, there is a concurrent locker.
 356         *
 357         * Undo and queue; our setting of PENDING might have made the
 358         * n,0,0 -> 0,0,0 transition fail and it will now be waiting
 359         * on @next to become !NULL.
 360         */
 361        if (unlikely(val & ~_Q_LOCKED_MASK)) {
 362
 363                /* Undo PENDING if we set it. */
 364                if (!(val & _Q_PENDING_MASK))
 365                        clear_pending(lock);
 366
 367                goto queue;
 368        }
 369
 370        /*
 371         * We're pending, wait for the owner to go away.
 372         *
 373         * 0,1,1 -> 0,1,0
 374         *
 375         * this wait loop must be a load-acquire such that we match the
 376         * store-release that clears the locked bit and create lock
 377         * sequentiality; this is because not all
 378         * clear_pending_set_locked() implementations imply full
 379         * barriers.
 380         */
 381        if (val & _Q_LOCKED_MASK)
 382                atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK));
 383
 384        /*
 385         * take ownership and clear the pending bit.
 386         *
 387         * 0,1,0 -> 0,0,1
 388         */
 389        clear_pending_set_locked(lock);
 390        lockevent_inc(lock_pending);
 391        return;
 392
 393        /*
 394         * End of pending bit optimistic spinning and beginning of MCS
 395         * queuing.
 396         */
 397queue:
 398        lockevent_inc(lock_slowpath);
 399pv_queue:
 400        node = this_cpu_ptr(&qnodes[0].mcs);
 401        idx = node->count++;
 402        tail = encode_tail(smp_processor_id(), idx);
 403
 404        /*
 405         * 4 nodes are allocated based on the assumption that there will
 406         * not be nested NMIs taking spinlocks. That may not be true in
 407         * some architectures even though the chance of needing more than
 408         * 4 nodes will still be extremely unlikely. When that happens,
 409         * we fall back to spinning on the lock directly without using
 410         * any MCS node. This is not the most elegant solution, but is
 411         * simple enough.
 412         */
 413        if (unlikely(idx >= MAX_NODES)) {
 414                lockevent_inc(lock_no_node);
 415                while (!queued_spin_trylock(lock))
 416                        cpu_relax();
 417                goto release;
 418        }
 419
 420        node = grab_mcs_node(node, idx);
 421
 422        /*
 423         * Keep counts of non-zero index values:
 424         */
 425        lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
 426
 427        /*
 428         * Ensure that we increment the head node->count before initialising
 429         * the actual node. If the compiler is kind enough to reorder these
 430         * stores, then an IRQ could overwrite our assignments.
 431         */
 432        barrier();
 433
 434        node->locked = 0;
 435        node->next = NULL;
 436        pv_init_node(node);
 437
 438        /*
 439         * We touched a (possibly) cold cacheline in the per-cpu queue node;
 440         * attempt the trylock once more in the hope someone let go while we
 441         * weren't watching.
 442         */
 443        if (queued_spin_trylock(lock))
 444                goto release;
 445
 446        /*
 447         * Ensure that the initialisation of @node is complete before we
 448         * publish the updated tail via xchg_tail() and potentially link
 449         * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
 450         */
 451        smp_wmb();
 452
 453        /*
 454         * Publish the updated tail.
 455         * We have already touched the queueing cacheline; don't bother with
 456         * pending stuff.
 457         *
 458         * p,*,* -> n,*,*
 459         */
 460        old = xchg_tail(lock, tail);
 461        next = NULL;
 462
 463        /*
 464         * if there was a previous node; link it and wait until reaching the
 465         * head of the waitqueue.
 466         */
 467        if (old & _Q_TAIL_MASK) {
 468                prev = decode_tail(old);
 469
 470                /* Link @node into the waitqueue. */
 471                WRITE_ONCE(prev->next, node);
 472
 473                pv_wait_node(node, prev);
 474                arch_mcs_spin_lock_contended(&node->locked);
 475
 476                /*
 477                 * While waiting for the MCS lock, the next pointer may have
 478                 * been set by another lock waiter. We optimistically load
 479                 * the next pointer & prefetch the cacheline for writing
 480                 * to reduce latency in the upcoming MCS unlock operation.
 481                 */
 482                next = READ_ONCE(node->next);
 483                if (next)
 484                        prefetchw(next);
 485        }
 486
 487        /*
 488         * we're at the head of the waitqueue, wait for the owner & pending to
 489         * go away.
 490         *
 491         * *,x,y -> *,0,0
 492         *
 493         * this wait loop must use a load-acquire such that we match the
 494         * store-release that clears the locked bit and create lock
 495         * sequentiality; this is because the set_locked() function below
 496         * does not imply a full barrier.
 497         *
 498         * The PV pv_wait_head_or_lock function, if active, will acquire
 499         * the lock and return a non-zero value. So we have to skip the
 500         * atomic_cond_read_acquire() call. As the next PV queue head hasn't
 501         * been designated yet, there is no way for the locked value to become
 502         * _Q_SLOW_VAL. So both the set_locked() and the
 503         * atomic_cmpxchg_relaxed() calls will be safe.
 504         *
 505         * If PV isn't active, 0 will be returned instead.
 506         *
 507         */
 508        if ((val = pv_wait_head_or_lock(lock, node)))
 509                goto locked;
 510
 511        val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
 512
 513locked:
 514        /*
 515         * claim the lock:
 516         *
 517         * n,0,0 -> 0,0,1 : lock, uncontended
 518         * *,*,0 -> *,*,1 : lock, contended
 519         *
 520         * If the queue head is the only one in the queue (lock value == tail)
 521         * and nobody is pending, clear the tail code and grab the lock.
 522         * Otherwise, we only need to grab the lock.
 523         */
 524
 525        /*
 526         * In the PV case we might already have _Q_LOCKED_VAL set, because
 527         * of lock stealing; therefore we must also allow:
 528         *
 529         * n,0,1 -> 0,0,1
 530         *
 531         * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
 532         *       above wait condition, therefore any concurrent setting of
 533         *       PENDING will make the uncontended transition fail.
 534         */
 535        if ((val & _Q_TAIL_MASK) == tail) {
 536                if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
 537                        goto release; /* No contention */
 538        }
 539
 540        /*
 541         * Either somebody is queued behind us or _Q_PENDING_VAL got set
 542         * which will then detect the remaining tail and queue behind us
 543         * ensuring we'll see a @next.
 544         */
 545        set_locked(lock);
 546
 547        /*
 548         * contended path; wait for next if not observed yet, release.
 549         */
 550        if (!next)
 551                next = smp_cond_load_relaxed(&node->next, (VAL));
 552
 553        arch_mcs_spin_unlock_contended(&next->locked);
 554        pv_kick_node(lock, next);
 555
 556release:
 557        /*
 558         * release the node
 559         */
 560        __this_cpu_dec(qnodes[0].mcs.count);
 561}
 562EXPORT_SYMBOL(queued_spin_lock_slowpath);
 563
 564/*
 565 * Generate the paravirt code for queued_spin_unlock_slowpath().
 566 */
 567#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
 568#define _GEN_PV_LOCK_SLOWPATH
 569
 570#undef  pv_enabled
 571#define pv_enabled()    true
 572
 573#undef pv_init_node
 574#undef pv_wait_node
 575#undef pv_kick_node
 576#undef pv_wait_head_or_lock
 577
 578#undef  queued_spin_lock_slowpath
 579#define queued_spin_lock_slowpath       __pv_queued_spin_lock_slowpath
 580
 581#include "qspinlock_paravirt.h"
 582#include "qspinlock.c"
 583
 584bool nopvspin __initdata;
 585static __init int parse_nopvspin(char *arg)
 586{
 587        nopvspin = true;
 588        return 0;
 589}
 590early_param("nopvspin", parse_nopvspin);
 591#endif
 592