linux/kernel/pid_namespace.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Pid namespaces
   4 *
   5 * Authors:
   6 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
   7 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
   8 *     Many thanks to Oleg Nesterov for comments and help
   9 *
  10 */
  11
  12#include <linux/pid.h>
  13#include <linux/pid_namespace.h>
  14#include <linux/user_namespace.h>
  15#include <linux/syscalls.h>
  16#include <linux/cred.h>
  17#include <linux/err.h>
  18#include <linux/acct.h>
  19#include <linux/slab.h>
  20#include <linux/proc_ns.h>
  21#include <linux/reboot.h>
  22#include <linux/export.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/signal.h>
  25#include <linux/idr.h>
  26
  27static DEFINE_MUTEX(pid_caches_mutex);
  28static struct kmem_cache *pid_ns_cachep;
  29/* Write once array, filled from the beginning. */
  30static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
  31
  32/*
  33 * creates the kmem cache to allocate pids from.
  34 * @level: pid namespace level
  35 */
  36
  37static struct kmem_cache *create_pid_cachep(unsigned int level)
  38{
  39        /* Level 0 is init_pid_ns.pid_cachep */
  40        struct kmem_cache **pkc = &pid_cache[level - 1];
  41        struct kmem_cache *kc;
  42        char name[4 + 10 + 1];
  43        unsigned int len;
  44
  45        kc = READ_ONCE(*pkc);
  46        if (kc)
  47                return kc;
  48
  49        snprintf(name, sizeof(name), "pid_%u", level + 1);
  50        len = sizeof(struct pid) + level * sizeof(struct upid);
  51        mutex_lock(&pid_caches_mutex);
  52        /* Name collision forces to do allocation under mutex. */
  53        if (!*pkc)
  54                *pkc = kmem_cache_create(name, len, 0,
  55                                         SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, 0);
  56        mutex_unlock(&pid_caches_mutex);
  57        /* current can fail, but someone else can succeed. */
  58        return READ_ONCE(*pkc);
  59}
  60
  61static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
  62{
  63        return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
  64}
  65
  66static void dec_pid_namespaces(struct ucounts *ucounts)
  67{
  68        dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
  69}
  70
  71static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
  72        struct pid_namespace *parent_pid_ns)
  73{
  74        struct pid_namespace *ns;
  75        unsigned int level = parent_pid_ns->level + 1;
  76        struct ucounts *ucounts;
  77        int err;
  78
  79        err = -EINVAL;
  80        if (!in_userns(parent_pid_ns->user_ns, user_ns))
  81                goto out;
  82
  83        err = -ENOSPC;
  84        if (level > MAX_PID_NS_LEVEL)
  85                goto out;
  86        ucounts = inc_pid_namespaces(user_ns);
  87        if (!ucounts)
  88                goto out;
  89
  90        err = -ENOMEM;
  91        ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
  92        if (ns == NULL)
  93                goto out_dec;
  94
  95        idr_init(&ns->idr);
  96
  97        ns->pid_cachep = create_pid_cachep(level);
  98        if (ns->pid_cachep == NULL)
  99                goto out_free_idr;
 100
 101        err = ns_alloc_inum(&ns->ns);
 102        if (err)
 103                goto out_free_idr;
 104        ns->ns.ops = &pidns_operations;
 105
 106        refcount_set(&ns->ns.count, 1);
 107        ns->level = level;
 108        ns->parent = get_pid_ns(parent_pid_ns);
 109        ns->user_ns = get_user_ns(user_ns);
 110        ns->ucounts = ucounts;
 111        ns->pid_allocated = PIDNS_ADDING;
 112
 113        return ns;
 114
 115out_free_idr:
 116        idr_destroy(&ns->idr);
 117        kmem_cache_free(pid_ns_cachep, ns);
 118out_dec:
 119        dec_pid_namespaces(ucounts);
 120out:
 121        return ERR_PTR(err);
 122}
 123
 124static void delayed_free_pidns(struct rcu_head *p)
 125{
 126        struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
 127
 128        dec_pid_namespaces(ns->ucounts);
 129        put_user_ns(ns->user_ns);
 130
 131        kmem_cache_free(pid_ns_cachep, ns);
 132}
 133
 134static void destroy_pid_namespace(struct pid_namespace *ns)
 135{
 136        ns_free_inum(&ns->ns);
 137
 138        idr_destroy(&ns->idr);
 139        call_rcu(&ns->rcu, delayed_free_pidns);
 140}
 141
 142struct pid_namespace *copy_pid_ns(unsigned long flags,
 143        struct user_namespace *user_ns, struct pid_namespace *old_ns)
 144{
 145        if (!(flags & CLONE_NEWPID))
 146                return get_pid_ns(old_ns);
 147        if (task_active_pid_ns(current) != old_ns)
 148                return ERR_PTR(-EINVAL);
 149        return create_pid_namespace(user_ns, old_ns);
 150}
 151
 152void put_pid_ns(struct pid_namespace *ns)
 153{
 154        struct pid_namespace *parent;
 155
 156        while (ns != &init_pid_ns) {
 157                parent = ns->parent;
 158                if (!refcount_dec_and_test(&ns->ns.count))
 159                        break;
 160                destroy_pid_namespace(ns);
 161                ns = parent;
 162        }
 163}
 164EXPORT_SYMBOL_GPL(put_pid_ns);
 165
 166void zap_pid_ns_processes(struct pid_namespace *pid_ns)
 167{
 168        int nr;
 169        int rc;
 170        struct task_struct *task, *me = current;
 171        int init_pids = thread_group_leader(me) ? 1 : 2;
 172        struct pid *pid;
 173
 174        /* Don't allow any more processes into the pid namespace */
 175        disable_pid_allocation(pid_ns);
 176
 177        /*
 178         * Ignore SIGCHLD causing any terminated children to autoreap.
 179         * This speeds up the namespace shutdown, plus see the comment
 180         * below.
 181         */
 182        spin_lock_irq(&me->sighand->siglock);
 183        me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
 184        spin_unlock_irq(&me->sighand->siglock);
 185
 186        /*
 187         * The last thread in the cgroup-init thread group is terminating.
 188         * Find remaining pid_ts in the namespace, signal and wait for them
 189         * to exit.
 190         *
 191         * Note:  This signals each threads in the namespace - even those that
 192         *        belong to the same thread group, To avoid this, we would have
 193         *        to walk the entire tasklist looking a processes in this
 194         *        namespace, but that could be unnecessarily expensive if the
 195         *        pid namespace has just a few processes. Or we need to
 196         *        maintain a tasklist for each pid namespace.
 197         *
 198         */
 199        rcu_read_lock();
 200        read_lock(&tasklist_lock);
 201        nr = 2;
 202        idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
 203                task = pid_task(pid, PIDTYPE_PID);
 204                if (task && !__fatal_signal_pending(task))
 205                        group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
 206        }
 207        read_unlock(&tasklist_lock);
 208        rcu_read_unlock();
 209
 210        /*
 211         * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
 212         * kernel_wait4() will also block until our children traced from the
 213         * parent namespace are detached and become EXIT_DEAD.
 214         */
 215        do {
 216                clear_thread_flag(TIF_SIGPENDING);
 217                rc = kernel_wait4(-1, NULL, __WALL, NULL);
 218        } while (rc != -ECHILD);
 219
 220        /*
 221         * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
 222         * process whose parents processes are outside of the pid
 223         * namespace.  Such processes are created with setns()+fork().
 224         *
 225         * If those EXIT_ZOMBIE processes are not reaped by their
 226         * parents before their parents exit, they will be reparented
 227         * to pid_ns->child_reaper.  Thus pidns->child_reaper needs to
 228         * stay valid until they all go away.
 229         *
 230         * The code relies on the pid_ns->child_reaper ignoring
 231         * SIGCHILD to cause those EXIT_ZOMBIE processes to be
 232         * autoreaped if reparented.
 233         *
 234         * Semantically it is also desirable to wait for EXIT_ZOMBIE
 235         * processes before allowing the child_reaper to be reaped, as
 236         * that gives the invariant that when the init process of a
 237         * pid namespace is reaped all of the processes in the pid
 238         * namespace are gone.
 239         *
 240         * Once all of the other tasks are gone from the pid_namespace
 241         * free_pid() will awaken this task.
 242         */
 243        for (;;) {
 244                set_current_state(TASK_INTERRUPTIBLE);
 245                if (pid_ns->pid_allocated == init_pids)
 246                        break;
 247                schedule();
 248        }
 249        __set_current_state(TASK_RUNNING);
 250
 251        if (pid_ns->reboot)
 252                current->signal->group_exit_code = pid_ns->reboot;
 253
 254        acct_exit_ns(pid_ns);
 255        return;
 256}
 257
 258#ifdef CONFIG_CHECKPOINT_RESTORE
 259static int pid_ns_ctl_handler(struct ctl_table *table, int write,
 260                void *buffer, size_t *lenp, loff_t *ppos)
 261{
 262        struct pid_namespace *pid_ns = task_active_pid_ns(current);
 263        struct ctl_table tmp = *table;
 264        int ret, next;
 265
 266        if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
 267                return -EPERM;
 268
 269        /*
 270         * Writing directly to ns' last_pid field is OK, since this field
 271         * is volatile in a living namespace anyway and a code writing to
 272         * it should synchronize its usage with external means.
 273         */
 274
 275        next = idr_get_cursor(&pid_ns->idr) - 1;
 276
 277        tmp.data = &next;
 278        ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
 279        if (!ret && write)
 280                idr_set_cursor(&pid_ns->idr, next + 1);
 281
 282        return ret;
 283}
 284
 285extern int pid_max;
 286static struct ctl_table pid_ns_ctl_table[] = {
 287        {
 288                .procname = "ns_last_pid",
 289                .maxlen = sizeof(int),
 290                .mode = 0666, /* permissions are checked in the handler */
 291                .proc_handler = pid_ns_ctl_handler,
 292                .extra1 = SYSCTL_ZERO,
 293                .extra2 = &pid_max,
 294        },
 295        { }
 296};
 297static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
 298#endif  /* CONFIG_CHECKPOINT_RESTORE */
 299
 300int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
 301{
 302        if (pid_ns == &init_pid_ns)
 303                return 0;
 304
 305        switch (cmd) {
 306        case LINUX_REBOOT_CMD_RESTART2:
 307        case LINUX_REBOOT_CMD_RESTART:
 308                pid_ns->reboot = SIGHUP;
 309                break;
 310
 311        case LINUX_REBOOT_CMD_POWER_OFF:
 312        case LINUX_REBOOT_CMD_HALT:
 313                pid_ns->reboot = SIGINT;
 314                break;
 315        default:
 316                return -EINVAL;
 317        }
 318
 319        read_lock(&tasklist_lock);
 320        send_sig(SIGKILL, pid_ns->child_reaper, 1);
 321        read_unlock(&tasklist_lock);
 322
 323        do_exit(0);
 324
 325        /* Not reached */
 326        return 0;
 327}
 328
 329static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
 330{
 331        return container_of(ns, struct pid_namespace, ns);
 332}
 333
 334static struct ns_common *pidns_get(struct task_struct *task)
 335{
 336        struct pid_namespace *ns;
 337
 338        rcu_read_lock();
 339        ns = task_active_pid_ns(task);
 340        if (ns)
 341                get_pid_ns(ns);
 342        rcu_read_unlock();
 343
 344        return ns ? &ns->ns : NULL;
 345}
 346
 347static struct ns_common *pidns_for_children_get(struct task_struct *task)
 348{
 349        struct pid_namespace *ns = NULL;
 350
 351        task_lock(task);
 352        if (task->nsproxy) {
 353                ns = task->nsproxy->pid_ns_for_children;
 354                get_pid_ns(ns);
 355        }
 356        task_unlock(task);
 357
 358        if (ns) {
 359                read_lock(&tasklist_lock);
 360                if (!ns->child_reaper) {
 361                        put_pid_ns(ns);
 362                        ns = NULL;
 363                }
 364                read_unlock(&tasklist_lock);
 365        }
 366
 367        return ns ? &ns->ns : NULL;
 368}
 369
 370static void pidns_put(struct ns_common *ns)
 371{
 372        put_pid_ns(to_pid_ns(ns));
 373}
 374
 375static int pidns_install(struct nsset *nsset, struct ns_common *ns)
 376{
 377        struct nsproxy *nsproxy = nsset->nsproxy;
 378        struct pid_namespace *active = task_active_pid_ns(current);
 379        struct pid_namespace *ancestor, *new = to_pid_ns(ns);
 380
 381        if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
 382            !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
 383                return -EPERM;
 384
 385        /*
 386         * Only allow entering the current active pid namespace
 387         * or a child of the current active pid namespace.
 388         *
 389         * This is required for fork to return a usable pid value and
 390         * this maintains the property that processes and their
 391         * children can not escape their current pid namespace.
 392         */
 393        if (new->level < active->level)
 394                return -EINVAL;
 395
 396        ancestor = new;
 397        while (ancestor->level > active->level)
 398                ancestor = ancestor->parent;
 399        if (ancestor != active)
 400                return -EINVAL;
 401
 402        put_pid_ns(nsproxy->pid_ns_for_children);
 403        nsproxy->pid_ns_for_children = get_pid_ns(new);
 404        return 0;
 405}
 406
 407static struct ns_common *pidns_get_parent(struct ns_common *ns)
 408{
 409        struct pid_namespace *active = task_active_pid_ns(current);
 410        struct pid_namespace *pid_ns, *p;
 411
 412        /* See if the parent is in the current namespace */
 413        pid_ns = p = to_pid_ns(ns)->parent;
 414        for (;;) {
 415                if (!p)
 416                        return ERR_PTR(-EPERM);
 417                if (p == active)
 418                        break;
 419                p = p->parent;
 420        }
 421
 422        return &get_pid_ns(pid_ns)->ns;
 423}
 424
 425static struct user_namespace *pidns_owner(struct ns_common *ns)
 426{
 427        return to_pid_ns(ns)->user_ns;
 428}
 429
 430const struct proc_ns_operations pidns_operations = {
 431        .name           = "pid",
 432        .type           = CLONE_NEWPID,
 433        .get            = pidns_get,
 434        .put            = pidns_put,
 435        .install        = pidns_install,
 436        .owner          = pidns_owner,
 437        .get_parent     = pidns_get_parent,
 438};
 439
 440const struct proc_ns_operations pidns_for_children_operations = {
 441        .name           = "pid_for_children",
 442        .real_ns_name   = "pid",
 443        .type           = CLONE_NEWPID,
 444        .get            = pidns_for_children_get,
 445        .put            = pidns_put,
 446        .install        = pidns_install,
 447        .owner          = pidns_owner,
 448        .get_parent     = pidns_get_parent,
 449};
 450
 451static __init int pid_namespaces_init(void)
 452{
 453        pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
 454
 455#ifdef CONFIG_CHECKPOINT_RESTORE
 456        register_sysctl_paths(kern_path, pid_ns_ctl_table);
 457#endif
 458        return 0;
 459}
 460
 461__initcall(pid_namespaces_init);
 462