linux/kernel/locking/rwsem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* kernel/rwsem.c: R/W semaphores, public implementation
   3 *
   4 * Written by David Howells (dhowells@redhat.com).
   5 * Derived from asm-i386/semaphore.h
   6 *
   7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
   8 * and Michel Lespinasse <walken@google.com>
   9 *
  10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
  11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
  12 *
  13 * Rwsem count bit fields re-definition and rwsem rearchitecture by
  14 * Waiman Long <longman@redhat.com> and
  15 * Peter Zijlstra <peterz@infradead.org>.
  16 */
  17
  18#include <linux/types.h>
  19#include <linux/kernel.h>
  20#include <linux/sched.h>
  21#include <linux/sched/rt.h>
  22#include <linux/sched/task.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sched/wake_q.h>
  25#include <linux/sched/signal.h>
  26#include <linux/sched/clock.h>
  27#include <linux/export.h>
  28#include <linux/rwsem.h>
  29#include <linux/atomic.h>
  30
  31#ifndef CONFIG_PREEMPT_RT
  32#include "lock_events.h"
  33
  34/*
  35 * The least significant 2 bits of the owner value has the following
  36 * meanings when set.
  37 *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
  38 *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
  39 *
  40 * When the rwsem is reader-owned and a spinning writer has timed out,
  41 * the nonspinnable bit will be set to disable optimistic spinning.
  42
  43 * When a writer acquires a rwsem, it puts its task_struct pointer
  44 * into the owner field. It is cleared after an unlock.
  45 *
  46 * When a reader acquires a rwsem, it will also puts its task_struct
  47 * pointer into the owner field with the RWSEM_READER_OWNED bit set.
  48 * On unlock, the owner field will largely be left untouched. So
  49 * for a free or reader-owned rwsem, the owner value may contain
  50 * information about the last reader that acquires the rwsem.
  51 *
  52 * That information may be helpful in debugging cases where the system
  53 * seems to hang on a reader owned rwsem especially if only one reader
  54 * is involved. Ideally we would like to track all the readers that own
  55 * a rwsem, but the overhead is simply too big.
  56 *
  57 * A fast path reader optimistic lock stealing is supported when the rwsem
  58 * is previously owned by a writer and the following conditions are met:
  59 *  - OSQ is empty
  60 *  - rwsem is not currently writer owned
  61 *  - the handoff isn't set.
  62 */
  63#define RWSEM_READER_OWNED      (1UL << 0)
  64#define RWSEM_NONSPINNABLE      (1UL << 1)
  65#define RWSEM_OWNER_FLAGS_MASK  (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
  66
  67#ifdef CONFIG_DEBUG_RWSEMS
  68# define DEBUG_RWSEMS_WARN_ON(c, sem)   do {                    \
  69        if (!debug_locks_silent &&                              \
  70            WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
  71                #c, atomic_long_read(&(sem)->count),            \
  72                (unsigned long) sem->magic,                     \
  73                atomic_long_read(&(sem)->owner), (long)current, \
  74                list_empty(&(sem)->wait_list) ? "" : "not "))   \
  75                        debug_locks_off();                      \
  76        } while (0)
  77#else
  78# define DEBUG_RWSEMS_WARN_ON(c, sem)
  79#endif
  80
  81/*
  82 * On 64-bit architectures, the bit definitions of the count are:
  83 *
  84 * Bit  0    - writer locked bit
  85 * Bit  1    - waiters present bit
  86 * Bit  2    - lock handoff bit
  87 * Bits 3-7  - reserved
  88 * Bits 8-62 - 55-bit reader count
  89 * Bit  63   - read fail bit
  90 *
  91 * On 32-bit architectures, the bit definitions of the count are:
  92 *
  93 * Bit  0    - writer locked bit
  94 * Bit  1    - waiters present bit
  95 * Bit  2    - lock handoff bit
  96 * Bits 3-7  - reserved
  97 * Bits 8-30 - 23-bit reader count
  98 * Bit  31   - read fail bit
  99 *
 100 * It is not likely that the most significant bit (read fail bit) will ever
 101 * be set. This guard bit is still checked anyway in the down_read() fastpath
 102 * just in case we need to use up more of the reader bits for other purpose
 103 * in the future.
 104 *
 105 * atomic_long_fetch_add() is used to obtain reader lock, whereas
 106 * atomic_long_cmpxchg() will be used to obtain writer lock.
 107 *
 108 * There are three places where the lock handoff bit may be set or cleared.
 109 * 1) rwsem_mark_wake() for readers.
 110 * 2) rwsem_try_write_lock() for writers.
 111 * 3) Error path of rwsem_down_write_slowpath().
 112 *
 113 * For all the above cases, wait_lock will be held. A writer must also
 114 * be the first one in the wait_list to be eligible for setting the handoff
 115 * bit. So concurrent setting/clearing of handoff bit is not possible.
 116 */
 117#define RWSEM_WRITER_LOCKED     (1UL << 0)
 118#define RWSEM_FLAG_WAITERS      (1UL << 1)
 119#define RWSEM_FLAG_HANDOFF      (1UL << 2)
 120#define RWSEM_FLAG_READFAIL     (1UL << (BITS_PER_LONG - 1))
 121
 122#define RWSEM_READER_SHIFT      8
 123#define RWSEM_READER_BIAS       (1UL << RWSEM_READER_SHIFT)
 124#define RWSEM_READER_MASK       (~(RWSEM_READER_BIAS - 1))
 125#define RWSEM_WRITER_MASK       RWSEM_WRITER_LOCKED
 126#define RWSEM_LOCK_MASK         (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
 127#define RWSEM_READ_FAILED_MASK  (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
 128                                 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
 129
 130/*
 131 * All writes to owner are protected by WRITE_ONCE() to make sure that
 132 * store tearing can't happen as optimistic spinners may read and use
 133 * the owner value concurrently without lock. Read from owner, however,
 134 * may not need READ_ONCE() as long as the pointer value is only used
 135 * for comparison and isn't being dereferenced.
 136 */
 137static inline void rwsem_set_owner(struct rw_semaphore *sem)
 138{
 139        atomic_long_set(&sem->owner, (long)current);
 140}
 141
 142static inline void rwsem_clear_owner(struct rw_semaphore *sem)
 143{
 144        atomic_long_set(&sem->owner, 0);
 145}
 146
 147/*
 148 * Test the flags in the owner field.
 149 */
 150static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
 151{
 152        return atomic_long_read(&sem->owner) & flags;
 153}
 154
 155/*
 156 * The task_struct pointer of the last owning reader will be left in
 157 * the owner field.
 158 *
 159 * Note that the owner value just indicates the task has owned the rwsem
 160 * previously, it may not be the real owner or one of the real owners
 161 * anymore when that field is examined, so take it with a grain of salt.
 162 *
 163 * The reader non-spinnable bit is preserved.
 164 */
 165static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
 166                                            struct task_struct *owner)
 167{
 168        unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
 169                (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
 170
 171        atomic_long_set(&sem->owner, val);
 172}
 173
 174static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
 175{
 176        __rwsem_set_reader_owned(sem, current);
 177}
 178
 179/*
 180 * Return true if the rwsem is owned by a reader.
 181 */
 182static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
 183{
 184#ifdef CONFIG_DEBUG_RWSEMS
 185        /*
 186         * Check the count to see if it is write-locked.
 187         */
 188        long count = atomic_long_read(&sem->count);
 189
 190        if (count & RWSEM_WRITER_MASK)
 191                return false;
 192#endif
 193        return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
 194}
 195
 196#ifdef CONFIG_DEBUG_RWSEMS
 197/*
 198 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
 199 * is a task pointer in owner of a reader-owned rwsem, it will be the
 200 * real owner or one of the real owners. The only exception is when the
 201 * unlock is done by up_read_non_owner().
 202 */
 203static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
 204{
 205        unsigned long val = atomic_long_read(&sem->owner);
 206
 207        while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
 208                if (atomic_long_try_cmpxchg(&sem->owner, &val,
 209                                            val & RWSEM_OWNER_FLAGS_MASK))
 210                        return;
 211        }
 212}
 213#else
 214static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
 215{
 216}
 217#endif
 218
 219/*
 220 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
 221 * remains set. Otherwise, the operation will be aborted.
 222 */
 223static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
 224{
 225        unsigned long owner = atomic_long_read(&sem->owner);
 226
 227        do {
 228                if (!(owner & RWSEM_READER_OWNED))
 229                        break;
 230                if (owner & RWSEM_NONSPINNABLE)
 231                        break;
 232        } while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
 233                                          owner | RWSEM_NONSPINNABLE));
 234}
 235
 236static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
 237{
 238        *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
 239
 240        if (WARN_ON_ONCE(*cntp < 0))
 241                rwsem_set_nonspinnable(sem);
 242
 243        if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
 244                rwsem_set_reader_owned(sem);
 245                return true;
 246        }
 247
 248        return false;
 249}
 250
 251static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
 252{
 253        long tmp = RWSEM_UNLOCKED_VALUE;
 254
 255        if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
 256                rwsem_set_owner(sem);
 257                return true;
 258        }
 259
 260        return false;
 261}
 262
 263/*
 264 * Return just the real task structure pointer of the owner
 265 */
 266static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
 267{
 268        return (struct task_struct *)
 269                (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
 270}
 271
 272/*
 273 * Return the real task structure pointer of the owner and the embedded
 274 * flags in the owner. pflags must be non-NULL.
 275 */
 276static inline struct task_struct *
 277rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
 278{
 279        unsigned long owner = atomic_long_read(&sem->owner);
 280
 281        *pflags = owner & RWSEM_OWNER_FLAGS_MASK;
 282        return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
 283}
 284
 285/*
 286 * Guide to the rw_semaphore's count field.
 287 *
 288 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
 289 * by a writer.
 290 *
 291 * The lock is owned by readers when
 292 * (1) the RWSEM_WRITER_LOCKED isn't set in count,
 293 * (2) some of the reader bits are set in count, and
 294 * (3) the owner field has RWSEM_READ_OWNED bit set.
 295 *
 296 * Having some reader bits set is not enough to guarantee a readers owned
 297 * lock as the readers may be in the process of backing out from the count
 298 * and a writer has just released the lock. So another writer may steal
 299 * the lock immediately after that.
 300 */
 301
 302/*
 303 * Initialize an rwsem:
 304 */
 305void __init_rwsem(struct rw_semaphore *sem, const char *name,
 306                  struct lock_class_key *key)
 307{
 308#ifdef CONFIG_DEBUG_LOCK_ALLOC
 309        /*
 310         * Make sure we are not reinitializing a held semaphore:
 311         */
 312        debug_check_no_locks_freed((void *)sem, sizeof(*sem));
 313        lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
 314#endif
 315#ifdef CONFIG_DEBUG_RWSEMS
 316        sem->magic = sem;
 317#endif
 318        atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
 319        raw_spin_lock_init(&sem->wait_lock);
 320        INIT_LIST_HEAD(&sem->wait_list);
 321        atomic_long_set(&sem->owner, 0L);
 322#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
 323        osq_lock_init(&sem->osq);
 324#endif
 325}
 326EXPORT_SYMBOL(__init_rwsem);
 327
 328enum rwsem_waiter_type {
 329        RWSEM_WAITING_FOR_WRITE,
 330        RWSEM_WAITING_FOR_READ
 331};
 332
 333struct rwsem_waiter {
 334        struct list_head list;
 335        struct task_struct *task;
 336        enum rwsem_waiter_type type;
 337        unsigned long timeout;
 338};
 339#define rwsem_first_waiter(sem) \
 340        list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
 341
 342enum rwsem_wake_type {
 343        RWSEM_WAKE_ANY,         /* Wake whatever's at head of wait list */
 344        RWSEM_WAKE_READERS,     /* Wake readers only */
 345        RWSEM_WAKE_READ_OWNED   /* Waker thread holds the read lock */
 346};
 347
 348enum writer_wait_state {
 349        WRITER_NOT_FIRST,       /* Writer is not first in wait list */
 350        WRITER_FIRST,           /* Writer is first in wait list     */
 351        WRITER_HANDOFF          /* Writer is first & handoff needed */
 352};
 353
 354/*
 355 * The typical HZ value is either 250 or 1000. So set the minimum waiting
 356 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
 357 * queue before initiating the handoff protocol.
 358 */
 359#define RWSEM_WAIT_TIMEOUT      DIV_ROUND_UP(HZ, 250)
 360
 361/*
 362 * Magic number to batch-wakeup waiting readers, even when writers are
 363 * also present in the queue. This both limits the amount of work the
 364 * waking thread must do and also prevents any potential counter overflow,
 365 * however unlikely.
 366 */
 367#define MAX_READERS_WAKEUP      0x100
 368
 369/*
 370 * handle the lock release when processes blocked on it that can now run
 371 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
 372 *   have been set.
 373 * - there must be someone on the queue
 374 * - the wait_lock must be held by the caller
 375 * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
 376 *   to actually wakeup the blocked task(s) and drop the reference count,
 377 *   preferably when the wait_lock is released
 378 * - woken process blocks are discarded from the list after having task zeroed
 379 * - writers are only marked woken if downgrading is false
 380 */
 381static void rwsem_mark_wake(struct rw_semaphore *sem,
 382                            enum rwsem_wake_type wake_type,
 383                            struct wake_q_head *wake_q)
 384{
 385        struct rwsem_waiter *waiter, *tmp;
 386        long oldcount, woken = 0, adjustment = 0;
 387        struct list_head wlist;
 388
 389        lockdep_assert_held(&sem->wait_lock);
 390
 391        /*
 392         * Take a peek at the queue head waiter such that we can determine
 393         * the wakeup(s) to perform.
 394         */
 395        waiter = rwsem_first_waiter(sem);
 396
 397        if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
 398                if (wake_type == RWSEM_WAKE_ANY) {
 399                        /*
 400                         * Mark writer at the front of the queue for wakeup.
 401                         * Until the task is actually later awoken later by
 402                         * the caller, other writers are able to steal it.
 403                         * Readers, on the other hand, will block as they
 404                         * will notice the queued writer.
 405                         */
 406                        wake_q_add(wake_q, waiter->task);
 407                        lockevent_inc(rwsem_wake_writer);
 408                }
 409
 410                return;
 411        }
 412
 413        /*
 414         * No reader wakeup if there are too many of them already.
 415         */
 416        if (unlikely(atomic_long_read(&sem->count) < 0))
 417                return;
 418
 419        /*
 420         * Writers might steal the lock before we grant it to the next reader.
 421         * We prefer to do the first reader grant before counting readers
 422         * so we can bail out early if a writer stole the lock.
 423         */
 424        if (wake_type != RWSEM_WAKE_READ_OWNED) {
 425                struct task_struct *owner;
 426
 427                adjustment = RWSEM_READER_BIAS;
 428                oldcount = atomic_long_fetch_add(adjustment, &sem->count);
 429                if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
 430                        /*
 431                         * When we've been waiting "too" long (for writers
 432                         * to give up the lock), request a HANDOFF to
 433                         * force the issue.
 434                         */
 435                        if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
 436                            time_after(jiffies, waiter->timeout)) {
 437                                adjustment -= RWSEM_FLAG_HANDOFF;
 438                                lockevent_inc(rwsem_rlock_handoff);
 439                        }
 440
 441                        atomic_long_add(-adjustment, &sem->count);
 442                        return;
 443                }
 444                /*
 445                 * Set it to reader-owned to give spinners an early
 446                 * indication that readers now have the lock.
 447                 * The reader nonspinnable bit seen at slowpath entry of
 448                 * the reader is copied over.
 449                 */
 450                owner = waiter->task;
 451                __rwsem_set_reader_owned(sem, owner);
 452        }
 453
 454        /*
 455         * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
 456         * queue. We know that the woken will be at least 1 as we accounted
 457         * for above. Note we increment the 'active part' of the count by the
 458         * number of readers before waking any processes up.
 459         *
 460         * This is an adaptation of the phase-fair R/W locks where at the
 461         * reader phase (first waiter is a reader), all readers are eligible
 462         * to acquire the lock at the same time irrespective of their order
 463         * in the queue. The writers acquire the lock according to their
 464         * order in the queue.
 465         *
 466         * We have to do wakeup in 2 passes to prevent the possibility that
 467         * the reader count may be decremented before it is incremented. It
 468         * is because the to-be-woken waiter may not have slept yet. So it
 469         * may see waiter->task got cleared, finish its critical section and
 470         * do an unlock before the reader count increment.
 471         *
 472         * 1) Collect the read-waiters in a separate list, count them and
 473         *    fully increment the reader count in rwsem.
 474         * 2) For each waiters in the new list, clear waiter->task and
 475         *    put them into wake_q to be woken up later.
 476         */
 477        INIT_LIST_HEAD(&wlist);
 478        list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
 479                if (waiter->type == RWSEM_WAITING_FOR_WRITE)
 480                        continue;
 481
 482                woken++;
 483                list_move_tail(&waiter->list, &wlist);
 484
 485                /*
 486                 * Limit # of readers that can be woken up per wakeup call.
 487                 */
 488                if (woken >= MAX_READERS_WAKEUP)
 489                        break;
 490        }
 491
 492        adjustment = woken * RWSEM_READER_BIAS - adjustment;
 493        lockevent_cond_inc(rwsem_wake_reader, woken);
 494        if (list_empty(&sem->wait_list)) {
 495                /* hit end of list above */
 496                adjustment -= RWSEM_FLAG_WAITERS;
 497        }
 498
 499        /*
 500         * When we've woken a reader, we no longer need to force writers
 501         * to give up the lock and we can clear HANDOFF.
 502         */
 503        if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF))
 504                adjustment -= RWSEM_FLAG_HANDOFF;
 505
 506        if (adjustment)
 507                atomic_long_add(adjustment, &sem->count);
 508
 509        /* 2nd pass */
 510        list_for_each_entry_safe(waiter, tmp, &wlist, list) {
 511                struct task_struct *tsk;
 512
 513                tsk = waiter->task;
 514                get_task_struct(tsk);
 515
 516                /*
 517                 * Ensure calling get_task_struct() before setting the reader
 518                 * waiter to nil such that rwsem_down_read_slowpath() cannot
 519                 * race with do_exit() by always holding a reference count
 520                 * to the task to wakeup.
 521                 */
 522                smp_store_release(&waiter->task, NULL);
 523                /*
 524                 * Ensure issuing the wakeup (either by us or someone else)
 525                 * after setting the reader waiter to nil.
 526                 */
 527                wake_q_add_safe(wake_q, tsk);
 528        }
 529}
 530
 531/*
 532 * This function must be called with the sem->wait_lock held to prevent
 533 * race conditions between checking the rwsem wait list and setting the
 534 * sem->count accordingly.
 535 *
 536 * If wstate is WRITER_HANDOFF, it will make sure that either the handoff
 537 * bit is set or the lock is acquired with handoff bit cleared.
 538 */
 539static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
 540                                        enum writer_wait_state wstate)
 541{
 542        long count, new;
 543
 544        lockdep_assert_held(&sem->wait_lock);
 545
 546        count = atomic_long_read(&sem->count);
 547        do {
 548                bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
 549
 550                if (has_handoff && wstate == WRITER_NOT_FIRST)
 551                        return false;
 552
 553                new = count;
 554
 555                if (count & RWSEM_LOCK_MASK) {
 556                        if (has_handoff || (wstate != WRITER_HANDOFF))
 557                                return false;
 558
 559                        new |= RWSEM_FLAG_HANDOFF;
 560                } else {
 561                        new |= RWSEM_WRITER_LOCKED;
 562                        new &= ~RWSEM_FLAG_HANDOFF;
 563
 564                        if (list_is_singular(&sem->wait_list))
 565                                new &= ~RWSEM_FLAG_WAITERS;
 566                }
 567        } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
 568
 569        /*
 570         * We have either acquired the lock with handoff bit cleared or
 571         * set the handoff bit.
 572         */
 573        if (new & RWSEM_FLAG_HANDOFF)
 574                return false;
 575
 576        rwsem_set_owner(sem);
 577        return true;
 578}
 579
 580#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
 581/*
 582 * Try to acquire write lock before the writer has been put on wait queue.
 583 */
 584static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
 585{
 586        long count = atomic_long_read(&sem->count);
 587
 588        while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
 589                if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
 590                                        count | RWSEM_WRITER_LOCKED)) {
 591                        rwsem_set_owner(sem);
 592                        lockevent_inc(rwsem_opt_lock);
 593                        return true;
 594                }
 595        }
 596        return false;
 597}
 598
 599static inline bool owner_on_cpu(struct task_struct *owner)
 600{
 601        /*
 602         * As lock holder preemption issue, we both skip spinning if
 603         * task is not on cpu or its cpu is preempted
 604         */
 605        return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
 606}
 607
 608static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
 609{
 610        struct task_struct *owner;
 611        unsigned long flags;
 612        bool ret = true;
 613
 614        if (need_resched()) {
 615                lockevent_inc(rwsem_opt_fail);
 616                return false;
 617        }
 618
 619        preempt_disable();
 620        rcu_read_lock();
 621        owner = rwsem_owner_flags(sem, &flags);
 622        /*
 623         * Don't check the read-owner as the entry may be stale.
 624         */
 625        if ((flags & RWSEM_NONSPINNABLE) ||
 626            (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
 627                ret = false;
 628        rcu_read_unlock();
 629        preempt_enable();
 630
 631        lockevent_cond_inc(rwsem_opt_fail, !ret);
 632        return ret;
 633}
 634
 635/*
 636 * The rwsem_spin_on_owner() function returns the following 4 values
 637 * depending on the lock owner state.
 638 *   OWNER_NULL  : owner is currently NULL
 639 *   OWNER_WRITER: when owner changes and is a writer
 640 *   OWNER_READER: when owner changes and the new owner may be a reader.
 641 *   OWNER_NONSPINNABLE:
 642 *                 when optimistic spinning has to stop because either the
 643 *                 owner stops running, is unknown, or its timeslice has
 644 *                 been used up.
 645 */
 646enum owner_state {
 647        OWNER_NULL              = 1 << 0,
 648        OWNER_WRITER            = 1 << 1,
 649        OWNER_READER            = 1 << 2,
 650        OWNER_NONSPINNABLE      = 1 << 3,
 651};
 652#define OWNER_SPINNABLE         (OWNER_NULL | OWNER_WRITER | OWNER_READER)
 653
 654static inline enum owner_state
 655rwsem_owner_state(struct task_struct *owner, unsigned long flags)
 656{
 657        if (flags & RWSEM_NONSPINNABLE)
 658                return OWNER_NONSPINNABLE;
 659
 660        if (flags & RWSEM_READER_OWNED)
 661                return OWNER_READER;
 662
 663        return owner ? OWNER_WRITER : OWNER_NULL;
 664}
 665
 666static noinline enum owner_state
 667rwsem_spin_on_owner(struct rw_semaphore *sem)
 668{
 669        struct task_struct *new, *owner;
 670        unsigned long flags, new_flags;
 671        enum owner_state state;
 672
 673        owner = rwsem_owner_flags(sem, &flags);
 674        state = rwsem_owner_state(owner, flags);
 675        if (state != OWNER_WRITER)
 676                return state;
 677
 678        rcu_read_lock();
 679        for (;;) {
 680                /*
 681                 * When a waiting writer set the handoff flag, it may spin
 682                 * on the owner as well. Once that writer acquires the lock,
 683                 * we can spin on it. So we don't need to quit even when the
 684                 * handoff bit is set.
 685                 */
 686                new = rwsem_owner_flags(sem, &new_flags);
 687                if ((new != owner) || (new_flags != flags)) {
 688                        state = rwsem_owner_state(new, new_flags);
 689                        break;
 690                }
 691
 692                /*
 693                 * Ensure we emit the owner->on_cpu, dereference _after_
 694                 * checking sem->owner still matches owner, if that fails,
 695                 * owner might point to free()d memory, if it still matches,
 696                 * the rcu_read_lock() ensures the memory stays valid.
 697                 */
 698                barrier();
 699
 700                if (need_resched() || !owner_on_cpu(owner)) {
 701                        state = OWNER_NONSPINNABLE;
 702                        break;
 703                }
 704
 705                cpu_relax();
 706        }
 707        rcu_read_unlock();
 708
 709        return state;
 710}
 711
 712/*
 713 * Calculate reader-owned rwsem spinning threshold for writer
 714 *
 715 * The more readers own the rwsem, the longer it will take for them to
 716 * wind down and free the rwsem. So the empirical formula used to
 717 * determine the actual spinning time limit here is:
 718 *
 719 *   Spinning threshold = (10 + nr_readers/2)us
 720 *
 721 * The limit is capped to a maximum of 25us (30 readers). This is just
 722 * a heuristic and is subjected to change in the future.
 723 */
 724static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
 725{
 726        long count = atomic_long_read(&sem->count);
 727        int readers = count >> RWSEM_READER_SHIFT;
 728        u64 delta;
 729
 730        if (readers > 30)
 731                readers = 30;
 732        delta = (20 + readers) * NSEC_PER_USEC / 2;
 733
 734        return sched_clock() + delta;
 735}
 736
 737static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
 738{
 739        bool taken = false;
 740        int prev_owner_state = OWNER_NULL;
 741        int loop = 0;
 742        u64 rspin_threshold = 0;
 743
 744        preempt_disable();
 745
 746        /* sem->wait_lock should not be held when doing optimistic spinning */
 747        if (!osq_lock(&sem->osq))
 748                goto done;
 749
 750        /*
 751         * Optimistically spin on the owner field and attempt to acquire the
 752         * lock whenever the owner changes. Spinning will be stopped when:
 753         *  1) the owning writer isn't running; or
 754         *  2) readers own the lock and spinning time has exceeded limit.
 755         */
 756        for (;;) {
 757                enum owner_state owner_state;
 758
 759                owner_state = rwsem_spin_on_owner(sem);
 760                if (!(owner_state & OWNER_SPINNABLE))
 761                        break;
 762
 763                /*
 764                 * Try to acquire the lock
 765                 */
 766                taken = rwsem_try_write_lock_unqueued(sem);
 767
 768                if (taken)
 769                        break;
 770
 771                /*
 772                 * Time-based reader-owned rwsem optimistic spinning
 773                 */
 774                if (owner_state == OWNER_READER) {
 775                        /*
 776                         * Re-initialize rspin_threshold every time when
 777                         * the owner state changes from non-reader to reader.
 778                         * This allows a writer to steal the lock in between
 779                         * 2 reader phases and have the threshold reset at
 780                         * the beginning of the 2nd reader phase.
 781                         */
 782                        if (prev_owner_state != OWNER_READER) {
 783                                if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
 784                                        break;
 785                                rspin_threshold = rwsem_rspin_threshold(sem);
 786                                loop = 0;
 787                        }
 788
 789                        /*
 790                         * Check time threshold once every 16 iterations to
 791                         * avoid calling sched_clock() too frequently so
 792                         * as to reduce the average latency between the times
 793                         * when the lock becomes free and when the spinner
 794                         * is ready to do a trylock.
 795                         */
 796                        else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
 797                                rwsem_set_nonspinnable(sem);
 798                                lockevent_inc(rwsem_opt_nospin);
 799                                break;
 800                        }
 801                }
 802
 803                /*
 804                 * An RT task cannot do optimistic spinning if it cannot
 805                 * be sure the lock holder is running or live-lock may
 806                 * happen if the current task and the lock holder happen
 807                 * to run in the same CPU. However, aborting optimistic
 808                 * spinning while a NULL owner is detected may miss some
 809                 * opportunity where spinning can continue without causing
 810                 * problem.
 811                 *
 812                 * There are 2 possible cases where an RT task may be able
 813                 * to continue spinning.
 814                 *
 815                 * 1) The lock owner is in the process of releasing the
 816                 *    lock, sem->owner is cleared but the lock has not
 817                 *    been released yet.
 818                 * 2) The lock was free and owner cleared, but another
 819                 *    task just comes in and acquire the lock before
 820                 *    we try to get it. The new owner may be a spinnable
 821                 *    writer.
 822                 *
 823                 * To take advantage of two scenarios listed above, the RT
 824                 * task is made to retry one more time to see if it can
 825                 * acquire the lock or continue spinning on the new owning
 826                 * writer. Of course, if the time lag is long enough or the
 827                 * new owner is not a writer or spinnable, the RT task will
 828                 * quit spinning.
 829                 *
 830                 * If the owner is a writer, the need_resched() check is
 831                 * done inside rwsem_spin_on_owner(). If the owner is not
 832                 * a writer, need_resched() check needs to be done here.
 833                 */
 834                if (owner_state != OWNER_WRITER) {
 835                        if (need_resched())
 836                                break;
 837                        if (rt_task(current) &&
 838                           (prev_owner_state != OWNER_WRITER))
 839                                break;
 840                }
 841                prev_owner_state = owner_state;
 842
 843                /*
 844                 * The cpu_relax() call is a compiler barrier which forces
 845                 * everything in this loop to be re-loaded. We don't need
 846                 * memory barriers as we'll eventually observe the right
 847                 * values at the cost of a few extra spins.
 848                 */
 849                cpu_relax();
 850        }
 851        osq_unlock(&sem->osq);
 852done:
 853        preempt_enable();
 854        lockevent_cond_inc(rwsem_opt_fail, !taken);
 855        return taken;
 856}
 857
 858/*
 859 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
 860 * only be called when the reader count reaches 0.
 861 */
 862static inline void clear_nonspinnable(struct rw_semaphore *sem)
 863{
 864        if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
 865                atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
 866}
 867
 868#else
 869static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
 870{
 871        return false;
 872}
 873
 874static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
 875{
 876        return false;
 877}
 878
 879static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
 880
 881static inline int
 882rwsem_spin_on_owner(struct rw_semaphore *sem)
 883{
 884        return 0;
 885}
 886#define OWNER_NULL      1
 887#endif
 888
 889/*
 890 * Wait for the read lock to be granted
 891 */
 892static struct rw_semaphore __sched *
 893rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
 894{
 895        long adjustment = -RWSEM_READER_BIAS;
 896        long rcnt = (count >> RWSEM_READER_SHIFT);
 897        struct rwsem_waiter waiter;
 898        DEFINE_WAKE_Q(wake_q);
 899        bool wake = false;
 900
 901        /*
 902         * To prevent a constant stream of readers from starving a sleeping
 903         * waiter, don't attempt optimistic lock stealing if the lock is
 904         * currently owned by readers.
 905         */
 906        if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
 907            (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
 908                goto queue;
 909
 910        /*
 911         * Reader optimistic lock stealing.
 912         */
 913        if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
 914                rwsem_set_reader_owned(sem);
 915                lockevent_inc(rwsem_rlock_steal);
 916
 917                /*
 918                 * Wake up other readers in the wait queue if it is
 919                 * the first reader.
 920                 */
 921                if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
 922                        raw_spin_lock_irq(&sem->wait_lock);
 923                        if (!list_empty(&sem->wait_list))
 924                                rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
 925                                                &wake_q);
 926                        raw_spin_unlock_irq(&sem->wait_lock);
 927                        wake_up_q(&wake_q);
 928                }
 929                return sem;
 930        }
 931
 932queue:
 933        waiter.task = current;
 934        waiter.type = RWSEM_WAITING_FOR_READ;
 935        waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
 936
 937        raw_spin_lock_irq(&sem->wait_lock);
 938        if (list_empty(&sem->wait_list)) {
 939                /*
 940                 * In case the wait queue is empty and the lock isn't owned
 941                 * by a writer or has the handoff bit set, this reader can
 942                 * exit the slowpath and return immediately as its
 943                 * RWSEM_READER_BIAS has already been set in the count.
 944                 */
 945                if (!(atomic_long_read(&sem->count) &
 946                     (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
 947                        /* Provide lock ACQUIRE */
 948                        smp_acquire__after_ctrl_dep();
 949                        raw_spin_unlock_irq(&sem->wait_lock);
 950                        rwsem_set_reader_owned(sem);
 951                        lockevent_inc(rwsem_rlock_fast);
 952                        return sem;
 953                }
 954                adjustment += RWSEM_FLAG_WAITERS;
 955        }
 956        list_add_tail(&waiter.list, &sem->wait_list);
 957
 958        /* we're now waiting on the lock, but no longer actively locking */
 959        count = atomic_long_add_return(adjustment, &sem->count);
 960
 961        /*
 962         * If there are no active locks, wake the front queued process(es).
 963         *
 964         * If there are no writers and we are first in the queue,
 965         * wake our own waiter to join the existing active readers !
 966         */
 967        if (!(count & RWSEM_LOCK_MASK)) {
 968                clear_nonspinnable(sem);
 969                wake = true;
 970        }
 971        if (wake || (!(count & RWSEM_WRITER_MASK) &&
 972                    (adjustment & RWSEM_FLAG_WAITERS)))
 973                rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
 974
 975        raw_spin_unlock_irq(&sem->wait_lock);
 976        wake_up_q(&wake_q);
 977
 978        /* wait to be given the lock */
 979        for (;;) {
 980                set_current_state(state);
 981                if (!smp_load_acquire(&waiter.task)) {
 982                        /* Matches rwsem_mark_wake()'s smp_store_release(). */
 983                        break;
 984                }
 985                if (signal_pending_state(state, current)) {
 986                        raw_spin_lock_irq(&sem->wait_lock);
 987                        if (waiter.task)
 988                                goto out_nolock;
 989                        raw_spin_unlock_irq(&sem->wait_lock);
 990                        /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
 991                        break;
 992                }
 993                schedule();
 994                lockevent_inc(rwsem_sleep_reader);
 995        }
 996
 997        __set_current_state(TASK_RUNNING);
 998        lockevent_inc(rwsem_rlock);
 999        return sem;
1000
1001out_nolock:
1002        list_del(&waiter.list);
1003        if (list_empty(&sem->wait_list)) {
1004                atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF,
1005                                   &sem->count);
1006        }
1007        raw_spin_unlock_irq(&sem->wait_lock);
1008        __set_current_state(TASK_RUNNING);
1009        lockevent_inc(rwsem_rlock_fail);
1010        return ERR_PTR(-EINTR);
1011}
1012
1013/*
1014 * Wait until we successfully acquire the write lock
1015 */
1016static struct rw_semaphore *
1017rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1018{
1019        long count;
1020        enum writer_wait_state wstate;
1021        struct rwsem_waiter waiter;
1022        struct rw_semaphore *ret = sem;
1023        DEFINE_WAKE_Q(wake_q);
1024
1025        /* do optimistic spinning and steal lock if possible */
1026        if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1027                /* rwsem_optimistic_spin() implies ACQUIRE on success */
1028                return sem;
1029        }
1030
1031        /*
1032         * Optimistic spinning failed, proceed to the slowpath
1033         * and block until we can acquire the sem.
1034         */
1035        waiter.task = current;
1036        waiter.type = RWSEM_WAITING_FOR_WRITE;
1037        waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1038
1039        raw_spin_lock_irq(&sem->wait_lock);
1040
1041        /* account for this before adding a new element to the list */
1042        wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST;
1043
1044        list_add_tail(&waiter.list, &sem->wait_list);
1045
1046        /* we're now waiting on the lock */
1047        if (wstate == WRITER_NOT_FIRST) {
1048                count = atomic_long_read(&sem->count);
1049
1050                /*
1051                 * If there were already threads queued before us and:
1052                 *  1) there are no active locks, wake the front
1053                 *     queued process(es) as the handoff bit might be set.
1054                 *  2) there are no active writers and some readers, the lock
1055                 *     must be read owned; so we try to wake any read lock
1056                 *     waiters that were queued ahead of us.
1057                 */
1058                if (count & RWSEM_WRITER_MASK)
1059                        goto wait;
1060
1061                rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1062                                        ? RWSEM_WAKE_READERS
1063                                        : RWSEM_WAKE_ANY, &wake_q);
1064
1065                if (!wake_q_empty(&wake_q)) {
1066                        /*
1067                         * We want to minimize wait_lock hold time especially
1068                         * when a large number of readers are to be woken up.
1069                         */
1070                        raw_spin_unlock_irq(&sem->wait_lock);
1071                        wake_up_q(&wake_q);
1072                        wake_q_init(&wake_q);   /* Used again, reinit */
1073                        raw_spin_lock_irq(&sem->wait_lock);
1074                }
1075        } else {
1076                atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1077        }
1078
1079wait:
1080        /* wait until we successfully acquire the lock */
1081        set_current_state(state);
1082        for (;;) {
1083                if (rwsem_try_write_lock(sem, wstate)) {
1084                        /* rwsem_try_write_lock() implies ACQUIRE on success */
1085                        break;
1086                }
1087
1088                raw_spin_unlock_irq(&sem->wait_lock);
1089
1090                /*
1091                 * After setting the handoff bit and failing to acquire
1092                 * the lock, attempt to spin on owner to accelerate lock
1093                 * transfer. If the previous owner is a on-cpu writer and it
1094                 * has just released the lock, OWNER_NULL will be returned.
1095                 * In this case, we attempt to acquire the lock again
1096                 * without sleeping.
1097                 */
1098                if (wstate == WRITER_HANDOFF &&
1099                    rwsem_spin_on_owner(sem) == OWNER_NULL)
1100                        goto trylock_again;
1101
1102                /* Block until there are no active lockers. */
1103                for (;;) {
1104                        if (signal_pending_state(state, current))
1105                                goto out_nolock;
1106
1107                        schedule();
1108                        lockevent_inc(rwsem_sleep_writer);
1109                        set_current_state(state);
1110                        /*
1111                         * If HANDOFF bit is set, unconditionally do
1112                         * a trylock.
1113                         */
1114                        if (wstate == WRITER_HANDOFF)
1115                                break;
1116
1117                        if ((wstate == WRITER_NOT_FIRST) &&
1118                            (rwsem_first_waiter(sem) == &waiter))
1119                                wstate = WRITER_FIRST;
1120
1121                        count = atomic_long_read(&sem->count);
1122                        if (!(count & RWSEM_LOCK_MASK))
1123                                break;
1124
1125                        /*
1126                         * The setting of the handoff bit is deferred
1127                         * until rwsem_try_write_lock() is called.
1128                         */
1129                        if ((wstate == WRITER_FIRST) && (rt_task(current) ||
1130                            time_after(jiffies, waiter.timeout))) {
1131                                wstate = WRITER_HANDOFF;
1132                                lockevent_inc(rwsem_wlock_handoff);
1133                                break;
1134                        }
1135                }
1136trylock_again:
1137                raw_spin_lock_irq(&sem->wait_lock);
1138        }
1139        __set_current_state(TASK_RUNNING);
1140        list_del(&waiter.list);
1141        raw_spin_unlock_irq(&sem->wait_lock);
1142        lockevent_inc(rwsem_wlock);
1143
1144        return ret;
1145
1146out_nolock:
1147        __set_current_state(TASK_RUNNING);
1148        raw_spin_lock_irq(&sem->wait_lock);
1149        list_del(&waiter.list);
1150
1151        if (unlikely(wstate == WRITER_HANDOFF))
1152                atomic_long_add(-RWSEM_FLAG_HANDOFF,  &sem->count);
1153
1154        if (list_empty(&sem->wait_list))
1155                atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count);
1156        else
1157                rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1158        raw_spin_unlock_irq(&sem->wait_lock);
1159        wake_up_q(&wake_q);
1160        lockevent_inc(rwsem_wlock_fail);
1161
1162        return ERR_PTR(-EINTR);
1163}
1164
1165/*
1166 * handle waking up a waiter on the semaphore
1167 * - up_read/up_write has decremented the active part of count if we come here
1168 */
1169static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1170{
1171        unsigned long flags;
1172        DEFINE_WAKE_Q(wake_q);
1173
1174        raw_spin_lock_irqsave(&sem->wait_lock, flags);
1175
1176        if (!list_empty(&sem->wait_list))
1177                rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1178
1179        raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1180        wake_up_q(&wake_q);
1181
1182        return sem;
1183}
1184
1185/*
1186 * downgrade a write lock into a read lock
1187 * - caller incremented waiting part of count and discovered it still negative
1188 * - just wake up any readers at the front of the queue
1189 */
1190static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1191{
1192        unsigned long flags;
1193        DEFINE_WAKE_Q(wake_q);
1194
1195        raw_spin_lock_irqsave(&sem->wait_lock, flags);
1196
1197        if (!list_empty(&sem->wait_list))
1198                rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1199
1200        raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1201        wake_up_q(&wake_q);
1202
1203        return sem;
1204}
1205
1206/*
1207 * lock for reading
1208 */
1209static inline int __down_read_common(struct rw_semaphore *sem, int state)
1210{
1211        long count;
1212
1213        if (!rwsem_read_trylock(sem, &count)) {
1214                if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1215                        return -EINTR;
1216                DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1217        }
1218        return 0;
1219}
1220
1221static inline void __down_read(struct rw_semaphore *sem)
1222{
1223        __down_read_common(sem, TASK_UNINTERRUPTIBLE);
1224}
1225
1226static inline int __down_read_interruptible(struct rw_semaphore *sem)
1227{
1228        return __down_read_common(sem, TASK_INTERRUPTIBLE);
1229}
1230
1231static inline int __down_read_killable(struct rw_semaphore *sem)
1232{
1233        return __down_read_common(sem, TASK_KILLABLE);
1234}
1235
1236static inline int __down_read_trylock(struct rw_semaphore *sem)
1237{
1238        long tmp;
1239
1240        DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1241
1242        /*
1243         * Optimize for the case when the rwsem is not locked at all.
1244         */
1245        tmp = RWSEM_UNLOCKED_VALUE;
1246        do {
1247                if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1248                                        tmp + RWSEM_READER_BIAS)) {
1249                        rwsem_set_reader_owned(sem);
1250                        return 1;
1251                }
1252        } while (!(tmp & RWSEM_READ_FAILED_MASK));
1253        return 0;
1254}
1255
1256/*
1257 * lock for writing
1258 */
1259static inline int __down_write_common(struct rw_semaphore *sem, int state)
1260{
1261        if (unlikely(!rwsem_write_trylock(sem))) {
1262                if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1263                        return -EINTR;
1264        }
1265
1266        return 0;
1267}
1268
1269static inline void __down_write(struct rw_semaphore *sem)
1270{
1271        __down_write_common(sem, TASK_UNINTERRUPTIBLE);
1272}
1273
1274static inline int __down_write_killable(struct rw_semaphore *sem)
1275{
1276        return __down_write_common(sem, TASK_KILLABLE);
1277}
1278
1279static inline int __down_write_trylock(struct rw_semaphore *sem)
1280{
1281        DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1282        return rwsem_write_trylock(sem);
1283}
1284
1285/*
1286 * unlock after reading
1287 */
1288static inline void __up_read(struct rw_semaphore *sem)
1289{
1290        long tmp;
1291
1292        DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1293        DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1294
1295        rwsem_clear_reader_owned(sem);
1296        tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1297        DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1298        if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1299                      RWSEM_FLAG_WAITERS)) {
1300                clear_nonspinnable(sem);
1301                rwsem_wake(sem);
1302        }
1303}
1304
1305/*
1306 * unlock after writing
1307 */
1308static inline void __up_write(struct rw_semaphore *sem)
1309{
1310        long tmp;
1311
1312        DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1313        /*
1314         * sem->owner may differ from current if the ownership is transferred
1315         * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1316         */
1317        DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1318                            !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1319
1320        rwsem_clear_owner(sem);
1321        tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1322        if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1323                rwsem_wake(sem);
1324}
1325
1326/*
1327 * downgrade write lock to read lock
1328 */
1329static inline void __downgrade_write(struct rw_semaphore *sem)
1330{
1331        long tmp;
1332
1333        /*
1334         * When downgrading from exclusive to shared ownership,
1335         * anything inside the write-locked region cannot leak
1336         * into the read side. In contrast, anything in the
1337         * read-locked region is ok to be re-ordered into the
1338         * write side. As such, rely on RELEASE semantics.
1339         */
1340        DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1341        tmp = atomic_long_fetch_add_release(
1342                -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1343        rwsem_set_reader_owned(sem);
1344        if (tmp & RWSEM_FLAG_WAITERS)
1345                rwsem_downgrade_wake(sem);
1346}
1347
1348#else /* !CONFIG_PREEMPT_RT */
1349
1350#define RT_MUTEX_BUILD_MUTEX
1351#include "rtmutex.c"
1352
1353#define rwbase_set_and_save_current_state(state)        \
1354        set_current_state(state)
1355
1356#define rwbase_restore_current_state()                  \
1357        __set_current_state(TASK_RUNNING)
1358
1359#define rwbase_rtmutex_lock_state(rtm, state)           \
1360        __rt_mutex_lock(rtm, state)
1361
1362#define rwbase_rtmutex_slowlock_locked(rtm, state)      \
1363        __rt_mutex_slowlock_locked(rtm, NULL, state)
1364
1365#define rwbase_rtmutex_unlock(rtm)                      \
1366        __rt_mutex_unlock(rtm)
1367
1368#define rwbase_rtmutex_trylock(rtm)                     \
1369        __rt_mutex_trylock(rtm)
1370
1371#define rwbase_signal_pending_state(state, current)     \
1372        signal_pending_state(state, current)
1373
1374#define rwbase_schedule()                               \
1375        schedule()
1376
1377#include "rwbase_rt.c"
1378
1379void __init_rwsem(struct rw_semaphore *sem, const char *name,
1380                  struct lock_class_key *key)
1381{
1382        init_rwbase_rt(&(sem)->rwbase);
1383
1384#ifdef CONFIG_DEBUG_LOCK_ALLOC
1385        debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1386        lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1387#endif
1388}
1389EXPORT_SYMBOL(__init_rwsem);
1390
1391static inline void __down_read(struct rw_semaphore *sem)
1392{
1393        rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1394}
1395
1396static inline int __down_read_interruptible(struct rw_semaphore *sem)
1397{
1398        return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1399}
1400
1401static inline int __down_read_killable(struct rw_semaphore *sem)
1402{
1403        return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1404}
1405
1406static inline int __down_read_trylock(struct rw_semaphore *sem)
1407{
1408        return rwbase_read_trylock(&sem->rwbase);
1409}
1410
1411static inline void __up_read(struct rw_semaphore *sem)
1412{
1413        rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1414}
1415
1416static inline void __sched __down_write(struct rw_semaphore *sem)
1417{
1418        rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1419}
1420
1421static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1422{
1423        return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1424}
1425
1426static inline int __down_write_trylock(struct rw_semaphore *sem)
1427{
1428        return rwbase_write_trylock(&sem->rwbase);
1429}
1430
1431static inline void __up_write(struct rw_semaphore *sem)
1432{
1433        rwbase_write_unlock(&sem->rwbase);
1434}
1435
1436static inline void __downgrade_write(struct rw_semaphore *sem)
1437{
1438        rwbase_write_downgrade(&sem->rwbase);
1439}
1440
1441/* Debug stubs for the common API */
1442#define DEBUG_RWSEMS_WARN_ON(c, sem)
1443
1444static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1445                                            struct task_struct *owner)
1446{
1447}
1448
1449static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1450{
1451        int count = atomic_read(&sem->rwbase.readers);
1452
1453        return count < 0 && count != READER_BIAS;
1454}
1455
1456#endif /* CONFIG_PREEMPT_RT */
1457
1458/*
1459 * lock for reading
1460 */
1461void __sched down_read(struct rw_semaphore *sem)
1462{
1463        might_sleep();
1464        rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1465
1466        LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1467}
1468EXPORT_SYMBOL(down_read);
1469
1470int __sched down_read_interruptible(struct rw_semaphore *sem)
1471{
1472        might_sleep();
1473        rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1474
1475        if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1476                rwsem_release(&sem->dep_map, _RET_IP_);
1477                return -EINTR;
1478        }
1479
1480        return 0;
1481}
1482EXPORT_SYMBOL(down_read_interruptible);
1483
1484int __sched down_read_killable(struct rw_semaphore *sem)
1485{
1486        might_sleep();
1487        rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1488
1489        if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1490                rwsem_release(&sem->dep_map, _RET_IP_);
1491                return -EINTR;
1492        }
1493
1494        return 0;
1495}
1496EXPORT_SYMBOL(down_read_killable);
1497
1498/*
1499 * trylock for reading -- returns 1 if successful, 0 if contention
1500 */
1501int down_read_trylock(struct rw_semaphore *sem)
1502{
1503        int ret = __down_read_trylock(sem);
1504
1505        if (ret == 1)
1506                rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1507        return ret;
1508}
1509EXPORT_SYMBOL(down_read_trylock);
1510
1511/*
1512 * lock for writing
1513 */
1514void __sched down_write(struct rw_semaphore *sem)
1515{
1516        might_sleep();
1517        rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1518        LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1519}
1520EXPORT_SYMBOL(down_write);
1521
1522/*
1523 * lock for writing
1524 */
1525int __sched down_write_killable(struct rw_semaphore *sem)
1526{
1527        might_sleep();
1528        rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1529
1530        if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1531                                  __down_write_killable)) {
1532                rwsem_release(&sem->dep_map, _RET_IP_);
1533                return -EINTR;
1534        }
1535
1536        return 0;
1537}
1538EXPORT_SYMBOL(down_write_killable);
1539
1540/*
1541 * trylock for writing -- returns 1 if successful, 0 if contention
1542 */
1543int down_write_trylock(struct rw_semaphore *sem)
1544{
1545        int ret = __down_write_trylock(sem);
1546
1547        if (ret == 1)
1548                rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1549
1550        return ret;
1551}
1552EXPORT_SYMBOL(down_write_trylock);
1553
1554/*
1555 * release a read lock
1556 */
1557void up_read(struct rw_semaphore *sem)
1558{
1559        rwsem_release(&sem->dep_map, _RET_IP_);
1560        __up_read(sem);
1561}
1562EXPORT_SYMBOL(up_read);
1563
1564/*
1565 * release a write lock
1566 */
1567void up_write(struct rw_semaphore *sem)
1568{
1569        rwsem_release(&sem->dep_map, _RET_IP_);
1570        __up_write(sem);
1571}
1572EXPORT_SYMBOL(up_write);
1573
1574/*
1575 * downgrade write lock to read lock
1576 */
1577void downgrade_write(struct rw_semaphore *sem)
1578{
1579        lock_downgrade(&sem->dep_map, _RET_IP_);
1580        __downgrade_write(sem);
1581}
1582EXPORT_SYMBOL(downgrade_write);
1583
1584#ifdef CONFIG_DEBUG_LOCK_ALLOC
1585
1586void down_read_nested(struct rw_semaphore *sem, int subclass)
1587{
1588        might_sleep();
1589        rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1590        LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1591}
1592EXPORT_SYMBOL(down_read_nested);
1593
1594int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1595{
1596        might_sleep();
1597        rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1598
1599        if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1600                rwsem_release(&sem->dep_map, _RET_IP_);
1601                return -EINTR;
1602        }
1603
1604        return 0;
1605}
1606EXPORT_SYMBOL(down_read_killable_nested);
1607
1608void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1609{
1610        might_sleep();
1611        rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1612        LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1613}
1614EXPORT_SYMBOL(_down_write_nest_lock);
1615
1616void down_read_non_owner(struct rw_semaphore *sem)
1617{
1618        might_sleep();
1619        __down_read(sem);
1620        __rwsem_set_reader_owned(sem, NULL);
1621}
1622EXPORT_SYMBOL(down_read_non_owner);
1623
1624void down_write_nested(struct rw_semaphore *sem, int subclass)
1625{
1626        might_sleep();
1627        rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1628        LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1629}
1630EXPORT_SYMBOL(down_write_nested);
1631
1632int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1633{
1634        might_sleep();
1635        rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1636
1637        if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1638                                  __down_write_killable)) {
1639                rwsem_release(&sem->dep_map, _RET_IP_);
1640                return -EINTR;
1641        }
1642
1643        return 0;
1644}
1645EXPORT_SYMBOL(down_write_killable_nested);
1646
1647void up_read_non_owner(struct rw_semaphore *sem)
1648{
1649        DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1650        __up_read(sem);
1651}
1652EXPORT_SYMBOL(up_read_non_owner);
1653
1654#endif
1655