linux/kernel/rcu/tree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *          Manfred Spraul <manfred@colorfullife.com>
   9 *          Paul E. McKenney <paulmck@linux.ibm.com>
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *      Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
  34#include <linux/moduleparam.h>
  35#include <linux/panic.h>
  36#include <linux/panic_notifier.h>
  37#include <linux/percpu.h>
  38#include <linux/notifier.h>
  39#include <linux/cpu.h>
  40#include <linux/mutex.h>
  41#include <linux/time.h>
  42#include <linux/kernel_stat.h>
  43#include <linux/wait.h>
  44#include <linux/kthread.h>
  45#include <uapi/linux/sched/types.h>
  46#include <linux/prefetch.h>
  47#include <linux/delay.h>
  48#include <linux/random.h>
  49#include <linux/trace_events.h>
  50#include <linux/suspend.h>
  51#include <linux/ftrace.h>
  52#include <linux/tick.h>
  53#include <linux/sysrq.h>
  54#include <linux/kprobes.h>
  55#include <linux/gfp.h>
  56#include <linux/oom.h>
  57#include <linux/smpboot.h>
  58#include <linux/jiffies.h>
  59#include <linux/slab.h>
  60#include <linux/sched/isolation.h>
  61#include <linux/sched/clock.h>
  62#include <linux/vmalloc.h>
  63#include <linux/mm.h>
  64#include <linux/kasan.h>
  65#include "../time/tick-internal.h"
  66
  67#include "tree.h"
  68#include "rcu.h"
  69
  70#ifdef MODULE_PARAM_PREFIX
  71#undef MODULE_PARAM_PREFIX
  72#endif
  73#define MODULE_PARAM_PREFIX "rcutree."
  74
  75/* Data structures. */
  76
  77static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  78        .dynticks_nesting = 1,
  79        .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
  80        .dynticks = ATOMIC_INIT(1),
  81#ifdef CONFIG_RCU_NOCB_CPU
  82        .cblist.flags = SEGCBLIST_SOFTIRQ_ONLY,
  83#endif
  84};
  85static struct rcu_state rcu_state = {
  86        .level = { &rcu_state.node[0] },
  87        .gp_state = RCU_GP_IDLE,
  88        .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  89        .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  90        .name = RCU_NAME,
  91        .abbr = RCU_ABBR,
  92        .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  93        .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
  94        .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
  95};
  96
  97/* Dump rcu_node combining tree at boot to verify correct setup. */
  98static bool dump_tree;
  99module_param(dump_tree, bool, 0444);
 100/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 101static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
 102#ifndef CONFIG_PREEMPT_RT
 103module_param(use_softirq, bool, 0444);
 104#endif
 105/* Control rcu_node-tree auto-balancing at boot time. */
 106static bool rcu_fanout_exact;
 107module_param(rcu_fanout_exact, bool, 0444);
 108/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 109static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 110module_param(rcu_fanout_leaf, int, 0444);
 111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 112/* Number of rcu_nodes at specified level. */
 113int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 114int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 115
 116/*
 117 * The rcu_scheduler_active variable is initialized to the value
 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 119 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 120 * RCU can assume that there is but one task, allowing RCU to (for example)
 121 * optimize synchronize_rcu() to a simple barrier().  When this variable
 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 123 * to detect real grace periods.  This variable is also used to suppress
 124 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 126 * is fully initialized, including all of its kthreads having been spawned.
 127 */
 128int rcu_scheduler_active __read_mostly;
 129EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 130
 131/*
 132 * The rcu_scheduler_fully_active variable transitions from zero to one
 133 * during the early_initcall() processing, which is after the scheduler
 134 * is capable of creating new tasks.  So RCU processing (for example,
 135 * creating tasks for RCU priority boosting) must be delayed until after
 136 * rcu_scheduler_fully_active transitions from zero to one.  We also
 137 * currently delay invocation of any RCU callbacks until after this point.
 138 *
 139 * It might later prove better for people registering RCU callbacks during
 140 * early boot to take responsibility for these callbacks, but one step at
 141 * a time.
 142 */
 143static int rcu_scheduler_fully_active __read_mostly;
 144
 145static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 146                              unsigned long gps, unsigned long flags);
 147static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 148static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 149static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 150static void invoke_rcu_core(void);
 151static void rcu_report_exp_rdp(struct rcu_data *rdp);
 152static void sync_sched_exp_online_cleanup(int cpu);
 153static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
 154static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
 155
 156/* rcuc/rcub kthread realtime priority */
 157static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 158module_param(kthread_prio, int, 0444);
 159
 160/* Delay in jiffies for grace-period initialization delays, debug only. */
 161
 162static int gp_preinit_delay;
 163module_param(gp_preinit_delay, int, 0444);
 164static int gp_init_delay;
 165module_param(gp_init_delay, int, 0444);
 166static int gp_cleanup_delay;
 167module_param(gp_cleanup_delay, int, 0444);
 168
 169// Add delay to rcu_read_unlock() for strict grace periods.
 170static int rcu_unlock_delay;
 171#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
 172module_param(rcu_unlock_delay, int, 0444);
 173#endif
 174
 175/*
 176 * This rcu parameter is runtime-read-only. It reflects
 177 * a minimum allowed number of objects which can be cached
 178 * per-CPU. Object size is equal to one page. This value
 179 * can be changed at boot time.
 180 */
 181static int rcu_min_cached_objs = 5;
 182module_param(rcu_min_cached_objs, int, 0444);
 183
 184// A page shrinker can ask for pages to be freed to make them
 185// available for other parts of the system. This usually happens
 186// under low memory conditions, and in that case we should also
 187// defer page-cache filling for a short time period.
 188//
 189// The default value is 5 seconds, which is long enough to reduce
 190// interference with the shrinker while it asks other systems to
 191// drain their caches.
 192static int rcu_delay_page_cache_fill_msec = 5000;
 193module_param(rcu_delay_page_cache_fill_msec, int, 0444);
 194
 195/* Retrieve RCU kthreads priority for rcutorture */
 196int rcu_get_gp_kthreads_prio(void)
 197{
 198        return kthread_prio;
 199}
 200EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 201
 202/*
 203 * Number of grace periods between delays, normalized by the duration of
 204 * the delay.  The longer the delay, the more the grace periods between
 205 * each delay.  The reason for this normalization is that it means that,
 206 * for non-zero delays, the overall slowdown of grace periods is constant
 207 * regardless of the duration of the delay.  This arrangement balances
 208 * the need for long delays to increase some race probabilities with the
 209 * need for fast grace periods to increase other race probabilities.
 210 */
 211#define PER_RCU_NODE_PERIOD 3   /* Number of grace periods between delays for debugging. */
 212
 213/*
 214 * Compute the mask of online CPUs for the specified rcu_node structure.
 215 * This will not be stable unless the rcu_node structure's ->lock is
 216 * held, but the bit corresponding to the current CPU will be stable
 217 * in most contexts.
 218 */
 219static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 220{
 221        return READ_ONCE(rnp->qsmaskinitnext);
 222}
 223
 224/*
 225 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 226 * permit this function to be invoked without holding the root rcu_node
 227 * structure's ->lock, but of course results can be subject to change.
 228 */
 229static int rcu_gp_in_progress(void)
 230{
 231        return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 232}
 233
 234/*
 235 * Return the number of callbacks queued on the specified CPU.
 236 * Handles both the nocbs and normal cases.
 237 */
 238static long rcu_get_n_cbs_cpu(int cpu)
 239{
 240        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 241
 242        if (rcu_segcblist_is_enabled(&rdp->cblist))
 243                return rcu_segcblist_n_cbs(&rdp->cblist);
 244        return 0;
 245}
 246
 247void rcu_softirq_qs(void)
 248{
 249        rcu_qs();
 250        rcu_preempt_deferred_qs(current);
 251        rcu_tasks_qs(current, false);
 252}
 253
 254/*
 255 * Increment the current CPU's rcu_data structure's ->dynticks field
 256 * with ordering.  Return the new value.
 257 */
 258static noinline noinstr unsigned long rcu_dynticks_inc(int incby)
 259{
 260        return arch_atomic_add_return(incby, this_cpu_ptr(&rcu_data.dynticks));
 261}
 262
 263/*
 264 * Record entry into an extended quiescent state.  This is only to be
 265 * called when not already in an extended quiescent state, that is,
 266 * RCU is watching prior to the call to this function and is no longer
 267 * watching upon return.
 268 */
 269static noinstr void rcu_dynticks_eqs_enter(void)
 270{
 271        int seq;
 272
 273        /*
 274         * CPUs seeing atomic_add_return() must see prior RCU read-side
 275         * critical sections, and we also must force ordering with the
 276         * next idle sojourn.
 277         */
 278        rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
 279        seq = rcu_dynticks_inc(1);
 280        // RCU is no longer watching.  Better be in extended quiescent state!
 281        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & 0x1));
 282}
 283
 284/*
 285 * Record exit from an extended quiescent state.  This is only to be
 286 * called from an extended quiescent state, that is, RCU is not watching
 287 * prior to the call to this function and is watching upon return.
 288 */
 289static noinstr void rcu_dynticks_eqs_exit(void)
 290{
 291        int seq;
 292
 293        /*
 294         * CPUs seeing atomic_add_return() must see prior idle sojourns,
 295         * and we also must force ordering with the next RCU read-side
 296         * critical section.
 297         */
 298        seq = rcu_dynticks_inc(1);
 299        // RCU is now watching.  Better not be in an extended quiescent state!
 300        rcu_dynticks_task_trace_exit();  // After ->dynticks update!
 301        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & 0x1));
 302}
 303
 304/*
 305 * Reset the current CPU's ->dynticks counter to indicate that the
 306 * newly onlined CPU is no longer in an extended quiescent state.
 307 * This will either leave the counter unchanged, or increment it
 308 * to the next non-quiescent value.
 309 *
 310 * The non-atomic test/increment sequence works because the upper bits
 311 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 312 * or when the corresponding CPU is offline.
 313 */
 314static void rcu_dynticks_eqs_online(void)
 315{
 316        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 317
 318        if (atomic_read(&rdp->dynticks) & 0x1)
 319                return;
 320        rcu_dynticks_inc(1);
 321}
 322
 323/*
 324 * Is the current CPU in an extended quiescent state?
 325 *
 326 * No ordering, as we are sampling CPU-local information.
 327 */
 328static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
 329{
 330        return !(atomic_read(this_cpu_ptr(&rcu_data.dynticks)) & 0x1);
 331}
 332
 333/*
 334 * Snapshot the ->dynticks counter with full ordering so as to allow
 335 * stable comparison of this counter with past and future snapshots.
 336 */
 337static int rcu_dynticks_snap(struct rcu_data *rdp)
 338{
 339        smp_mb();  // Fundamental RCU ordering guarantee.
 340        return atomic_read_acquire(&rdp->dynticks);
 341}
 342
 343/*
 344 * Return true if the snapshot returned from rcu_dynticks_snap()
 345 * indicates that RCU is in an extended quiescent state.
 346 */
 347static bool rcu_dynticks_in_eqs(int snap)
 348{
 349        return !(snap & 0x1);
 350}
 351
 352/* Return true if the specified CPU is currently idle from an RCU viewpoint.  */
 353bool rcu_is_idle_cpu(int cpu)
 354{
 355        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 356
 357        return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp));
 358}
 359
 360/*
 361 * Return true if the CPU corresponding to the specified rcu_data
 362 * structure has spent some time in an extended quiescent state since
 363 * rcu_dynticks_snap() returned the specified snapshot.
 364 */
 365static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 366{
 367        return snap != rcu_dynticks_snap(rdp);
 368}
 369
 370/*
 371 * Return true if the referenced integer is zero while the specified
 372 * CPU remains within a single extended quiescent state.
 373 */
 374bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
 375{
 376        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 377        int snap;
 378
 379        // If not quiescent, force back to earlier extended quiescent state.
 380        snap = atomic_read(&rdp->dynticks) & ~0x1;
 381
 382        smp_rmb(); // Order ->dynticks and *vp reads.
 383        if (READ_ONCE(*vp))
 384                return false;  // Non-zero, so report failure;
 385        smp_rmb(); // Order *vp read and ->dynticks re-read.
 386
 387        // If still in the same extended quiescent state, we are good!
 388        return snap == atomic_read(&rdp->dynticks);
 389}
 390
 391/*
 392 * Let the RCU core know that this CPU has gone through the scheduler,
 393 * which is a quiescent state.  This is called when the need for a
 394 * quiescent state is urgent, so we burn an atomic operation and full
 395 * memory barriers to let the RCU core know about it, regardless of what
 396 * this CPU might (or might not) do in the near future.
 397 *
 398 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 399 *
 400 * The caller must have disabled interrupts and must not be idle.
 401 */
 402notrace void rcu_momentary_dyntick_idle(void)
 403{
 404        int seq;
 405
 406        raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 407        seq = rcu_dynticks_inc(2);
 408        /* It is illegal to call this from idle state. */
 409        WARN_ON_ONCE(!(seq & 0x1));
 410        rcu_preempt_deferred_qs(current);
 411}
 412EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
 413
 414/**
 415 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
 416 *
 417 * If the current CPU is idle and running at a first-level (not nested)
 418 * interrupt, or directly, from idle, return true.
 419 *
 420 * The caller must have at least disabled IRQs.
 421 */
 422static int rcu_is_cpu_rrupt_from_idle(void)
 423{
 424        long nesting;
 425
 426        /*
 427         * Usually called from the tick; but also used from smp_function_call()
 428         * for expedited grace periods. This latter can result in running from
 429         * the idle task, instead of an actual IPI.
 430         */
 431        lockdep_assert_irqs_disabled();
 432
 433        /* Check for counter underflows */
 434        RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
 435                         "RCU dynticks_nesting counter underflow!");
 436        RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
 437                         "RCU dynticks_nmi_nesting counter underflow/zero!");
 438
 439        /* Are we at first interrupt nesting level? */
 440        nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
 441        if (nesting > 1)
 442                return false;
 443
 444        /*
 445         * If we're not in an interrupt, we must be in the idle task!
 446         */
 447        WARN_ON_ONCE(!nesting && !is_idle_task(current));
 448
 449        /* Does CPU appear to be idle from an RCU standpoint? */
 450        return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
 451}
 452
 453#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
 454                                // Maximum callbacks per rcu_do_batch ...
 455#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
 456static long blimit = DEFAULT_RCU_BLIMIT;
 457#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
 458static long qhimark = DEFAULT_RCU_QHIMARK;
 459#define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
 460static long qlowmark = DEFAULT_RCU_QLOMARK;
 461#define DEFAULT_RCU_QOVLD_MULT 2
 462#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
 463static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
 464static long qovld_calc = -1;      // No pre-initialization lock acquisitions!
 465
 466module_param(blimit, long, 0444);
 467module_param(qhimark, long, 0444);
 468module_param(qlowmark, long, 0444);
 469module_param(qovld, long, 0444);
 470
 471static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
 472static ulong jiffies_till_next_fqs = ULONG_MAX;
 473static bool rcu_kick_kthreads;
 474static int rcu_divisor = 7;
 475module_param(rcu_divisor, int, 0644);
 476
 477/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 478static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 479module_param(rcu_resched_ns, long, 0644);
 480
 481/*
 482 * How long the grace period must be before we start recruiting
 483 * quiescent-state help from rcu_note_context_switch().
 484 */
 485static ulong jiffies_till_sched_qs = ULONG_MAX;
 486module_param(jiffies_till_sched_qs, ulong, 0444);
 487static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 488module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 489
 490/*
 491 * Make sure that we give the grace-period kthread time to detect any
 492 * idle CPUs before taking active measures to force quiescent states.
 493 * However, don't go below 100 milliseconds, adjusted upwards for really
 494 * large systems.
 495 */
 496static void adjust_jiffies_till_sched_qs(void)
 497{
 498        unsigned long j;
 499
 500        /* If jiffies_till_sched_qs was specified, respect the request. */
 501        if (jiffies_till_sched_qs != ULONG_MAX) {
 502                WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 503                return;
 504        }
 505        /* Otherwise, set to third fqs scan, but bound below on large system. */
 506        j = READ_ONCE(jiffies_till_first_fqs) +
 507                      2 * READ_ONCE(jiffies_till_next_fqs);
 508        if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 509                j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 510        pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 511        WRITE_ONCE(jiffies_to_sched_qs, j);
 512}
 513
 514static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 515{
 516        ulong j;
 517        int ret = kstrtoul(val, 0, &j);
 518
 519        if (!ret) {
 520                WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 521                adjust_jiffies_till_sched_qs();
 522        }
 523        return ret;
 524}
 525
 526static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 527{
 528        ulong j;
 529        int ret = kstrtoul(val, 0, &j);
 530
 531        if (!ret) {
 532                WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 533                adjust_jiffies_till_sched_qs();
 534        }
 535        return ret;
 536}
 537
 538static const struct kernel_param_ops first_fqs_jiffies_ops = {
 539        .set = param_set_first_fqs_jiffies,
 540        .get = param_get_ulong,
 541};
 542
 543static const struct kernel_param_ops next_fqs_jiffies_ops = {
 544        .set = param_set_next_fqs_jiffies,
 545        .get = param_get_ulong,
 546};
 547
 548module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 549module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 550module_param(rcu_kick_kthreads, bool, 0644);
 551
 552static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 553static int rcu_pending(int user);
 554
 555/*
 556 * Return the number of RCU GPs completed thus far for debug & stats.
 557 */
 558unsigned long rcu_get_gp_seq(void)
 559{
 560        return READ_ONCE(rcu_state.gp_seq);
 561}
 562EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 563
 564/*
 565 * Return the number of RCU expedited batches completed thus far for
 566 * debug & stats.  Odd numbers mean that a batch is in progress, even
 567 * numbers mean idle.  The value returned will thus be roughly double
 568 * the cumulative batches since boot.
 569 */
 570unsigned long rcu_exp_batches_completed(void)
 571{
 572        return rcu_state.expedited_sequence;
 573}
 574EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 575
 576/*
 577 * Return the root node of the rcu_state structure.
 578 */
 579static struct rcu_node *rcu_get_root(void)
 580{
 581        return &rcu_state.node[0];
 582}
 583
 584/*
 585 * Send along grace-period-related data for rcutorture diagnostics.
 586 */
 587void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 588                            unsigned long *gp_seq)
 589{
 590        switch (test_type) {
 591        case RCU_FLAVOR:
 592                *flags = READ_ONCE(rcu_state.gp_flags);
 593                *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 594                break;
 595        default:
 596                break;
 597        }
 598}
 599EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 600
 601/*
 602 * Enter an RCU extended quiescent state, which can be either the
 603 * idle loop or adaptive-tickless usermode execution.
 604 *
 605 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 606 * the possibility of usermode upcalls having messed up our count
 607 * of interrupt nesting level during the prior busy period.
 608 */
 609static noinstr void rcu_eqs_enter(bool user)
 610{
 611        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 612
 613        WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
 614        WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
 615        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 616                     rdp->dynticks_nesting == 0);
 617        if (rdp->dynticks_nesting != 1) {
 618                // RCU will still be watching, so just do accounting and leave.
 619                rdp->dynticks_nesting--;
 620                return;
 621        }
 622
 623        lockdep_assert_irqs_disabled();
 624        instrumentation_begin();
 625        trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
 626        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 627        rcu_prepare_for_idle();
 628        rcu_preempt_deferred_qs(current);
 629
 630        // instrumentation for the noinstr rcu_dynticks_eqs_enter()
 631        instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
 632
 633        instrumentation_end();
 634        WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
 635        // RCU is watching here ...
 636        rcu_dynticks_eqs_enter();
 637        // ... but is no longer watching here.
 638        rcu_dynticks_task_enter();
 639}
 640
 641/**
 642 * rcu_idle_enter - inform RCU that current CPU is entering idle
 643 *
 644 * Enter idle mode, in other words, -leave- the mode in which RCU
 645 * read-side critical sections can occur.  (Though RCU read-side
 646 * critical sections can occur in irq handlers in idle, a possibility
 647 * handled by irq_enter() and irq_exit().)
 648 *
 649 * If you add or remove a call to rcu_idle_enter(), be sure to test with
 650 * CONFIG_RCU_EQS_DEBUG=y.
 651 */
 652void rcu_idle_enter(void)
 653{
 654        lockdep_assert_irqs_disabled();
 655        rcu_eqs_enter(false);
 656}
 657EXPORT_SYMBOL_GPL(rcu_idle_enter);
 658
 659#ifdef CONFIG_NO_HZ_FULL
 660
 661#if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)
 662/*
 663 * An empty function that will trigger a reschedule on
 664 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
 665 */
 666static void late_wakeup_func(struct irq_work *work)
 667{
 668}
 669
 670static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
 671        IRQ_WORK_INIT(late_wakeup_func);
 672
 673/*
 674 * If either:
 675 *
 676 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
 677 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
 678 *
 679 * In these cases the late RCU wake ups aren't supported in the resched loops and our
 680 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
 681 * get re-enabled again.
 682 */
 683noinstr static void rcu_irq_work_resched(void)
 684{
 685        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 686
 687        if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
 688                return;
 689
 690        if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
 691                return;
 692
 693        instrumentation_begin();
 694        if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
 695                irq_work_queue(this_cpu_ptr(&late_wakeup_work));
 696        }
 697        instrumentation_end();
 698}
 699
 700#else
 701static inline void rcu_irq_work_resched(void) { }
 702#endif
 703
 704/**
 705 * rcu_user_enter - inform RCU that we are resuming userspace.
 706 *
 707 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 708 * is permitted between this call and rcu_user_exit(). This way the
 709 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 710 * when the CPU runs in userspace.
 711 *
 712 * If you add or remove a call to rcu_user_enter(), be sure to test with
 713 * CONFIG_RCU_EQS_DEBUG=y.
 714 */
 715noinstr void rcu_user_enter(void)
 716{
 717        lockdep_assert_irqs_disabled();
 718
 719        /*
 720         * Other than generic entry implementation, we may be past the last
 721         * rescheduling opportunity in the entry code. Trigger a self IPI
 722         * that will fire and reschedule once we resume in user/guest mode.
 723         */
 724        rcu_irq_work_resched();
 725        rcu_eqs_enter(true);
 726}
 727
 728#endif /* CONFIG_NO_HZ_FULL */
 729
 730/**
 731 * rcu_nmi_exit - inform RCU of exit from NMI context
 732 *
 733 * If we are returning from the outermost NMI handler that interrupted an
 734 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
 735 * to let the RCU grace-period handling know that the CPU is back to
 736 * being RCU-idle.
 737 *
 738 * If you add or remove a call to rcu_nmi_exit(), be sure to test
 739 * with CONFIG_RCU_EQS_DEBUG=y.
 740 */
 741noinstr void rcu_nmi_exit(void)
 742{
 743        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 744
 745        instrumentation_begin();
 746        /*
 747         * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 748         * (We are exiting an NMI handler, so RCU better be paying attention
 749         * to us!)
 750         */
 751        WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
 752        WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 753
 754        /*
 755         * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 756         * leave it in non-RCU-idle state.
 757         */
 758        if (rdp->dynticks_nmi_nesting != 1) {
 759                trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
 760                                  atomic_read(&rdp->dynticks));
 761                WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
 762                           rdp->dynticks_nmi_nesting - 2);
 763                instrumentation_end();
 764                return;
 765        }
 766
 767        /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 768        trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
 769        WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
 770
 771        if (!in_nmi())
 772                rcu_prepare_for_idle();
 773
 774        // instrumentation for the noinstr rcu_dynticks_eqs_enter()
 775        instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
 776        instrumentation_end();
 777
 778        // RCU is watching here ...
 779        rcu_dynticks_eqs_enter();
 780        // ... but is no longer watching here.
 781
 782        if (!in_nmi())
 783                rcu_dynticks_task_enter();
 784}
 785
 786/**
 787 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 788 *
 789 * Exit from an interrupt handler, which might possibly result in entering
 790 * idle mode, in other words, leaving the mode in which read-side critical
 791 * sections can occur.  The caller must have disabled interrupts.
 792 *
 793 * This code assumes that the idle loop never does anything that might
 794 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 795 * architecture's idle loop violates this assumption, RCU will give you what
 796 * you deserve, good and hard.  But very infrequently and irreproducibly.
 797 *
 798 * Use things like work queues to work around this limitation.
 799 *
 800 * You have been warned.
 801 *
 802 * If you add or remove a call to rcu_irq_exit(), be sure to test with
 803 * CONFIG_RCU_EQS_DEBUG=y.
 804 */
 805void noinstr rcu_irq_exit(void)
 806{
 807        lockdep_assert_irqs_disabled();
 808        rcu_nmi_exit();
 809}
 810
 811#ifdef CONFIG_PROVE_RCU
 812/**
 813 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
 814 */
 815void rcu_irq_exit_check_preempt(void)
 816{
 817        lockdep_assert_irqs_disabled();
 818
 819        RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
 820                         "RCU dynticks_nesting counter underflow/zero!");
 821        RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
 822                         DYNTICK_IRQ_NONIDLE,
 823                         "Bad RCU  dynticks_nmi_nesting counter\n");
 824        RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 825                         "RCU in extended quiescent state!");
 826}
 827#endif /* #ifdef CONFIG_PROVE_RCU */
 828
 829/*
 830 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 831 *
 832 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 833 * with CONFIG_RCU_EQS_DEBUG=y.
 834 */
 835void rcu_irq_exit_irqson(void)
 836{
 837        unsigned long flags;
 838
 839        local_irq_save(flags);
 840        rcu_irq_exit();
 841        local_irq_restore(flags);
 842}
 843
 844/*
 845 * Exit an RCU extended quiescent state, which can be either the
 846 * idle loop or adaptive-tickless usermode execution.
 847 *
 848 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 849 * allow for the possibility of usermode upcalls messing up our count of
 850 * interrupt nesting level during the busy period that is just now starting.
 851 */
 852static void noinstr rcu_eqs_exit(bool user)
 853{
 854        struct rcu_data *rdp;
 855        long oldval;
 856
 857        lockdep_assert_irqs_disabled();
 858        rdp = this_cpu_ptr(&rcu_data);
 859        oldval = rdp->dynticks_nesting;
 860        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 861        if (oldval) {
 862                // RCU was already watching, so just do accounting and leave.
 863                rdp->dynticks_nesting++;
 864                return;
 865        }
 866        rcu_dynticks_task_exit();
 867        // RCU is not watching here ...
 868        rcu_dynticks_eqs_exit();
 869        // ... but is watching here.
 870        instrumentation_begin();
 871
 872        // instrumentation for the noinstr rcu_dynticks_eqs_exit()
 873        instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
 874
 875        rcu_cleanup_after_idle();
 876        trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
 877        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 878        WRITE_ONCE(rdp->dynticks_nesting, 1);
 879        WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
 880        WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
 881        instrumentation_end();
 882}
 883
 884/**
 885 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 886 *
 887 * Exit idle mode, in other words, -enter- the mode in which RCU
 888 * read-side critical sections can occur.
 889 *
 890 * If you add or remove a call to rcu_idle_exit(), be sure to test with
 891 * CONFIG_RCU_EQS_DEBUG=y.
 892 */
 893void rcu_idle_exit(void)
 894{
 895        unsigned long flags;
 896
 897        local_irq_save(flags);
 898        rcu_eqs_exit(false);
 899        local_irq_restore(flags);
 900}
 901EXPORT_SYMBOL_GPL(rcu_idle_exit);
 902
 903#ifdef CONFIG_NO_HZ_FULL
 904/**
 905 * rcu_user_exit - inform RCU that we are exiting userspace.
 906 *
 907 * Exit RCU idle mode while entering the kernel because it can
 908 * run a RCU read side critical section anytime.
 909 *
 910 * If you add or remove a call to rcu_user_exit(), be sure to test with
 911 * CONFIG_RCU_EQS_DEBUG=y.
 912 */
 913void noinstr rcu_user_exit(void)
 914{
 915        rcu_eqs_exit(true);
 916}
 917
 918/**
 919 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
 920 *
 921 * The scheduler tick is not normally enabled when CPUs enter the kernel
 922 * from nohz_full userspace execution.  After all, nohz_full userspace
 923 * execution is an RCU quiescent state and the time executing in the kernel
 924 * is quite short.  Except of course when it isn't.  And it is not hard to
 925 * cause a large system to spend tens of seconds or even minutes looping
 926 * in the kernel, which can cause a number of problems, include RCU CPU
 927 * stall warnings.
 928 *
 929 * Therefore, if a nohz_full CPU fails to report a quiescent state
 930 * in a timely manner, the RCU grace-period kthread sets that CPU's
 931 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
 932 * exception will invoke this function, which will turn on the scheduler
 933 * tick, which will enable RCU to detect that CPU's quiescent states,
 934 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
 935 * The tick will be disabled once a quiescent state is reported for
 936 * this CPU.
 937 *
 938 * Of course, in carefully tuned systems, there might never be an
 939 * interrupt or exception.  In that case, the RCU grace-period kthread
 940 * will eventually cause one to happen.  However, in less carefully
 941 * controlled environments, this function allows RCU to get what it
 942 * needs without creating otherwise useless interruptions.
 943 */
 944void __rcu_irq_enter_check_tick(void)
 945{
 946        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 947
 948        // If we're here from NMI there's nothing to do.
 949        if (in_nmi())
 950                return;
 951
 952        RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 953                         "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
 954
 955        if (!tick_nohz_full_cpu(rdp->cpu) ||
 956            !READ_ONCE(rdp->rcu_urgent_qs) ||
 957            READ_ONCE(rdp->rcu_forced_tick)) {
 958                // RCU doesn't need nohz_full help from this CPU, or it is
 959                // already getting that help.
 960                return;
 961        }
 962
 963        // We get here only when not in an extended quiescent state and
 964        // from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
 965        // already watching and (2) The fact that we are in an interrupt
 966        // handler and that the rcu_node lock is an irq-disabled lock
 967        // prevents self-deadlock.  So we can safely recheck under the lock.
 968        // Note that the nohz_full state currently cannot change.
 969        raw_spin_lock_rcu_node(rdp->mynode);
 970        if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
 971                // A nohz_full CPU is in the kernel and RCU needs a
 972                // quiescent state.  Turn on the tick!
 973                WRITE_ONCE(rdp->rcu_forced_tick, true);
 974                tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 975        }
 976        raw_spin_unlock_rcu_node(rdp->mynode);
 977}
 978#endif /* CONFIG_NO_HZ_FULL */
 979
 980/**
 981 * rcu_nmi_enter - inform RCU of entry to NMI context
 982 *
 983 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
 984 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
 985 * that the CPU is active.  This implementation permits nested NMIs, as
 986 * long as the nesting level does not overflow an int.  (You will probably
 987 * run out of stack space first.)
 988 *
 989 * If you add or remove a call to rcu_nmi_enter(), be sure to test
 990 * with CONFIG_RCU_EQS_DEBUG=y.
 991 */
 992noinstr void rcu_nmi_enter(void)
 993{
 994        long incby = 2;
 995        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 996
 997        /* Complain about underflow. */
 998        WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
 999
1000        /*
1001         * If idle from RCU viewpoint, atomically increment ->dynticks
1002         * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1003         * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1004         * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1005         * to be in the outermost NMI handler that interrupted an RCU-idle
1006         * period (observation due to Andy Lutomirski).
1007         */
1008        if (rcu_dynticks_curr_cpu_in_eqs()) {
1009
1010                if (!in_nmi())
1011                        rcu_dynticks_task_exit();
1012
1013                // RCU is not watching here ...
1014                rcu_dynticks_eqs_exit();
1015                // ... but is watching here.
1016
1017                if (!in_nmi()) {
1018                        instrumentation_begin();
1019                        rcu_cleanup_after_idle();
1020                        instrumentation_end();
1021                }
1022
1023                instrumentation_begin();
1024                // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1025                instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1026                // instrumentation for the noinstr rcu_dynticks_eqs_exit()
1027                instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1028
1029                incby = 1;
1030        } else if (!in_nmi()) {
1031                instrumentation_begin();
1032                rcu_irq_enter_check_tick();
1033        } else  {
1034                instrumentation_begin();
1035        }
1036
1037        trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1038                          rdp->dynticks_nmi_nesting,
1039                          rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1040        instrumentation_end();
1041        WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1042                   rdp->dynticks_nmi_nesting + incby);
1043        barrier();
1044}
1045
1046/**
1047 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1048 *
1049 * Enter an interrupt handler, which might possibly result in exiting
1050 * idle mode, in other words, entering the mode in which read-side critical
1051 * sections can occur.  The caller must have disabled interrupts.
1052 *
1053 * Note that the Linux kernel is fully capable of entering an interrupt
1054 * handler that it never exits, for example when doing upcalls to user mode!
1055 * This code assumes that the idle loop never does upcalls to user mode.
1056 * If your architecture's idle loop does do upcalls to user mode (or does
1057 * anything else that results in unbalanced calls to the irq_enter() and
1058 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1059 * But very infrequently and irreproducibly.
1060 *
1061 * Use things like work queues to work around this limitation.
1062 *
1063 * You have been warned.
1064 *
1065 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1066 * CONFIG_RCU_EQS_DEBUG=y.
1067 */
1068noinstr void rcu_irq_enter(void)
1069{
1070        lockdep_assert_irqs_disabled();
1071        rcu_nmi_enter();
1072}
1073
1074/*
1075 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1076 *
1077 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1078 * with CONFIG_RCU_EQS_DEBUG=y.
1079 */
1080void rcu_irq_enter_irqson(void)
1081{
1082        unsigned long flags;
1083
1084        local_irq_save(flags);
1085        rcu_irq_enter();
1086        local_irq_restore(flags);
1087}
1088
1089/*
1090 * If any sort of urgency was applied to the current CPU (for example,
1091 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1092 * to get to a quiescent state, disable it.
1093 */
1094static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1095{
1096        raw_lockdep_assert_held_rcu_node(rdp->mynode);
1097        WRITE_ONCE(rdp->rcu_urgent_qs, false);
1098        WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1099        if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1100                tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1101                WRITE_ONCE(rdp->rcu_forced_tick, false);
1102        }
1103}
1104
1105/**
1106 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1107 *
1108 * Return true if RCU is watching the running CPU, which means that this
1109 * CPU can safely enter RCU read-side critical sections.  In other words,
1110 * if the current CPU is not in its idle loop or is in an interrupt or
1111 * NMI handler, return true.
1112 *
1113 * Make notrace because it can be called by the internal functions of
1114 * ftrace, and making this notrace removes unnecessary recursion calls.
1115 */
1116notrace bool rcu_is_watching(void)
1117{
1118        bool ret;
1119
1120        preempt_disable_notrace();
1121        ret = !rcu_dynticks_curr_cpu_in_eqs();
1122        preempt_enable_notrace();
1123        return ret;
1124}
1125EXPORT_SYMBOL_GPL(rcu_is_watching);
1126
1127/*
1128 * If a holdout task is actually running, request an urgent quiescent
1129 * state from its CPU.  This is unsynchronized, so migrations can cause
1130 * the request to go to the wrong CPU.  Which is OK, all that will happen
1131 * is that the CPU's next context switch will be a bit slower and next
1132 * time around this task will generate another request.
1133 */
1134void rcu_request_urgent_qs_task(struct task_struct *t)
1135{
1136        int cpu;
1137
1138        barrier();
1139        cpu = task_cpu(t);
1140        if (!task_curr(t))
1141                return; /* This task is not running on that CPU. */
1142        smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1143}
1144
1145#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1146
1147/*
1148 * Is the current CPU online as far as RCU is concerned?
1149 *
1150 * Disable preemption to avoid false positives that could otherwise
1151 * happen due to the current CPU number being sampled, this task being
1152 * preempted, its old CPU being taken offline, resuming on some other CPU,
1153 * then determining that its old CPU is now offline.
1154 *
1155 * Disable checking if in an NMI handler because we cannot safely
1156 * report errors from NMI handlers anyway.  In addition, it is OK to use
1157 * RCU on an offline processor during initial boot, hence the check for
1158 * rcu_scheduler_fully_active.
1159 */
1160bool rcu_lockdep_current_cpu_online(void)
1161{
1162        struct rcu_data *rdp;
1163        struct rcu_node *rnp;
1164        bool ret = false;
1165
1166        if (in_nmi() || !rcu_scheduler_fully_active)
1167                return true;
1168        preempt_disable_notrace();
1169        rdp = this_cpu_ptr(&rcu_data);
1170        rnp = rdp->mynode;
1171        if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1172                ret = true;
1173        preempt_enable_notrace();
1174        return ret;
1175}
1176EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1177
1178#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1179
1180/*
1181 * When trying to report a quiescent state on behalf of some other CPU,
1182 * it is our responsibility to check for and handle potential overflow
1183 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1184 * After all, the CPU might be in deep idle state, and thus executing no
1185 * code whatsoever.
1186 */
1187static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1188{
1189        raw_lockdep_assert_held_rcu_node(rnp);
1190        if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1191                         rnp->gp_seq))
1192                WRITE_ONCE(rdp->gpwrap, true);
1193        if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1194                rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1195}
1196
1197/*
1198 * Snapshot the specified CPU's dynticks counter so that we can later
1199 * credit them with an implicit quiescent state.  Return 1 if this CPU
1200 * is in dynticks idle mode, which is an extended quiescent state.
1201 */
1202static int dyntick_save_progress_counter(struct rcu_data *rdp)
1203{
1204        rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1205        if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1206                trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1207                rcu_gpnum_ovf(rdp->mynode, rdp);
1208                return 1;
1209        }
1210        return 0;
1211}
1212
1213/*
1214 * Return true if the specified CPU has passed through a quiescent
1215 * state by virtue of being in or having passed through an dynticks
1216 * idle state since the last call to dyntick_save_progress_counter()
1217 * for this same CPU, or by virtue of having been offline.
1218 */
1219static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1220{
1221        unsigned long jtsq;
1222        bool *rnhqp;
1223        bool *ruqp;
1224        struct rcu_node *rnp = rdp->mynode;
1225
1226        /*
1227         * If the CPU passed through or entered a dynticks idle phase with
1228         * no active irq/NMI handlers, then we can safely pretend that the CPU
1229         * already acknowledged the request to pass through a quiescent
1230         * state.  Either way, that CPU cannot possibly be in an RCU
1231         * read-side critical section that started before the beginning
1232         * of the current RCU grace period.
1233         */
1234        if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1235                trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1236                rcu_gpnum_ovf(rnp, rdp);
1237                return 1;
1238        }
1239
1240        /*
1241         * Complain if a CPU that is considered to be offline from RCU's
1242         * perspective has not yet reported a quiescent state.  After all,
1243         * the offline CPU should have reported a quiescent state during
1244         * the CPU-offline process, or, failing that, by rcu_gp_init()
1245         * if it ran concurrently with either the CPU going offline or the
1246         * last task on a leaf rcu_node structure exiting its RCU read-side
1247         * critical section while all CPUs corresponding to that structure
1248         * are offline.  This added warning detects bugs in any of these
1249         * code paths.
1250         *
1251         * The rcu_node structure's ->lock is held here, which excludes
1252         * the relevant portions the CPU-hotplug code, the grace-period
1253         * initialization code, and the rcu_read_unlock() code paths.
1254         *
1255         * For more detail, please refer to the "Hotplug CPU" section
1256         * of RCU's Requirements documentation.
1257         */
1258        if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1259                bool onl;
1260                struct rcu_node *rnp1;
1261
1262                pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1263                        __func__, rnp->grplo, rnp->grphi, rnp->level,
1264                        (long)rnp->gp_seq, (long)rnp->completedqs);
1265                for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1266                        pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1267                                __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1268                onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1269                pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1270                        __func__, rdp->cpu, ".o"[onl],
1271                        (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1272                        (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1273                return 1; /* Break things loose after complaining. */
1274        }
1275
1276        /*
1277         * A CPU running for an extended time within the kernel can
1278         * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1279         * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1280         * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1281         * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1282         * variable are safe because the assignments are repeated if this
1283         * CPU failed to pass through a quiescent state.  This code
1284         * also checks .jiffies_resched in case jiffies_to_sched_qs
1285         * is set way high.
1286         */
1287        jtsq = READ_ONCE(jiffies_to_sched_qs);
1288        ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1289        rnhqp = per_cpu_ptr(&rcu_data.rcu_need_heavy_qs, rdp->cpu);
1290        if (!READ_ONCE(*rnhqp) &&
1291            (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1292             time_after(jiffies, rcu_state.jiffies_resched) ||
1293             rcu_state.cbovld)) {
1294                WRITE_ONCE(*rnhqp, true);
1295                /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1296                smp_store_release(ruqp, true);
1297        } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1298                WRITE_ONCE(*ruqp, true);
1299        }
1300
1301        /*
1302         * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1303         * The above code handles this, but only for straight cond_resched().
1304         * And some in-kernel loops check need_resched() before calling
1305         * cond_resched(), which defeats the above code for CPUs that are
1306         * running in-kernel with scheduling-clock interrupts disabled.
1307         * So hit them over the head with the resched_cpu() hammer!
1308         */
1309        if (tick_nohz_full_cpu(rdp->cpu) &&
1310            (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1311             rcu_state.cbovld)) {
1312                WRITE_ONCE(*ruqp, true);
1313                resched_cpu(rdp->cpu);
1314                WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1315        }
1316
1317        /*
1318         * If more than halfway to RCU CPU stall-warning time, invoke
1319         * resched_cpu() more frequently to try to loosen things up a bit.
1320         * Also check to see if the CPU is getting hammered with interrupts,
1321         * but only once per grace period, just to keep the IPIs down to
1322         * a dull roar.
1323         */
1324        if (time_after(jiffies, rcu_state.jiffies_resched)) {
1325                if (time_after(jiffies,
1326                               READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1327                        resched_cpu(rdp->cpu);
1328                        WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1329                }
1330                if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1331                    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1332                    (rnp->ffmask & rdp->grpmask)) {
1333                        rdp->rcu_iw_pending = true;
1334                        rdp->rcu_iw_gp_seq = rnp->gp_seq;
1335                        irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1336                }
1337        }
1338
1339        return 0;
1340}
1341
1342/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1343static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1344                              unsigned long gp_seq_req, const char *s)
1345{
1346        trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1347                                      gp_seq_req, rnp->level,
1348                                      rnp->grplo, rnp->grphi, s);
1349}
1350
1351/*
1352 * rcu_start_this_gp - Request the start of a particular grace period
1353 * @rnp_start: The leaf node of the CPU from which to start.
1354 * @rdp: The rcu_data corresponding to the CPU from which to start.
1355 * @gp_seq_req: The gp_seq of the grace period to start.
1356 *
1357 * Start the specified grace period, as needed to handle newly arrived
1358 * callbacks.  The required future grace periods are recorded in each
1359 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1360 * is reason to awaken the grace-period kthread.
1361 *
1362 * The caller must hold the specified rcu_node structure's ->lock, which
1363 * is why the caller is responsible for waking the grace-period kthread.
1364 *
1365 * Returns true if the GP thread needs to be awakened else false.
1366 */
1367static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1368                              unsigned long gp_seq_req)
1369{
1370        bool ret = false;
1371        struct rcu_node *rnp;
1372
1373        /*
1374         * Use funnel locking to either acquire the root rcu_node
1375         * structure's lock or bail out if the need for this grace period
1376         * has already been recorded -- or if that grace period has in
1377         * fact already started.  If there is already a grace period in
1378         * progress in a non-leaf node, no recording is needed because the
1379         * end of the grace period will scan the leaf rcu_node structures.
1380         * Note that rnp_start->lock must not be released.
1381         */
1382        raw_lockdep_assert_held_rcu_node(rnp_start);
1383        trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1384        for (rnp = rnp_start; 1; rnp = rnp->parent) {
1385                if (rnp != rnp_start)
1386                        raw_spin_lock_rcu_node(rnp);
1387                if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1388                    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1389                    (rnp != rnp_start &&
1390                     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1391                        trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1392                                          TPS("Prestarted"));
1393                        goto unlock_out;
1394                }
1395                WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1396                if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1397                        /*
1398                         * We just marked the leaf or internal node, and a
1399                         * grace period is in progress, which means that
1400                         * rcu_gp_cleanup() will see the marking.  Bail to
1401                         * reduce contention.
1402                         */
1403                        trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1404                                          TPS("Startedleaf"));
1405                        goto unlock_out;
1406                }
1407                if (rnp != rnp_start && rnp->parent != NULL)
1408                        raw_spin_unlock_rcu_node(rnp);
1409                if (!rnp->parent)
1410                        break;  /* At root, and perhaps also leaf. */
1411        }
1412
1413        /* If GP already in progress, just leave, otherwise start one. */
1414        if (rcu_gp_in_progress()) {
1415                trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1416                goto unlock_out;
1417        }
1418        trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1419        WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1420        WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1421        if (!READ_ONCE(rcu_state.gp_kthread)) {
1422                trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1423                goto unlock_out;
1424        }
1425        trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1426        ret = true;  /* Caller must wake GP kthread. */
1427unlock_out:
1428        /* Push furthest requested GP to leaf node and rcu_data structure. */
1429        if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1430                WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1431                WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1432        }
1433        if (rnp != rnp_start)
1434                raw_spin_unlock_rcu_node(rnp);
1435        return ret;
1436}
1437
1438/*
1439 * Clean up any old requests for the just-ended grace period.  Also return
1440 * whether any additional grace periods have been requested.
1441 */
1442static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1443{
1444        bool needmore;
1445        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1446
1447        needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1448        if (!needmore)
1449                rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1450        trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1451                          needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1452        return needmore;
1453}
1454
1455/*
1456 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1457 * interrupt or softirq handler, in which case we just might immediately
1458 * sleep upon return, resulting in a grace-period hang), and don't bother
1459 * awakening when there is nothing for the grace-period kthread to do
1460 * (as in several CPUs raced to awaken, we lost), and finally don't try
1461 * to awaken a kthread that has not yet been created.  If all those checks
1462 * are passed, track some debug information and awaken.
1463 *
1464 * So why do the self-wakeup when in an interrupt or softirq handler
1465 * in the grace-period kthread's context?  Because the kthread might have
1466 * been interrupted just as it was going to sleep, and just after the final
1467 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1468 * is required, and is therefore supplied.
1469 */
1470static void rcu_gp_kthread_wake(void)
1471{
1472        struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1473
1474        if ((current == t && !in_irq() && !in_serving_softirq()) ||
1475            !READ_ONCE(rcu_state.gp_flags) || !t)
1476                return;
1477        WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1478        WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1479        swake_up_one(&rcu_state.gp_wq);
1480}
1481
1482/*
1483 * If there is room, assign a ->gp_seq number to any callbacks on this
1484 * CPU that have not already been assigned.  Also accelerate any callbacks
1485 * that were previously assigned a ->gp_seq number that has since proven
1486 * to be too conservative, which can happen if callbacks get assigned a
1487 * ->gp_seq number while RCU is idle, but with reference to a non-root
1488 * rcu_node structure.  This function is idempotent, so it does not hurt
1489 * to call it repeatedly.  Returns an flag saying that we should awaken
1490 * the RCU grace-period kthread.
1491 *
1492 * The caller must hold rnp->lock with interrupts disabled.
1493 */
1494static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1495{
1496        unsigned long gp_seq_req;
1497        bool ret = false;
1498
1499        rcu_lockdep_assert_cblist_protected(rdp);
1500        raw_lockdep_assert_held_rcu_node(rnp);
1501
1502        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1503        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1504                return false;
1505
1506        trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1507
1508        /*
1509         * Callbacks are often registered with incomplete grace-period
1510         * information.  Something about the fact that getting exact
1511         * information requires acquiring a global lock...  RCU therefore
1512         * makes a conservative estimate of the grace period number at which
1513         * a given callback will become ready to invoke.        The following
1514         * code checks this estimate and improves it when possible, thus
1515         * accelerating callback invocation to an earlier grace-period
1516         * number.
1517         */
1518        gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1519        if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1520                ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1521
1522        /* Trace depending on how much we were able to accelerate. */
1523        if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1524                trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1525        else
1526                trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1527
1528        trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1529
1530        return ret;
1531}
1532
1533/*
1534 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1535 * rcu_node structure's ->lock be held.  It consults the cached value
1536 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1537 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1538 * while holding the leaf rcu_node structure's ->lock.
1539 */
1540static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1541                                        struct rcu_data *rdp)
1542{
1543        unsigned long c;
1544        bool needwake;
1545
1546        rcu_lockdep_assert_cblist_protected(rdp);
1547        c = rcu_seq_snap(&rcu_state.gp_seq);
1548        if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1549                /* Old request still live, so mark recent callbacks. */
1550                (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1551                return;
1552        }
1553        raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1554        needwake = rcu_accelerate_cbs(rnp, rdp);
1555        raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1556        if (needwake)
1557                rcu_gp_kthread_wake();
1558}
1559
1560/*
1561 * Move any callbacks whose grace period has completed to the
1562 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1563 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1564 * sublist.  This function is idempotent, so it does not hurt to
1565 * invoke it repeatedly.  As long as it is not invoked -too- often...
1566 * Returns true if the RCU grace-period kthread needs to be awakened.
1567 *
1568 * The caller must hold rnp->lock with interrupts disabled.
1569 */
1570static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1571{
1572        rcu_lockdep_assert_cblist_protected(rdp);
1573        raw_lockdep_assert_held_rcu_node(rnp);
1574
1575        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1576        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1577                return false;
1578
1579        /*
1580         * Find all callbacks whose ->gp_seq numbers indicate that they
1581         * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1582         */
1583        rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1584
1585        /* Classify any remaining callbacks. */
1586        return rcu_accelerate_cbs(rnp, rdp);
1587}
1588
1589/*
1590 * Move and classify callbacks, but only if doing so won't require
1591 * that the RCU grace-period kthread be awakened.
1592 */
1593static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1594                                                  struct rcu_data *rdp)
1595{
1596        rcu_lockdep_assert_cblist_protected(rdp);
1597        if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1598            !raw_spin_trylock_rcu_node(rnp))
1599                return;
1600        WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1601        raw_spin_unlock_rcu_node(rnp);
1602}
1603
1604/*
1605 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1606 * quiescent state.  This is intended to be invoked when the CPU notices
1607 * a new grace period.
1608 */
1609static void rcu_strict_gp_check_qs(void)
1610{
1611        if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1612                rcu_read_lock();
1613                rcu_read_unlock();
1614        }
1615}
1616
1617/*
1618 * Update CPU-local rcu_data state to record the beginnings and ends of
1619 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1620 * structure corresponding to the current CPU, and must have irqs disabled.
1621 * Returns true if the grace-period kthread needs to be awakened.
1622 */
1623static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1624{
1625        bool ret = false;
1626        bool need_qs;
1627        const bool offloaded = rcu_rdp_is_offloaded(rdp);
1628
1629        raw_lockdep_assert_held_rcu_node(rnp);
1630
1631        if (rdp->gp_seq == rnp->gp_seq)
1632                return false; /* Nothing to do. */
1633
1634        /* Handle the ends of any preceding grace periods first. */
1635        if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1636            unlikely(READ_ONCE(rdp->gpwrap))) {
1637                if (!offloaded)
1638                        ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1639                rdp->core_needs_qs = false;
1640                trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1641        } else {
1642                if (!offloaded)
1643                        ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1644                if (rdp->core_needs_qs)
1645                        rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1646        }
1647
1648        /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1649        if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1650            unlikely(READ_ONCE(rdp->gpwrap))) {
1651                /*
1652                 * If the current grace period is waiting for this CPU,
1653                 * set up to detect a quiescent state, otherwise don't
1654                 * go looking for one.
1655                 */
1656                trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1657                need_qs = !!(rnp->qsmask & rdp->grpmask);
1658                rdp->cpu_no_qs.b.norm = need_qs;
1659                rdp->core_needs_qs = need_qs;
1660                zero_cpu_stall_ticks(rdp);
1661        }
1662        rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1663        if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1664                WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1665        WRITE_ONCE(rdp->gpwrap, false);
1666        rcu_gpnum_ovf(rnp, rdp);
1667        return ret;
1668}
1669
1670static void note_gp_changes(struct rcu_data *rdp)
1671{
1672        unsigned long flags;
1673        bool needwake;
1674        struct rcu_node *rnp;
1675
1676        local_irq_save(flags);
1677        rnp = rdp->mynode;
1678        if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1679             !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1680            !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1681                local_irq_restore(flags);
1682                return;
1683        }
1684        needwake = __note_gp_changes(rnp, rdp);
1685        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1686        rcu_strict_gp_check_qs();
1687        if (needwake)
1688                rcu_gp_kthread_wake();
1689}
1690
1691static void rcu_gp_slow(int delay)
1692{
1693        if (delay > 0 &&
1694            !(rcu_seq_ctr(rcu_state.gp_seq) %
1695              (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1696                schedule_timeout_idle(delay);
1697}
1698
1699static unsigned long sleep_duration;
1700
1701/* Allow rcutorture to stall the grace-period kthread. */
1702void rcu_gp_set_torture_wait(int duration)
1703{
1704        if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1705                WRITE_ONCE(sleep_duration, duration);
1706}
1707EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1708
1709/* Actually implement the aforementioned wait. */
1710static void rcu_gp_torture_wait(void)
1711{
1712        unsigned long duration;
1713
1714        if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1715                return;
1716        duration = xchg(&sleep_duration, 0UL);
1717        if (duration > 0) {
1718                pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1719                schedule_timeout_idle(duration);
1720                pr_alert("%s: Wait complete\n", __func__);
1721        }
1722}
1723
1724/*
1725 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1726 * processing.
1727 */
1728static void rcu_strict_gp_boundary(void *unused)
1729{
1730        invoke_rcu_core();
1731}
1732
1733/*
1734 * Initialize a new grace period.  Return false if no grace period required.
1735 */
1736static noinline_for_stack bool rcu_gp_init(void)
1737{
1738        unsigned long firstseq;
1739        unsigned long flags;
1740        unsigned long oldmask;
1741        unsigned long mask;
1742        struct rcu_data *rdp;
1743        struct rcu_node *rnp = rcu_get_root();
1744
1745        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1746        raw_spin_lock_irq_rcu_node(rnp);
1747        if (!READ_ONCE(rcu_state.gp_flags)) {
1748                /* Spurious wakeup, tell caller to go back to sleep.  */
1749                raw_spin_unlock_irq_rcu_node(rnp);
1750                return false;
1751        }
1752        WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1753
1754        if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1755                /*
1756                 * Grace period already in progress, don't start another.
1757                 * Not supposed to be able to happen.
1758                 */
1759                raw_spin_unlock_irq_rcu_node(rnp);
1760                return false;
1761        }
1762
1763        /* Advance to a new grace period and initialize state. */
1764        record_gp_stall_check_time();
1765        /* Record GP times before starting GP, hence rcu_seq_start(). */
1766        rcu_seq_start(&rcu_state.gp_seq);
1767        ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1768        trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1769        raw_spin_unlock_irq_rcu_node(rnp);
1770
1771        /*
1772         * Apply per-leaf buffered online and offline operations to
1773         * the rcu_node tree. Note that this new grace period need not
1774         * wait for subsequent online CPUs, and that RCU hooks in the CPU
1775         * offlining path, when combined with checks in this function,
1776         * will handle CPUs that are currently going offline or that will
1777         * go offline later.  Please also refer to "Hotplug CPU" section
1778         * of RCU's Requirements documentation.
1779         */
1780        WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1781        rcu_for_each_leaf_node(rnp) {
1782                smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1783                firstseq = READ_ONCE(rnp->ofl_seq);
1784                if (firstseq & 0x1)
1785                        while (firstseq == READ_ONCE(rnp->ofl_seq))
1786                                schedule_timeout_idle(1);  // Can't wake unless RCU is watching.
1787                smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1788                raw_spin_lock(&rcu_state.ofl_lock);
1789                raw_spin_lock_irq_rcu_node(rnp);
1790                if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1791                    !rnp->wait_blkd_tasks) {
1792                        /* Nothing to do on this leaf rcu_node structure. */
1793                        raw_spin_unlock_irq_rcu_node(rnp);
1794                        raw_spin_unlock(&rcu_state.ofl_lock);
1795                        continue;
1796                }
1797
1798                /* Record old state, apply changes to ->qsmaskinit field. */
1799                oldmask = rnp->qsmaskinit;
1800                rnp->qsmaskinit = rnp->qsmaskinitnext;
1801
1802                /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1803                if (!oldmask != !rnp->qsmaskinit) {
1804                        if (!oldmask) { /* First online CPU for rcu_node. */
1805                                if (!rnp->wait_blkd_tasks) /* Ever offline? */
1806                                        rcu_init_new_rnp(rnp);
1807                        } else if (rcu_preempt_has_tasks(rnp)) {
1808                                rnp->wait_blkd_tasks = true; /* blocked tasks */
1809                        } else { /* Last offline CPU and can propagate. */
1810                                rcu_cleanup_dead_rnp(rnp);
1811                        }
1812                }
1813
1814                /*
1815                 * If all waited-on tasks from prior grace period are
1816                 * done, and if all this rcu_node structure's CPUs are
1817                 * still offline, propagate up the rcu_node tree and
1818                 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1819                 * rcu_node structure's CPUs has since come back online,
1820                 * simply clear ->wait_blkd_tasks.
1821                 */
1822                if (rnp->wait_blkd_tasks &&
1823                    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1824                        rnp->wait_blkd_tasks = false;
1825                        if (!rnp->qsmaskinit)
1826                                rcu_cleanup_dead_rnp(rnp);
1827                }
1828
1829                raw_spin_unlock_irq_rcu_node(rnp);
1830                raw_spin_unlock(&rcu_state.ofl_lock);
1831        }
1832        rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1833
1834        /*
1835         * Set the quiescent-state-needed bits in all the rcu_node
1836         * structures for all currently online CPUs in breadth-first
1837         * order, starting from the root rcu_node structure, relying on the
1838         * layout of the tree within the rcu_state.node[] array.  Note that
1839         * other CPUs will access only the leaves of the hierarchy, thus
1840         * seeing that no grace period is in progress, at least until the
1841         * corresponding leaf node has been initialized.
1842         *
1843         * The grace period cannot complete until the initialization
1844         * process finishes, because this kthread handles both.
1845         */
1846        WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1847        rcu_for_each_node_breadth_first(rnp) {
1848                rcu_gp_slow(gp_init_delay);
1849                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1850                rdp = this_cpu_ptr(&rcu_data);
1851                rcu_preempt_check_blocked_tasks(rnp);
1852                rnp->qsmask = rnp->qsmaskinit;
1853                WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1854                if (rnp == rdp->mynode)
1855                        (void)__note_gp_changes(rnp, rdp);
1856                rcu_preempt_boost_start_gp(rnp);
1857                trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1858                                            rnp->level, rnp->grplo,
1859                                            rnp->grphi, rnp->qsmask);
1860                /* Quiescent states for tasks on any now-offline CPUs. */
1861                mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1862                rnp->rcu_gp_init_mask = mask;
1863                if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1864                        rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1865                else
1866                        raw_spin_unlock_irq_rcu_node(rnp);
1867                cond_resched_tasks_rcu_qs();
1868                WRITE_ONCE(rcu_state.gp_activity, jiffies);
1869        }
1870
1871        // If strict, make all CPUs aware of new grace period.
1872        if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1873                on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1874
1875        return true;
1876}
1877
1878/*
1879 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1880 * time.
1881 */
1882static bool rcu_gp_fqs_check_wake(int *gfp)
1883{
1884        struct rcu_node *rnp = rcu_get_root();
1885
1886        // If under overload conditions, force an immediate FQS scan.
1887        if (*gfp & RCU_GP_FLAG_OVLD)
1888                return true;
1889
1890        // Someone like call_rcu() requested a force-quiescent-state scan.
1891        *gfp = READ_ONCE(rcu_state.gp_flags);
1892        if (*gfp & RCU_GP_FLAG_FQS)
1893                return true;
1894
1895        // The current grace period has completed.
1896        if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1897                return true;
1898
1899        return false;
1900}
1901
1902/*
1903 * Do one round of quiescent-state forcing.
1904 */
1905static void rcu_gp_fqs(bool first_time)
1906{
1907        struct rcu_node *rnp = rcu_get_root();
1908
1909        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1910        rcu_state.n_force_qs++;
1911        if (first_time) {
1912                /* Collect dyntick-idle snapshots. */
1913                force_qs_rnp(dyntick_save_progress_counter);
1914        } else {
1915                /* Handle dyntick-idle and offline CPUs. */
1916                force_qs_rnp(rcu_implicit_dynticks_qs);
1917        }
1918        /* Clear flag to prevent immediate re-entry. */
1919        if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1920                raw_spin_lock_irq_rcu_node(rnp);
1921                WRITE_ONCE(rcu_state.gp_flags,
1922                           READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1923                raw_spin_unlock_irq_rcu_node(rnp);
1924        }
1925}
1926
1927/*
1928 * Loop doing repeated quiescent-state forcing until the grace period ends.
1929 */
1930static noinline_for_stack void rcu_gp_fqs_loop(void)
1931{
1932        bool first_gp_fqs;
1933        int gf = 0;
1934        unsigned long j;
1935        int ret;
1936        struct rcu_node *rnp = rcu_get_root();
1937
1938        first_gp_fqs = true;
1939        j = READ_ONCE(jiffies_till_first_fqs);
1940        if (rcu_state.cbovld)
1941                gf = RCU_GP_FLAG_OVLD;
1942        ret = 0;
1943        for (;;) {
1944                if (!ret) {
1945                        WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1946                        /*
1947                         * jiffies_force_qs before RCU_GP_WAIT_FQS state
1948                         * update; required for stall checks.
1949                         */
1950                        smp_wmb();
1951                        WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1952                                   jiffies + (j ? 3 * j : 2));
1953                }
1954                trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1955                                       TPS("fqswait"));
1956                WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1957                (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1958                                 rcu_gp_fqs_check_wake(&gf), j);
1959                rcu_gp_torture_wait();
1960                WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1961                /* Locking provides needed memory barriers. */
1962                /* If grace period done, leave loop. */
1963                if (!READ_ONCE(rnp->qsmask) &&
1964                    !rcu_preempt_blocked_readers_cgp(rnp))
1965                        break;
1966                /* If time for quiescent-state forcing, do it. */
1967                if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1968                    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1969                        trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1970                                               TPS("fqsstart"));
1971                        rcu_gp_fqs(first_gp_fqs);
1972                        gf = 0;
1973                        if (first_gp_fqs) {
1974                                first_gp_fqs = false;
1975                                gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1976                        }
1977                        trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1978                                               TPS("fqsend"));
1979                        cond_resched_tasks_rcu_qs();
1980                        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1981                        ret = 0; /* Force full wait till next FQS. */
1982                        j = READ_ONCE(jiffies_till_next_fqs);
1983                } else {
1984                        /* Deal with stray signal. */
1985                        cond_resched_tasks_rcu_qs();
1986                        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1987                        WARN_ON(signal_pending(current));
1988                        trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1989                                               TPS("fqswaitsig"));
1990                        ret = 1; /* Keep old FQS timing. */
1991                        j = jiffies;
1992                        if (time_after(jiffies, rcu_state.jiffies_force_qs))
1993                                j = 1;
1994                        else
1995                                j = rcu_state.jiffies_force_qs - j;
1996                        gf = 0;
1997                }
1998        }
1999}
2000
2001/*
2002 * Clean up after the old grace period.
2003 */
2004static noinline void rcu_gp_cleanup(void)
2005{
2006        int cpu;
2007        bool needgp = false;
2008        unsigned long gp_duration;
2009        unsigned long new_gp_seq;
2010        bool offloaded;
2011        struct rcu_data *rdp;
2012        struct rcu_node *rnp = rcu_get_root();
2013        struct swait_queue_head *sq;
2014
2015        WRITE_ONCE(rcu_state.gp_activity, jiffies);
2016        raw_spin_lock_irq_rcu_node(rnp);
2017        rcu_state.gp_end = jiffies;
2018        gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2019        if (gp_duration > rcu_state.gp_max)
2020                rcu_state.gp_max = gp_duration;
2021
2022        /*
2023         * We know the grace period is complete, but to everyone else
2024         * it appears to still be ongoing.  But it is also the case
2025         * that to everyone else it looks like there is nothing that
2026         * they can do to advance the grace period.  It is therefore
2027         * safe for us to drop the lock in order to mark the grace
2028         * period as completed in all of the rcu_node structures.
2029         */
2030        raw_spin_unlock_irq_rcu_node(rnp);
2031
2032        /*
2033         * Propagate new ->gp_seq value to rcu_node structures so that
2034         * other CPUs don't have to wait until the start of the next grace
2035         * period to process their callbacks.  This also avoids some nasty
2036         * RCU grace-period initialization races by forcing the end of
2037         * the current grace period to be completely recorded in all of
2038         * the rcu_node structures before the beginning of the next grace
2039         * period is recorded in any of the rcu_node structures.
2040         */
2041        new_gp_seq = rcu_state.gp_seq;
2042        rcu_seq_end(&new_gp_seq);
2043        rcu_for_each_node_breadth_first(rnp) {
2044                raw_spin_lock_irq_rcu_node(rnp);
2045                if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2046                        dump_blkd_tasks(rnp, 10);
2047                WARN_ON_ONCE(rnp->qsmask);
2048                WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2049                rdp = this_cpu_ptr(&rcu_data);
2050                if (rnp == rdp->mynode)
2051                        needgp = __note_gp_changes(rnp, rdp) || needgp;
2052                /* smp_mb() provided by prior unlock-lock pair. */
2053                needgp = rcu_future_gp_cleanup(rnp) || needgp;
2054                // Reset overload indication for CPUs no longer overloaded
2055                if (rcu_is_leaf_node(rnp))
2056                        for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2057                                rdp = per_cpu_ptr(&rcu_data, cpu);
2058                                check_cb_ovld_locked(rdp, rnp);
2059                        }
2060                sq = rcu_nocb_gp_get(rnp);
2061                raw_spin_unlock_irq_rcu_node(rnp);
2062                rcu_nocb_gp_cleanup(sq);
2063                cond_resched_tasks_rcu_qs();
2064                WRITE_ONCE(rcu_state.gp_activity, jiffies);
2065                rcu_gp_slow(gp_cleanup_delay);
2066        }
2067        rnp = rcu_get_root();
2068        raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2069
2070        /* Declare grace period done, trace first to use old GP number. */
2071        trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2072        rcu_seq_end(&rcu_state.gp_seq);
2073        ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2074        WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2075        /* Check for GP requests since above loop. */
2076        rdp = this_cpu_ptr(&rcu_data);
2077        if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2078                trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2079                                  TPS("CleanupMore"));
2080                needgp = true;
2081        }
2082        /* Advance CBs to reduce false positives below. */
2083        offloaded = rcu_rdp_is_offloaded(rdp);
2084        if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2085                WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2086                WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2087                trace_rcu_grace_period(rcu_state.name,
2088                                       rcu_state.gp_seq,
2089                                       TPS("newreq"));
2090        } else {
2091                WRITE_ONCE(rcu_state.gp_flags,
2092                           rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2093        }
2094        raw_spin_unlock_irq_rcu_node(rnp);
2095
2096        // If strict, make all CPUs aware of the end of the old grace period.
2097        if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2098                on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2099}
2100
2101/*
2102 * Body of kthread that handles grace periods.
2103 */
2104static int __noreturn rcu_gp_kthread(void *unused)
2105{
2106        rcu_bind_gp_kthread();
2107        for (;;) {
2108
2109                /* Handle grace-period start. */
2110                for (;;) {
2111                        trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2112                                               TPS("reqwait"));
2113                        WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2114                        swait_event_idle_exclusive(rcu_state.gp_wq,
2115                                         READ_ONCE(rcu_state.gp_flags) &
2116                                         RCU_GP_FLAG_INIT);
2117                        rcu_gp_torture_wait();
2118                        WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2119                        /* Locking provides needed memory barrier. */
2120                        if (rcu_gp_init())
2121                                break;
2122                        cond_resched_tasks_rcu_qs();
2123                        WRITE_ONCE(rcu_state.gp_activity, jiffies);
2124                        WARN_ON(signal_pending(current));
2125                        trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2126                                               TPS("reqwaitsig"));
2127                }
2128
2129                /* Handle quiescent-state forcing. */
2130                rcu_gp_fqs_loop();
2131
2132                /* Handle grace-period end. */
2133                WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2134                rcu_gp_cleanup();
2135                WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2136        }
2137}
2138
2139/*
2140 * Report a full set of quiescent states to the rcu_state data structure.
2141 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2142 * another grace period is required.  Whether we wake the grace-period
2143 * kthread or it awakens itself for the next round of quiescent-state
2144 * forcing, that kthread will clean up after the just-completed grace
2145 * period.  Note that the caller must hold rnp->lock, which is released
2146 * before return.
2147 */
2148static void rcu_report_qs_rsp(unsigned long flags)
2149        __releases(rcu_get_root()->lock)
2150{
2151        raw_lockdep_assert_held_rcu_node(rcu_get_root());
2152        WARN_ON_ONCE(!rcu_gp_in_progress());
2153        WRITE_ONCE(rcu_state.gp_flags,
2154                   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2155        raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2156        rcu_gp_kthread_wake();
2157}
2158
2159/*
2160 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2161 * Allows quiescent states for a group of CPUs to be reported at one go
2162 * to the specified rcu_node structure, though all the CPUs in the group
2163 * must be represented by the same rcu_node structure (which need not be a
2164 * leaf rcu_node structure, though it often will be).  The gps parameter
2165 * is the grace-period snapshot, which means that the quiescent states
2166 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2167 * must be held upon entry, and it is released before return.
2168 *
2169 * As a special case, if mask is zero, the bit-already-cleared check is
2170 * disabled.  This allows propagating quiescent state due to resumed tasks
2171 * during grace-period initialization.
2172 */
2173static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2174                              unsigned long gps, unsigned long flags)
2175        __releases(rnp->lock)
2176{
2177        unsigned long oldmask = 0;
2178        struct rcu_node *rnp_c;
2179
2180        raw_lockdep_assert_held_rcu_node(rnp);
2181
2182        /* Walk up the rcu_node hierarchy. */
2183        for (;;) {
2184                if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2185
2186                        /*
2187                         * Our bit has already been cleared, or the
2188                         * relevant grace period is already over, so done.
2189                         */
2190                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2191                        return;
2192                }
2193                WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2194                WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2195                             rcu_preempt_blocked_readers_cgp(rnp));
2196                WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2197                trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2198                                                 mask, rnp->qsmask, rnp->level,
2199                                                 rnp->grplo, rnp->grphi,
2200                                                 !!rnp->gp_tasks);
2201                if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2202
2203                        /* Other bits still set at this level, so done. */
2204                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2205                        return;
2206                }
2207                rnp->completedqs = rnp->gp_seq;
2208                mask = rnp->grpmask;
2209                if (rnp->parent == NULL) {
2210
2211                        /* No more levels.  Exit loop holding root lock. */
2212
2213                        break;
2214                }
2215                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2216                rnp_c = rnp;
2217                rnp = rnp->parent;
2218                raw_spin_lock_irqsave_rcu_node(rnp, flags);
2219                oldmask = READ_ONCE(rnp_c->qsmask);
2220        }
2221
2222        /*
2223         * Get here if we are the last CPU to pass through a quiescent
2224         * state for this grace period.  Invoke rcu_report_qs_rsp()
2225         * to clean up and start the next grace period if one is needed.
2226         */
2227        rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2228}
2229
2230/*
2231 * Record a quiescent state for all tasks that were previously queued
2232 * on the specified rcu_node structure and that were blocking the current
2233 * RCU grace period.  The caller must hold the corresponding rnp->lock with
2234 * irqs disabled, and this lock is released upon return, but irqs remain
2235 * disabled.
2236 */
2237static void __maybe_unused
2238rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2239        __releases(rnp->lock)
2240{
2241        unsigned long gps;
2242        unsigned long mask;
2243        struct rcu_node *rnp_p;
2244
2245        raw_lockdep_assert_held_rcu_node(rnp);
2246        if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2247            WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2248            rnp->qsmask != 0) {
2249                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2250                return;  /* Still need more quiescent states! */
2251        }
2252
2253        rnp->completedqs = rnp->gp_seq;
2254        rnp_p = rnp->parent;
2255        if (rnp_p == NULL) {
2256                /*
2257                 * Only one rcu_node structure in the tree, so don't
2258                 * try to report up to its nonexistent parent!
2259                 */
2260                rcu_report_qs_rsp(flags);
2261                return;
2262        }
2263
2264        /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2265        gps = rnp->gp_seq;
2266        mask = rnp->grpmask;
2267        raw_spin_unlock_rcu_node(rnp);  /* irqs remain disabled. */
2268        raw_spin_lock_rcu_node(rnp_p);  /* irqs already disabled. */
2269        rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2270}
2271
2272/*
2273 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2274 * structure.  This must be called from the specified CPU.
2275 */
2276static void
2277rcu_report_qs_rdp(struct rcu_data *rdp)
2278{
2279        unsigned long flags;
2280        unsigned long mask;
2281        bool needwake = false;
2282        const bool offloaded = rcu_rdp_is_offloaded(rdp);
2283        struct rcu_node *rnp;
2284
2285        WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2286        rnp = rdp->mynode;
2287        raw_spin_lock_irqsave_rcu_node(rnp, flags);
2288        if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2289            rdp->gpwrap) {
2290
2291                /*
2292                 * The grace period in which this quiescent state was
2293                 * recorded has ended, so don't report it upwards.
2294                 * We will instead need a new quiescent state that lies
2295                 * within the current grace period.
2296                 */
2297                rdp->cpu_no_qs.b.norm = true;   /* need qs for new gp. */
2298                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2299                return;
2300        }
2301        mask = rdp->grpmask;
2302        rdp->core_needs_qs = false;
2303        if ((rnp->qsmask & mask) == 0) {
2304                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2305        } else {
2306                /*
2307                 * This GP can't end until cpu checks in, so all of our
2308                 * callbacks can be processed during the next GP.
2309                 */
2310                if (!offloaded)
2311                        needwake = rcu_accelerate_cbs(rnp, rdp);
2312
2313                rcu_disable_urgency_upon_qs(rdp);
2314                rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2315                /* ^^^ Released rnp->lock */
2316                if (needwake)
2317                        rcu_gp_kthread_wake();
2318        }
2319}
2320
2321/*
2322 * Check to see if there is a new grace period of which this CPU
2323 * is not yet aware, and if so, set up local rcu_data state for it.
2324 * Otherwise, see if this CPU has just passed through its first
2325 * quiescent state for this grace period, and record that fact if so.
2326 */
2327static void
2328rcu_check_quiescent_state(struct rcu_data *rdp)
2329{
2330        /* Check for grace-period ends and beginnings. */
2331        note_gp_changes(rdp);
2332
2333        /*
2334         * Does this CPU still need to do its part for current grace period?
2335         * If no, return and let the other CPUs do their part as well.
2336         */
2337        if (!rdp->core_needs_qs)
2338                return;
2339
2340        /*
2341         * Was there a quiescent state since the beginning of the grace
2342         * period? If no, then exit and wait for the next call.
2343         */
2344        if (rdp->cpu_no_qs.b.norm)
2345                return;
2346
2347        /*
2348         * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2349         * judge of that).
2350         */
2351        rcu_report_qs_rdp(rdp);
2352}
2353
2354/*
2355 * Near the end of the offline process.  Trace the fact that this CPU
2356 * is going offline.
2357 */
2358int rcutree_dying_cpu(unsigned int cpu)
2359{
2360        bool blkd;
2361        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2362        struct rcu_node *rnp = rdp->mynode;
2363
2364        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2365                return 0;
2366
2367        blkd = !!(rnp->qsmask & rdp->grpmask);
2368        trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2369                               blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2370        return 0;
2371}
2372
2373/*
2374 * All CPUs for the specified rcu_node structure have gone offline,
2375 * and all tasks that were preempted within an RCU read-side critical
2376 * section while running on one of those CPUs have since exited their RCU
2377 * read-side critical section.  Some other CPU is reporting this fact with
2378 * the specified rcu_node structure's ->lock held and interrupts disabled.
2379 * This function therefore goes up the tree of rcu_node structures,
2380 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2381 * the leaf rcu_node structure's ->qsmaskinit field has already been
2382 * updated.
2383 *
2384 * This function does check that the specified rcu_node structure has
2385 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2386 * prematurely.  That said, invoking it after the fact will cost you
2387 * a needless lock acquisition.  So once it has done its work, don't
2388 * invoke it again.
2389 */
2390static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2391{
2392        long mask;
2393        struct rcu_node *rnp = rnp_leaf;
2394
2395        raw_lockdep_assert_held_rcu_node(rnp_leaf);
2396        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2397            WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2398            WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2399                return;
2400        for (;;) {
2401                mask = rnp->grpmask;
2402                rnp = rnp->parent;
2403                if (!rnp)
2404                        break;
2405                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2406                rnp->qsmaskinit &= ~mask;
2407                /* Between grace periods, so better already be zero! */
2408                WARN_ON_ONCE(rnp->qsmask);
2409                if (rnp->qsmaskinit) {
2410                        raw_spin_unlock_rcu_node(rnp);
2411                        /* irqs remain disabled. */
2412                        return;
2413                }
2414                raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2415        }
2416}
2417
2418/*
2419 * The CPU has been completely removed, and some other CPU is reporting
2420 * this fact from process context.  Do the remainder of the cleanup.
2421 * There can only be one CPU hotplug operation at a time, so no need for
2422 * explicit locking.
2423 */
2424int rcutree_dead_cpu(unsigned int cpu)
2425{
2426        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2427        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2428
2429        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2430                return 0;
2431
2432        WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2433        /* Adjust any no-longer-needed kthreads. */
2434        rcu_boost_kthread_setaffinity(rnp, -1);
2435        // Stop-machine done, so allow nohz_full to disable tick.
2436        tick_dep_clear(TICK_DEP_BIT_RCU);
2437        return 0;
2438}
2439
2440/*
2441 * Invoke any RCU callbacks that have made it to the end of their grace
2442 * period.  Throttle as specified by rdp->blimit.
2443 */
2444static void rcu_do_batch(struct rcu_data *rdp)
2445{
2446        int div;
2447        bool __maybe_unused empty;
2448        unsigned long flags;
2449        const bool offloaded = rcu_rdp_is_offloaded(rdp);
2450        struct rcu_head *rhp;
2451        struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2452        long bl, count = 0;
2453        long pending, tlimit = 0;
2454
2455        /* If no callbacks are ready, just return. */
2456        if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2457                trace_rcu_batch_start(rcu_state.name,
2458                                      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2459                trace_rcu_batch_end(rcu_state.name, 0,
2460                                    !rcu_segcblist_empty(&rdp->cblist),
2461                                    need_resched(), is_idle_task(current),
2462                                    rcu_is_callbacks_kthread());
2463                return;
2464        }
2465
2466        /*
2467         * Extract the list of ready callbacks, disabling to prevent
2468         * races with call_rcu() from interrupt handlers.  Leave the
2469         * callback counts, as rcu_barrier() needs to be conservative.
2470         */
2471        local_irq_save(flags);
2472        rcu_nocb_lock(rdp);
2473        WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2474        pending = rcu_segcblist_n_cbs(&rdp->cblist);
2475        div = READ_ONCE(rcu_divisor);
2476        div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2477        bl = max(rdp->blimit, pending >> div);
2478        if (unlikely(bl > 100)) {
2479                long rrn = READ_ONCE(rcu_resched_ns);
2480
2481                rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2482                tlimit = local_clock() + rrn;
2483        }
2484        trace_rcu_batch_start(rcu_state.name,
2485                              rcu_segcblist_n_cbs(&rdp->cblist), bl);
2486        rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2487        if (offloaded)
2488                rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2489
2490        trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2491        rcu_nocb_unlock_irqrestore(rdp, flags);
2492
2493        /* Invoke callbacks. */
2494        tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2495        rhp = rcu_cblist_dequeue(&rcl);
2496
2497        for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2498                rcu_callback_t f;
2499
2500                count++;
2501                debug_rcu_head_unqueue(rhp);
2502
2503                rcu_lock_acquire(&rcu_callback_map);
2504                trace_rcu_invoke_callback(rcu_state.name, rhp);
2505
2506                f = rhp->func;
2507                WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2508                f(rhp);
2509
2510                rcu_lock_release(&rcu_callback_map);
2511
2512                /*
2513                 * Stop only if limit reached and CPU has something to do.
2514                 */
2515                if (count >= bl && !offloaded &&
2516                    (need_resched() ||
2517                     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2518                        break;
2519                if (unlikely(tlimit)) {
2520                        /* only call local_clock() every 32 callbacks */
2521                        if (likely((count & 31) || local_clock() < tlimit))
2522                                continue;
2523                        /* Exceeded the time limit, so leave. */
2524                        break;
2525                }
2526                if (!in_serving_softirq()) {
2527                        local_bh_enable();
2528                        lockdep_assert_irqs_enabled();
2529                        cond_resched_tasks_rcu_qs();
2530                        lockdep_assert_irqs_enabled();
2531                        local_bh_disable();
2532                }
2533        }
2534
2535        local_irq_save(flags);
2536        rcu_nocb_lock(rdp);
2537        rdp->n_cbs_invoked += count;
2538        trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2539                            is_idle_task(current), rcu_is_callbacks_kthread());
2540
2541        /* Update counts and requeue any remaining callbacks. */
2542        rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2543        rcu_segcblist_add_len(&rdp->cblist, -count);
2544
2545        /* Reinstate batch limit if we have worked down the excess. */
2546        count = rcu_segcblist_n_cbs(&rdp->cblist);
2547        if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2548                rdp->blimit = blimit;
2549
2550        /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2551        if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2552                rdp->qlen_last_fqs_check = 0;
2553                rdp->n_force_qs_snap = rcu_state.n_force_qs;
2554        } else if (count < rdp->qlen_last_fqs_check - qhimark)
2555                rdp->qlen_last_fqs_check = count;
2556
2557        /*
2558         * The following usually indicates a double call_rcu().  To track
2559         * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2560         */
2561        empty = rcu_segcblist_empty(&rdp->cblist);
2562        WARN_ON_ONCE(count == 0 && !empty);
2563        WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2564                     count != 0 && empty);
2565        WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2566        WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2567
2568        rcu_nocb_unlock_irqrestore(rdp, flags);
2569
2570        /* Re-invoke RCU core processing if there are callbacks remaining. */
2571        if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2572                invoke_rcu_core();
2573        tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2574}
2575
2576/*
2577 * This function is invoked from each scheduling-clock interrupt,
2578 * and checks to see if this CPU is in a non-context-switch quiescent
2579 * state, for example, user mode or idle loop.  It also schedules RCU
2580 * core processing.  If the current grace period has gone on too long,
2581 * it will ask the scheduler to manufacture a context switch for the sole
2582 * purpose of providing the needed quiescent state.
2583 */
2584void rcu_sched_clock_irq(int user)
2585{
2586        trace_rcu_utilization(TPS("Start scheduler-tick"));
2587        lockdep_assert_irqs_disabled();
2588        raw_cpu_inc(rcu_data.ticks_this_gp);
2589        /* The load-acquire pairs with the store-release setting to true. */
2590        if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2591                /* Idle and userspace execution already are quiescent states. */
2592                if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2593                        set_tsk_need_resched(current);
2594                        set_preempt_need_resched();
2595                }
2596                __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2597        }
2598        rcu_flavor_sched_clock_irq(user);
2599        if (rcu_pending(user))
2600                invoke_rcu_core();
2601        lockdep_assert_irqs_disabled();
2602
2603        trace_rcu_utilization(TPS("End scheduler-tick"));
2604}
2605
2606/*
2607 * Scan the leaf rcu_node structures.  For each structure on which all
2608 * CPUs have reported a quiescent state and on which there are tasks
2609 * blocking the current grace period, initiate RCU priority boosting.
2610 * Otherwise, invoke the specified function to check dyntick state for
2611 * each CPU that has not yet reported a quiescent state.
2612 */
2613static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2614{
2615        int cpu;
2616        unsigned long flags;
2617        unsigned long mask;
2618        struct rcu_data *rdp;
2619        struct rcu_node *rnp;
2620
2621        rcu_state.cbovld = rcu_state.cbovldnext;
2622        rcu_state.cbovldnext = false;
2623        rcu_for_each_leaf_node(rnp) {
2624                cond_resched_tasks_rcu_qs();
2625                mask = 0;
2626                raw_spin_lock_irqsave_rcu_node(rnp, flags);
2627                rcu_state.cbovldnext |= !!rnp->cbovldmask;
2628                if (rnp->qsmask == 0) {
2629                        if (rcu_preempt_blocked_readers_cgp(rnp)) {
2630                                /*
2631                                 * No point in scanning bits because they
2632                                 * are all zero.  But we might need to
2633                                 * priority-boost blocked readers.
2634                                 */
2635                                rcu_initiate_boost(rnp, flags);
2636                                /* rcu_initiate_boost() releases rnp->lock */
2637                                continue;
2638                        }
2639                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2640                        continue;
2641                }
2642                for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2643                        rdp = per_cpu_ptr(&rcu_data, cpu);
2644                        if (f(rdp)) {
2645                                mask |= rdp->grpmask;
2646                                rcu_disable_urgency_upon_qs(rdp);
2647                        }
2648                }
2649                if (mask != 0) {
2650                        /* Idle/offline CPUs, report (releases rnp->lock). */
2651                        rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2652                } else {
2653                        /* Nothing to do here, so just drop the lock. */
2654                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2655                }
2656        }
2657}
2658
2659/*
2660 * Force quiescent states on reluctant CPUs, and also detect which
2661 * CPUs are in dyntick-idle mode.
2662 */
2663void rcu_force_quiescent_state(void)
2664{
2665        unsigned long flags;
2666        bool ret;
2667        struct rcu_node *rnp;
2668        struct rcu_node *rnp_old = NULL;
2669
2670        /* Funnel through hierarchy to reduce memory contention. */
2671        rnp = __this_cpu_read(rcu_data.mynode);
2672        for (; rnp != NULL; rnp = rnp->parent) {
2673                ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2674                       !raw_spin_trylock(&rnp->fqslock);
2675                if (rnp_old != NULL)
2676                        raw_spin_unlock(&rnp_old->fqslock);
2677                if (ret)
2678                        return;
2679                rnp_old = rnp;
2680        }
2681        /* rnp_old == rcu_get_root(), rnp == NULL. */
2682
2683        /* Reached the root of the rcu_node tree, acquire lock. */
2684        raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2685        raw_spin_unlock(&rnp_old->fqslock);
2686        if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2687                raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2688                return;  /* Someone beat us to it. */
2689        }
2690        WRITE_ONCE(rcu_state.gp_flags,
2691                   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2692        raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2693        rcu_gp_kthread_wake();
2694}
2695EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2696
2697// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2698// grace periods.
2699static void strict_work_handler(struct work_struct *work)
2700{
2701        rcu_read_lock();
2702        rcu_read_unlock();
2703}
2704
2705/* Perform RCU core processing work for the current CPU.  */
2706static __latent_entropy void rcu_core(void)
2707{
2708        unsigned long flags;
2709        struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2710        struct rcu_node *rnp = rdp->mynode;
2711        const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2712
2713        if (cpu_is_offline(smp_processor_id()))
2714                return;
2715        trace_rcu_utilization(TPS("Start RCU core"));
2716        WARN_ON_ONCE(!rdp->beenonline);
2717
2718        /* Report any deferred quiescent states if preemption enabled. */
2719        if (!(preempt_count() & PREEMPT_MASK)) {
2720                rcu_preempt_deferred_qs(current);
2721        } else if (rcu_preempt_need_deferred_qs(current)) {
2722                set_tsk_need_resched(current);
2723                set_preempt_need_resched();
2724        }
2725
2726        /* Update RCU state based on any recent quiescent states. */
2727        rcu_check_quiescent_state(rdp);
2728
2729        /* No grace period and unregistered callbacks? */
2730        if (!rcu_gp_in_progress() &&
2731            rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2732                rcu_nocb_lock_irqsave(rdp, flags);
2733                if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2734                        rcu_accelerate_cbs_unlocked(rnp, rdp);
2735                rcu_nocb_unlock_irqrestore(rdp, flags);
2736        }
2737
2738        rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2739
2740        /* If there are callbacks ready, invoke them. */
2741        if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2742            likely(READ_ONCE(rcu_scheduler_fully_active)))
2743                rcu_do_batch(rdp);
2744
2745        /* Do any needed deferred wakeups of rcuo kthreads. */
2746        do_nocb_deferred_wakeup(rdp);
2747        trace_rcu_utilization(TPS("End RCU core"));
2748
2749        // If strict GPs, schedule an RCU reader in a clean environment.
2750        if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2751                queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2752}
2753
2754static void rcu_core_si(struct softirq_action *h)
2755{
2756        rcu_core();
2757}
2758
2759static void rcu_wake_cond(struct task_struct *t, int status)
2760{
2761        /*
2762         * If the thread is yielding, only wake it when this
2763         * is invoked from idle
2764         */
2765        if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2766                wake_up_process(t);
2767}
2768
2769static void invoke_rcu_core_kthread(void)
2770{
2771        struct task_struct *t;
2772        unsigned long flags;
2773
2774        local_irq_save(flags);
2775        __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2776        t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2777        if (t != NULL && t != current)
2778                rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2779        local_irq_restore(flags);
2780}
2781
2782/*
2783 * Wake up this CPU's rcuc kthread to do RCU core processing.
2784 */
2785static void invoke_rcu_core(void)
2786{
2787        if (!cpu_online(smp_processor_id()))
2788                return;
2789        if (use_softirq)
2790                raise_softirq(RCU_SOFTIRQ);
2791        else
2792                invoke_rcu_core_kthread();
2793}
2794
2795static void rcu_cpu_kthread_park(unsigned int cpu)
2796{
2797        per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2798}
2799
2800static int rcu_cpu_kthread_should_run(unsigned int cpu)
2801{
2802        return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2803}
2804
2805/*
2806 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2807 * the RCU softirq used in configurations of RCU that do not support RCU
2808 * priority boosting.
2809 */
2810static void rcu_cpu_kthread(unsigned int cpu)
2811{
2812        unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2813        char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2814        int spincnt;
2815
2816        trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2817        for (spincnt = 0; spincnt < 10; spincnt++) {
2818                local_bh_disable();
2819                *statusp = RCU_KTHREAD_RUNNING;
2820                local_irq_disable();
2821                work = *workp;
2822                *workp = 0;
2823                local_irq_enable();
2824                if (work)
2825                        rcu_core();
2826                local_bh_enable();
2827                if (*workp == 0) {
2828                        trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2829                        *statusp = RCU_KTHREAD_WAITING;
2830                        return;
2831                }
2832        }
2833        *statusp = RCU_KTHREAD_YIELDING;
2834        trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2835        schedule_timeout_idle(2);
2836        trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2837        *statusp = RCU_KTHREAD_WAITING;
2838}
2839
2840static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2841        .store                  = &rcu_data.rcu_cpu_kthread_task,
2842        .thread_should_run      = rcu_cpu_kthread_should_run,
2843        .thread_fn              = rcu_cpu_kthread,
2844        .thread_comm            = "rcuc/%u",
2845        .setup                  = rcu_cpu_kthread_setup,
2846        .park                   = rcu_cpu_kthread_park,
2847};
2848
2849/*
2850 * Spawn per-CPU RCU core processing kthreads.
2851 */
2852static int __init rcu_spawn_core_kthreads(void)
2853{
2854        int cpu;
2855
2856        for_each_possible_cpu(cpu)
2857                per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2858        if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2859                return 0;
2860        WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2861                  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2862        return 0;
2863}
2864
2865/*
2866 * Handle any core-RCU processing required by a call_rcu() invocation.
2867 */
2868static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2869                            unsigned long flags)
2870{
2871        /*
2872         * If called from an extended quiescent state, invoke the RCU
2873         * core in order to force a re-evaluation of RCU's idleness.
2874         */
2875        if (!rcu_is_watching())
2876                invoke_rcu_core();
2877
2878        /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2879        if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2880                return;
2881
2882        /*
2883         * Force the grace period if too many callbacks or too long waiting.
2884         * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2885         * if some other CPU has recently done so.  Also, don't bother
2886         * invoking rcu_force_quiescent_state() if the newly enqueued callback
2887         * is the only one waiting for a grace period to complete.
2888         */
2889        if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2890                     rdp->qlen_last_fqs_check + qhimark)) {
2891
2892                /* Are we ignoring a completed grace period? */
2893                note_gp_changes(rdp);
2894
2895                /* Start a new grace period if one not already started. */
2896                if (!rcu_gp_in_progress()) {
2897                        rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2898                } else {
2899                        /* Give the grace period a kick. */
2900                        rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2901                        if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2902                            rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2903                                rcu_force_quiescent_state();
2904                        rdp->n_force_qs_snap = rcu_state.n_force_qs;
2905                        rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2906                }
2907        }
2908}
2909
2910/*
2911 * RCU callback function to leak a callback.
2912 */
2913static void rcu_leak_callback(struct rcu_head *rhp)
2914{
2915}
2916
2917/*
2918 * Check and if necessary update the leaf rcu_node structure's
2919 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2920 * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2921 * structure's ->lock.
2922 */
2923static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2924{
2925        raw_lockdep_assert_held_rcu_node(rnp);
2926        if (qovld_calc <= 0)
2927                return; // Early boot and wildcard value set.
2928        if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2929                WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2930        else
2931                WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2932}
2933
2934/*
2935 * Check and if necessary update the leaf rcu_node structure's
2936 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2937 * number of queued RCU callbacks.  No locks need be held, but the
2938 * caller must have disabled interrupts.
2939 *
2940 * Note that this function ignores the possibility that there are a lot
2941 * of callbacks all of which have already seen the end of their respective
2942 * grace periods.  This omission is due to the need for no-CBs CPUs to
2943 * be holding ->nocb_lock to do this check, which is too heavy for a
2944 * common-case operation.
2945 */
2946static void check_cb_ovld(struct rcu_data *rdp)
2947{
2948        struct rcu_node *const rnp = rdp->mynode;
2949
2950        if (qovld_calc <= 0 ||
2951            ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2952             !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2953                return; // Early boot wildcard value or already set correctly.
2954        raw_spin_lock_rcu_node(rnp);
2955        check_cb_ovld_locked(rdp, rnp);
2956        raw_spin_unlock_rcu_node(rnp);
2957}
2958
2959/* Helper function for call_rcu() and friends.  */
2960static void
2961__call_rcu(struct rcu_head *head, rcu_callback_t func)
2962{
2963        static atomic_t doublefrees;
2964        unsigned long flags;
2965        struct rcu_data *rdp;
2966        bool was_alldone;
2967
2968        /* Misaligned rcu_head! */
2969        WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2970
2971        if (debug_rcu_head_queue(head)) {
2972                /*
2973                 * Probable double call_rcu(), so leak the callback.
2974                 * Use rcu:rcu_callback trace event to find the previous
2975                 * time callback was passed to __call_rcu().
2976                 */
2977                if (atomic_inc_return(&doublefrees) < 4) {
2978                        pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2979                        mem_dump_obj(head);
2980                }
2981                WRITE_ONCE(head->func, rcu_leak_callback);
2982                return;
2983        }
2984        head->func = func;
2985        head->next = NULL;
2986        local_irq_save(flags);
2987        kasan_record_aux_stack(head);
2988        rdp = this_cpu_ptr(&rcu_data);
2989
2990        /* Add the callback to our list. */
2991        if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2992                // This can trigger due to call_rcu() from offline CPU:
2993                WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2994                WARN_ON_ONCE(!rcu_is_watching());
2995                // Very early boot, before rcu_init().  Initialize if needed
2996                // and then drop through to queue the callback.
2997                if (rcu_segcblist_empty(&rdp->cblist))
2998                        rcu_segcblist_init(&rdp->cblist);
2999        }
3000
3001        check_cb_ovld(rdp);
3002        if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
3003                return; // Enqueued onto ->nocb_bypass, so just leave.
3004        // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
3005        rcu_segcblist_enqueue(&rdp->cblist, head);
3006        if (__is_kvfree_rcu_offset((unsigned long)func))
3007                trace_rcu_kvfree_callback(rcu_state.name, head,
3008                                         (unsigned long)func,
3009                                         rcu_segcblist_n_cbs(&rdp->cblist));
3010        else
3011                trace_rcu_callback(rcu_state.name, head,
3012                                   rcu_segcblist_n_cbs(&rdp->cblist));
3013
3014        trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
3015
3016        /* Go handle any RCU core processing required. */
3017        if (unlikely(rcu_rdp_is_offloaded(rdp))) {
3018                __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3019        } else {
3020                __call_rcu_core(rdp, head, flags);
3021                local_irq_restore(flags);
3022        }
3023}
3024
3025/**
3026 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3027 * @head: structure to be used for queueing the RCU updates.
3028 * @func: actual callback function to be invoked after the grace period
3029 *
3030 * The callback function will be invoked some time after a full grace
3031 * period elapses, in other words after all pre-existing RCU read-side
3032 * critical sections have completed.  However, the callback function
3033 * might well execute concurrently with RCU read-side critical sections
3034 * that started after call_rcu() was invoked.
3035 *
3036 * RCU read-side critical sections are delimited by rcu_read_lock()
3037 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3038 * v5.0 and later, regions of code across which interrupts, preemption,
3039 * or softirqs have been disabled also serve as RCU read-side critical
3040 * sections.  This includes hardware interrupt handlers, softirq handlers,
3041 * and NMI handlers.
3042 *
3043 * Note that all CPUs must agree that the grace period extended beyond
3044 * all pre-existing RCU read-side critical section.  On systems with more
3045 * than one CPU, this means that when "func()" is invoked, each CPU is
3046 * guaranteed to have executed a full memory barrier since the end of its
3047 * last RCU read-side critical section whose beginning preceded the call
3048 * to call_rcu().  It also means that each CPU executing an RCU read-side
3049 * critical section that continues beyond the start of "func()" must have
3050 * executed a memory barrier after the call_rcu() but before the beginning
3051 * of that RCU read-side critical section.  Note that these guarantees
3052 * include CPUs that are offline, idle, or executing in user mode, as
3053 * well as CPUs that are executing in the kernel.
3054 *
3055 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3056 * resulting RCU callback function "func()", then both CPU A and CPU B are
3057 * guaranteed to execute a full memory barrier during the time interval
3058 * between the call to call_rcu() and the invocation of "func()" -- even
3059 * if CPU A and CPU B are the same CPU (but again only if the system has
3060 * more than one CPU).
3061 *
3062 * Implementation of these memory-ordering guarantees is described here:
3063 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3064 */
3065void call_rcu(struct rcu_head *head, rcu_callback_t func)
3066{
3067        __call_rcu(head, func);
3068}
3069EXPORT_SYMBOL_GPL(call_rcu);
3070
3071
3072/* Maximum number of jiffies to wait before draining a batch. */
3073#define KFREE_DRAIN_JIFFIES (HZ / 50)
3074#define KFREE_N_BATCHES 2
3075#define FREE_N_CHANNELS 2
3076
3077/**
3078 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3079 * @nr_records: Number of active pointers in the array
3080 * @next: Next bulk object in the block chain
3081 * @records: Array of the kvfree_rcu() pointers
3082 */
3083struct kvfree_rcu_bulk_data {
3084        unsigned long nr_records;
3085        struct kvfree_rcu_bulk_data *next;
3086        void *records[];
3087};
3088
3089/*
3090 * This macro defines how many entries the "records" array
3091 * will contain. It is based on the fact that the size of
3092 * kvfree_rcu_bulk_data structure becomes exactly one page.
3093 */
3094#define KVFREE_BULK_MAX_ENTR \
3095        ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3096
3097/**
3098 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3099 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3100 * @head_free: List of kfree_rcu() objects waiting for a grace period
3101 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3102 * @krcp: Pointer to @kfree_rcu_cpu structure
3103 */
3104
3105struct kfree_rcu_cpu_work {
3106        struct rcu_work rcu_work;
3107        struct rcu_head *head_free;
3108        struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3109        struct kfree_rcu_cpu *krcp;
3110};
3111
3112/**
3113 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3114 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3115 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3116 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3117 * @lock: Synchronize access to this structure
3118 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3119 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3120 * @initialized: The @rcu_work fields have been initialized
3121 * @count: Number of objects for which GP not started
3122 * @bkvcache:
3123 *      A simple cache list that contains objects for reuse purpose.
3124 *      In order to save some per-cpu space the list is singular.
3125 *      Even though it is lockless an access has to be protected by the
3126 *      per-cpu lock.
3127 * @page_cache_work: A work to refill the cache when it is empty
3128 * @backoff_page_cache_fill: Delay cache refills
3129 * @work_in_progress: Indicates that page_cache_work is running
3130 * @hrtimer: A hrtimer for scheduling a page_cache_work
3131 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3132 *
3133 * This is a per-CPU structure.  The reason that it is not included in
3134 * the rcu_data structure is to permit this code to be extracted from
3135 * the RCU files.  Such extraction could allow further optimization of
3136 * the interactions with the slab allocators.
3137 */
3138struct kfree_rcu_cpu {
3139        struct rcu_head *head;
3140        struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3141        struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3142        raw_spinlock_t lock;
3143        struct delayed_work monitor_work;
3144        bool monitor_todo;
3145        bool initialized;
3146        int count;
3147
3148        struct delayed_work page_cache_work;
3149        atomic_t backoff_page_cache_fill;
3150        atomic_t work_in_progress;
3151        struct hrtimer hrtimer;
3152
3153        struct llist_head bkvcache;
3154        int nr_bkv_objs;
3155};
3156
3157static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3158        .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3159};
3160
3161static __always_inline void
3162debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3163{
3164#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3165        int i;
3166
3167        for (i = 0; i < bhead->nr_records; i++)
3168                debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3169#endif
3170}
3171
3172static inline struct kfree_rcu_cpu *
3173krc_this_cpu_lock(unsigned long *flags)
3174{
3175        struct kfree_rcu_cpu *krcp;
3176
3177        local_irq_save(*flags); // For safely calling this_cpu_ptr().
3178        krcp = this_cpu_ptr(&krc);
3179        raw_spin_lock(&krcp->lock);
3180
3181        return krcp;
3182}
3183
3184static inline void
3185krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3186{
3187        raw_spin_unlock_irqrestore(&krcp->lock, flags);
3188}
3189
3190static inline struct kvfree_rcu_bulk_data *
3191get_cached_bnode(struct kfree_rcu_cpu *krcp)
3192{
3193        if (!krcp->nr_bkv_objs)
3194                return NULL;
3195
3196        WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3197        return (struct kvfree_rcu_bulk_data *)
3198                llist_del_first(&krcp->bkvcache);
3199}
3200
3201static inline bool
3202put_cached_bnode(struct kfree_rcu_cpu *krcp,
3203        struct kvfree_rcu_bulk_data *bnode)
3204{
3205        // Check the limit.
3206        if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3207                return false;
3208
3209        llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3210        WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3211        return true;
3212}
3213
3214static int
3215drain_page_cache(struct kfree_rcu_cpu *krcp)
3216{
3217        unsigned long flags;
3218        struct llist_node *page_list, *pos, *n;
3219        int freed = 0;
3220
3221        raw_spin_lock_irqsave(&krcp->lock, flags);
3222        page_list = llist_del_all(&krcp->bkvcache);
3223        WRITE_ONCE(krcp->nr_bkv_objs, 0);
3224        raw_spin_unlock_irqrestore(&krcp->lock, flags);
3225
3226        llist_for_each_safe(pos, n, page_list) {
3227                free_page((unsigned long)pos);
3228                freed++;
3229        }
3230
3231        return freed;
3232}
3233
3234/*
3235 * This function is invoked in workqueue context after a grace period.
3236 * It frees all the objects queued on ->bkvhead_free or ->head_free.
3237 */
3238static void kfree_rcu_work(struct work_struct *work)
3239{
3240        unsigned long flags;
3241        struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3242        struct rcu_head *head, *next;
3243        struct kfree_rcu_cpu *krcp;
3244        struct kfree_rcu_cpu_work *krwp;
3245        int i, j;
3246
3247        krwp = container_of(to_rcu_work(work),
3248                            struct kfree_rcu_cpu_work, rcu_work);
3249        krcp = krwp->krcp;
3250
3251        raw_spin_lock_irqsave(&krcp->lock, flags);
3252        // Channels 1 and 2.
3253        for (i = 0; i < FREE_N_CHANNELS; i++) {
3254                bkvhead[i] = krwp->bkvhead_free[i];
3255                krwp->bkvhead_free[i] = NULL;
3256        }
3257
3258        // Channel 3.
3259        head = krwp->head_free;
3260        krwp->head_free = NULL;
3261        raw_spin_unlock_irqrestore(&krcp->lock, flags);
3262
3263        // Handle the first two channels.
3264        for (i = 0; i < FREE_N_CHANNELS; i++) {
3265                for (; bkvhead[i]; bkvhead[i] = bnext) {
3266                        bnext = bkvhead[i]->next;
3267                        debug_rcu_bhead_unqueue(bkvhead[i]);
3268
3269                        rcu_lock_acquire(&rcu_callback_map);
3270                        if (i == 0) { // kmalloc() / kfree().
3271                                trace_rcu_invoke_kfree_bulk_callback(
3272                                        rcu_state.name, bkvhead[i]->nr_records,
3273                                        bkvhead[i]->records);
3274
3275                                kfree_bulk(bkvhead[i]->nr_records,
3276                                        bkvhead[i]->records);
3277                        } else { // vmalloc() / vfree().
3278                                for (j = 0; j < bkvhead[i]->nr_records; j++) {
3279                                        trace_rcu_invoke_kvfree_callback(
3280                                                rcu_state.name,
3281                                                bkvhead[i]->records[j], 0);
3282
3283                                        vfree(bkvhead[i]->records[j]);
3284                                }
3285                        }
3286                        rcu_lock_release(&rcu_callback_map);
3287
3288                        raw_spin_lock_irqsave(&krcp->lock, flags);
3289                        if (put_cached_bnode(krcp, bkvhead[i]))
3290                                bkvhead[i] = NULL;
3291                        raw_spin_unlock_irqrestore(&krcp->lock, flags);
3292
3293                        if (bkvhead[i])
3294                                free_page((unsigned long) bkvhead[i]);
3295
3296                        cond_resched_tasks_rcu_qs();
3297                }
3298        }
3299
3300        /*
3301         * This is used when the "bulk" path can not be used for the
3302         * double-argument of kvfree_rcu().  This happens when the
3303         * page-cache is empty, which means that objects are instead
3304         * queued on a linked list through their rcu_head structures.
3305         * This list is named "Channel 3".
3306         */
3307        for (; head; head = next) {
3308                unsigned long offset = (unsigned long)head->func;
3309                void *ptr = (void *)head - offset;
3310
3311                next = head->next;
3312                debug_rcu_head_unqueue((struct rcu_head *)ptr);
3313                rcu_lock_acquire(&rcu_callback_map);
3314                trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3315
3316                if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3317                        kvfree(ptr);
3318
3319                rcu_lock_release(&rcu_callback_map);
3320                cond_resched_tasks_rcu_qs();
3321        }
3322}
3323
3324/*
3325 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3326 */
3327static void kfree_rcu_monitor(struct work_struct *work)
3328{
3329        struct kfree_rcu_cpu *krcp = container_of(work,
3330                struct kfree_rcu_cpu, monitor_work.work);
3331        unsigned long flags;
3332        int i, j;
3333
3334        raw_spin_lock_irqsave(&krcp->lock, flags);
3335
3336        // Attempt to start a new batch.
3337        for (i = 0; i < KFREE_N_BATCHES; i++) {
3338                struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3339
3340                // Try to detach bkvhead or head and attach it over any
3341                // available corresponding free channel. It can be that
3342                // a previous RCU batch is in progress, it means that
3343                // immediately to queue another one is not possible so
3344                // in that case the monitor work is rearmed.
3345                if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3346                        (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3347                                (krcp->head && !krwp->head_free)) {
3348                        // Channel 1 corresponds to the SLAB-pointer bulk path.
3349                        // Channel 2 corresponds to vmalloc-pointer bulk path.
3350                        for (j = 0; j < FREE_N_CHANNELS; j++) {
3351                                if (!krwp->bkvhead_free[j]) {
3352                                        krwp->bkvhead_free[j] = krcp->bkvhead[j];
3353                                        krcp->bkvhead[j] = NULL;
3354                                }
3355                        }
3356
3357                        // Channel 3 corresponds to both SLAB and vmalloc
3358                        // objects queued on the linked list.
3359                        if (!krwp->head_free) {
3360                                krwp->head_free = krcp->head;
3361                                krcp->head = NULL;
3362                        }
3363
3364                        WRITE_ONCE(krcp->count, 0);
3365
3366                        // One work is per one batch, so there are three
3367                        // "free channels", the batch can handle. It can
3368                        // be that the work is in the pending state when
3369                        // channels have been detached following by each
3370                        // other.
3371                        queue_rcu_work(system_wq, &krwp->rcu_work);
3372                }
3373        }
3374
3375        // If there is nothing to detach, it means that our job is
3376        // successfully done here. In case of having at least one
3377        // of the channels that is still busy we should rearm the
3378        // work to repeat an attempt. Because previous batches are
3379        // still in progress.
3380        if (!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head)
3381                krcp->monitor_todo = false;
3382        else
3383                schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3384
3385        raw_spin_unlock_irqrestore(&krcp->lock, flags);
3386}
3387
3388static enum hrtimer_restart
3389schedule_page_work_fn(struct hrtimer *t)
3390{
3391        struct kfree_rcu_cpu *krcp =
3392                container_of(t, struct kfree_rcu_cpu, hrtimer);
3393
3394        queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3395        return HRTIMER_NORESTART;
3396}
3397
3398static void fill_page_cache_func(struct work_struct *work)
3399{
3400        struct kvfree_rcu_bulk_data *bnode;
3401        struct kfree_rcu_cpu *krcp =
3402                container_of(work, struct kfree_rcu_cpu,
3403                        page_cache_work.work);
3404        unsigned long flags;
3405        int nr_pages;
3406        bool pushed;
3407        int i;
3408
3409        nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3410                1 : rcu_min_cached_objs;
3411
3412        for (i = 0; i < nr_pages; i++) {
3413                bnode = (struct kvfree_rcu_bulk_data *)
3414                        __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3415
3416                if (bnode) {
3417                        raw_spin_lock_irqsave(&krcp->lock, flags);
3418                        pushed = put_cached_bnode(krcp, bnode);
3419                        raw_spin_unlock_irqrestore(&krcp->lock, flags);
3420
3421                        if (!pushed) {
3422                                free_page((unsigned long) bnode);
3423                                break;
3424                        }
3425                }
3426        }
3427
3428        atomic_set(&krcp->work_in_progress, 0);
3429        atomic_set(&krcp->backoff_page_cache_fill, 0);
3430}
3431
3432static void
3433run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3434{
3435        if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3436                        !atomic_xchg(&krcp->work_in_progress, 1)) {
3437                if (atomic_read(&krcp->backoff_page_cache_fill)) {
3438                        queue_delayed_work(system_wq,
3439                                &krcp->page_cache_work,
3440                                        msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3441                } else {
3442                        hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3443                        krcp->hrtimer.function = schedule_page_work_fn;
3444                        hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3445                }
3446        }
3447}
3448
3449// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3450// state specified by flags.  If can_alloc is true, the caller must
3451// be schedulable and not be holding any locks or mutexes that might be
3452// acquired by the memory allocator or anything that it might invoke.
3453// Returns true if ptr was successfully recorded, else the caller must
3454// use a fallback.
3455static inline bool
3456add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3457        unsigned long *flags, void *ptr, bool can_alloc)
3458{
3459        struct kvfree_rcu_bulk_data *bnode;
3460        int idx;
3461
3462        *krcp = krc_this_cpu_lock(flags);
3463        if (unlikely(!(*krcp)->initialized))
3464                return false;
3465
3466        idx = !!is_vmalloc_addr(ptr);
3467
3468        /* Check if a new block is required. */
3469        if (!(*krcp)->bkvhead[idx] ||
3470                        (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3471                bnode = get_cached_bnode(*krcp);
3472                if (!bnode && can_alloc) {
3473                        krc_this_cpu_unlock(*krcp, *flags);
3474
3475                        // __GFP_NORETRY - allows a light-weight direct reclaim
3476                        // what is OK from minimizing of fallback hitting point of
3477                        // view. Apart of that it forbids any OOM invoking what is
3478                        // also beneficial since we are about to release memory soon.
3479                        //
3480                        // __GFP_NOMEMALLOC - prevents from consuming of all the
3481                        // memory reserves. Please note we have a fallback path.
3482                        //
3483                        // __GFP_NOWARN - it is supposed that an allocation can
3484                        // be failed under low memory or high memory pressure
3485                        // scenarios.
3486                        bnode = (struct kvfree_rcu_bulk_data *)
3487                                __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3488                        *krcp = krc_this_cpu_lock(flags);
3489                }
3490
3491                if (!bnode)
3492                        return false;
3493
3494                /* Initialize the new block. */
3495                bnode->nr_records = 0;
3496                bnode->next = (*krcp)->bkvhead[idx];
3497
3498                /* Attach it to the head. */
3499                (*krcp)->bkvhead[idx] = bnode;
3500        }
3501
3502        /* Finally insert. */
3503        (*krcp)->bkvhead[idx]->records
3504                [(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3505
3506        return true;
3507}
3508
3509/*
3510 * Queue a request for lazy invocation of the appropriate free routine
3511 * after a grace period.  Please note that three paths are maintained,
3512 * two for the common case using arrays of pointers and a third one that
3513 * is used only when the main paths cannot be used, for example, due to
3514 * memory pressure.
3515 *
3516 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3517 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3518 * be free'd in workqueue context. This allows us to: batch requests together to
3519 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3520 */
3521void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3522{
3523        unsigned long flags;
3524        struct kfree_rcu_cpu *krcp;
3525        bool success;
3526        void *ptr;
3527
3528        if (head) {
3529                ptr = (void *) head - (unsigned long) func;
3530        } else {
3531                /*
3532                 * Please note there is a limitation for the head-less
3533                 * variant, that is why there is a clear rule for such
3534                 * objects: it can be used from might_sleep() context
3535                 * only. For other places please embed an rcu_head to
3536                 * your data.
3537                 */
3538                might_sleep();
3539                ptr = (unsigned long *) func;
3540        }
3541
3542        // Queue the object but don't yet schedule the batch.
3543        if (debug_rcu_head_queue(ptr)) {
3544                // Probable double kfree_rcu(), just leak.
3545                WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3546                          __func__, head);
3547
3548                // Mark as success and leave.
3549                return;
3550        }
3551
3552        kasan_record_aux_stack(ptr);
3553        success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3554        if (!success) {
3555                run_page_cache_worker(krcp);
3556
3557                if (head == NULL)
3558                        // Inline if kvfree_rcu(one_arg) call.
3559                        goto unlock_return;
3560
3561                head->func = func;
3562                head->next = krcp->head;
3563                krcp->head = head;
3564                success = true;
3565        }
3566
3567        WRITE_ONCE(krcp->count, krcp->count + 1);
3568
3569        // Set timer to drain after KFREE_DRAIN_JIFFIES.
3570        if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3571            !krcp->monitor_todo) {
3572                krcp->monitor_todo = true;
3573                schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3574        }
3575
3576unlock_return:
3577        krc_this_cpu_unlock(krcp, flags);
3578
3579        /*
3580         * Inline kvfree() after synchronize_rcu(). We can do
3581         * it from might_sleep() context only, so the current
3582         * CPU can pass the QS state.
3583         */
3584        if (!success) {
3585                debug_rcu_head_unqueue((struct rcu_head *) ptr);
3586                synchronize_rcu();
3587                kvfree(ptr);
3588        }
3589}
3590EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3591
3592static unsigned long
3593kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3594{
3595        int cpu;
3596        unsigned long count = 0;
3597
3598        /* Snapshot count of all CPUs */
3599        for_each_possible_cpu(cpu) {
3600                struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3601
3602                count += READ_ONCE(krcp->count);
3603                count += READ_ONCE(krcp->nr_bkv_objs);
3604                atomic_set(&krcp->backoff_page_cache_fill, 1);
3605        }
3606
3607        return count;
3608}
3609
3610static unsigned long
3611kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3612{
3613        int cpu, freed = 0;
3614
3615        for_each_possible_cpu(cpu) {
3616                int count;
3617                struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3618
3619                count = krcp->count;
3620                count += drain_page_cache(krcp);
3621                kfree_rcu_monitor(&krcp->monitor_work.work);
3622
3623                sc->nr_to_scan -= count;
3624                freed += count;
3625
3626                if (sc->nr_to_scan <= 0)
3627                        break;
3628        }
3629
3630        return freed == 0 ? SHRINK_STOP : freed;
3631}
3632
3633static struct shrinker kfree_rcu_shrinker = {
3634        .count_objects = kfree_rcu_shrink_count,
3635        .scan_objects = kfree_rcu_shrink_scan,
3636        .batch = 0,
3637        .seeks = DEFAULT_SEEKS,
3638};
3639
3640void __init kfree_rcu_scheduler_running(void)
3641{
3642        int cpu;
3643        unsigned long flags;
3644
3645        for_each_possible_cpu(cpu) {
3646                struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3647
3648                raw_spin_lock_irqsave(&krcp->lock, flags);
3649                if ((!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) ||
3650                                krcp->monitor_todo) {
3651                        raw_spin_unlock_irqrestore(&krcp->lock, flags);
3652                        continue;
3653                }
3654                krcp->monitor_todo = true;
3655                schedule_delayed_work_on(cpu, &krcp->monitor_work,
3656                                         KFREE_DRAIN_JIFFIES);
3657                raw_spin_unlock_irqrestore(&krcp->lock, flags);
3658        }
3659}
3660
3661/*
3662 * During early boot, any blocking grace-period wait automatically
3663 * implies a grace period.  Later on, this is never the case for PREEMPTION.
3664 *
3665 * However, because a context switch is a grace period for !PREEMPTION, any
3666 * blocking grace-period wait automatically implies a grace period if
3667 * there is only one CPU online at any point time during execution of
3668 * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3669 * occasionally incorrectly indicate that there are multiple CPUs online
3670 * when there was in fact only one the whole time, as this just adds some
3671 * overhead: RCU still operates correctly.
3672 */
3673static int rcu_blocking_is_gp(void)
3674{
3675        int ret;
3676
3677        if (IS_ENABLED(CONFIG_PREEMPTION))
3678                return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3679        might_sleep();  /* Check for RCU read-side critical section. */
3680        preempt_disable();
3681        /*
3682         * If the rcu_state.n_online_cpus counter is equal to one,
3683         * there is only one CPU, and that CPU sees all prior accesses
3684         * made by any CPU that was online at the time of its access.
3685         * Furthermore, if this counter is equal to one, its value cannot
3686         * change until after the preempt_enable() below.
3687         *
3688         * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3689         * all later CPUs (both this one and any that come online later
3690         * on) are guaranteed to see all accesses prior to this point
3691         * in the code, without the need for additional memory barriers.
3692         * Those memory barriers are provided by CPU-hotplug code.
3693         */
3694        ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3695        preempt_enable();
3696        return ret;
3697}
3698
3699/**
3700 * synchronize_rcu - wait until a grace period has elapsed.
3701 *
3702 * Control will return to the caller some time after a full grace
3703 * period has elapsed, in other words after all currently executing RCU
3704 * read-side critical sections have completed.  Note, however, that
3705 * upon return from synchronize_rcu(), the caller might well be executing
3706 * concurrently with new RCU read-side critical sections that began while
3707 * synchronize_rcu() was waiting.
3708 *
3709 * RCU read-side critical sections are delimited by rcu_read_lock()
3710 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3711 * v5.0 and later, regions of code across which interrupts, preemption,
3712 * or softirqs have been disabled also serve as RCU read-side critical
3713 * sections.  This includes hardware interrupt handlers, softirq handlers,
3714 * and NMI handlers.
3715 *
3716 * Note that this guarantee implies further memory-ordering guarantees.
3717 * On systems with more than one CPU, when synchronize_rcu() returns,
3718 * each CPU is guaranteed to have executed a full memory barrier since
3719 * the end of its last RCU read-side critical section whose beginning
3720 * preceded the call to synchronize_rcu().  In addition, each CPU having
3721 * an RCU read-side critical section that extends beyond the return from
3722 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3723 * after the beginning of synchronize_rcu() and before the beginning of
3724 * that RCU read-side critical section.  Note that these guarantees include
3725 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3726 * that are executing in the kernel.
3727 *
3728 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3729 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3730 * to have executed a full memory barrier during the execution of
3731 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3732 * again only if the system has more than one CPU).
3733 *
3734 * Implementation of these memory-ordering guarantees is described here:
3735 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3736 */
3737void synchronize_rcu(void)
3738{
3739        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3740                         lock_is_held(&rcu_lock_map) ||
3741                         lock_is_held(&rcu_sched_lock_map),
3742                         "Illegal synchronize_rcu() in RCU read-side critical section");
3743        if (rcu_blocking_is_gp())
3744                return;  // Context allows vacuous grace periods.
3745        if (rcu_gp_is_expedited())
3746                synchronize_rcu_expedited();
3747        else
3748                wait_rcu_gp(call_rcu);
3749}
3750EXPORT_SYMBOL_GPL(synchronize_rcu);
3751
3752/**
3753 * get_state_synchronize_rcu - Snapshot current RCU state
3754 *
3755 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3756 * or poll_state_synchronize_rcu() to determine whether or not a full
3757 * grace period has elapsed in the meantime.
3758 */
3759unsigned long get_state_synchronize_rcu(void)
3760{
3761        /*
3762         * Any prior manipulation of RCU-protected data must happen
3763         * before the load from ->gp_seq.
3764         */
3765        smp_mb();  /* ^^^ */
3766        return rcu_seq_snap(&rcu_state.gp_seq);
3767}
3768EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3769
3770/**
3771 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3772 *
3773 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3774 * or poll_state_synchronize_rcu() to determine whether or not a full
3775 * grace period has elapsed in the meantime.  If the needed grace period
3776 * is not already slated to start, notifies RCU core of the need for that
3777 * grace period.
3778 *
3779 * Interrupts must be enabled for the case where it is necessary to awaken
3780 * the grace-period kthread.
3781 */
3782unsigned long start_poll_synchronize_rcu(void)
3783{
3784        unsigned long flags;
3785        unsigned long gp_seq = get_state_synchronize_rcu();
3786        bool needwake;
3787        struct rcu_data *rdp;
3788        struct rcu_node *rnp;
3789
3790        lockdep_assert_irqs_enabled();
3791        local_irq_save(flags);
3792        rdp = this_cpu_ptr(&rcu_data);
3793        rnp = rdp->mynode;
3794        raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3795        needwake = rcu_start_this_gp(rnp, rdp, gp_seq);
3796        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3797        if (needwake)
3798                rcu_gp_kthread_wake();
3799        return gp_seq;
3800}
3801EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3802
3803/**
3804 * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period
3805 *
3806 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3807 *
3808 * If a full RCU grace period has elapsed since the earlier call from
3809 * which oldstate was obtained, return @true, otherwise return @false.
3810 * If @false is returned, it is the caller's responsibility to invoke this
3811 * function later on until it does return @true.  Alternatively, the caller
3812 * can explicitly wait for a grace period, for example, by passing @oldstate
3813 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3814 *
3815 * Yes, this function does not take counter wrap into account.
3816 * But counter wrap is harmless.  If the counter wraps, we have waited for
3817 * more than 2 billion grace periods (and way more on a 64-bit system!).
3818 * Those needing to keep oldstate values for very long time periods
3819 * (many hours even on 32-bit systems) should check them occasionally
3820 * and either refresh them or set a flag indicating that the grace period
3821 * has completed.
3822 *
3823 * This function provides the same memory-ordering guarantees that
3824 * would be provided by a synchronize_rcu() that was invoked at the call
3825 * to the function that provided @oldstate, and that returned at the end
3826 * of this function.
3827 */
3828bool poll_state_synchronize_rcu(unsigned long oldstate)
3829{
3830        if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) {
3831                smp_mb(); /* Ensure GP ends before subsequent accesses. */
3832                return true;
3833        }
3834        return false;
3835}
3836EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3837
3838/**
3839 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3840 *
3841 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3842 *
3843 * If a full RCU grace period has elapsed since the earlier call to
3844 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3845 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3846 *
3847 * Yes, this function does not take counter wrap into account.  But
3848 * counter wrap is harmless.  If the counter wraps, we have waited for
3849 * more than 2 billion grace periods (and way more on a 64-bit system!),
3850 * so waiting for one additional grace period should be just fine.
3851 *
3852 * This function provides the same memory-ordering guarantees that
3853 * would be provided by a synchronize_rcu() that was invoked at the call
3854 * to the function that provided @oldstate, and that returned at the end
3855 * of this function.
3856 */
3857void cond_synchronize_rcu(unsigned long oldstate)
3858{
3859        if (!poll_state_synchronize_rcu(oldstate))
3860                synchronize_rcu();
3861}
3862EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3863
3864/*
3865 * Check to see if there is any immediate RCU-related work to be done by
3866 * the current CPU, returning 1 if so and zero otherwise.  The checks are
3867 * in order of increasing expense: checks that can be carried out against
3868 * CPU-local state are performed first.  However, we must check for CPU
3869 * stalls first, else we might not get a chance.
3870 */
3871static int rcu_pending(int user)
3872{
3873        bool gp_in_progress;
3874        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3875        struct rcu_node *rnp = rdp->mynode;
3876
3877        lockdep_assert_irqs_disabled();
3878
3879        /* Check for CPU stalls, if enabled. */
3880        check_cpu_stall(rdp);
3881
3882        /* Does this CPU need a deferred NOCB wakeup? */
3883        if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3884                return 1;
3885
3886        /* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3887        if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3888                return 0;
3889
3890        /* Is the RCU core waiting for a quiescent state from this CPU? */
3891        gp_in_progress = rcu_gp_in_progress();
3892        if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3893                return 1;
3894
3895        /* Does this CPU have callbacks ready to invoke? */
3896        if (!rcu_rdp_is_offloaded(rdp) &&
3897            rcu_segcblist_ready_cbs(&rdp->cblist))
3898                return 1;
3899
3900        /* Has RCU gone idle with this CPU needing another grace period? */
3901        if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3902            !rcu_rdp_is_offloaded(rdp) &&
3903            !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3904                return 1;
3905
3906        /* Have RCU grace period completed or started?  */
3907        if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3908            unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3909                return 1;
3910
3911        /* nothing to do */
3912        return 0;
3913}
3914
3915/*
3916 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3917 * the compiler is expected to optimize this away.
3918 */
3919static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3920{
3921        trace_rcu_barrier(rcu_state.name, s, cpu,
3922                          atomic_read(&rcu_state.barrier_cpu_count), done);
3923}
3924
3925/*
3926 * RCU callback function for rcu_barrier().  If we are last, wake
3927 * up the task executing rcu_barrier().
3928 *
3929 * Note that the value of rcu_state.barrier_sequence must be captured
3930 * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3931 * other CPUs might count the value down to zero before this CPU gets
3932 * around to invoking rcu_barrier_trace(), which might result in bogus
3933 * data from the next instance of rcu_barrier().
3934 */
3935static void rcu_barrier_callback(struct rcu_head *rhp)
3936{
3937        unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3938
3939        if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3940                rcu_barrier_trace(TPS("LastCB"), -1, s);
3941                complete(&rcu_state.barrier_completion);
3942        } else {
3943                rcu_barrier_trace(TPS("CB"), -1, s);
3944        }
3945}
3946
3947/*
3948 * Called with preemption disabled, and from cross-cpu IRQ context.
3949 */
3950static void rcu_barrier_func(void *cpu_in)
3951{
3952        uintptr_t cpu = (uintptr_t)cpu_in;
3953        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3954
3955        rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3956        rdp->barrier_head.func = rcu_barrier_callback;
3957        debug_rcu_head_queue(&rdp->barrier_head);
3958        rcu_nocb_lock(rdp);
3959        WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3960        if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3961                atomic_inc(&rcu_state.barrier_cpu_count);
3962        } else {
3963                debug_rcu_head_unqueue(&rdp->barrier_head);
3964                rcu_barrier_trace(TPS("IRQNQ"), -1,
3965                                  rcu_state.barrier_sequence);
3966        }
3967        rcu_nocb_unlock(rdp);
3968}
3969
3970/**
3971 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3972 *
3973 * Note that this primitive does not necessarily wait for an RCU grace period
3974 * to complete.  For example, if there are no RCU callbacks queued anywhere
3975 * in the system, then rcu_barrier() is within its rights to return
3976 * immediately, without waiting for anything, much less an RCU grace period.
3977 */
3978void rcu_barrier(void)
3979{
3980        uintptr_t cpu;
3981        struct rcu_data *rdp;
3982        unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3983
3984        rcu_barrier_trace(TPS("Begin"), -1, s);
3985
3986        /* Take mutex to serialize concurrent rcu_barrier() requests. */
3987        mutex_lock(&rcu_state.barrier_mutex);
3988
3989        /* Did someone else do our work for us? */
3990        if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3991                rcu_barrier_trace(TPS("EarlyExit"), -1,
3992                                  rcu_state.barrier_sequence);
3993                smp_mb(); /* caller's subsequent code after above check. */
3994                mutex_unlock(&rcu_state.barrier_mutex);
3995                return;
3996        }
3997
3998        /* Mark the start of the barrier operation. */
3999        rcu_seq_start(&rcu_state.barrier_sequence);
4000        rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4001
4002        /*
4003         * Initialize the count to two rather than to zero in order
4004         * to avoid a too-soon return to zero in case of an immediate
4005         * invocation of the just-enqueued callback (or preemption of
4006         * this task).  Exclude CPU-hotplug operations to ensure that no
4007         * offline non-offloaded CPU has callbacks queued.
4008         */
4009        init_completion(&rcu_state.barrier_completion);
4010        atomic_set(&rcu_state.barrier_cpu_count, 2);
4011        cpus_read_lock();
4012
4013        /*
4014         * Force each CPU with callbacks to register a new callback.
4015         * When that callback is invoked, we will know that all of the
4016         * corresponding CPU's preceding callbacks have been invoked.
4017         */
4018        for_each_possible_cpu(cpu) {
4019                rdp = per_cpu_ptr(&rcu_data, cpu);
4020                if (cpu_is_offline(cpu) &&
4021                    !rcu_rdp_is_offloaded(rdp))
4022                        continue;
4023                if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
4024                        rcu_barrier_trace(TPS("OnlineQ"), cpu,
4025                                          rcu_state.barrier_sequence);
4026                        smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
4027                } else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
4028                           cpu_is_offline(cpu)) {
4029                        rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
4030                                          rcu_state.barrier_sequence);
4031                        local_irq_disable();
4032                        rcu_barrier_func((void *)cpu);
4033                        local_irq_enable();
4034                } else if (cpu_is_offline(cpu)) {
4035                        rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
4036                                          rcu_state.barrier_sequence);
4037                } else {
4038                        rcu_barrier_trace(TPS("OnlineNQ"), cpu,
4039                                          rcu_state.barrier_sequence);
4040                }
4041        }
4042        cpus_read_unlock();
4043
4044        /*
4045         * Now that we have an rcu_barrier_callback() callback on each
4046         * CPU, and thus each counted, remove the initial count.
4047         */
4048        if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4049                complete(&rcu_state.barrier_completion);
4050
4051        /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4052        wait_for_completion(&rcu_state.barrier_completion);
4053
4054        /* Mark the end of the barrier operation. */
4055        rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4056        rcu_seq_end(&rcu_state.barrier_sequence);
4057
4058        /* Other rcu_barrier() invocations can now safely proceed. */
4059        mutex_unlock(&rcu_state.barrier_mutex);
4060}
4061EXPORT_SYMBOL_GPL(rcu_barrier);
4062
4063/*
4064 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4065 * first CPU in a given leaf rcu_node structure coming online.  The caller
4066 * must hold the corresponding leaf rcu_node ->lock with interrupts
4067 * disabled.
4068 */
4069static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4070{
4071        long mask;
4072        long oldmask;
4073        struct rcu_node *rnp = rnp_leaf;
4074
4075        raw_lockdep_assert_held_rcu_node(rnp_leaf);
4076        WARN_ON_ONCE(rnp->wait_blkd_tasks);
4077        for (;;) {
4078                mask = rnp->grpmask;
4079                rnp = rnp->parent;
4080                if (rnp == NULL)
4081                        return;
4082                raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4083                oldmask = rnp->qsmaskinit;
4084                rnp->qsmaskinit |= mask;
4085                raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4086                if (oldmask)
4087                        return;
4088        }
4089}
4090
4091/*
4092 * Do boot-time initialization of a CPU's per-CPU RCU data.
4093 */
4094static void __init
4095rcu_boot_init_percpu_data(int cpu)
4096{
4097        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4098
4099        /* Set up local state, ensuring consistent view of global state. */
4100        rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4101        INIT_WORK(&rdp->strict_work, strict_work_handler);
4102        WARN_ON_ONCE(rdp->dynticks_nesting != 1);
4103        WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
4104        rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4105        rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4106        rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4107        rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4108        rdp->cpu = cpu;
4109        rcu_boot_init_nocb_percpu_data(rdp);
4110}
4111
4112/*
4113 * Invoked early in the CPU-online process, when pretty much all services
4114 * are available.  The incoming CPU is not present.
4115 *
4116 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4117 * offline event can be happening at a given time.  Note also that we can
4118 * accept some slop in the rsp->gp_seq access due to the fact that this
4119 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4120 * And any offloaded callbacks are being numbered elsewhere.
4121 */
4122int rcutree_prepare_cpu(unsigned int cpu)
4123{
4124        unsigned long flags;
4125        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4126        struct rcu_node *rnp = rcu_get_root();
4127
4128        /* Set up local state, ensuring consistent view of global state. */
4129        raw_spin_lock_irqsave_rcu_node(rnp, flags);
4130        rdp->qlen_last_fqs_check = 0;
4131        rdp->n_force_qs_snap = rcu_state.n_force_qs;
4132        rdp->blimit = blimit;
4133        rdp->dynticks_nesting = 1;      /* CPU not up, no tearing. */
4134        rcu_dynticks_eqs_online();
4135        raw_spin_unlock_rcu_node(rnp);          /* irqs remain disabled. */
4136
4137        /*
4138         * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4139         * (re-)initialized.
4140         */
4141        if (!rcu_segcblist_is_enabled(&rdp->cblist))
4142                rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4143
4144        /*
4145         * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4146         * propagation up the rcu_node tree will happen at the beginning
4147         * of the next grace period.
4148         */
4149        rnp = rdp->mynode;
4150        raw_spin_lock_rcu_node(rnp);            /* irqs already disabled. */
4151        rdp->beenonline = true;  /* We have now been online. */
4152        rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4153        rdp->gp_seq_needed = rdp->gp_seq;
4154        rdp->cpu_no_qs.b.norm = true;
4155        rdp->core_needs_qs = false;
4156        rdp->rcu_iw_pending = false;
4157        rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4158        rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4159        trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4160        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4161        rcu_spawn_one_boost_kthread(rnp);
4162        rcu_spawn_cpu_nocb_kthread(cpu);
4163        WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4164
4165        return 0;
4166}
4167
4168/*
4169 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4170 */
4171static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4172{
4173        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4174
4175        rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4176}
4177
4178/*
4179 * Near the end of the CPU-online process.  Pretty much all services
4180 * enabled, and the CPU is now very much alive.
4181 */
4182int rcutree_online_cpu(unsigned int cpu)
4183{
4184        unsigned long flags;
4185        struct rcu_data *rdp;
4186        struct rcu_node *rnp;
4187
4188        rdp = per_cpu_ptr(&rcu_data, cpu);
4189        rnp = rdp->mynode;
4190        raw_spin_lock_irqsave_rcu_node(rnp, flags);
4191        rnp->ffmask |= rdp->grpmask;
4192        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4193        if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4194                return 0; /* Too early in boot for scheduler work. */
4195        sync_sched_exp_online_cleanup(cpu);
4196        rcutree_affinity_setting(cpu, -1);
4197
4198        // Stop-machine done, so allow nohz_full to disable tick.
4199        tick_dep_clear(TICK_DEP_BIT_RCU);
4200        return 0;
4201}
4202
4203/*
4204 * Near the beginning of the process.  The CPU is still very much alive
4205 * with pretty much all services enabled.
4206 */
4207int rcutree_offline_cpu(unsigned int cpu)
4208{
4209        unsigned long flags;
4210        struct rcu_data *rdp;
4211        struct rcu_node *rnp;
4212
4213        rdp = per_cpu_ptr(&rcu_data, cpu);
4214        rnp = rdp->mynode;
4215        raw_spin_lock_irqsave_rcu_node(rnp, flags);
4216        rnp->ffmask &= ~rdp->grpmask;
4217        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4218
4219        rcutree_affinity_setting(cpu, cpu);
4220
4221        // nohz_full CPUs need the tick for stop-machine to work quickly
4222        tick_dep_set(TICK_DEP_BIT_RCU);
4223        return 0;
4224}
4225
4226/*
4227 * Mark the specified CPU as being online so that subsequent grace periods
4228 * (both expedited and normal) will wait on it.  Note that this means that
4229 * incoming CPUs are not allowed to use RCU read-side critical sections
4230 * until this function is called.  Failing to observe this restriction
4231 * will result in lockdep splats.
4232 *
4233 * Note that this function is special in that it is invoked directly
4234 * from the incoming CPU rather than from the cpuhp_step mechanism.
4235 * This is because this function must be invoked at a precise location.
4236 */
4237void rcu_cpu_starting(unsigned int cpu)
4238{
4239        unsigned long flags;
4240        unsigned long mask;
4241        struct rcu_data *rdp;
4242        struct rcu_node *rnp;
4243        bool newcpu;
4244
4245        rdp = per_cpu_ptr(&rcu_data, cpu);
4246        if (rdp->cpu_started)
4247                return;
4248        rdp->cpu_started = true;
4249
4250        rnp = rdp->mynode;
4251        mask = rdp->grpmask;
4252        WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4253        WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4254        smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4255        raw_spin_lock_irqsave_rcu_node(rnp, flags);
4256        WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4257        newcpu = !(rnp->expmaskinitnext & mask);
4258        rnp->expmaskinitnext |= mask;
4259        /* Allow lockless access for expedited grace periods. */
4260        smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4261        ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4262        rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4263        rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4264        rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4265
4266        /* An incoming CPU should never be blocking a grace period. */
4267        if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4268                rcu_disable_urgency_upon_qs(rdp);
4269                /* Report QS -after- changing ->qsmaskinitnext! */
4270                rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4271        } else {
4272                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4273        }
4274        smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4275        WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4276        WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4277        smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4278}
4279
4280/*
4281 * The outgoing function has no further need of RCU, so remove it from
4282 * the rcu_node tree's ->qsmaskinitnext bit masks.
4283 *
4284 * Note that this function is special in that it is invoked directly
4285 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4286 * This is because this function must be invoked at a precise location.
4287 */
4288void rcu_report_dead(unsigned int cpu)
4289{
4290        unsigned long flags;
4291        unsigned long mask;
4292        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4293        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4294
4295        // Do any dangling deferred wakeups.
4296        do_nocb_deferred_wakeup(rdp);
4297
4298        /* QS for any half-done expedited grace period. */
4299        preempt_disable();
4300        rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4301        preempt_enable();
4302        rcu_preempt_deferred_qs(current);
4303
4304        /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4305        mask = rdp->grpmask;
4306        WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4307        WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4308        smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4309        raw_spin_lock(&rcu_state.ofl_lock);
4310        raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4311        rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4312        rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4313        if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4314                /* Report quiescent state -before- changing ->qsmaskinitnext! */
4315                rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4316                raw_spin_lock_irqsave_rcu_node(rnp, flags);
4317        }
4318        WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4319        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4320        raw_spin_unlock(&rcu_state.ofl_lock);
4321        smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4322        WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4323        WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4324
4325        rdp->cpu_started = false;
4326}
4327
4328#ifdef CONFIG_HOTPLUG_CPU
4329/*
4330 * The outgoing CPU has just passed through the dying-idle state, and we
4331 * are being invoked from the CPU that was IPIed to continue the offline
4332 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4333 */
4334void rcutree_migrate_callbacks(int cpu)
4335{
4336        unsigned long flags;
4337        struct rcu_data *my_rdp;
4338        struct rcu_node *my_rnp;
4339        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4340        bool needwake;
4341
4342        if (rcu_rdp_is_offloaded(rdp) ||
4343            rcu_segcblist_empty(&rdp->cblist))
4344                return;  /* No callbacks to migrate. */
4345
4346        local_irq_save(flags);
4347        my_rdp = this_cpu_ptr(&rcu_data);
4348        my_rnp = my_rdp->mynode;
4349        rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4350        WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4351        raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4352        /* Leverage recent GPs and set GP for new callbacks. */
4353        needwake = rcu_advance_cbs(my_rnp, rdp) ||
4354                   rcu_advance_cbs(my_rnp, my_rdp);
4355        rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4356        needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4357        rcu_segcblist_disable(&rdp->cblist);
4358        WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4359                     !rcu_segcblist_n_cbs(&my_rdp->cblist));
4360        if (rcu_rdp_is_offloaded(my_rdp)) {
4361                raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4362                __call_rcu_nocb_wake(my_rdp, true, flags);
4363        } else {
4364                rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4365                raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4366        }
4367        if (needwake)
4368                rcu_gp_kthread_wake();
4369        lockdep_assert_irqs_enabled();
4370        WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4371                  !rcu_segcblist_empty(&rdp->cblist),
4372                  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4373                  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4374                  rcu_segcblist_first_cb(&rdp->cblist));
4375}
4376#endif
4377
4378/*
4379 * On non-huge systems, use expedited RCU grace periods to make suspend
4380 * and hibernation run faster.
4381 */
4382static int rcu_pm_notify(struct notifier_block *self,
4383                         unsigned long action, void *hcpu)
4384{
4385        switch (action) {
4386        case PM_HIBERNATION_PREPARE:
4387        case PM_SUSPEND_PREPARE:
4388                rcu_expedite_gp();
4389                break;
4390        case PM_POST_HIBERNATION:
4391        case PM_POST_SUSPEND:
4392                rcu_unexpedite_gp();
4393                break;
4394        default:
4395                break;
4396        }
4397        return NOTIFY_OK;
4398}
4399
4400/*
4401 * Spawn the kthreads that handle RCU's grace periods.
4402 */
4403static int __init rcu_spawn_gp_kthread(void)
4404{
4405        unsigned long flags;
4406        int kthread_prio_in = kthread_prio;
4407        struct rcu_node *rnp;
4408        struct sched_param sp;
4409        struct task_struct *t;
4410
4411        /* Force priority into range. */
4412        if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4413            && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4414                kthread_prio = 2;
4415        else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4416                kthread_prio = 1;
4417        else if (kthread_prio < 0)
4418                kthread_prio = 0;
4419        else if (kthread_prio > 99)
4420                kthread_prio = 99;
4421
4422        if (kthread_prio != kthread_prio_in)
4423                pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4424                         kthread_prio, kthread_prio_in);
4425
4426        rcu_scheduler_fully_active = 1;
4427        t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4428        if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4429                return 0;
4430        if (kthread_prio) {
4431                sp.sched_priority = kthread_prio;
4432                sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4433        }
4434        rnp = rcu_get_root();
4435        raw_spin_lock_irqsave_rcu_node(rnp, flags);
4436        WRITE_ONCE(rcu_state.gp_activity, jiffies);
4437        WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4438        // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4439        smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4440        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4441        wake_up_process(t);
4442        rcu_spawn_nocb_kthreads();
4443        rcu_spawn_boost_kthreads();
4444        rcu_spawn_core_kthreads();
4445        return 0;
4446}
4447early_initcall(rcu_spawn_gp_kthread);
4448
4449/*
4450 * This function is invoked towards the end of the scheduler's
4451 * initialization process.  Before this is called, the idle task might
4452 * contain synchronous grace-period primitives (during which time, this idle
4453 * task is booting the system, and such primitives are no-ops).  After this
4454 * function is called, any synchronous grace-period primitives are run as
4455 * expedited, with the requesting task driving the grace period forward.
4456 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4457 * runtime RCU functionality.
4458 */
4459void rcu_scheduler_starting(void)
4460{
4461        WARN_ON(num_online_cpus() != 1);
4462        WARN_ON(nr_context_switches() > 0);
4463        rcu_test_sync_prims();
4464        rcu_scheduler_active = RCU_SCHEDULER_INIT;
4465        rcu_test_sync_prims();
4466}
4467
4468/*
4469 * Helper function for rcu_init() that initializes the rcu_state structure.
4470 */
4471static void __init rcu_init_one(void)
4472{
4473        static const char * const buf[] = RCU_NODE_NAME_INIT;
4474        static const char * const fqs[] = RCU_FQS_NAME_INIT;
4475        static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4476        static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4477
4478        int levelspread[RCU_NUM_LVLS];          /* kids/node in each level. */
4479        int cpustride = 1;
4480        int i;
4481        int j;
4482        struct rcu_node *rnp;
4483
4484        BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4485
4486        /* Silence gcc 4.8 false positive about array index out of range. */
4487        if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4488                panic("rcu_init_one: rcu_num_lvls out of range");
4489
4490        /* Initialize the level-tracking arrays. */
4491
4492        for (i = 1; i < rcu_num_lvls; i++)
4493                rcu_state.level[i] =
4494                        rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4495        rcu_init_levelspread(levelspread, num_rcu_lvl);
4496
4497        /* Initialize the elements themselves, starting from the leaves. */
4498
4499        for (i = rcu_num_lvls - 1; i >= 0; i--) {
4500                cpustride *= levelspread[i];
4501                rnp = rcu_state.level[i];
4502                for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4503                        raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4504                        lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4505                                                   &rcu_node_class[i], buf[i]);
4506                        raw_spin_lock_init(&rnp->fqslock);
4507                        lockdep_set_class_and_name(&rnp->fqslock,
4508                                                   &rcu_fqs_class[i], fqs[i]);
4509                        rnp->gp_seq = rcu_state.gp_seq;
4510                        rnp->gp_seq_needed = rcu_state.gp_seq;
4511                        rnp->completedqs = rcu_state.gp_seq;
4512                        rnp->qsmask = 0;
4513                        rnp->qsmaskinit = 0;
4514                        rnp->grplo = j * cpustride;
4515                        rnp->grphi = (j + 1) * cpustride - 1;
4516                        if (rnp->grphi >= nr_cpu_ids)
4517                                rnp->grphi = nr_cpu_ids - 1;
4518                        if (i == 0) {
4519                                rnp->grpnum = 0;
4520                                rnp->grpmask = 0;
4521                                rnp->parent = NULL;
4522                        } else {
4523                                rnp->grpnum = j % levelspread[i - 1];
4524                                rnp->grpmask = BIT(rnp->grpnum);
4525                                rnp->parent = rcu_state.level[i - 1] +
4526                                              j / levelspread[i - 1];
4527                        }
4528                        rnp->level = i;
4529                        INIT_LIST_HEAD(&rnp->blkd_tasks);
4530                        rcu_init_one_nocb(rnp);
4531                        init_waitqueue_head(&rnp->exp_wq[0]);
4532                        init_waitqueue_head(&rnp->exp_wq[1]);
4533                        init_waitqueue_head(&rnp->exp_wq[2]);
4534                        init_waitqueue_head(&rnp->exp_wq[3]);
4535                        spin_lock_init(&rnp->exp_lock);
4536                }
4537        }
4538
4539        init_swait_queue_head(&rcu_state.gp_wq);
4540        init_swait_queue_head(&rcu_state.expedited_wq);
4541        rnp = rcu_first_leaf_node();
4542        for_each_possible_cpu(i) {
4543                while (i > rnp->grphi)
4544                        rnp++;
4545                per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4546                rcu_boot_init_percpu_data(i);
4547        }
4548}
4549
4550/*
4551 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4552 * replace the definitions in tree.h because those are needed to size
4553 * the ->node array in the rcu_state structure.
4554 */
4555void rcu_init_geometry(void)
4556{
4557        ulong d;
4558        int i;
4559        static unsigned long old_nr_cpu_ids;
4560        int rcu_capacity[RCU_NUM_LVLS];
4561        static bool initialized;
4562
4563        if (initialized) {
4564                /*
4565                 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4566                 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4567                 */
4568                WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4569                return;
4570        }
4571
4572        old_nr_cpu_ids = nr_cpu_ids;
4573        initialized = true;
4574
4575        /*
4576         * Initialize any unspecified boot parameters.
4577         * The default values of jiffies_till_first_fqs and
4578         * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4579         * value, which is a function of HZ, then adding one for each
4580         * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4581         */
4582        d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4583        if (jiffies_till_first_fqs == ULONG_MAX)
4584                jiffies_till_first_fqs = d;
4585        if (jiffies_till_next_fqs == ULONG_MAX)
4586                jiffies_till_next_fqs = d;
4587        adjust_jiffies_till_sched_qs();
4588
4589        /* If the compile-time values are accurate, just leave. */
4590        if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4591            nr_cpu_ids == NR_CPUS)
4592                return;
4593        pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4594                rcu_fanout_leaf, nr_cpu_ids);
4595
4596        /*
4597         * The boot-time rcu_fanout_leaf parameter must be at least two
4598         * and cannot exceed the number of bits in the rcu_node masks.
4599         * Complain and fall back to the compile-time values if this
4600         * limit is exceeded.
4601         */
4602        if (rcu_fanout_leaf < 2 ||
4603            rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4604                rcu_fanout_leaf = RCU_FANOUT_LEAF;
4605                WARN_ON(1);
4606                return;
4607        }
4608
4609        /*
4610         * Compute number of nodes that can be handled an rcu_node tree
4611         * with the given number of levels.
4612         */
4613        rcu_capacity[0] = rcu_fanout_leaf;
4614        for (i = 1; i < RCU_NUM_LVLS; i++)
4615                rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4616
4617        /*
4618         * The tree must be able to accommodate the configured number of CPUs.
4619         * If this limit is exceeded, fall back to the compile-time values.
4620         */
4621        if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4622                rcu_fanout_leaf = RCU_FANOUT_LEAF;
4623                WARN_ON(1);
4624                return;
4625        }
4626
4627        /* Calculate the number of levels in the tree. */
4628        for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4629        }
4630        rcu_num_lvls = i + 1;
4631
4632        /* Calculate the number of rcu_nodes at each level of the tree. */
4633        for (i = 0; i < rcu_num_lvls; i++) {
4634                int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4635                num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4636        }
4637
4638        /* Calculate the total number of rcu_node structures. */
4639        rcu_num_nodes = 0;
4640        for (i = 0; i < rcu_num_lvls; i++)
4641                rcu_num_nodes += num_rcu_lvl[i];
4642}
4643
4644/*
4645 * Dump out the structure of the rcu_node combining tree associated
4646 * with the rcu_state structure.
4647 */
4648static void __init rcu_dump_rcu_node_tree(void)
4649{
4650        int level = 0;
4651        struct rcu_node *rnp;
4652
4653        pr_info("rcu_node tree layout dump\n");
4654        pr_info(" ");
4655        rcu_for_each_node_breadth_first(rnp) {
4656                if (rnp->level != level) {
4657                        pr_cont("\n");
4658                        pr_info(" ");
4659                        level = rnp->level;
4660                }
4661                pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4662        }
4663        pr_cont("\n");
4664}
4665
4666struct workqueue_struct *rcu_gp_wq;
4667struct workqueue_struct *rcu_par_gp_wq;
4668
4669static void __init kfree_rcu_batch_init(void)
4670{
4671        int cpu;
4672        int i;
4673
4674        /* Clamp it to [0:100] seconds interval. */
4675        if (rcu_delay_page_cache_fill_msec < 0 ||
4676                rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4677
4678                rcu_delay_page_cache_fill_msec =
4679                        clamp(rcu_delay_page_cache_fill_msec, 0,
4680                                (int) (100 * MSEC_PER_SEC));
4681
4682                pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4683                        rcu_delay_page_cache_fill_msec);
4684        }
4685
4686        for_each_possible_cpu(cpu) {
4687                struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4688
4689                for (i = 0; i < KFREE_N_BATCHES; i++) {
4690                        INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4691                        krcp->krw_arr[i].krcp = krcp;
4692                }
4693
4694                INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4695                INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4696                krcp->initialized = true;
4697        }
4698        if (register_shrinker(&kfree_rcu_shrinker))
4699                pr_err("Failed to register kfree_rcu() shrinker!\n");
4700}
4701
4702void __init rcu_init(void)
4703{
4704        int cpu;
4705
4706        rcu_early_boot_tests();
4707
4708        kfree_rcu_batch_init();
4709        rcu_bootup_announce();
4710        rcu_init_geometry();
4711        rcu_init_one();
4712        if (dump_tree)
4713                rcu_dump_rcu_node_tree();
4714        if (use_softirq)
4715                open_softirq(RCU_SOFTIRQ, rcu_core_si);
4716
4717        /*
4718         * We don't need protection against CPU-hotplug here because
4719         * this is called early in boot, before either interrupts
4720         * or the scheduler are operational.
4721         */
4722        pm_notifier(rcu_pm_notify, 0);
4723        for_each_online_cpu(cpu) {
4724                rcutree_prepare_cpu(cpu);
4725                rcu_cpu_starting(cpu);
4726                rcutree_online_cpu(cpu);
4727        }
4728
4729        /* Create workqueue for Tree SRCU and for expedited GPs. */
4730        rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4731        WARN_ON(!rcu_gp_wq);
4732        rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4733        WARN_ON(!rcu_par_gp_wq);
4734
4735        /* Fill in default value for rcutree.qovld boot parameter. */
4736        /* -After- the rcu_node ->lock fields are initialized! */
4737        if (qovld < 0)
4738                qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4739        else
4740                qovld_calc = qovld;
4741}
4742
4743#include "tree_stall.h"
4744#include "tree_exp.h"
4745#include "tree_nocb.h"
4746#include "tree_plugin.h"
4747