linux/kernel/rcu/tree_plugin.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 * Internal non-public definitions that provide either classic
   5 * or preemptible semantics.
   6 *
   7 * Copyright Red Hat, 2009
   8 * Copyright IBM Corporation, 2009
   9 *
  10 * Author: Ingo Molnar <mingo@elte.hu>
  11 *         Paul E. McKenney <paulmck@linux.ibm.com>
  12 */
  13
  14#include "../locking/rtmutex_common.h"
  15
  16static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
  17{
  18        /*
  19         * In order to read the offloaded state of an rdp is a safe
  20         * and stable way and prevent from its value to be changed
  21         * under us, we must either hold the barrier mutex, the cpu
  22         * hotplug lock (read or write) or the nocb lock. Local
  23         * non-preemptible reads are also safe. NOCB kthreads and
  24         * timers have their own means of synchronization against the
  25         * offloaded state updaters.
  26         */
  27        RCU_LOCKDEP_WARN(
  28                !(lockdep_is_held(&rcu_state.barrier_mutex) ||
  29                  (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
  30                  rcu_lockdep_is_held_nocb(rdp) ||
  31                  (rdp == this_cpu_ptr(&rcu_data) &&
  32                   !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) ||
  33                  rcu_current_is_nocb_kthread(rdp)),
  34                "Unsafe read of RCU_NOCB offloaded state"
  35        );
  36
  37        return rcu_segcblist_is_offloaded(&rdp->cblist);
  38}
  39
  40/*
  41 * Check the RCU kernel configuration parameters and print informative
  42 * messages about anything out of the ordinary.
  43 */
  44static void __init rcu_bootup_announce_oddness(void)
  45{
  46        if (IS_ENABLED(CONFIG_RCU_TRACE))
  47                pr_info("\tRCU event tracing is enabled.\n");
  48        if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  49            (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  50                pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
  51                        RCU_FANOUT);
  52        if (rcu_fanout_exact)
  53                pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  54        if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  55                pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  56        if (IS_ENABLED(CONFIG_PROVE_RCU))
  57                pr_info("\tRCU lockdep checking is enabled.\n");
  58        if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
  59                pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
  60        if (RCU_NUM_LVLS >= 4)
  61                pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  62        if (RCU_FANOUT_LEAF != 16)
  63                pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  64                        RCU_FANOUT_LEAF);
  65        if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  66                pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
  67                        rcu_fanout_leaf);
  68        if (nr_cpu_ids != NR_CPUS)
  69                pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
  70#ifdef CONFIG_RCU_BOOST
  71        pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
  72                kthread_prio, CONFIG_RCU_BOOST_DELAY);
  73#endif
  74        if (blimit != DEFAULT_RCU_BLIMIT)
  75                pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
  76        if (qhimark != DEFAULT_RCU_QHIMARK)
  77                pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
  78        if (qlowmark != DEFAULT_RCU_QLOMARK)
  79                pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
  80        if (qovld != DEFAULT_RCU_QOVLD)
  81                pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
  82        if (jiffies_till_first_fqs != ULONG_MAX)
  83                pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
  84        if (jiffies_till_next_fqs != ULONG_MAX)
  85                pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
  86        if (jiffies_till_sched_qs != ULONG_MAX)
  87                pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
  88        if (rcu_kick_kthreads)
  89                pr_info("\tKick kthreads if too-long grace period.\n");
  90        if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
  91                pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
  92        if (gp_preinit_delay)
  93                pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
  94        if (gp_init_delay)
  95                pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
  96        if (gp_cleanup_delay)
  97                pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
  98        if (!use_softirq)
  99                pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
 100        if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
 101                pr_info("\tRCU debug extended QS entry/exit.\n");
 102        rcupdate_announce_bootup_oddness();
 103}
 104
 105#ifdef CONFIG_PREEMPT_RCU
 106
 107static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
 108static void rcu_read_unlock_special(struct task_struct *t);
 109
 110/*
 111 * Tell them what RCU they are running.
 112 */
 113static void __init rcu_bootup_announce(void)
 114{
 115        pr_info("Preemptible hierarchical RCU implementation.\n");
 116        rcu_bootup_announce_oddness();
 117}
 118
 119/* Flags for rcu_preempt_ctxt_queue() decision table. */
 120#define RCU_GP_TASKS    0x8
 121#define RCU_EXP_TASKS   0x4
 122#define RCU_GP_BLKD     0x2
 123#define RCU_EXP_BLKD    0x1
 124
 125/*
 126 * Queues a task preempted within an RCU-preempt read-side critical
 127 * section into the appropriate location within the ->blkd_tasks list,
 128 * depending on the states of any ongoing normal and expedited grace
 129 * periods.  The ->gp_tasks pointer indicates which element the normal
 130 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 131 * indicates which element the expedited grace period is waiting on (again,
 132 * NULL if none).  If a grace period is waiting on a given element in the
 133 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 134 * adding a task to the tail of the list blocks any grace period that is
 135 * already waiting on one of the elements.  In contrast, adding a task
 136 * to the head of the list won't block any grace period that is already
 137 * waiting on one of the elements.
 138 *
 139 * This queuing is imprecise, and can sometimes make an ongoing grace
 140 * period wait for a task that is not strictly speaking blocking it.
 141 * Given the choice, we needlessly block a normal grace period rather than
 142 * blocking an expedited grace period.
 143 *
 144 * Note that an endless sequence of expedited grace periods still cannot
 145 * indefinitely postpone a normal grace period.  Eventually, all of the
 146 * fixed number of preempted tasks blocking the normal grace period that are
 147 * not also blocking the expedited grace period will resume and complete
 148 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 149 * pointer will equal the ->exp_tasks pointer, at which point the end of
 150 * the corresponding expedited grace period will also be the end of the
 151 * normal grace period.
 152 */
 153static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 154        __releases(rnp->lock) /* But leaves rrupts disabled. */
 155{
 156        int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 157                         (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 158                         (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 159                         (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 160        struct task_struct *t = current;
 161
 162        raw_lockdep_assert_held_rcu_node(rnp);
 163        WARN_ON_ONCE(rdp->mynode != rnp);
 164        WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 165        /* RCU better not be waiting on newly onlined CPUs! */
 166        WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
 167                     rdp->grpmask);
 168
 169        /*
 170         * Decide where to queue the newly blocked task.  In theory,
 171         * this could be an if-statement.  In practice, when I tried
 172         * that, it was quite messy.
 173         */
 174        switch (blkd_state) {
 175        case 0:
 176        case                RCU_EXP_TASKS:
 177        case                RCU_EXP_TASKS + RCU_GP_BLKD:
 178        case RCU_GP_TASKS:
 179        case RCU_GP_TASKS + RCU_EXP_TASKS:
 180
 181                /*
 182                 * Blocking neither GP, or first task blocking the normal
 183                 * GP but not blocking the already-waiting expedited GP.
 184                 * Queue at the head of the list to avoid unnecessarily
 185                 * blocking the already-waiting GPs.
 186                 */
 187                list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 188                break;
 189
 190        case                                              RCU_EXP_BLKD:
 191        case                                RCU_GP_BLKD:
 192        case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 193        case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 194        case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 195        case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 196
 197                /*
 198                 * First task arriving that blocks either GP, or first task
 199                 * arriving that blocks the expedited GP (with the normal
 200                 * GP already waiting), or a task arriving that blocks
 201                 * both GPs with both GPs already waiting.  Queue at the
 202                 * tail of the list to avoid any GP waiting on any of the
 203                 * already queued tasks that are not blocking it.
 204                 */
 205                list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 206                break;
 207
 208        case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 209        case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 210        case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 211
 212                /*
 213                 * Second or subsequent task blocking the expedited GP.
 214                 * The task either does not block the normal GP, or is the
 215                 * first task blocking the normal GP.  Queue just after
 216                 * the first task blocking the expedited GP.
 217                 */
 218                list_add(&t->rcu_node_entry, rnp->exp_tasks);
 219                break;
 220
 221        case RCU_GP_TASKS +                 RCU_GP_BLKD:
 222        case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 223
 224                /*
 225                 * Second or subsequent task blocking the normal GP.
 226                 * The task does not block the expedited GP. Queue just
 227                 * after the first task blocking the normal GP.
 228                 */
 229                list_add(&t->rcu_node_entry, rnp->gp_tasks);
 230                break;
 231
 232        default:
 233
 234                /* Yet another exercise in excessive paranoia. */
 235                WARN_ON_ONCE(1);
 236                break;
 237        }
 238
 239        /*
 240         * We have now queued the task.  If it was the first one to
 241         * block either grace period, update the ->gp_tasks and/or
 242         * ->exp_tasks pointers, respectively, to reference the newly
 243         * blocked tasks.
 244         */
 245        if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
 246                WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
 247                WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
 248        }
 249        if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 250                WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
 251        WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
 252                     !(rnp->qsmask & rdp->grpmask));
 253        WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
 254                     !(rnp->expmask & rdp->grpmask));
 255        raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 256
 257        /*
 258         * Report the quiescent state for the expedited GP.  This expedited
 259         * GP should not be able to end until we report, so there should be
 260         * no need to check for a subsequent expedited GP.  (Though we are
 261         * still in a quiescent state in any case.)
 262         */
 263        if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
 264                rcu_report_exp_rdp(rdp);
 265        else
 266                WARN_ON_ONCE(rdp->exp_deferred_qs);
 267}
 268
 269/*
 270 * Record a preemptible-RCU quiescent state for the specified CPU.
 271 * Note that this does not necessarily mean that the task currently running
 272 * on the CPU is in a quiescent state:  Instead, it means that the current
 273 * grace period need not wait on any RCU read-side critical section that
 274 * starts later on this CPU.  It also means that if the current task is
 275 * in an RCU read-side critical section, it has already added itself to
 276 * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
 277 * current task, there might be any number of other tasks blocked while
 278 * in an RCU read-side critical section.
 279 *
 280 * Callers to this function must disable preemption.
 281 */
 282static void rcu_qs(void)
 283{
 284        RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
 285        if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
 286                trace_rcu_grace_period(TPS("rcu_preempt"),
 287                                       __this_cpu_read(rcu_data.gp_seq),
 288                                       TPS("cpuqs"));
 289                __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 290                barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
 291                WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
 292        }
 293}
 294
 295/*
 296 * We have entered the scheduler, and the current task might soon be
 297 * context-switched away from.  If this task is in an RCU read-side
 298 * critical section, we will no longer be able to rely on the CPU to
 299 * record that fact, so we enqueue the task on the blkd_tasks list.
 300 * The task will dequeue itself when it exits the outermost enclosing
 301 * RCU read-side critical section.  Therefore, the current grace period
 302 * cannot be permitted to complete until the blkd_tasks list entries
 303 * predating the current grace period drain, in other words, until
 304 * rnp->gp_tasks becomes NULL.
 305 *
 306 * Caller must disable interrupts.
 307 */
 308void rcu_note_context_switch(bool preempt)
 309{
 310        struct task_struct *t = current;
 311        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 312        struct rcu_node *rnp;
 313
 314        trace_rcu_utilization(TPS("Start context switch"));
 315        lockdep_assert_irqs_disabled();
 316        WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
 317        if (rcu_preempt_depth() > 0 &&
 318            !t->rcu_read_unlock_special.b.blocked) {
 319
 320                /* Possibly blocking in an RCU read-side critical section. */
 321                rnp = rdp->mynode;
 322                raw_spin_lock_rcu_node(rnp);
 323                t->rcu_read_unlock_special.b.blocked = true;
 324                t->rcu_blocked_node = rnp;
 325
 326                /*
 327                 * Verify the CPU's sanity, trace the preemption, and
 328                 * then queue the task as required based on the states
 329                 * of any ongoing and expedited grace periods.
 330                 */
 331                WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 332                WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 333                trace_rcu_preempt_task(rcu_state.name,
 334                                       t->pid,
 335                                       (rnp->qsmask & rdp->grpmask)
 336                                       ? rnp->gp_seq
 337                                       : rcu_seq_snap(&rnp->gp_seq));
 338                rcu_preempt_ctxt_queue(rnp, rdp);
 339        } else {
 340                rcu_preempt_deferred_qs(t);
 341        }
 342
 343        /*
 344         * Either we were not in an RCU read-side critical section to
 345         * begin with, or we have now recorded that critical section
 346         * globally.  Either way, we can now note a quiescent state
 347         * for this CPU.  Again, if we were in an RCU read-side critical
 348         * section, and if that critical section was blocking the current
 349         * grace period, then the fact that the task has been enqueued
 350         * means that we continue to block the current grace period.
 351         */
 352        rcu_qs();
 353        if (rdp->exp_deferred_qs)
 354                rcu_report_exp_rdp(rdp);
 355        rcu_tasks_qs(current, preempt);
 356        trace_rcu_utilization(TPS("End context switch"));
 357}
 358EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 359
 360/*
 361 * Check for preempted RCU readers blocking the current grace period
 362 * for the specified rcu_node structure.  If the caller needs a reliable
 363 * answer, it must hold the rcu_node's ->lock.
 364 */
 365static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 366{
 367        return READ_ONCE(rnp->gp_tasks) != NULL;
 368}
 369
 370/* limit value for ->rcu_read_lock_nesting. */
 371#define RCU_NEST_PMAX (INT_MAX / 2)
 372
 373static void rcu_preempt_read_enter(void)
 374{
 375        WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
 376}
 377
 378static int rcu_preempt_read_exit(void)
 379{
 380        int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
 381
 382        WRITE_ONCE(current->rcu_read_lock_nesting, ret);
 383        return ret;
 384}
 385
 386static void rcu_preempt_depth_set(int val)
 387{
 388        WRITE_ONCE(current->rcu_read_lock_nesting, val);
 389}
 390
 391/*
 392 * Preemptible RCU implementation for rcu_read_lock().
 393 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 394 * if we block.
 395 */
 396void __rcu_read_lock(void)
 397{
 398        rcu_preempt_read_enter();
 399        if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 400                WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
 401        if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
 402                WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
 403        barrier();  /* critical section after entry code. */
 404}
 405EXPORT_SYMBOL_GPL(__rcu_read_lock);
 406
 407/*
 408 * Preemptible RCU implementation for rcu_read_unlock().
 409 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 410 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 411 * invoke rcu_read_unlock_special() to clean up after a context switch
 412 * in an RCU read-side critical section and other special cases.
 413 */
 414void __rcu_read_unlock(void)
 415{
 416        struct task_struct *t = current;
 417
 418        barrier();  // critical section before exit code.
 419        if (rcu_preempt_read_exit() == 0) {
 420                barrier();  // critical-section exit before .s check.
 421                if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 422                        rcu_read_unlock_special(t);
 423        }
 424        if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
 425                int rrln = rcu_preempt_depth();
 426
 427                WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
 428        }
 429}
 430EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 431
 432/*
 433 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 434 * returning NULL if at the end of the list.
 435 */
 436static struct list_head *rcu_next_node_entry(struct task_struct *t,
 437                                             struct rcu_node *rnp)
 438{
 439        struct list_head *np;
 440
 441        np = t->rcu_node_entry.next;
 442        if (np == &rnp->blkd_tasks)
 443                np = NULL;
 444        return np;
 445}
 446
 447/*
 448 * Return true if the specified rcu_node structure has tasks that were
 449 * preempted within an RCU read-side critical section.
 450 */
 451static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 452{
 453        return !list_empty(&rnp->blkd_tasks);
 454}
 455
 456/*
 457 * Report deferred quiescent states.  The deferral time can
 458 * be quite short, for example, in the case of the call from
 459 * rcu_read_unlock_special().
 460 */
 461static void
 462rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
 463{
 464        bool empty_exp;
 465        bool empty_norm;
 466        bool empty_exp_now;
 467        struct list_head *np;
 468        bool drop_boost_mutex = false;
 469        struct rcu_data *rdp;
 470        struct rcu_node *rnp;
 471        union rcu_special special;
 472
 473        /*
 474         * If RCU core is waiting for this CPU to exit its critical section,
 475         * report the fact that it has exited.  Because irqs are disabled,
 476         * t->rcu_read_unlock_special cannot change.
 477         */
 478        special = t->rcu_read_unlock_special;
 479        rdp = this_cpu_ptr(&rcu_data);
 480        if (!special.s && !rdp->exp_deferred_qs) {
 481                local_irq_restore(flags);
 482                return;
 483        }
 484        t->rcu_read_unlock_special.s = 0;
 485        if (special.b.need_qs) {
 486                if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
 487                        rcu_report_qs_rdp(rdp);
 488                        udelay(rcu_unlock_delay);
 489                } else {
 490                        rcu_qs();
 491                }
 492        }
 493
 494        /*
 495         * Respond to a request by an expedited grace period for a
 496         * quiescent state from this CPU.  Note that requests from
 497         * tasks are handled when removing the task from the
 498         * blocked-tasks list below.
 499         */
 500        if (rdp->exp_deferred_qs)
 501                rcu_report_exp_rdp(rdp);
 502
 503        /* Clean up if blocked during RCU read-side critical section. */
 504        if (special.b.blocked) {
 505
 506                /*
 507                 * Remove this task from the list it blocked on.  The task
 508                 * now remains queued on the rcu_node corresponding to the
 509                 * CPU it first blocked on, so there is no longer any need
 510                 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 511                 */
 512                rnp = t->rcu_blocked_node;
 513                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 514                WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 515                WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 516                empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 517                WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
 518                             (!empty_norm || rnp->qsmask));
 519                empty_exp = sync_rcu_exp_done(rnp);
 520                smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 521                np = rcu_next_node_entry(t, rnp);
 522                list_del_init(&t->rcu_node_entry);
 523                t->rcu_blocked_node = NULL;
 524                trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 525                                                rnp->gp_seq, t->pid);
 526                if (&t->rcu_node_entry == rnp->gp_tasks)
 527                        WRITE_ONCE(rnp->gp_tasks, np);
 528                if (&t->rcu_node_entry == rnp->exp_tasks)
 529                        WRITE_ONCE(rnp->exp_tasks, np);
 530                if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 531                        /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 532                        drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
 533                        if (&t->rcu_node_entry == rnp->boost_tasks)
 534                                WRITE_ONCE(rnp->boost_tasks, np);
 535                }
 536
 537                /*
 538                 * If this was the last task on the current list, and if
 539                 * we aren't waiting on any CPUs, report the quiescent state.
 540                 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 541                 * so we must take a snapshot of the expedited state.
 542                 */
 543                empty_exp_now = sync_rcu_exp_done(rnp);
 544                if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 545                        trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 546                                                         rnp->gp_seq,
 547                                                         0, rnp->qsmask,
 548                                                         rnp->level,
 549                                                         rnp->grplo,
 550                                                         rnp->grphi,
 551                                                         !!rnp->gp_tasks);
 552                        rcu_report_unblock_qs_rnp(rnp, flags);
 553                } else {
 554                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 555                }
 556
 557                /* Unboost if we were boosted. */
 558                if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 559                        rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
 560
 561                /*
 562                 * If this was the last task on the expedited lists,
 563                 * then we need to report up the rcu_node hierarchy.
 564                 */
 565                if (!empty_exp && empty_exp_now)
 566                        rcu_report_exp_rnp(rnp, true);
 567        } else {
 568                local_irq_restore(flags);
 569        }
 570}
 571
 572/*
 573 * Is a deferred quiescent-state pending, and are we also not in
 574 * an RCU read-side critical section?  It is the caller's responsibility
 575 * to ensure it is otherwise safe to report any deferred quiescent
 576 * states.  The reason for this is that it is safe to report a
 577 * quiescent state during context switch even though preemption
 578 * is disabled.  This function cannot be expected to understand these
 579 * nuances, so the caller must handle them.
 580 */
 581static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 582{
 583        return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
 584                READ_ONCE(t->rcu_read_unlock_special.s)) &&
 585               rcu_preempt_depth() == 0;
 586}
 587
 588/*
 589 * Report a deferred quiescent state if needed and safe to do so.
 590 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
 591 * not being in an RCU read-side critical section.  The caller must
 592 * evaluate safety in terms of interrupt, softirq, and preemption
 593 * disabling.
 594 */
 595static void rcu_preempt_deferred_qs(struct task_struct *t)
 596{
 597        unsigned long flags;
 598
 599        if (!rcu_preempt_need_deferred_qs(t))
 600                return;
 601        local_irq_save(flags);
 602        rcu_preempt_deferred_qs_irqrestore(t, flags);
 603}
 604
 605/*
 606 * Minimal handler to give the scheduler a chance to re-evaluate.
 607 */
 608static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
 609{
 610        struct rcu_data *rdp;
 611
 612        rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
 613        rdp->defer_qs_iw_pending = false;
 614}
 615
 616/*
 617 * Handle special cases during rcu_read_unlock(), such as needing to
 618 * notify RCU core processing or task having blocked during the RCU
 619 * read-side critical section.
 620 */
 621static void rcu_read_unlock_special(struct task_struct *t)
 622{
 623        unsigned long flags;
 624        bool irqs_were_disabled;
 625        bool preempt_bh_were_disabled =
 626                        !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
 627
 628        /* NMI handlers cannot block and cannot safely manipulate state. */
 629        if (in_nmi())
 630                return;
 631
 632        local_irq_save(flags);
 633        irqs_were_disabled = irqs_disabled_flags(flags);
 634        if (preempt_bh_were_disabled || irqs_were_disabled) {
 635                bool expboost; // Expedited GP in flight or possible boosting.
 636                struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 637                struct rcu_node *rnp = rdp->mynode;
 638
 639                expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
 640                           (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
 641                           IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
 642                           (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
 643                            t->rcu_blocked_node);
 644                // Need to defer quiescent state until everything is enabled.
 645                if (use_softirq && (in_irq() || (expboost && !irqs_were_disabled))) {
 646                        // Using softirq, safe to awaken, and either the
 647                        // wakeup is free or there is either an expedited
 648                        // GP in flight or a potential need to deboost.
 649                        raise_softirq_irqoff(RCU_SOFTIRQ);
 650                } else {
 651                        // Enabling BH or preempt does reschedule, so...
 652                        // Also if no expediting and no possible deboosting,
 653                        // slow is OK.  Plus nohz_full CPUs eventually get
 654                        // tick enabled.
 655                        set_tsk_need_resched(current);
 656                        set_preempt_need_resched();
 657                        if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
 658                            expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
 659                                // Get scheduler to re-evaluate and call hooks.
 660                                // If !IRQ_WORK, FQS scan will eventually IPI.
 661                                init_irq_work(&rdp->defer_qs_iw, rcu_preempt_deferred_qs_handler);
 662                                rdp->defer_qs_iw_pending = true;
 663                                irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
 664                        }
 665                }
 666                local_irq_restore(flags);
 667                return;
 668        }
 669        rcu_preempt_deferred_qs_irqrestore(t, flags);
 670}
 671
 672/*
 673 * Check that the list of blocked tasks for the newly completed grace
 674 * period is in fact empty.  It is a serious bug to complete a grace
 675 * period that still has RCU readers blocked!  This function must be
 676 * invoked -before- updating this rnp's ->gp_seq.
 677 *
 678 * Also, if there are blocked tasks on the list, they automatically
 679 * block the newly created grace period, so set up ->gp_tasks accordingly.
 680 */
 681static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 682{
 683        struct task_struct *t;
 684
 685        RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
 686        raw_lockdep_assert_held_rcu_node(rnp);
 687        if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
 688                dump_blkd_tasks(rnp, 10);
 689        if (rcu_preempt_has_tasks(rnp) &&
 690            (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
 691                WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
 692                t = container_of(rnp->gp_tasks, struct task_struct,
 693                                 rcu_node_entry);
 694                trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
 695                                                rnp->gp_seq, t->pid);
 696        }
 697        WARN_ON_ONCE(rnp->qsmask);
 698}
 699
 700/*
 701 * Check for a quiescent state from the current CPU, including voluntary
 702 * context switches for Tasks RCU.  When a task blocks, the task is
 703 * recorded in the corresponding CPU's rcu_node structure, which is checked
 704 * elsewhere, hence this function need only check for quiescent states
 705 * related to the current CPU, not to those related to tasks.
 706 */
 707static void rcu_flavor_sched_clock_irq(int user)
 708{
 709        struct task_struct *t = current;
 710
 711        lockdep_assert_irqs_disabled();
 712        if (user || rcu_is_cpu_rrupt_from_idle()) {
 713                rcu_note_voluntary_context_switch(current);
 714        }
 715        if (rcu_preempt_depth() > 0 ||
 716            (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
 717                /* No QS, force context switch if deferred. */
 718                if (rcu_preempt_need_deferred_qs(t)) {
 719                        set_tsk_need_resched(t);
 720                        set_preempt_need_resched();
 721                }
 722        } else if (rcu_preempt_need_deferred_qs(t)) {
 723                rcu_preempt_deferred_qs(t); /* Report deferred QS. */
 724                return;
 725        } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
 726                rcu_qs(); /* Report immediate QS. */
 727                return;
 728        }
 729
 730        /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
 731        if (rcu_preempt_depth() > 0 &&
 732            __this_cpu_read(rcu_data.core_needs_qs) &&
 733            __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
 734            !t->rcu_read_unlock_special.b.need_qs &&
 735            time_after(jiffies, rcu_state.gp_start + HZ))
 736                t->rcu_read_unlock_special.b.need_qs = true;
 737}
 738
 739/*
 740 * Check for a task exiting while in a preemptible-RCU read-side
 741 * critical section, clean up if so.  No need to issue warnings, as
 742 * debug_check_no_locks_held() already does this if lockdep is enabled.
 743 * Besides, if this function does anything other than just immediately
 744 * return, there was a bug of some sort.  Spewing warnings from this
 745 * function is like as not to simply obscure important prior warnings.
 746 */
 747void exit_rcu(void)
 748{
 749        struct task_struct *t = current;
 750
 751        if (unlikely(!list_empty(&current->rcu_node_entry))) {
 752                rcu_preempt_depth_set(1);
 753                barrier();
 754                WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
 755        } else if (unlikely(rcu_preempt_depth())) {
 756                rcu_preempt_depth_set(1);
 757        } else {
 758                return;
 759        }
 760        __rcu_read_unlock();
 761        rcu_preempt_deferred_qs(current);
 762}
 763
 764/*
 765 * Dump the blocked-tasks state, but limit the list dump to the
 766 * specified number of elements.
 767 */
 768static void
 769dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 770{
 771        int cpu;
 772        int i;
 773        struct list_head *lhp;
 774        bool onl;
 775        struct rcu_data *rdp;
 776        struct rcu_node *rnp1;
 777
 778        raw_lockdep_assert_held_rcu_node(rnp);
 779        pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 780                __func__, rnp->grplo, rnp->grphi, rnp->level,
 781                (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
 782        for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 783                pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
 784                        __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
 785        pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
 786                __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
 787                READ_ONCE(rnp->exp_tasks));
 788        pr_info("%s: ->blkd_tasks", __func__);
 789        i = 0;
 790        list_for_each(lhp, &rnp->blkd_tasks) {
 791                pr_cont(" %p", lhp);
 792                if (++i >= ncheck)
 793                        break;
 794        }
 795        pr_cont("\n");
 796        for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
 797                rdp = per_cpu_ptr(&rcu_data, cpu);
 798                onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
 799                pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
 800                        cpu, ".o"[onl],
 801                        (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 802                        (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 803        }
 804}
 805
 806#else /* #ifdef CONFIG_PREEMPT_RCU */
 807
 808/*
 809 * If strict grace periods are enabled, and if the calling
 810 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
 811 * report that quiescent state and, if requested, spin for a bit.
 812 */
 813void rcu_read_unlock_strict(void)
 814{
 815        struct rcu_data *rdp;
 816
 817        if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
 818           irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
 819                return;
 820        rdp = this_cpu_ptr(&rcu_data);
 821        rcu_report_qs_rdp(rdp);
 822        udelay(rcu_unlock_delay);
 823}
 824EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
 825
 826/*
 827 * Tell them what RCU they are running.
 828 */
 829static void __init rcu_bootup_announce(void)
 830{
 831        pr_info("Hierarchical RCU implementation.\n");
 832        rcu_bootup_announce_oddness();
 833}
 834
 835/*
 836 * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
 837 * how many quiescent states passed, just if there was at least one since
 838 * the start of the grace period, this just sets a flag.  The caller must
 839 * have disabled preemption.
 840 */
 841static void rcu_qs(void)
 842{
 843        RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
 844        if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
 845                return;
 846        trace_rcu_grace_period(TPS("rcu_sched"),
 847                               __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
 848        __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 849        if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
 850                return;
 851        __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
 852        rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
 853}
 854
 855/*
 856 * Register an urgently needed quiescent state.  If there is an
 857 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 858 * dyntick-idle quiescent state visible to other CPUs, which will in
 859 * some cases serve for expedited as well as normal grace periods.
 860 * Either way, register a lightweight quiescent state.
 861 */
 862void rcu_all_qs(void)
 863{
 864        unsigned long flags;
 865
 866        if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
 867                return;
 868        preempt_disable();
 869        /* Load rcu_urgent_qs before other flags. */
 870        if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
 871                preempt_enable();
 872                return;
 873        }
 874        this_cpu_write(rcu_data.rcu_urgent_qs, false);
 875        if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
 876                local_irq_save(flags);
 877                rcu_momentary_dyntick_idle();
 878                local_irq_restore(flags);
 879        }
 880        rcu_qs();
 881        preempt_enable();
 882}
 883EXPORT_SYMBOL_GPL(rcu_all_qs);
 884
 885/*
 886 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
 887 */
 888void rcu_note_context_switch(bool preempt)
 889{
 890        trace_rcu_utilization(TPS("Start context switch"));
 891        rcu_qs();
 892        /* Load rcu_urgent_qs before other flags. */
 893        if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
 894                goto out;
 895        this_cpu_write(rcu_data.rcu_urgent_qs, false);
 896        if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
 897                rcu_momentary_dyntick_idle();
 898        rcu_tasks_qs(current, preempt);
 899out:
 900        trace_rcu_utilization(TPS("End context switch"));
 901}
 902EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 903
 904/*
 905 * Because preemptible RCU does not exist, there are never any preempted
 906 * RCU readers.
 907 */
 908static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 909{
 910        return 0;
 911}
 912
 913/*
 914 * Because there is no preemptible RCU, there can be no readers blocked.
 915 */
 916static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 917{
 918        return false;
 919}
 920
 921/*
 922 * Because there is no preemptible RCU, there can be no deferred quiescent
 923 * states.
 924 */
 925static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 926{
 927        return false;
 928}
 929static void rcu_preempt_deferred_qs(struct task_struct *t) { }
 930
 931/*
 932 * Because there is no preemptible RCU, there can be no readers blocked,
 933 * so there is no need to check for blocked tasks.  So check only for
 934 * bogus qsmask values.
 935 */
 936static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 937{
 938        WARN_ON_ONCE(rnp->qsmask);
 939}
 940
 941/*
 942 * Check to see if this CPU is in a non-context-switch quiescent state,
 943 * namely user mode and idle loop.
 944 */
 945static void rcu_flavor_sched_clock_irq(int user)
 946{
 947        if (user || rcu_is_cpu_rrupt_from_idle()) {
 948
 949                /*
 950                 * Get here if this CPU took its interrupt from user
 951                 * mode or from the idle loop, and if this is not a
 952                 * nested interrupt.  In this case, the CPU is in
 953                 * a quiescent state, so note it.
 954                 *
 955                 * No memory barrier is required here because rcu_qs()
 956                 * references only CPU-local variables that other CPUs
 957                 * neither access nor modify, at least not while the
 958                 * corresponding CPU is online.
 959                 */
 960
 961                rcu_qs();
 962        }
 963}
 964
 965/*
 966 * Because preemptible RCU does not exist, tasks cannot possibly exit
 967 * while in preemptible RCU read-side critical sections.
 968 */
 969void exit_rcu(void)
 970{
 971}
 972
 973/*
 974 * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
 975 */
 976static void
 977dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 978{
 979        WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
 980}
 981
 982#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 983
 984/*
 985 * If boosting, set rcuc kthreads to realtime priority.
 986 */
 987static void rcu_cpu_kthread_setup(unsigned int cpu)
 988{
 989#ifdef CONFIG_RCU_BOOST
 990        struct sched_param sp;
 991
 992        sp.sched_priority = kthread_prio;
 993        sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
 994#endif /* #ifdef CONFIG_RCU_BOOST */
 995}
 996
 997#ifdef CONFIG_RCU_BOOST
 998
 999/*
1000 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1001 * or ->boost_tasks, advancing the pointer to the next task in the
1002 * ->blkd_tasks list.
1003 *
1004 * Note that irqs must be enabled: boosting the task can block.
1005 * Returns 1 if there are more tasks needing to be boosted.
1006 */
1007static int rcu_boost(struct rcu_node *rnp)
1008{
1009        unsigned long flags;
1010        struct task_struct *t;
1011        struct list_head *tb;
1012
1013        if (READ_ONCE(rnp->exp_tasks) == NULL &&
1014            READ_ONCE(rnp->boost_tasks) == NULL)
1015                return 0;  /* Nothing left to boost. */
1016
1017        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1018
1019        /*
1020         * Recheck under the lock: all tasks in need of boosting
1021         * might exit their RCU read-side critical sections on their own.
1022         */
1023        if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1024                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1025                return 0;
1026        }
1027
1028        /*
1029         * Preferentially boost tasks blocking expedited grace periods.
1030         * This cannot starve the normal grace periods because a second
1031         * expedited grace period must boost all blocked tasks, including
1032         * those blocking the pre-existing normal grace period.
1033         */
1034        if (rnp->exp_tasks != NULL)
1035                tb = rnp->exp_tasks;
1036        else
1037                tb = rnp->boost_tasks;
1038
1039        /*
1040         * We boost task t by manufacturing an rt_mutex that appears to
1041         * be held by task t.  We leave a pointer to that rt_mutex where
1042         * task t can find it, and task t will release the mutex when it
1043         * exits its outermost RCU read-side critical section.  Then
1044         * simply acquiring this artificial rt_mutex will boost task
1045         * t's priority.  (Thanks to tglx for suggesting this approach!)
1046         *
1047         * Note that task t must acquire rnp->lock to remove itself from
1048         * the ->blkd_tasks list, which it will do from exit() if from
1049         * nowhere else.  We therefore are guaranteed that task t will
1050         * stay around at least until we drop rnp->lock.  Note that
1051         * rnp->lock also resolves races between our priority boosting
1052         * and task t's exiting its outermost RCU read-side critical
1053         * section.
1054         */
1055        t = container_of(tb, struct task_struct, rcu_node_entry);
1056        rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
1057        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1058        /* Lock only for side effect: boosts task t's priority. */
1059        rt_mutex_lock(&rnp->boost_mtx);
1060        rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1061        rnp->n_boosts++;
1062
1063        return READ_ONCE(rnp->exp_tasks) != NULL ||
1064               READ_ONCE(rnp->boost_tasks) != NULL;
1065}
1066
1067/*
1068 * Priority-boosting kthread, one per leaf rcu_node.
1069 */
1070static int rcu_boost_kthread(void *arg)
1071{
1072        struct rcu_node *rnp = (struct rcu_node *)arg;
1073        int spincnt = 0;
1074        int more2boost;
1075
1076        trace_rcu_utilization(TPS("Start boost kthread@init"));
1077        for (;;) {
1078                WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1079                trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1080                rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1081                         READ_ONCE(rnp->exp_tasks));
1082                trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1083                WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1084                more2boost = rcu_boost(rnp);
1085                if (more2boost)
1086                        spincnt++;
1087                else
1088                        spincnt = 0;
1089                if (spincnt > 10) {
1090                        WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1091                        trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1092                        schedule_timeout_idle(2);
1093                        trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1094                        spincnt = 0;
1095                }
1096        }
1097        /* NOTREACHED */
1098        trace_rcu_utilization(TPS("End boost kthread@notreached"));
1099        return 0;
1100}
1101
1102/*
1103 * Check to see if it is time to start boosting RCU readers that are
1104 * blocking the current grace period, and, if so, tell the per-rcu_node
1105 * kthread to start boosting them.  If there is an expedited grace
1106 * period in progress, it is always time to boost.
1107 *
1108 * The caller must hold rnp->lock, which this function releases.
1109 * The ->boost_kthread_task is immortal, so we don't need to worry
1110 * about it going away.
1111 */
1112static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1113        __releases(rnp->lock)
1114{
1115        raw_lockdep_assert_held_rcu_node(rnp);
1116        if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1117                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1118                return;
1119        }
1120        if (rnp->exp_tasks != NULL ||
1121            (rnp->gp_tasks != NULL &&
1122             rnp->boost_tasks == NULL &&
1123             rnp->qsmask == 0 &&
1124             (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1125                if (rnp->exp_tasks == NULL)
1126                        WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1127                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1128                rcu_wake_cond(rnp->boost_kthread_task,
1129                              READ_ONCE(rnp->boost_kthread_status));
1130        } else {
1131                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1132        }
1133}
1134
1135/*
1136 * Is the current CPU running the RCU-callbacks kthread?
1137 * Caller must have preemption disabled.
1138 */
1139static bool rcu_is_callbacks_kthread(void)
1140{
1141        return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1142}
1143
1144#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1145
1146/*
1147 * Do priority-boost accounting for the start of a new grace period.
1148 */
1149static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1150{
1151        rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1152}
1153
1154/*
1155 * Create an RCU-boost kthread for the specified node if one does not
1156 * already exist.  We only create this kthread for preemptible RCU.
1157 * Returns zero if all is well, a negated errno otherwise.
1158 */
1159static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1160{
1161        unsigned long flags;
1162        int rnp_index = rnp - rcu_get_root();
1163        struct sched_param sp;
1164        struct task_struct *t;
1165
1166        if (rnp->boost_kthread_task || !rcu_scheduler_fully_active)
1167                return;
1168
1169        rcu_state.boost = 1;
1170
1171        t = kthread_create(rcu_boost_kthread, (void *)rnp,
1172                           "rcub/%d", rnp_index);
1173        if (WARN_ON_ONCE(IS_ERR(t)))
1174                return;
1175
1176        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1177        rnp->boost_kthread_task = t;
1178        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1179        sp.sched_priority = kthread_prio;
1180        sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1181        wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1182}
1183
1184/*
1185 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1186 * served by the rcu_node in question.  The CPU hotplug lock is still
1187 * held, so the value of rnp->qsmaskinit will be stable.
1188 *
1189 * We don't include outgoingcpu in the affinity set, use -1 if there is
1190 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1191 * this function allows the kthread to execute on any CPU.
1192 */
1193static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1194{
1195        struct task_struct *t = rnp->boost_kthread_task;
1196        unsigned long mask = rcu_rnp_online_cpus(rnp);
1197        cpumask_var_t cm;
1198        int cpu;
1199
1200        if (!t)
1201                return;
1202        if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1203                return;
1204        for_each_leaf_node_possible_cpu(rnp, cpu)
1205                if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1206                    cpu != outgoingcpu)
1207                        cpumask_set_cpu(cpu, cm);
1208        if (cpumask_weight(cm) == 0)
1209                cpumask_setall(cm);
1210        set_cpus_allowed_ptr(t, cm);
1211        free_cpumask_var(cm);
1212}
1213
1214/*
1215 * Spawn boost kthreads -- called as soon as the scheduler is running.
1216 */
1217static void __init rcu_spawn_boost_kthreads(void)
1218{
1219        struct rcu_node *rnp;
1220
1221        rcu_for_each_leaf_node(rnp)
1222                if (rcu_rnp_online_cpus(rnp))
1223                        rcu_spawn_one_boost_kthread(rnp);
1224}
1225
1226#else /* #ifdef CONFIG_RCU_BOOST */
1227
1228static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1229        __releases(rnp->lock)
1230{
1231        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1232}
1233
1234static bool rcu_is_callbacks_kthread(void)
1235{
1236        return false;
1237}
1238
1239static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1240{
1241}
1242
1243static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1244{
1245}
1246
1247static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1248{
1249}
1250
1251static void __init rcu_spawn_boost_kthreads(void)
1252{
1253}
1254
1255#endif /* #else #ifdef CONFIG_RCU_BOOST */
1256
1257#if !defined(CONFIG_RCU_FAST_NO_HZ)
1258
1259/*
1260 * Check to see if any future non-offloaded RCU-related work will need
1261 * to be done by the current CPU, even if none need be done immediately,
1262 * returning 1 if so.  This function is part of the RCU implementation;
1263 * it is -not- an exported member of the RCU API.
1264 *
1265 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1266 * CPU has RCU callbacks queued.
1267 */
1268int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1269{
1270        *nextevt = KTIME_MAX;
1271        return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1272                !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
1273}
1274
1275/*
1276 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1277 * after it.
1278 */
1279static void rcu_cleanup_after_idle(void)
1280{
1281}
1282
1283/*
1284 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1285 * is nothing.
1286 */
1287static void rcu_prepare_for_idle(void)
1288{
1289}
1290
1291#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1292
1293/*
1294 * This code is invoked when a CPU goes idle, at which point we want
1295 * to have the CPU do everything required for RCU so that it can enter
1296 * the energy-efficient dyntick-idle mode.
1297 *
1298 * The following preprocessor symbol controls this:
1299 *
1300 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1301 *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1302 *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1303 *      benchmarkers who might otherwise be tempted to set this to a large
1304 *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1305 *      system.  And if you are -that- concerned about energy efficiency,
1306 *      just power the system down and be done with it!
1307 *
1308 * The value below works well in practice.  If future workloads require
1309 * adjustment, they can be converted into kernel config parameters, though
1310 * making the state machine smarter might be a better option.
1311 */
1312#define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1313
1314static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1315module_param(rcu_idle_gp_delay, int, 0644);
1316
1317/*
1318 * Try to advance callbacks on the current CPU, but only if it has been
1319 * awhile since the last time we did so.  Afterwards, if there are any
1320 * callbacks ready for immediate invocation, return true.
1321 */
1322static bool __maybe_unused rcu_try_advance_all_cbs(void)
1323{
1324        bool cbs_ready = false;
1325        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1326        struct rcu_node *rnp;
1327
1328        /* Exit early if we advanced recently. */
1329        if (jiffies == rdp->last_advance_all)
1330                return false;
1331        rdp->last_advance_all = jiffies;
1332
1333        rnp = rdp->mynode;
1334
1335        /*
1336         * Don't bother checking unless a grace period has
1337         * completed since we last checked and there are
1338         * callbacks not yet ready to invoke.
1339         */
1340        if ((rcu_seq_completed_gp(rdp->gp_seq,
1341                                  rcu_seq_current(&rnp->gp_seq)) ||
1342             unlikely(READ_ONCE(rdp->gpwrap))) &&
1343            rcu_segcblist_pend_cbs(&rdp->cblist))
1344                note_gp_changes(rdp);
1345
1346        if (rcu_segcblist_ready_cbs(&rdp->cblist))
1347                cbs_ready = true;
1348        return cbs_ready;
1349}
1350
1351/*
1352 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1353 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1354 * caller about what to set the timeout.
1355 *
1356 * The caller must have disabled interrupts.
1357 */
1358int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1359{
1360        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1361        unsigned long dj;
1362
1363        lockdep_assert_irqs_disabled();
1364
1365        /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1366        if (rcu_segcblist_empty(&rdp->cblist) ||
1367            rcu_rdp_is_offloaded(rdp)) {
1368                *nextevt = KTIME_MAX;
1369                return 0;
1370        }
1371
1372        /* Attempt to advance callbacks. */
1373        if (rcu_try_advance_all_cbs()) {
1374                /* Some ready to invoke, so initiate later invocation. */
1375                invoke_rcu_core();
1376                return 1;
1377        }
1378        rdp->last_accelerate = jiffies;
1379
1380        /* Request timer and round. */
1381        dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1382
1383        *nextevt = basemono + dj * TICK_NSEC;
1384        return 0;
1385}
1386
1387/*
1388 * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1389 * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1390 * major task is to accelerate (that is, assign grace-period numbers to) any
1391 * recently arrived callbacks.
1392 *
1393 * The caller must have disabled interrupts.
1394 */
1395static void rcu_prepare_for_idle(void)
1396{
1397        bool needwake;
1398        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1399        struct rcu_node *rnp;
1400        int tne;
1401
1402        lockdep_assert_irqs_disabled();
1403        if (rcu_rdp_is_offloaded(rdp))
1404                return;
1405
1406        /* Handle nohz enablement switches conservatively. */
1407        tne = READ_ONCE(tick_nohz_active);
1408        if (tne != rdp->tick_nohz_enabled_snap) {
1409                if (!rcu_segcblist_empty(&rdp->cblist))
1410                        invoke_rcu_core(); /* force nohz to see update. */
1411                rdp->tick_nohz_enabled_snap = tne;
1412                return;
1413        }
1414        if (!tne)
1415                return;
1416
1417        /*
1418         * If we have not yet accelerated this jiffy, accelerate all
1419         * callbacks on this CPU.
1420         */
1421        if (rdp->last_accelerate == jiffies)
1422                return;
1423        rdp->last_accelerate = jiffies;
1424        if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1425                rnp = rdp->mynode;
1426                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1427                needwake = rcu_accelerate_cbs(rnp, rdp);
1428                raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1429                if (needwake)
1430                        rcu_gp_kthread_wake();
1431        }
1432}
1433
1434/*
1435 * Clean up for exit from idle.  Attempt to advance callbacks based on
1436 * any grace periods that elapsed while the CPU was idle, and if any
1437 * callbacks are now ready to invoke, initiate invocation.
1438 */
1439static void rcu_cleanup_after_idle(void)
1440{
1441        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1442
1443        lockdep_assert_irqs_disabled();
1444        if (rcu_rdp_is_offloaded(rdp))
1445                return;
1446        if (rcu_try_advance_all_cbs())
1447                invoke_rcu_core();
1448}
1449
1450#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1451
1452/*
1453 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
1454 * grace-period kthread will do force_quiescent_state() processing?
1455 * The idea is to avoid waking up RCU core processing on such a
1456 * CPU unless the grace period has extended for too long.
1457 *
1458 * This code relies on the fact that all NO_HZ_FULL CPUs are also
1459 * CONFIG_RCU_NOCB_CPU CPUs.
1460 */
1461static bool rcu_nohz_full_cpu(void)
1462{
1463#ifdef CONFIG_NO_HZ_FULL
1464        if (tick_nohz_full_cpu(smp_processor_id()) &&
1465            (!rcu_gp_in_progress() ||
1466             time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
1467                return true;
1468#endif /* #ifdef CONFIG_NO_HZ_FULL */
1469        return false;
1470}
1471
1472/*
1473 * Bind the RCU grace-period kthreads to the housekeeping CPU.
1474 */
1475static void rcu_bind_gp_kthread(void)
1476{
1477        if (!tick_nohz_full_enabled())
1478                return;
1479        housekeeping_affine(current, HK_FLAG_RCU);
1480}
1481
1482/* Record the current task on dyntick-idle entry. */
1483static void noinstr rcu_dynticks_task_enter(void)
1484{
1485#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
1486        WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
1487#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
1488}
1489
1490/* Record no current task on dyntick-idle exit. */
1491static void noinstr rcu_dynticks_task_exit(void)
1492{
1493#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
1494        WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
1495#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
1496}
1497
1498/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
1499static void rcu_dynticks_task_trace_enter(void)
1500{
1501#ifdef CONFIG_TASKS_TRACE_RCU
1502        if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1503                current->trc_reader_special.b.need_mb = true;
1504#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1505}
1506
1507/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
1508static void rcu_dynticks_task_trace_exit(void)
1509{
1510#ifdef CONFIG_TASKS_TRACE_RCU
1511        if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1512                current->trc_reader_special.b.need_mb = false;
1513#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1514}
1515