linux/kernel/relay.c
<<
>>
Prefs
   1/*
   2 * Public API and common code for kernel->userspace relay file support.
   3 *
   4 * See Documentation/filesystems/relay.rst for an overview.
   5 *
   6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
   7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
   8 *
   9 * Moved to kernel/relay.c by Paul Mundt, 2006.
  10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
  11 *      (mathieu.desnoyers@polymtl.ca)
  12 *
  13 * This file is released under the GPL.
  14 */
  15#include <linux/errno.h>
  16#include <linux/stddef.h>
  17#include <linux/slab.h>
  18#include <linux/export.h>
  19#include <linux/string.h>
  20#include <linux/relay.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/cpu.h>
  24#include <linux/splice.h>
  25
  26/* list of open channels, for cpu hotplug */
  27static DEFINE_MUTEX(relay_channels_mutex);
  28static LIST_HEAD(relay_channels);
  29
  30/*
  31 * fault() vm_op implementation for relay file mapping.
  32 */
  33static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
  34{
  35        struct page *page;
  36        struct rchan_buf *buf = vmf->vma->vm_private_data;
  37        pgoff_t pgoff = vmf->pgoff;
  38
  39        if (!buf)
  40                return VM_FAULT_OOM;
  41
  42        page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
  43        if (!page)
  44                return VM_FAULT_SIGBUS;
  45        get_page(page);
  46        vmf->page = page;
  47
  48        return 0;
  49}
  50
  51/*
  52 * vm_ops for relay file mappings.
  53 */
  54static const struct vm_operations_struct relay_file_mmap_ops = {
  55        .fault = relay_buf_fault,
  56};
  57
  58/*
  59 * allocate an array of pointers of struct page
  60 */
  61static struct page **relay_alloc_page_array(unsigned int n_pages)
  62{
  63        const size_t pa_size = n_pages * sizeof(struct page *);
  64        if (pa_size > PAGE_SIZE)
  65                return vzalloc(pa_size);
  66        return kzalloc(pa_size, GFP_KERNEL);
  67}
  68
  69/*
  70 * free an array of pointers of struct page
  71 */
  72static void relay_free_page_array(struct page **array)
  73{
  74        kvfree(array);
  75}
  76
  77/**
  78 *      relay_mmap_buf: - mmap channel buffer to process address space
  79 *      @buf: relay channel buffer
  80 *      @vma: vm_area_struct describing memory to be mapped
  81 *
  82 *      Returns 0 if ok, negative on error
  83 *
  84 *      Caller should already have grabbed mmap_lock.
  85 */
  86static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
  87{
  88        unsigned long length = vma->vm_end - vma->vm_start;
  89
  90        if (!buf)
  91                return -EBADF;
  92
  93        if (length != (unsigned long)buf->chan->alloc_size)
  94                return -EINVAL;
  95
  96        vma->vm_ops = &relay_file_mmap_ops;
  97        vma->vm_flags |= VM_DONTEXPAND;
  98        vma->vm_private_data = buf;
  99
 100        return 0;
 101}
 102
 103/**
 104 *      relay_alloc_buf - allocate a channel buffer
 105 *      @buf: the buffer struct
 106 *      @size: total size of the buffer
 107 *
 108 *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
 109 *      passed in size will get page aligned, if it isn't already.
 110 */
 111static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
 112{
 113        void *mem;
 114        unsigned int i, j, n_pages;
 115
 116        *size = PAGE_ALIGN(*size);
 117        n_pages = *size >> PAGE_SHIFT;
 118
 119        buf->page_array = relay_alloc_page_array(n_pages);
 120        if (!buf->page_array)
 121                return NULL;
 122
 123        for (i = 0; i < n_pages; i++) {
 124                buf->page_array[i] = alloc_page(GFP_KERNEL);
 125                if (unlikely(!buf->page_array[i]))
 126                        goto depopulate;
 127                set_page_private(buf->page_array[i], (unsigned long)buf);
 128        }
 129        mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
 130        if (!mem)
 131                goto depopulate;
 132
 133        memset(mem, 0, *size);
 134        buf->page_count = n_pages;
 135        return mem;
 136
 137depopulate:
 138        for (j = 0; j < i; j++)
 139                __free_page(buf->page_array[j]);
 140        relay_free_page_array(buf->page_array);
 141        return NULL;
 142}
 143
 144/**
 145 *      relay_create_buf - allocate and initialize a channel buffer
 146 *      @chan: the relay channel
 147 *
 148 *      Returns channel buffer if successful, %NULL otherwise.
 149 */
 150static struct rchan_buf *relay_create_buf(struct rchan *chan)
 151{
 152        struct rchan_buf *buf;
 153
 154        if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
 155                return NULL;
 156
 157        buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
 158        if (!buf)
 159                return NULL;
 160        buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *),
 161                                     GFP_KERNEL);
 162        if (!buf->padding)
 163                goto free_buf;
 164
 165        buf->start = relay_alloc_buf(buf, &chan->alloc_size);
 166        if (!buf->start)
 167                goto free_buf;
 168
 169        buf->chan = chan;
 170        kref_get(&buf->chan->kref);
 171        return buf;
 172
 173free_buf:
 174        kfree(buf->padding);
 175        kfree(buf);
 176        return NULL;
 177}
 178
 179/**
 180 *      relay_destroy_channel - free the channel struct
 181 *      @kref: target kernel reference that contains the relay channel
 182 *
 183 *      Should only be called from kref_put().
 184 */
 185static void relay_destroy_channel(struct kref *kref)
 186{
 187        struct rchan *chan = container_of(kref, struct rchan, kref);
 188        free_percpu(chan->buf);
 189        kfree(chan);
 190}
 191
 192/**
 193 *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 194 *      @buf: the buffer struct
 195 */
 196static void relay_destroy_buf(struct rchan_buf *buf)
 197{
 198        struct rchan *chan = buf->chan;
 199        unsigned int i;
 200
 201        if (likely(buf->start)) {
 202                vunmap(buf->start);
 203                for (i = 0; i < buf->page_count; i++)
 204                        __free_page(buf->page_array[i]);
 205                relay_free_page_array(buf->page_array);
 206        }
 207        *per_cpu_ptr(chan->buf, buf->cpu) = NULL;
 208        kfree(buf->padding);
 209        kfree(buf);
 210        kref_put(&chan->kref, relay_destroy_channel);
 211}
 212
 213/**
 214 *      relay_remove_buf - remove a channel buffer
 215 *      @kref: target kernel reference that contains the relay buffer
 216 *
 217 *      Removes the file from the filesystem, which also frees the
 218 *      rchan_buf_struct and the channel buffer.  Should only be called from
 219 *      kref_put().
 220 */
 221static void relay_remove_buf(struct kref *kref)
 222{
 223        struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
 224        relay_destroy_buf(buf);
 225}
 226
 227/**
 228 *      relay_buf_empty - boolean, is the channel buffer empty?
 229 *      @buf: channel buffer
 230 *
 231 *      Returns 1 if the buffer is empty, 0 otherwise.
 232 */
 233static int relay_buf_empty(struct rchan_buf *buf)
 234{
 235        return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
 236}
 237
 238/**
 239 *      relay_buf_full - boolean, is the channel buffer full?
 240 *      @buf: channel buffer
 241 *
 242 *      Returns 1 if the buffer is full, 0 otherwise.
 243 */
 244int relay_buf_full(struct rchan_buf *buf)
 245{
 246        size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
 247        return (ready >= buf->chan->n_subbufs) ? 1 : 0;
 248}
 249EXPORT_SYMBOL_GPL(relay_buf_full);
 250
 251/*
 252 * High-level relay kernel API and associated functions.
 253 */
 254
 255static int relay_subbuf_start(struct rchan_buf *buf, void *subbuf,
 256                              void *prev_subbuf, size_t prev_padding)
 257{
 258        if (!buf->chan->cb->subbuf_start)
 259                return !relay_buf_full(buf);
 260
 261        return buf->chan->cb->subbuf_start(buf, subbuf,
 262                                           prev_subbuf, prev_padding);
 263}
 264
 265/**
 266 *      wakeup_readers - wake up readers waiting on a channel
 267 *      @work: contains the channel buffer
 268 *
 269 *      This is the function used to defer reader waking
 270 */
 271static void wakeup_readers(struct irq_work *work)
 272{
 273        struct rchan_buf *buf;
 274
 275        buf = container_of(work, struct rchan_buf, wakeup_work);
 276        wake_up_interruptible(&buf->read_wait);
 277}
 278
 279/**
 280 *      __relay_reset - reset a channel buffer
 281 *      @buf: the channel buffer
 282 *      @init: 1 if this is a first-time initialization
 283 *
 284 *      See relay_reset() for description of effect.
 285 */
 286static void __relay_reset(struct rchan_buf *buf, unsigned int init)
 287{
 288        size_t i;
 289
 290        if (init) {
 291                init_waitqueue_head(&buf->read_wait);
 292                kref_init(&buf->kref);
 293                init_irq_work(&buf->wakeup_work, wakeup_readers);
 294        } else {
 295                irq_work_sync(&buf->wakeup_work);
 296        }
 297
 298        buf->subbufs_produced = 0;
 299        buf->subbufs_consumed = 0;
 300        buf->bytes_consumed = 0;
 301        buf->finalized = 0;
 302        buf->data = buf->start;
 303        buf->offset = 0;
 304
 305        for (i = 0; i < buf->chan->n_subbufs; i++)
 306                buf->padding[i] = 0;
 307
 308        relay_subbuf_start(buf, buf->data, NULL, 0);
 309}
 310
 311/**
 312 *      relay_reset - reset the channel
 313 *      @chan: the channel
 314 *
 315 *      This has the effect of erasing all data from all channel buffers
 316 *      and restarting the channel in its initial state.  The buffers
 317 *      are not freed, so any mappings are still in effect.
 318 *
 319 *      NOTE. Care should be taken that the channel isn't actually
 320 *      being used by anything when this call is made.
 321 */
 322void relay_reset(struct rchan *chan)
 323{
 324        struct rchan_buf *buf;
 325        unsigned int i;
 326
 327        if (!chan)
 328                return;
 329
 330        if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
 331                __relay_reset(buf, 0);
 332                return;
 333        }
 334
 335        mutex_lock(&relay_channels_mutex);
 336        for_each_possible_cpu(i)
 337                if ((buf = *per_cpu_ptr(chan->buf, i)))
 338                        __relay_reset(buf, 0);
 339        mutex_unlock(&relay_channels_mutex);
 340}
 341EXPORT_SYMBOL_GPL(relay_reset);
 342
 343static inline void relay_set_buf_dentry(struct rchan_buf *buf,
 344                                        struct dentry *dentry)
 345{
 346        buf->dentry = dentry;
 347        d_inode(buf->dentry)->i_size = buf->early_bytes;
 348}
 349
 350static struct dentry *relay_create_buf_file(struct rchan *chan,
 351                                            struct rchan_buf *buf,
 352                                            unsigned int cpu)
 353{
 354        struct dentry *dentry;
 355        char *tmpname;
 356
 357        tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
 358        if (!tmpname)
 359                return NULL;
 360        snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
 361
 362        /* Create file in fs */
 363        dentry = chan->cb->create_buf_file(tmpname, chan->parent,
 364                                           S_IRUSR, buf,
 365                                           &chan->is_global);
 366        if (IS_ERR(dentry))
 367                dentry = NULL;
 368
 369        kfree(tmpname);
 370
 371        return dentry;
 372}
 373
 374/*
 375 *      relay_open_buf - create a new relay channel buffer
 376 *
 377 *      used by relay_open() and CPU hotplug.
 378 */
 379static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
 380{
 381        struct rchan_buf *buf = NULL;
 382        struct dentry *dentry;
 383
 384        if (chan->is_global)
 385                return *per_cpu_ptr(chan->buf, 0);
 386
 387        buf = relay_create_buf(chan);
 388        if (!buf)
 389                return NULL;
 390
 391        if (chan->has_base_filename) {
 392                dentry = relay_create_buf_file(chan, buf, cpu);
 393                if (!dentry)
 394                        goto free_buf;
 395                relay_set_buf_dentry(buf, dentry);
 396        } else {
 397                /* Only retrieve global info, nothing more, nothing less */
 398                dentry = chan->cb->create_buf_file(NULL, NULL,
 399                                                   S_IRUSR, buf,
 400                                                   &chan->is_global);
 401                if (IS_ERR_OR_NULL(dentry))
 402                        goto free_buf;
 403        }
 404
 405        buf->cpu = cpu;
 406        __relay_reset(buf, 1);
 407
 408        if(chan->is_global) {
 409                *per_cpu_ptr(chan->buf, 0) = buf;
 410                buf->cpu = 0;
 411        }
 412
 413        return buf;
 414
 415free_buf:
 416        relay_destroy_buf(buf);
 417        return NULL;
 418}
 419
 420/**
 421 *      relay_close_buf - close a channel buffer
 422 *      @buf: channel buffer
 423 *
 424 *      Marks the buffer finalized and restores the default callbacks.
 425 *      The channel buffer and channel buffer data structure are then freed
 426 *      automatically when the last reference is given up.
 427 */
 428static void relay_close_buf(struct rchan_buf *buf)
 429{
 430        buf->finalized = 1;
 431        irq_work_sync(&buf->wakeup_work);
 432        buf->chan->cb->remove_buf_file(buf->dentry);
 433        kref_put(&buf->kref, relay_remove_buf);
 434}
 435
 436int relay_prepare_cpu(unsigned int cpu)
 437{
 438        struct rchan *chan;
 439        struct rchan_buf *buf;
 440
 441        mutex_lock(&relay_channels_mutex);
 442        list_for_each_entry(chan, &relay_channels, list) {
 443                if ((buf = *per_cpu_ptr(chan->buf, cpu)))
 444                        continue;
 445                buf = relay_open_buf(chan, cpu);
 446                if (!buf) {
 447                        pr_err("relay: cpu %d buffer creation failed\n", cpu);
 448                        mutex_unlock(&relay_channels_mutex);
 449                        return -ENOMEM;
 450                }
 451                *per_cpu_ptr(chan->buf, cpu) = buf;
 452        }
 453        mutex_unlock(&relay_channels_mutex);
 454        return 0;
 455}
 456
 457/**
 458 *      relay_open - create a new relay channel
 459 *      @base_filename: base name of files to create, %NULL for buffering only
 460 *      @parent: dentry of parent directory, %NULL for root directory or buffer
 461 *      @subbuf_size: size of sub-buffers
 462 *      @n_subbufs: number of sub-buffers
 463 *      @cb: client callback functions
 464 *      @private_data: user-defined data
 465 *
 466 *      Returns channel pointer if successful, %NULL otherwise.
 467 *
 468 *      Creates a channel buffer for each cpu using the sizes and
 469 *      attributes specified.  The created channel buffer files
 470 *      will be named base_filename0...base_filenameN-1.  File
 471 *      permissions will be %S_IRUSR.
 472 *
 473 *      If opening a buffer (@parent = NULL) that you later wish to register
 474 *      in a filesystem, call relay_late_setup_files() once the @parent dentry
 475 *      is available.
 476 */
 477struct rchan *relay_open(const char *base_filename,
 478                         struct dentry *parent,
 479                         size_t subbuf_size,
 480                         size_t n_subbufs,
 481                         const struct rchan_callbacks *cb,
 482                         void *private_data)
 483{
 484        unsigned int i;
 485        struct rchan *chan;
 486        struct rchan_buf *buf;
 487
 488        if (!(subbuf_size && n_subbufs))
 489                return NULL;
 490        if (subbuf_size > UINT_MAX / n_subbufs)
 491                return NULL;
 492        if (!cb || !cb->create_buf_file || !cb->remove_buf_file)
 493                return NULL;
 494
 495        chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
 496        if (!chan)
 497                return NULL;
 498
 499        chan->buf = alloc_percpu(struct rchan_buf *);
 500        if (!chan->buf) {
 501                kfree(chan);
 502                return NULL;
 503        }
 504
 505        chan->version = RELAYFS_CHANNEL_VERSION;
 506        chan->n_subbufs = n_subbufs;
 507        chan->subbuf_size = subbuf_size;
 508        chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
 509        chan->parent = parent;
 510        chan->private_data = private_data;
 511        if (base_filename) {
 512                chan->has_base_filename = 1;
 513                strlcpy(chan->base_filename, base_filename, NAME_MAX);
 514        }
 515        chan->cb = cb;
 516        kref_init(&chan->kref);
 517
 518        mutex_lock(&relay_channels_mutex);
 519        for_each_online_cpu(i) {
 520                buf = relay_open_buf(chan, i);
 521                if (!buf)
 522                        goto free_bufs;
 523                *per_cpu_ptr(chan->buf, i) = buf;
 524        }
 525        list_add(&chan->list, &relay_channels);
 526        mutex_unlock(&relay_channels_mutex);
 527
 528        return chan;
 529
 530free_bufs:
 531        for_each_possible_cpu(i) {
 532                if ((buf = *per_cpu_ptr(chan->buf, i)))
 533                        relay_close_buf(buf);
 534        }
 535
 536        kref_put(&chan->kref, relay_destroy_channel);
 537        mutex_unlock(&relay_channels_mutex);
 538        return NULL;
 539}
 540EXPORT_SYMBOL_GPL(relay_open);
 541
 542struct rchan_percpu_buf_dispatcher {
 543        struct rchan_buf *buf;
 544        struct dentry *dentry;
 545};
 546
 547/* Called in atomic context. */
 548static void __relay_set_buf_dentry(void *info)
 549{
 550        struct rchan_percpu_buf_dispatcher *p = info;
 551
 552        relay_set_buf_dentry(p->buf, p->dentry);
 553}
 554
 555/**
 556 *      relay_late_setup_files - triggers file creation
 557 *      @chan: channel to operate on
 558 *      @base_filename: base name of files to create
 559 *      @parent: dentry of parent directory, %NULL for root directory
 560 *
 561 *      Returns 0 if successful, non-zero otherwise.
 562 *
 563 *      Use to setup files for a previously buffer-only channel created
 564 *      by relay_open() with a NULL parent dentry.
 565 *
 566 *      For example, this is useful for perfomring early tracing in kernel,
 567 *      before VFS is up and then exposing the early results once the dentry
 568 *      is available.
 569 */
 570int relay_late_setup_files(struct rchan *chan,
 571                           const char *base_filename,
 572                           struct dentry *parent)
 573{
 574        int err = 0;
 575        unsigned int i, curr_cpu;
 576        unsigned long flags;
 577        struct dentry *dentry;
 578        struct rchan_buf *buf;
 579        struct rchan_percpu_buf_dispatcher disp;
 580
 581        if (!chan || !base_filename)
 582                return -EINVAL;
 583
 584        strlcpy(chan->base_filename, base_filename, NAME_MAX);
 585
 586        mutex_lock(&relay_channels_mutex);
 587        /* Is chan already set up? */
 588        if (unlikely(chan->has_base_filename)) {
 589                mutex_unlock(&relay_channels_mutex);
 590                return -EEXIST;
 591        }
 592        chan->has_base_filename = 1;
 593        chan->parent = parent;
 594
 595        if (chan->is_global) {
 596                err = -EINVAL;
 597                buf = *per_cpu_ptr(chan->buf, 0);
 598                if (!WARN_ON_ONCE(!buf)) {
 599                        dentry = relay_create_buf_file(chan, buf, 0);
 600                        if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
 601                                relay_set_buf_dentry(buf, dentry);
 602                                err = 0;
 603                        }
 604                }
 605                mutex_unlock(&relay_channels_mutex);
 606                return err;
 607        }
 608
 609        curr_cpu = get_cpu();
 610        /*
 611         * The CPU hotplug notifier ran before us and created buffers with
 612         * no files associated. So it's safe to call relay_setup_buf_file()
 613         * on all currently online CPUs.
 614         */
 615        for_each_online_cpu(i) {
 616                buf = *per_cpu_ptr(chan->buf, i);
 617                if (unlikely(!buf)) {
 618                        WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
 619                        err = -EINVAL;
 620                        break;
 621                }
 622
 623                dentry = relay_create_buf_file(chan, buf, i);
 624                if (unlikely(!dentry)) {
 625                        err = -EINVAL;
 626                        break;
 627                }
 628
 629                if (curr_cpu == i) {
 630                        local_irq_save(flags);
 631                        relay_set_buf_dentry(buf, dentry);
 632                        local_irq_restore(flags);
 633                } else {
 634                        disp.buf = buf;
 635                        disp.dentry = dentry;
 636                        smp_mb();
 637                        /* relay_channels_mutex must be held, so wait. */
 638                        err = smp_call_function_single(i,
 639                                                       __relay_set_buf_dentry,
 640                                                       &disp, 1);
 641                }
 642                if (unlikely(err))
 643                        break;
 644        }
 645        put_cpu();
 646        mutex_unlock(&relay_channels_mutex);
 647
 648        return err;
 649}
 650EXPORT_SYMBOL_GPL(relay_late_setup_files);
 651
 652/**
 653 *      relay_switch_subbuf - switch to a new sub-buffer
 654 *      @buf: channel buffer
 655 *      @length: size of current event
 656 *
 657 *      Returns either the length passed in or 0 if full.
 658 *
 659 *      Performs sub-buffer-switch tasks such as invoking callbacks,
 660 *      updating padding counts, waking up readers, etc.
 661 */
 662size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
 663{
 664        void *old, *new;
 665        size_t old_subbuf, new_subbuf;
 666
 667        if (unlikely(length > buf->chan->subbuf_size))
 668                goto toobig;
 669
 670        if (buf->offset != buf->chan->subbuf_size + 1) {
 671                buf->prev_padding = buf->chan->subbuf_size - buf->offset;
 672                old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 673                buf->padding[old_subbuf] = buf->prev_padding;
 674                buf->subbufs_produced++;
 675                if (buf->dentry)
 676                        d_inode(buf->dentry)->i_size +=
 677                                buf->chan->subbuf_size -
 678                                buf->padding[old_subbuf];
 679                else
 680                        buf->early_bytes += buf->chan->subbuf_size -
 681                                            buf->padding[old_subbuf];
 682                smp_mb();
 683                if (waitqueue_active(&buf->read_wait)) {
 684                        /*
 685                         * Calling wake_up_interruptible() from here
 686                         * will deadlock if we happen to be logging
 687                         * from the scheduler (trying to re-grab
 688                         * rq->lock), so defer it.
 689                         */
 690                        irq_work_queue(&buf->wakeup_work);
 691                }
 692        }
 693
 694        old = buf->data;
 695        new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 696        new = buf->start + new_subbuf * buf->chan->subbuf_size;
 697        buf->offset = 0;
 698        if (!relay_subbuf_start(buf, new, old, buf->prev_padding)) {
 699                buf->offset = buf->chan->subbuf_size + 1;
 700                return 0;
 701        }
 702        buf->data = new;
 703        buf->padding[new_subbuf] = 0;
 704
 705        if (unlikely(length + buf->offset > buf->chan->subbuf_size))
 706                goto toobig;
 707
 708        return length;
 709
 710toobig:
 711        buf->chan->last_toobig = length;
 712        return 0;
 713}
 714EXPORT_SYMBOL_GPL(relay_switch_subbuf);
 715
 716/**
 717 *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
 718 *      @chan: the channel
 719 *      @cpu: the cpu associated with the channel buffer to update
 720 *      @subbufs_consumed: number of sub-buffers to add to current buf's count
 721 *
 722 *      Adds to the channel buffer's consumed sub-buffer count.
 723 *      subbufs_consumed should be the number of sub-buffers newly consumed,
 724 *      not the total consumed.
 725 *
 726 *      NOTE. Kernel clients don't need to call this function if the channel
 727 *      mode is 'overwrite'.
 728 */
 729void relay_subbufs_consumed(struct rchan *chan,
 730                            unsigned int cpu,
 731                            size_t subbufs_consumed)
 732{
 733        struct rchan_buf *buf;
 734
 735        if (!chan || cpu >= NR_CPUS)
 736                return;
 737
 738        buf = *per_cpu_ptr(chan->buf, cpu);
 739        if (!buf || subbufs_consumed > chan->n_subbufs)
 740                return;
 741
 742        if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
 743                buf->subbufs_consumed = buf->subbufs_produced;
 744        else
 745                buf->subbufs_consumed += subbufs_consumed;
 746}
 747EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
 748
 749/**
 750 *      relay_close - close the channel
 751 *      @chan: the channel
 752 *
 753 *      Closes all channel buffers and frees the channel.
 754 */
 755void relay_close(struct rchan *chan)
 756{
 757        struct rchan_buf *buf;
 758        unsigned int i;
 759
 760        if (!chan)
 761                return;
 762
 763        mutex_lock(&relay_channels_mutex);
 764        if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
 765                relay_close_buf(buf);
 766        else
 767                for_each_possible_cpu(i)
 768                        if ((buf = *per_cpu_ptr(chan->buf, i)))
 769                                relay_close_buf(buf);
 770
 771        if (chan->last_toobig)
 772                printk(KERN_WARNING "relay: one or more items not logged "
 773                       "[item size (%zd) > sub-buffer size (%zd)]\n",
 774                       chan->last_toobig, chan->subbuf_size);
 775
 776        list_del(&chan->list);
 777        kref_put(&chan->kref, relay_destroy_channel);
 778        mutex_unlock(&relay_channels_mutex);
 779}
 780EXPORT_SYMBOL_GPL(relay_close);
 781
 782/**
 783 *      relay_flush - close the channel
 784 *      @chan: the channel
 785 *
 786 *      Flushes all channel buffers, i.e. forces buffer switch.
 787 */
 788void relay_flush(struct rchan *chan)
 789{
 790        struct rchan_buf *buf;
 791        unsigned int i;
 792
 793        if (!chan)
 794                return;
 795
 796        if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
 797                relay_switch_subbuf(buf, 0);
 798                return;
 799        }
 800
 801        mutex_lock(&relay_channels_mutex);
 802        for_each_possible_cpu(i)
 803                if ((buf = *per_cpu_ptr(chan->buf, i)))
 804                        relay_switch_subbuf(buf, 0);
 805        mutex_unlock(&relay_channels_mutex);
 806}
 807EXPORT_SYMBOL_GPL(relay_flush);
 808
 809/**
 810 *      relay_file_open - open file op for relay files
 811 *      @inode: the inode
 812 *      @filp: the file
 813 *
 814 *      Increments the channel buffer refcount.
 815 */
 816static int relay_file_open(struct inode *inode, struct file *filp)
 817{
 818        struct rchan_buf *buf = inode->i_private;
 819        kref_get(&buf->kref);
 820        filp->private_data = buf;
 821
 822        return nonseekable_open(inode, filp);
 823}
 824
 825/**
 826 *      relay_file_mmap - mmap file op for relay files
 827 *      @filp: the file
 828 *      @vma: the vma describing what to map
 829 *
 830 *      Calls upon relay_mmap_buf() to map the file into user space.
 831 */
 832static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
 833{
 834        struct rchan_buf *buf = filp->private_data;
 835        return relay_mmap_buf(buf, vma);
 836}
 837
 838/**
 839 *      relay_file_poll - poll file op for relay files
 840 *      @filp: the file
 841 *      @wait: poll table
 842 *
 843 *      Poll implemention.
 844 */
 845static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
 846{
 847        __poll_t mask = 0;
 848        struct rchan_buf *buf = filp->private_data;
 849
 850        if (buf->finalized)
 851                return EPOLLERR;
 852
 853        if (filp->f_mode & FMODE_READ) {
 854                poll_wait(filp, &buf->read_wait, wait);
 855                if (!relay_buf_empty(buf))
 856                        mask |= EPOLLIN | EPOLLRDNORM;
 857        }
 858
 859        return mask;
 860}
 861
 862/**
 863 *      relay_file_release - release file op for relay files
 864 *      @inode: the inode
 865 *      @filp: the file
 866 *
 867 *      Decrements the channel refcount, as the filesystem is
 868 *      no longer using it.
 869 */
 870static int relay_file_release(struct inode *inode, struct file *filp)
 871{
 872        struct rchan_buf *buf = filp->private_data;
 873        kref_put(&buf->kref, relay_remove_buf);
 874
 875        return 0;
 876}
 877
 878/*
 879 *      relay_file_read_consume - update the consumed count for the buffer
 880 */
 881static void relay_file_read_consume(struct rchan_buf *buf,
 882                                    size_t read_pos,
 883                                    size_t bytes_consumed)
 884{
 885        size_t subbuf_size = buf->chan->subbuf_size;
 886        size_t n_subbufs = buf->chan->n_subbufs;
 887        size_t read_subbuf;
 888
 889        if (buf->subbufs_produced == buf->subbufs_consumed &&
 890            buf->offset == buf->bytes_consumed)
 891                return;
 892
 893        if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
 894                relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 895                buf->bytes_consumed = 0;
 896        }
 897
 898        buf->bytes_consumed += bytes_consumed;
 899        if (!read_pos)
 900                read_subbuf = buf->subbufs_consumed % n_subbufs;
 901        else
 902                read_subbuf = read_pos / buf->chan->subbuf_size;
 903        if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
 904                if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
 905                    (buf->offset == subbuf_size))
 906                        return;
 907                relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 908                buf->bytes_consumed = 0;
 909        }
 910}
 911
 912/*
 913 *      relay_file_read_avail - boolean, are there unconsumed bytes available?
 914 */
 915static int relay_file_read_avail(struct rchan_buf *buf)
 916{
 917        size_t subbuf_size = buf->chan->subbuf_size;
 918        size_t n_subbufs = buf->chan->n_subbufs;
 919        size_t produced = buf->subbufs_produced;
 920        size_t consumed;
 921
 922        relay_file_read_consume(buf, 0, 0);
 923
 924        consumed = buf->subbufs_consumed;
 925
 926        if (unlikely(buf->offset > subbuf_size)) {
 927                if (produced == consumed)
 928                        return 0;
 929                return 1;
 930        }
 931
 932        if (unlikely(produced - consumed >= n_subbufs)) {
 933                consumed = produced - n_subbufs + 1;
 934                buf->subbufs_consumed = consumed;
 935                buf->bytes_consumed = 0;
 936        }
 937
 938        produced = (produced % n_subbufs) * subbuf_size + buf->offset;
 939        consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
 940
 941        if (consumed > produced)
 942                produced += n_subbufs * subbuf_size;
 943
 944        if (consumed == produced) {
 945                if (buf->offset == subbuf_size &&
 946                    buf->subbufs_produced > buf->subbufs_consumed)
 947                        return 1;
 948                return 0;
 949        }
 950
 951        return 1;
 952}
 953
 954/**
 955 *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
 956 *      @read_pos: file read position
 957 *      @buf: relay channel buffer
 958 */
 959static size_t relay_file_read_subbuf_avail(size_t read_pos,
 960                                           struct rchan_buf *buf)
 961{
 962        size_t padding, avail = 0;
 963        size_t read_subbuf, read_offset, write_subbuf, write_offset;
 964        size_t subbuf_size = buf->chan->subbuf_size;
 965
 966        write_subbuf = (buf->data - buf->start) / subbuf_size;
 967        write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
 968        read_subbuf = read_pos / subbuf_size;
 969        read_offset = read_pos % subbuf_size;
 970        padding = buf->padding[read_subbuf];
 971
 972        if (read_subbuf == write_subbuf) {
 973                if (read_offset + padding < write_offset)
 974                        avail = write_offset - (read_offset + padding);
 975        } else
 976                avail = (subbuf_size - padding) - read_offset;
 977
 978        return avail;
 979}
 980
 981/**
 982 *      relay_file_read_start_pos - find the first available byte to read
 983 *      @buf: relay channel buffer
 984 *
 985 *      If the read_pos is in the middle of padding, return the
 986 *      position of the first actually available byte, otherwise
 987 *      return the original value.
 988 */
 989static size_t relay_file_read_start_pos(struct rchan_buf *buf)
 990{
 991        size_t read_subbuf, padding, padding_start, padding_end;
 992        size_t subbuf_size = buf->chan->subbuf_size;
 993        size_t n_subbufs = buf->chan->n_subbufs;
 994        size_t consumed = buf->subbufs_consumed % n_subbufs;
 995        size_t read_pos = consumed * subbuf_size + buf->bytes_consumed;
 996
 997        read_subbuf = read_pos / subbuf_size;
 998        padding = buf->padding[read_subbuf];
 999        padding_start = (read_subbuf + 1) * subbuf_size - padding;
1000        padding_end = (read_subbuf + 1) * subbuf_size;
1001        if (read_pos >= padding_start && read_pos < padding_end) {
1002                read_subbuf = (read_subbuf + 1) % n_subbufs;
1003                read_pos = read_subbuf * subbuf_size;
1004        }
1005
1006        return read_pos;
1007}
1008
1009/**
1010 *      relay_file_read_end_pos - return the new read position
1011 *      @read_pos: file read position
1012 *      @buf: relay channel buffer
1013 *      @count: number of bytes to be read
1014 */
1015static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1016                                      size_t read_pos,
1017                                      size_t count)
1018{
1019        size_t read_subbuf, padding, end_pos;
1020        size_t subbuf_size = buf->chan->subbuf_size;
1021        size_t n_subbufs = buf->chan->n_subbufs;
1022
1023        read_subbuf = read_pos / subbuf_size;
1024        padding = buf->padding[read_subbuf];
1025        if (read_pos % subbuf_size + count + padding == subbuf_size)
1026                end_pos = (read_subbuf + 1) * subbuf_size;
1027        else
1028                end_pos = read_pos + count;
1029        if (end_pos >= subbuf_size * n_subbufs)
1030                end_pos = 0;
1031
1032        return end_pos;
1033}
1034
1035static ssize_t relay_file_read(struct file *filp,
1036                               char __user *buffer,
1037                               size_t count,
1038                               loff_t *ppos)
1039{
1040        struct rchan_buf *buf = filp->private_data;
1041        size_t read_start, avail;
1042        size_t written = 0;
1043        int ret;
1044
1045        if (!count)
1046                return 0;
1047
1048        inode_lock(file_inode(filp));
1049        do {
1050                void *from;
1051
1052                if (!relay_file_read_avail(buf))
1053                        break;
1054
1055                read_start = relay_file_read_start_pos(buf);
1056                avail = relay_file_read_subbuf_avail(read_start, buf);
1057                if (!avail)
1058                        break;
1059
1060                avail = min(count, avail);
1061                from = buf->start + read_start;
1062                ret = avail;
1063                if (copy_to_user(buffer, from, avail))
1064                        break;
1065
1066                buffer += ret;
1067                written += ret;
1068                count -= ret;
1069
1070                relay_file_read_consume(buf, read_start, ret);
1071                *ppos = relay_file_read_end_pos(buf, read_start, ret);
1072        } while (count);
1073        inode_unlock(file_inode(filp));
1074
1075        return written;
1076}
1077
1078static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1079{
1080        rbuf->bytes_consumed += bytes_consumed;
1081
1082        if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1083                relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1084                rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1085        }
1086}
1087
1088static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1089                                   struct pipe_buffer *buf)
1090{
1091        struct rchan_buf *rbuf;
1092
1093        rbuf = (struct rchan_buf *)page_private(buf->page);
1094        relay_consume_bytes(rbuf, buf->private);
1095}
1096
1097static const struct pipe_buf_operations relay_pipe_buf_ops = {
1098        .release        = relay_pipe_buf_release,
1099        .try_steal      = generic_pipe_buf_try_steal,
1100        .get            = generic_pipe_buf_get,
1101};
1102
1103static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1104{
1105}
1106
1107/*
1108 *      subbuf_splice_actor - splice up to one subbuf's worth of data
1109 */
1110static ssize_t subbuf_splice_actor(struct file *in,
1111                               loff_t *ppos,
1112                               struct pipe_inode_info *pipe,
1113                               size_t len,
1114                               unsigned int flags,
1115                               int *nonpad_ret)
1116{
1117        unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1118        struct rchan_buf *rbuf = in->private_data;
1119        unsigned int subbuf_size = rbuf->chan->subbuf_size;
1120        uint64_t pos = (uint64_t) *ppos;
1121        uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1122        size_t read_start = (size_t) do_div(pos, alloc_size);
1123        size_t read_subbuf = read_start / subbuf_size;
1124        size_t padding = rbuf->padding[read_subbuf];
1125        size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1126        struct page *pages[PIPE_DEF_BUFFERS];
1127        struct partial_page partial[PIPE_DEF_BUFFERS];
1128        struct splice_pipe_desc spd = {
1129                .pages = pages,
1130                .nr_pages = 0,
1131                .nr_pages_max = PIPE_DEF_BUFFERS,
1132                .partial = partial,
1133                .ops = &relay_pipe_buf_ops,
1134                .spd_release = relay_page_release,
1135        };
1136        ssize_t ret;
1137
1138        if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1139                return 0;
1140        if (splice_grow_spd(pipe, &spd))
1141                return -ENOMEM;
1142
1143        /*
1144         * Adjust read len, if longer than what is available
1145         */
1146        if (len > (subbuf_size - read_start % subbuf_size))
1147                len = subbuf_size - read_start % subbuf_size;
1148
1149        subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1150        pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1151        poff = read_start & ~PAGE_MASK;
1152        nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1153
1154        for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1155                unsigned int this_len, this_end, private;
1156                unsigned int cur_pos = read_start + total_len;
1157
1158                if (!len)
1159                        break;
1160
1161                this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1162                private = this_len;
1163
1164                spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1165                spd.partial[spd.nr_pages].offset = poff;
1166
1167                this_end = cur_pos + this_len;
1168                if (this_end >= nonpad_end) {
1169                        this_len = nonpad_end - cur_pos;
1170                        private = this_len + padding;
1171                }
1172                spd.partial[spd.nr_pages].len = this_len;
1173                spd.partial[spd.nr_pages].private = private;
1174
1175                len -= this_len;
1176                total_len += this_len;
1177                poff = 0;
1178                pidx = (pidx + 1) % subbuf_pages;
1179
1180                if (this_end >= nonpad_end) {
1181                        spd.nr_pages++;
1182                        break;
1183                }
1184        }
1185
1186        ret = 0;
1187        if (!spd.nr_pages)
1188                goto out;
1189
1190        ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1191        if (ret < 0 || ret < total_len)
1192                goto out;
1193
1194        if (read_start + ret == nonpad_end)
1195                ret += padding;
1196
1197out:
1198        splice_shrink_spd(&spd);
1199        return ret;
1200}
1201
1202static ssize_t relay_file_splice_read(struct file *in,
1203                                      loff_t *ppos,
1204                                      struct pipe_inode_info *pipe,
1205                                      size_t len,
1206                                      unsigned int flags)
1207{
1208        ssize_t spliced;
1209        int ret;
1210        int nonpad_ret = 0;
1211
1212        ret = 0;
1213        spliced = 0;
1214
1215        while (len && !spliced) {
1216                ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1217                if (ret < 0)
1218                        break;
1219                else if (!ret) {
1220                        if (flags & SPLICE_F_NONBLOCK)
1221                                ret = -EAGAIN;
1222                        break;
1223                }
1224
1225                *ppos += ret;
1226                if (ret > len)
1227                        len = 0;
1228                else
1229                        len -= ret;
1230                spliced += nonpad_ret;
1231                nonpad_ret = 0;
1232        }
1233
1234        if (spliced)
1235                return spliced;
1236
1237        return ret;
1238}
1239
1240const struct file_operations relay_file_operations = {
1241        .open           = relay_file_open,
1242        .poll           = relay_file_poll,
1243        .mmap           = relay_file_mmap,
1244        .read           = relay_file_read,
1245        .llseek         = no_llseek,
1246        .release        = relay_file_release,
1247        .splice_read    = relay_file_splice_read,
1248};
1249EXPORT_SYMBOL_GPL(relay_file_operations);
1250