linux/kernel/sched/deadline.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Deadline Scheduling Class (SCHED_DEADLINE)
   4 *
   5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   6 *
   7 * Tasks that periodically executes their instances for less than their
   8 * runtime won't miss any of their deadlines.
   9 * Tasks that are not periodic or sporadic or that tries to execute more
  10 * than their reserved bandwidth will be slowed down (and may potentially
  11 * miss some of their deadlines), and won't affect any other task.
  12 *
  13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  14 *                    Juri Lelli <juri.lelli@gmail.com>,
  15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  16 *                    Fabio Checconi <fchecconi@gmail.com>
  17 */
  18#include "sched.h"
  19#include "pelt.h"
  20
  21struct dl_bandwidth def_dl_bandwidth;
  22
  23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  24{
  25        return container_of(dl_se, struct task_struct, dl);
  26}
  27
  28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  29{
  30        return container_of(dl_rq, struct rq, dl);
  31}
  32
  33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  34{
  35        struct task_struct *p = dl_task_of(dl_se);
  36        struct rq *rq = task_rq(p);
  37
  38        return &rq->dl;
  39}
  40
  41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  42{
  43        return !RB_EMPTY_NODE(&dl_se->rb_node);
  44}
  45
  46#ifdef CONFIG_RT_MUTEXES
  47static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
  48{
  49        return dl_se->pi_se;
  50}
  51
  52static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
  53{
  54        return pi_of(dl_se) != dl_se;
  55}
  56#else
  57static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
  58{
  59        return dl_se;
  60}
  61
  62static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
  63{
  64        return false;
  65}
  66#endif
  67
  68#ifdef CONFIG_SMP
  69static inline struct dl_bw *dl_bw_of(int i)
  70{
  71        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  72                         "sched RCU must be held");
  73        return &cpu_rq(i)->rd->dl_bw;
  74}
  75
  76static inline int dl_bw_cpus(int i)
  77{
  78        struct root_domain *rd = cpu_rq(i)->rd;
  79        int cpus;
  80
  81        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  82                         "sched RCU must be held");
  83
  84        if (cpumask_subset(rd->span, cpu_active_mask))
  85                return cpumask_weight(rd->span);
  86
  87        cpus = 0;
  88
  89        for_each_cpu_and(i, rd->span, cpu_active_mask)
  90                cpus++;
  91
  92        return cpus;
  93}
  94
  95static inline unsigned long __dl_bw_capacity(int i)
  96{
  97        struct root_domain *rd = cpu_rq(i)->rd;
  98        unsigned long cap = 0;
  99
 100        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 101                         "sched RCU must be held");
 102
 103        for_each_cpu_and(i, rd->span, cpu_active_mask)
 104                cap += capacity_orig_of(i);
 105
 106        return cap;
 107}
 108
 109/*
 110 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
 111 * of the CPU the task is running on rather rd's \Sum CPU capacity.
 112 */
 113static inline unsigned long dl_bw_capacity(int i)
 114{
 115        if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
 116            capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
 117                return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
 118        } else {
 119                return __dl_bw_capacity(i);
 120        }
 121}
 122
 123static inline bool dl_bw_visited(int cpu, u64 gen)
 124{
 125        struct root_domain *rd = cpu_rq(cpu)->rd;
 126
 127        if (rd->visit_gen == gen)
 128                return true;
 129
 130        rd->visit_gen = gen;
 131        return false;
 132}
 133#else
 134static inline struct dl_bw *dl_bw_of(int i)
 135{
 136        return &cpu_rq(i)->dl.dl_bw;
 137}
 138
 139static inline int dl_bw_cpus(int i)
 140{
 141        return 1;
 142}
 143
 144static inline unsigned long dl_bw_capacity(int i)
 145{
 146        return SCHED_CAPACITY_SCALE;
 147}
 148
 149static inline bool dl_bw_visited(int cpu, u64 gen)
 150{
 151        return false;
 152}
 153#endif
 154
 155static inline
 156void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 157{
 158        u64 old = dl_rq->running_bw;
 159
 160        lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 161        dl_rq->running_bw += dl_bw;
 162        SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
 163        SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 164        /* kick cpufreq (see the comment in kernel/sched/sched.h). */
 165        cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 166}
 167
 168static inline
 169void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 170{
 171        u64 old = dl_rq->running_bw;
 172
 173        lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 174        dl_rq->running_bw -= dl_bw;
 175        SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
 176        if (dl_rq->running_bw > old)
 177                dl_rq->running_bw = 0;
 178        /* kick cpufreq (see the comment in kernel/sched/sched.h). */
 179        cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 180}
 181
 182static inline
 183void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 184{
 185        u64 old = dl_rq->this_bw;
 186
 187        lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 188        dl_rq->this_bw += dl_bw;
 189        SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
 190}
 191
 192static inline
 193void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 194{
 195        u64 old = dl_rq->this_bw;
 196
 197        lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 198        dl_rq->this_bw -= dl_bw;
 199        SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
 200        if (dl_rq->this_bw > old)
 201                dl_rq->this_bw = 0;
 202        SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 203}
 204
 205static inline
 206void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 207{
 208        if (!dl_entity_is_special(dl_se))
 209                __add_rq_bw(dl_se->dl_bw, dl_rq);
 210}
 211
 212static inline
 213void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 214{
 215        if (!dl_entity_is_special(dl_se))
 216                __sub_rq_bw(dl_se->dl_bw, dl_rq);
 217}
 218
 219static inline
 220void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 221{
 222        if (!dl_entity_is_special(dl_se))
 223                __add_running_bw(dl_se->dl_bw, dl_rq);
 224}
 225
 226static inline
 227void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 228{
 229        if (!dl_entity_is_special(dl_se))
 230                __sub_running_bw(dl_se->dl_bw, dl_rq);
 231}
 232
 233static void dl_change_utilization(struct task_struct *p, u64 new_bw)
 234{
 235        struct rq *rq;
 236
 237        BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
 238
 239        if (task_on_rq_queued(p))
 240                return;
 241
 242        rq = task_rq(p);
 243        if (p->dl.dl_non_contending) {
 244                sub_running_bw(&p->dl, &rq->dl);
 245                p->dl.dl_non_contending = 0;
 246                /*
 247                 * If the timer handler is currently running and the
 248                 * timer cannot be canceled, inactive_task_timer()
 249                 * will see that dl_not_contending is not set, and
 250                 * will not touch the rq's active utilization,
 251                 * so we are still safe.
 252                 */
 253                if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
 254                        put_task_struct(p);
 255        }
 256        __sub_rq_bw(p->dl.dl_bw, &rq->dl);
 257        __add_rq_bw(new_bw, &rq->dl);
 258}
 259
 260/*
 261 * The utilization of a task cannot be immediately removed from
 262 * the rq active utilization (running_bw) when the task blocks.
 263 * Instead, we have to wait for the so called "0-lag time".
 264 *
 265 * If a task blocks before the "0-lag time", a timer (the inactive
 266 * timer) is armed, and running_bw is decreased when the timer
 267 * fires.
 268 *
 269 * If the task wakes up again before the inactive timer fires,
 270 * the timer is canceled, whereas if the task wakes up after the
 271 * inactive timer fired (and running_bw has been decreased) the
 272 * task's utilization has to be added to running_bw again.
 273 * A flag in the deadline scheduling entity (dl_non_contending)
 274 * is used to avoid race conditions between the inactive timer handler
 275 * and task wakeups.
 276 *
 277 * The following diagram shows how running_bw is updated. A task is
 278 * "ACTIVE" when its utilization contributes to running_bw; an
 279 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 280 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 281 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 282 * time already passed, which does not contribute to running_bw anymore.
 283 *                              +------------------+
 284 *             wakeup           |    ACTIVE        |
 285 *          +------------------>+   contending     |
 286 *          | add_running_bw    |                  |
 287 *          |                   +----+------+------+
 288 *          |                        |      ^
 289 *          |                dequeue |      |
 290 * +--------+-------+                |      |
 291 * |                |   t >= 0-lag   |      | wakeup
 292 * |    INACTIVE    |<---------------+      |
 293 * |                | sub_running_bw |      |
 294 * +--------+-------+                |      |
 295 *          ^                        |      |
 296 *          |              t < 0-lag |      |
 297 *          |                        |      |
 298 *          |                        V      |
 299 *          |                   +----+------+------+
 300 *          | sub_running_bw    |    ACTIVE        |
 301 *          +-------------------+                  |
 302 *            inactive timer    |  non contending  |
 303 *            fired             +------------------+
 304 *
 305 * The task_non_contending() function is invoked when a task
 306 * blocks, and checks if the 0-lag time already passed or
 307 * not (in the first case, it directly updates running_bw;
 308 * in the second case, it arms the inactive timer).
 309 *
 310 * The task_contending() function is invoked when a task wakes
 311 * up, and checks if the task is still in the "ACTIVE non contending"
 312 * state or not (in the second case, it updates running_bw).
 313 */
 314static void task_non_contending(struct task_struct *p)
 315{
 316        struct sched_dl_entity *dl_se = &p->dl;
 317        struct hrtimer *timer = &dl_se->inactive_timer;
 318        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 319        struct rq *rq = rq_of_dl_rq(dl_rq);
 320        s64 zerolag_time;
 321
 322        /*
 323         * If this is a non-deadline task that has been boosted,
 324         * do nothing
 325         */
 326        if (dl_se->dl_runtime == 0)
 327                return;
 328
 329        if (dl_entity_is_special(dl_se))
 330                return;
 331
 332        WARN_ON(dl_se->dl_non_contending);
 333
 334        zerolag_time = dl_se->deadline -
 335                 div64_long((dl_se->runtime * dl_se->dl_period),
 336                        dl_se->dl_runtime);
 337
 338        /*
 339         * Using relative times instead of the absolute "0-lag time"
 340         * allows to simplify the code
 341         */
 342        zerolag_time -= rq_clock(rq);
 343
 344        /*
 345         * If the "0-lag time" already passed, decrease the active
 346         * utilization now, instead of starting a timer
 347         */
 348        if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
 349                if (dl_task(p))
 350                        sub_running_bw(dl_se, dl_rq);
 351                if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
 352                        struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 353
 354                        if (READ_ONCE(p->__state) == TASK_DEAD)
 355                                sub_rq_bw(&p->dl, &rq->dl);
 356                        raw_spin_lock(&dl_b->lock);
 357                        __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
 358                        __dl_clear_params(p);
 359                        raw_spin_unlock(&dl_b->lock);
 360                }
 361
 362                return;
 363        }
 364
 365        dl_se->dl_non_contending = 1;
 366        get_task_struct(p);
 367        hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
 368}
 369
 370static void task_contending(struct sched_dl_entity *dl_se, int flags)
 371{
 372        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 373
 374        /*
 375         * If this is a non-deadline task that has been boosted,
 376         * do nothing
 377         */
 378        if (dl_se->dl_runtime == 0)
 379                return;
 380
 381        if (flags & ENQUEUE_MIGRATED)
 382                add_rq_bw(dl_se, dl_rq);
 383
 384        if (dl_se->dl_non_contending) {
 385                dl_se->dl_non_contending = 0;
 386                /*
 387                 * If the timer handler is currently running and the
 388                 * timer cannot be canceled, inactive_task_timer()
 389                 * will see that dl_not_contending is not set, and
 390                 * will not touch the rq's active utilization,
 391                 * so we are still safe.
 392                 */
 393                if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
 394                        put_task_struct(dl_task_of(dl_se));
 395        } else {
 396                /*
 397                 * Since "dl_non_contending" is not set, the
 398                 * task's utilization has already been removed from
 399                 * active utilization (either when the task blocked,
 400                 * when the "inactive timer" fired).
 401                 * So, add it back.
 402                 */
 403                add_running_bw(dl_se, dl_rq);
 404        }
 405}
 406
 407static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
 408{
 409        struct sched_dl_entity *dl_se = &p->dl;
 410
 411        return dl_rq->root.rb_leftmost == &dl_se->rb_node;
 412}
 413
 414static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
 415
 416void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
 417{
 418        raw_spin_lock_init(&dl_b->dl_runtime_lock);
 419        dl_b->dl_period = period;
 420        dl_b->dl_runtime = runtime;
 421}
 422
 423void init_dl_bw(struct dl_bw *dl_b)
 424{
 425        raw_spin_lock_init(&dl_b->lock);
 426        raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
 427        if (global_rt_runtime() == RUNTIME_INF)
 428                dl_b->bw = -1;
 429        else
 430                dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 431        raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
 432        dl_b->total_bw = 0;
 433}
 434
 435void init_dl_rq(struct dl_rq *dl_rq)
 436{
 437        dl_rq->root = RB_ROOT_CACHED;
 438
 439#ifdef CONFIG_SMP
 440        /* zero means no -deadline tasks */
 441        dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 442
 443        dl_rq->dl_nr_migratory = 0;
 444        dl_rq->overloaded = 0;
 445        dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 446#else
 447        init_dl_bw(&dl_rq->dl_bw);
 448#endif
 449
 450        dl_rq->running_bw = 0;
 451        dl_rq->this_bw = 0;
 452        init_dl_rq_bw_ratio(dl_rq);
 453}
 454
 455#ifdef CONFIG_SMP
 456
 457static inline int dl_overloaded(struct rq *rq)
 458{
 459        return atomic_read(&rq->rd->dlo_count);
 460}
 461
 462static inline void dl_set_overload(struct rq *rq)
 463{
 464        if (!rq->online)
 465                return;
 466
 467        cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 468        /*
 469         * Must be visible before the overload count is
 470         * set (as in sched_rt.c).
 471         *
 472         * Matched by the barrier in pull_dl_task().
 473         */
 474        smp_wmb();
 475        atomic_inc(&rq->rd->dlo_count);
 476}
 477
 478static inline void dl_clear_overload(struct rq *rq)
 479{
 480        if (!rq->online)
 481                return;
 482
 483        atomic_dec(&rq->rd->dlo_count);
 484        cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 485}
 486
 487static void update_dl_migration(struct dl_rq *dl_rq)
 488{
 489        if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 490                if (!dl_rq->overloaded) {
 491                        dl_set_overload(rq_of_dl_rq(dl_rq));
 492                        dl_rq->overloaded = 1;
 493                }
 494        } else if (dl_rq->overloaded) {
 495                dl_clear_overload(rq_of_dl_rq(dl_rq));
 496                dl_rq->overloaded = 0;
 497        }
 498}
 499
 500static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 501{
 502        struct task_struct *p = dl_task_of(dl_se);
 503
 504        if (p->nr_cpus_allowed > 1)
 505                dl_rq->dl_nr_migratory++;
 506
 507        update_dl_migration(dl_rq);
 508}
 509
 510static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 511{
 512        struct task_struct *p = dl_task_of(dl_se);
 513
 514        if (p->nr_cpus_allowed > 1)
 515                dl_rq->dl_nr_migratory--;
 516
 517        update_dl_migration(dl_rq);
 518}
 519
 520#define __node_2_pdl(node) \
 521        rb_entry((node), struct task_struct, pushable_dl_tasks)
 522
 523static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
 524{
 525        return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
 526}
 527
 528/*
 529 * The list of pushable -deadline task is not a plist, like in
 530 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 531 */
 532static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 533{
 534        struct rb_node *leftmost;
 535
 536        BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 537
 538        leftmost = rb_add_cached(&p->pushable_dl_tasks,
 539                                 &rq->dl.pushable_dl_tasks_root,
 540                                 __pushable_less);
 541        if (leftmost)
 542                rq->dl.earliest_dl.next = p->dl.deadline;
 543}
 544
 545static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 546{
 547        struct dl_rq *dl_rq = &rq->dl;
 548        struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
 549        struct rb_node *leftmost;
 550
 551        if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 552                return;
 553
 554        leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
 555        if (leftmost)
 556                dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
 557
 558        RB_CLEAR_NODE(&p->pushable_dl_tasks);
 559}
 560
 561static inline int has_pushable_dl_tasks(struct rq *rq)
 562{
 563        return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 564}
 565
 566static int push_dl_task(struct rq *rq);
 567
 568static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 569{
 570        return rq->online && dl_task(prev);
 571}
 572
 573static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 574static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 575
 576static void push_dl_tasks(struct rq *);
 577static void pull_dl_task(struct rq *);
 578
 579static inline void deadline_queue_push_tasks(struct rq *rq)
 580{
 581        if (!has_pushable_dl_tasks(rq))
 582                return;
 583
 584        queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 585}
 586
 587static inline void deadline_queue_pull_task(struct rq *rq)
 588{
 589        queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 590}
 591
 592static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 593
 594static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 595{
 596        struct rq *later_rq = NULL;
 597        struct dl_bw *dl_b;
 598
 599        later_rq = find_lock_later_rq(p, rq);
 600        if (!later_rq) {
 601                int cpu;
 602
 603                /*
 604                 * If we cannot preempt any rq, fall back to pick any
 605                 * online CPU:
 606                 */
 607                cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
 608                if (cpu >= nr_cpu_ids) {
 609                        /*
 610                         * Failed to find any suitable CPU.
 611                         * The task will never come back!
 612                         */
 613                        BUG_ON(dl_bandwidth_enabled());
 614
 615                        /*
 616                         * If admission control is disabled we
 617                         * try a little harder to let the task
 618                         * run.
 619                         */
 620                        cpu = cpumask_any(cpu_active_mask);
 621                }
 622                later_rq = cpu_rq(cpu);
 623                double_lock_balance(rq, later_rq);
 624        }
 625
 626        if (p->dl.dl_non_contending || p->dl.dl_throttled) {
 627                /*
 628                 * Inactive timer is armed (or callback is running, but
 629                 * waiting for us to release rq locks). In any case, when it
 630                 * will fire (or continue), it will see running_bw of this
 631                 * task migrated to later_rq (and correctly handle it).
 632                 */
 633                sub_running_bw(&p->dl, &rq->dl);
 634                sub_rq_bw(&p->dl, &rq->dl);
 635
 636                add_rq_bw(&p->dl, &later_rq->dl);
 637                add_running_bw(&p->dl, &later_rq->dl);
 638        } else {
 639                sub_rq_bw(&p->dl, &rq->dl);
 640                add_rq_bw(&p->dl, &later_rq->dl);
 641        }
 642
 643        /*
 644         * And we finally need to fixup root_domain(s) bandwidth accounting,
 645         * since p is still hanging out in the old (now moved to default) root
 646         * domain.
 647         */
 648        dl_b = &rq->rd->dl_bw;
 649        raw_spin_lock(&dl_b->lock);
 650        __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
 651        raw_spin_unlock(&dl_b->lock);
 652
 653        dl_b = &later_rq->rd->dl_bw;
 654        raw_spin_lock(&dl_b->lock);
 655        __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
 656        raw_spin_unlock(&dl_b->lock);
 657
 658        set_task_cpu(p, later_rq->cpu);
 659        double_unlock_balance(later_rq, rq);
 660
 661        return later_rq;
 662}
 663
 664#else
 665
 666static inline
 667void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 668{
 669}
 670
 671static inline
 672void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 673{
 674}
 675
 676static inline
 677void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 678{
 679}
 680
 681static inline
 682void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 683{
 684}
 685
 686static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 687{
 688        return false;
 689}
 690
 691static inline void pull_dl_task(struct rq *rq)
 692{
 693}
 694
 695static inline void deadline_queue_push_tasks(struct rq *rq)
 696{
 697}
 698
 699static inline void deadline_queue_pull_task(struct rq *rq)
 700{
 701}
 702#endif /* CONFIG_SMP */
 703
 704static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 705static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 706static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
 707
 708/*
 709 * We are being explicitly informed that a new instance is starting,
 710 * and this means that:
 711 *  - the absolute deadline of the entity has to be placed at
 712 *    current time + relative deadline;
 713 *  - the runtime of the entity has to be set to the maximum value.
 714 *
 715 * The capability of specifying such event is useful whenever a -deadline
 716 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 717 * one, and to (try to!) reconcile itself with its own scheduling
 718 * parameters.
 719 */
 720static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 721{
 722        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 723        struct rq *rq = rq_of_dl_rq(dl_rq);
 724
 725        WARN_ON(is_dl_boosted(dl_se));
 726        WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 727
 728        /*
 729         * We are racing with the deadline timer. So, do nothing because
 730         * the deadline timer handler will take care of properly recharging
 731         * the runtime and postponing the deadline
 732         */
 733        if (dl_se->dl_throttled)
 734                return;
 735
 736        /*
 737         * We use the regular wall clock time to set deadlines in the
 738         * future; in fact, we must consider execution overheads (time
 739         * spent on hardirq context, etc.).
 740         */
 741        dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
 742        dl_se->runtime = dl_se->dl_runtime;
 743}
 744
 745/*
 746 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 747 * possibility of a entity lasting more than what it declared, and thus
 748 * exhausting its runtime.
 749 *
 750 * Here we are interested in making runtime overrun possible, but we do
 751 * not want a entity which is misbehaving to affect the scheduling of all
 752 * other entities.
 753 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 754 * is used, in order to confine each entity within its own bandwidth.
 755 *
 756 * This function deals exactly with that, and ensures that when the runtime
 757 * of a entity is replenished, its deadline is also postponed. That ensures
 758 * the overrunning entity can't interfere with other entity in the system and
 759 * can't make them miss their deadlines. Reasons why this kind of overruns
 760 * could happen are, typically, a entity voluntarily trying to overcome its
 761 * runtime, or it just underestimated it during sched_setattr().
 762 */
 763static void replenish_dl_entity(struct sched_dl_entity *dl_se)
 764{
 765        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 766        struct rq *rq = rq_of_dl_rq(dl_rq);
 767
 768        BUG_ON(pi_of(dl_se)->dl_runtime <= 0);
 769
 770        /*
 771         * This could be the case for a !-dl task that is boosted.
 772         * Just go with full inherited parameters.
 773         */
 774        if (dl_se->dl_deadline == 0) {
 775                dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
 776                dl_se->runtime = pi_of(dl_se)->dl_runtime;
 777        }
 778
 779        if (dl_se->dl_yielded && dl_se->runtime > 0)
 780                dl_se->runtime = 0;
 781
 782        /*
 783         * We keep moving the deadline away until we get some
 784         * available runtime for the entity. This ensures correct
 785         * handling of situations where the runtime overrun is
 786         * arbitrary large.
 787         */
 788        while (dl_se->runtime <= 0) {
 789                dl_se->deadline += pi_of(dl_se)->dl_period;
 790                dl_se->runtime += pi_of(dl_se)->dl_runtime;
 791        }
 792
 793        /*
 794         * At this point, the deadline really should be "in
 795         * the future" with respect to rq->clock. If it's
 796         * not, we are, for some reason, lagging too much!
 797         * Anyway, after having warn userspace abut that,
 798         * we still try to keep the things running by
 799         * resetting the deadline and the budget of the
 800         * entity.
 801         */
 802        if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 803                printk_deferred_once("sched: DL replenish lagged too much\n");
 804                dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
 805                dl_se->runtime = pi_of(dl_se)->dl_runtime;
 806        }
 807
 808        if (dl_se->dl_yielded)
 809                dl_se->dl_yielded = 0;
 810        if (dl_se->dl_throttled)
 811                dl_se->dl_throttled = 0;
 812}
 813
 814/*
 815 * Here we check if --at time t-- an entity (which is probably being
 816 * [re]activated or, in general, enqueued) can use its remaining runtime
 817 * and its current deadline _without_ exceeding the bandwidth it is
 818 * assigned (function returns true if it can't). We are in fact applying
 819 * one of the CBS rules: when a task wakes up, if the residual runtime
 820 * over residual deadline fits within the allocated bandwidth, then we
 821 * can keep the current (absolute) deadline and residual budget without
 822 * disrupting the schedulability of the system. Otherwise, we should
 823 * refill the runtime and set the deadline a period in the future,
 824 * because keeping the current (absolute) deadline of the task would
 825 * result in breaking guarantees promised to other tasks (refer to
 826 * Documentation/scheduler/sched-deadline.rst for more information).
 827 *
 828 * This function returns true if:
 829 *
 830 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 831 *
 832 * IOW we can't recycle current parameters.
 833 *
 834 * Notice that the bandwidth check is done against the deadline. For
 835 * task with deadline equal to period this is the same of using
 836 * dl_period instead of dl_deadline in the equation above.
 837 */
 838static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
 839{
 840        u64 left, right;
 841
 842        /*
 843         * left and right are the two sides of the equation above,
 844         * after a bit of shuffling to use multiplications instead
 845         * of divisions.
 846         *
 847         * Note that none of the time values involved in the two
 848         * multiplications are absolute: dl_deadline and dl_runtime
 849         * are the relative deadline and the maximum runtime of each
 850         * instance, runtime is the runtime left for the last instance
 851         * and (deadline - t), since t is rq->clock, is the time left
 852         * to the (absolute) deadline. Even if overflowing the u64 type
 853         * is very unlikely to occur in both cases, here we scale down
 854         * as we want to avoid that risk at all. Scaling down by 10
 855         * means that we reduce granularity to 1us. We are fine with it,
 856         * since this is only a true/false check and, anyway, thinking
 857         * of anything below microseconds resolution is actually fiction
 858         * (but still we want to give the user that illusion >;).
 859         */
 860        left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 861        right = ((dl_se->deadline - t) >> DL_SCALE) *
 862                (pi_of(dl_se)->dl_runtime >> DL_SCALE);
 863
 864        return dl_time_before(right, left);
 865}
 866
 867/*
 868 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 869 * re-initializing task's runtime and deadline, the revised wakeup
 870 * rule adjusts the task's runtime to avoid the task to overrun its
 871 * density.
 872 *
 873 * Reasoning: a task may overrun the density if:
 874 *    runtime / (deadline - t) > dl_runtime / dl_deadline
 875 *
 876 * Therefore, runtime can be adjusted to:
 877 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 878 *
 879 * In such way that runtime will be equal to the maximum density
 880 * the task can use without breaking any rule.
 881 *
 882 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 883 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 884 */
 885static void
 886update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
 887{
 888        u64 laxity = dl_se->deadline - rq_clock(rq);
 889
 890        /*
 891         * If the task has deadline < period, and the deadline is in the past,
 892         * it should already be throttled before this check.
 893         *
 894         * See update_dl_entity() comments for further details.
 895         */
 896        WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
 897
 898        dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
 899}
 900
 901/*
 902 * Regarding the deadline, a task with implicit deadline has a relative
 903 * deadline == relative period. A task with constrained deadline has a
 904 * relative deadline <= relative period.
 905 *
 906 * We support constrained deadline tasks. However, there are some restrictions
 907 * applied only for tasks which do not have an implicit deadline. See
 908 * update_dl_entity() to know more about such restrictions.
 909 *
 910 * The dl_is_implicit() returns true if the task has an implicit deadline.
 911 */
 912static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
 913{
 914        return dl_se->dl_deadline == dl_se->dl_period;
 915}
 916
 917/*
 918 * When a deadline entity is placed in the runqueue, its runtime and deadline
 919 * might need to be updated. This is done by a CBS wake up rule. There are two
 920 * different rules: 1) the original CBS; and 2) the Revisited CBS.
 921 *
 922 * When the task is starting a new period, the Original CBS is used. In this
 923 * case, the runtime is replenished and a new absolute deadline is set.
 924 *
 925 * When a task is queued before the begin of the next period, using the
 926 * remaining runtime and deadline could make the entity to overflow, see
 927 * dl_entity_overflow() to find more about runtime overflow. When such case
 928 * is detected, the runtime and deadline need to be updated.
 929 *
 930 * If the task has an implicit deadline, i.e., deadline == period, the Original
 931 * CBS is applied. the runtime is replenished and a new absolute deadline is
 932 * set, as in the previous cases.
 933 *
 934 * However, the Original CBS does not work properly for tasks with
 935 * deadline < period, which are said to have a constrained deadline. By
 936 * applying the Original CBS, a constrained deadline task would be able to run
 937 * runtime/deadline in a period. With deadline < period, the task would
 938 * overrun the runtime/period allowed bandwidth, breaking the admission test.
 939 *
 940 * In order to prevent this misbehave, the Revisited CBS is used for
 941 * constrained deadline tasks when a runtime overflow is detected. In the
 942 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
 943 * the remaining runtime of the task is reduced to avoid runtime overflow.
 944 * Please refer to the comments update_dl_revised_wakeup() function to find
 945 * more about the Revised CBS rule.
 946 */
 947static void update_dl_entity(struct sched_dl_entity *dl_se)
 948{
 949        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 950        struct rq *rq = rq_of_dl_rq(dl_rq);
 951
 952        if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 953            dl_entity_overflow(dl_se, rq_clock(rq))) {
 954
 955                if (unlikely(!dl_is_implicit(dl_se) &&
 956                             !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
 957                             !is_dl_boosted(dl_se))) {
 958                        update_dl_revised_wakeup(dl_se, rq);
 959                        return;
 960                }
 961
 962                dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
 963                dl_se->runtime = pi_of(dl_se)->dl_runtime;
 964        }
 965}
 966
 967static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
 968{
 969        return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
 970}
 971
 972/*
 973 * If the entity depleted all its runtime, and if we want it to sleep
 974 * while waiting for some new execution time to become available, we
 975 * set the bandwidth replenishment timer to the replenishment instant
 976 * and try to activate it.
 977 *
 978 * Notice that it is important for the caller to know if the timer
 979 * actually started or not (i.e., the replenishment instant is in
 980 * the future or in the past).
 981 */
 982static int start_dl_timer(struct task_struct *p)
 983{
 984        struct sched_dl_entity *dl_se = &p->dl;
 985        struct hrtimer *timer = &dl_se->dl_timer;
 986        struct rq *rq = task_rq(p);
 987        ktime_t now, act;
 988        s64 delta;
 989
 990        lockdep_assert_rq_held(rq);
 991
 992        /*
 993         * We want the timer to fire at the deadline, but considering
 994         * that it is actually coming from rq->clock and not from
 995         * hrtimer's time base reading.
 996         */
 997        act = ns_to_ktime(dl_next_period(dl_se));
 998        now = hrtimer_cb_get_time(timer);
 999        delta = ktime_to_ns(now) - rq_clock(rq);
1000        act = ktime_add_ns(act, delta);
1001
1002        /*
1003         * If the expiry time already passed, e.g., because the value
1004         * chosen as the deadline is too small, don't even try to
1005         * start the timer in the past!
1006         */
1007        if (ktime_us_delta(act, now) < 0)
1008                return 0;
1009
1010        /*
1011         * !enqueued will guarantee another callback; even if one is already in
1012         * progress. This ensures a balanced {get,put}_task_struct().
1013         *
1014         * The race against __run_timer() clearing the enqueued state is
1015         * harmless because we're holding task_rq()->lock, therefore the timer
1016         * expiring after we've done the check will wait on its task_rq_lock()
1017         * and observe our state.
1018         */
1019        if (!hrtimer_is_queued(timer)) {
1020                get_task_struct(p);
1021                hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1022        }
1023
1024        return 1;
1025}
1026
1027/*
1028 * This is the bandwidth enforcement timer callback. If here, we know
1029 * a task is not on its dl_rq, since the fact that the timer was running
1030 * means the task is throttled and needs a runtime replenishment.
1031 *
1032 * However, what we actually do depends on the fact the task is active,
1033 * (it is on its rq) or has been removed from there by a call to
1034 * dequeue_task_dl(). In the former case we must issue the runtime
1035 * replenishment and add the task back to the dl_rq; in the latter, we just
1036 * do nothing but clearing dl_throttled, so that runtime and deadline
1037 * updating (and the queueing back to dl_rq) will be done by the
1038 * next call to enqueue_task_dl().
1039 */
1040static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1041{
1042        struct sched_dl_entity *dl_se = container_of(timer,
1043                                                     struct sched_dl_entity,
1044                                                     dl_timer);
1045        struct task_struct *p = dl_task_of(dl_se);
1046        struct rq_flags rf;
1047        struct rq *rq;
1048
1049        rq = task_rq_lock(p, &rf);
1050
1051        /*
1052         * The task might have changed its scheduling policy to something
1053         * different than SCHED_DEADLINE (through switched_from_dl()).
1054         */
1055        if (!dl_task(p))
1056                goto unlock;
1057
1058        /*
1059         * The task might have been boosted by someone else and might be in the
1060         * boosting/deboosting path, its not throttled.
1061         */
1062        if (is_dl_boosted(dl_se))
1063                goto unlock;
1064
1065        /*
1066         * Spurious timer due to start_dl_timer() race; or we already received
1067         * a replenishment from rt_mutex_setprio().
1068         */
1069        if (!dl_se->dl_throttled)
1070                goto unlock;
1071
1072        sched_clock_tick();
1073        update_rq_clock(rq);
1074
1075        /*
1076         * If the throttle happened during sched-out; like:
1077         *
1078         *   schedule()
1079         *     deactivate_task()
1080         *       dequeue_task_dl()
1081         *         update_curr_dl()
1082         *           start_dl_timer()
1083         *         __dequeue_task_dl()
1084         *     prev->on_rq = 0;
1085         *
1086         * We can be both throttled and !queued. Replenish the counter
1087         * but do not enqueue -- wait for our wakeup to do that.
1088         */
1089        if (!task_on_rq_queued(p)) {
1090                replenish_dl_entity(dl_se);
1091                goto unlock;
1092        }
1093
1094#ifdef CONFIG_SMP
1095        if (unlikely(!rq->online)) {
1096                /*
1097                 * If the runqueue is no longer available, migrate the
1098                 * task elsewhere. This necessarily changes rq.
1099                 */
1100                lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1101                rq = dl_task_offline_migration(rq, p);
1102                rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1103                update_rq_clock(rq);
1104
1105                /*
1106                 * Now that the task has been migrated to the new RQ and we
1107                 * have that locked, proceed as normal and enqueue the task
1108                 * there.
1109                 */
1110        }
1111#endif
1112
1113        enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1114        if (dl_task(rq->curr))
1115                check_preempt_curr_dl(rq, p, 0);
1116        else
1117                resched_curr(rq);
1118
1119#ifdef CONFIG_SMP
1120        /*
1121         * Queueing this task back might have overloaded rq, check if we need
1122         * to kick someone away.
1123         */
1124        if (has_pushable_dl_tasks(rq)) {
1125                /*
1126                 * Nothing relies on rq->lock after this, so its safe to drop
1127                 * rq->lock.
1128                 */
1129                rq_unpin_lock(rq, &rf);
1130                push_dl_task(rq);
1131                rq_repin_lock(rq, &rf);
1132        }
1133#endif
1134
1135unlock:
1136        task_rq_unlock(rq, p, &rf);
1137
1138        /*
1139         * This can free the task_struct, including this hrtimer, do not touch
1140         * anything related to that after this.
1141         */
1142        put_task_struct(p);
1143
1144        return HRTIMER_NORESTART;
1145}
1146
1147void init_dl_task_timer(struct sched_dl_entity *dl_se)
1148{
1149        struct hrtimer *timer = &dl_se->dl_timer;
1150
1151        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1152        timer->function = dl_task_timer;
1153}
1154
1155/*
1156 * During the activation, CBS checks if it can reuse the current task's
1157 * runtime and period. If the deadline of the task is in the past, CBS
1158 * cannot use the runtime, and so it replenishes the task. This rule
1159 * works fine for implicit deadline tasks (deadline == period), and the
1160 * CBS was designed for implicit deadline tasks. However, a task with
1161 * constrained deadline (deadline < period) might be awakened after the
1162 * deadline, but before the next period. In this case, replenishing the
1163 * task would allow it to run for runtime / deadline. As in this case
1164 * deadline < period, CBS enables a task to run for more than the
1165 * runtime / period. In a very loaded system, this can cause a domino
1166 * effect, making other tasks miss their deadlines.
1167 *
1168 * To avoid this problem, in the activation of a constrained deadline
1169 * task after the deadline but before the next period, throttle the
1170 * task and set the replenishing timer to the begin of the next period,
1171 * unless it is boosted.
1172 */
1173static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1174{
1175        struct task_struct *p = dl_task_of(dl_se);
1176        struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1177
1178        if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1179            dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1180                if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1181                        return;
1182                dl_se->dl_throttled = 1;
1183                if (dl_se->runtime > 0)
1184                        dl_se->runtime = 0;
1185        }
1186}
1187
1188static
1189int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1190{
1191        return (dl_se->runtime <= 0);
1192}
1193
1194extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1195
1196/*
1197 * This function implements the GRUB accounting rule:
1198 * according to the GRUB reclaiming algorithm, the runtime is
1199 * not decreased as "dq = -dt", but as
1200 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1201 * where u is the utilization of the task, Umax is the maximum reclaimable
1202 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1203 * as the difference between the "total runqueue utilization" and the
1204 * runqueue active utilization, and Uextra is the (per runqueue) extra
1205 * reclaimable utilization.
1206 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1207 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1208 * BW_SHIFT.
1209 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT,
1210 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1211 * Since delta is a 64 bit variable, to have an overflow its value
1212 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1213 * So, overflow is not an issue here.
1214 */
1215static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1216{
1217        u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1218        u64 u_act;
1219        u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1220
1221        /*
1222         * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1223         * we compare u_inact + rq->dl.extra_bw with
1224         * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1225         * u_inact + rq->dl.extra_bw can be larger than
1226         * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1227         * leading to wrong results)
1228         */
1229        if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1230                u_act = u_act_min;
1231        else
1232                u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1233
1234        return (delta * u_act) >> BW_SHIFT;
1235}
1236
1237/*
1238 * Update the current task's runtime statistics (provided it is still
1239 * a -deadline task and has not been removed from the dl_rq).
1240 */
1241static void update_curr_dl(struct rq *rq)
1242{
1243        struct task_struct *curr = rq->curr;
1244        struct sched_dl_entity *dl_se = &curr->dl;
1245        u64 delta_exec, scaled_delta_exec;
1246        int cpu = cpu_of(rq);
1247        u64 now;
1248
1249        if (!dl_task(curr) || !on_dl_rq(dl_se))
1250                return;
1251
1252        /*
1253         * Consumed budget is computed considering the time as
1254         * observed by schedulable tasks (excluding time spent
1255         * in hardirq context, etc.). Deadlines are instead
1256         * computed using hard walltime. This seems to be the more
1257         * natural solution, but the full ramifications of this
1258         * approach need further study.
1259         */
1260        now = rq_clock_task(rq);
1261        delta_exec = now - curr->se.exec_start;
1262        if (unlikely((s64)delta_exec <= 0)) {
1263                if (unlikely(dl_se->dl_yielded))
1264                        goto throttle;
1265                return;
1266        }
1267
1268        schedstat_set(curr->se.statistics.exec_max,
1269                      max(curr->se.statistics.exec_max, delta_exec));
1270
1271        curr->se.sum_exec_runtime += delta_exec;
1272        account_group_exec_runtime(curr, delta_exec);
1273
1274        curr->se.exec_start = now;
1275        cgroup_account_cputime(curr, delta_exec);
1276
1277        if (dl_entity_is_special(dl_se))
1278                return;
1279
1280        /*
1281         * For tasks that participate in GRUB, we implement GRUB-PA: the
1282         * spare reclaimed bandwidth is used to clock down frequency.
1283         *
1284         * For the others, we still need to scale reservation parameters
1285         * according to current frequency and CPU maximum capacity.
1286         */
1287        if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1288                scaled_delta_exec = grub_reclaim(delta_exec,
1289                                                 rq,
1290                                                 &curr->dl);
1291        } else {
1292                unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1293                unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1294
1295                scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1296                scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1297        }
1298
1299        dl_se->runtime -= scaled_delta_exec;
1300
1301throttle:
1302        if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1303                dl_se->dl_throttled = 1;
1304
1305                /* If requested, inform the user about runtime overruns. */
1306                if (dl_runtime_exceeded(dl_se) &&
1307                    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1308                        dl_se->dl_overrun = 1;
1309
1310                __dequeue_task_dl(rq, curr, 0);
1311                if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1312                        enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1313
1314                if (!is_leftmost(curr, &rq->dl))
1315                        resched_curr(rq);
1316        }
1317
1318        /*
1319         * Because -- for now -- we share the rt bandwidth, we need to
1320         * account our runtime there too, otherwise actual rt tasks
1321         * would be able to exceed the shared quota.
1322         *
1323         * Account to the root rt group for now.
1324         *
1325         * The solution we're working towards is having the RT groups scheduled
1326         * using deadline servers -- however there's a few nasties to figure
1327         * out before that can happen.
1328         */
1329        if (rt_bandwidth_enabled()) {
1330                struct rt_rq *rt_rq = &rq->rt;
1331
1332                raw_spin_lock(&rt_rq->rt_runtime_lock);
1333                /*
1334                 * We'll let actual RT tasks worry about the overflow here, we
1335                 * have our own CBS to keep us inline; only account when RT
1336                 * bandwidth is relevant.
1337                 */
1338                if (sched_rt_bandwidth_account(rt_rq))
1339                        rt_rq->rt_time += delta_exec;
1340                raw_spin_unlock(&rt_rq->rt_runtime_lock);
1341        }
1342}
1343
1344static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1345{
1346        struct sched_dl_entity *dl_se = container_of(timer,
1347                                                     struct sched_dl_entity,
1348                                                     inactive_timer);
1349        struct task_struct *p = dl_task_of(dl_se);
1350        struct rq_flags rf;
1351        struct rq *rq;
1352
1353        rq = task_rq_lock(p, &rf);
1354
1355        sched_clock_tick();
1356        update_rq_clock(rq);
1357
1358        if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1359                struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1360
1361                if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1362                        sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1363                        sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1364                        dl_se->dl_non_contending = 0;
1365                }
1366
1367                raw_spin_lock(&dl_b->lock);
1368                __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1369                raw_spin_unlock(&dl_b->lock);
1370                __dl_clear_params(p);
1371
1372                goto unlock;
1373        }
1374        if (dl_se->dl_non_contending == 0)
1375                goto unlock;
1376
1377        sub_running_bw(dl_se, &rq->dl);
1378        dl_se->dl_non_contending = 0;
1379unlock:
1380        task_rq_unlock(rq, p, &rf);
1381        put_task_struct(p);
1382
1383        return HRTIMER_NORESTART;
1384}
1385
1386void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1387{
1388        struct hrtimer *timer = &dl_se->inactive_timer;
1389
1390        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1391        timer->function = inactive_task_timer;
1392}
1393
1394#ifdef CONFIG_SMP
1395
1396static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1397{
1398        struct rq *rq = rq_of_dl_rq(dl_rq);
1399
1400        if (dl_rq->earliest_dl.curr == 0 ||
1401            dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1402                if (dl_rq->earliest_dl.curr == 0)
1403                        cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1404                dl_rq->earliest_dl.curr = deadline;
1405                cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1406        }
1407}
1408
1409static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1410{
1411        struct rq *rq = rq_of_dl_rq(dl_rq);
1412
1413        /*
1414         * Since we may have removed our earliest (and/or next earliest)
1415         * task we must recompute them.
1416         */
1417        if (!dl_rq->dl_nr_running) {
1418                dl_rq->earliest_dl.curr = 0;
1419                dl_rq->earliest_dl.next = 0;
1420                cpudl_clear(&rq->rd->cpudl, rq->cpu);
1421                cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1422        } else {
1423                struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1424                struct sched_dl_entity *entry;
1425
1426                entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1427                dl_rq->earliest_dl.curr = entry->deadline;
1428                cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1429        }
1430}
1431
1432#else
1433
1434static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1435static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1436
1437#endif /* CONFIG_SMP */
1438
1439static inline
1440void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1441{
1442        int prio = dl_task_of(dl_se)->prio;
1443        u64 deadline = dl_se->deadline;
1444
1445        WARN_ON(!dl_prio(prio));
1446        dl_rq->dl_nr_running++;
1447        add_nr_running(rq_of_dl_rq(dl_rq), 1);
1448
1449        inc_dl_deadline(dl_rq, deadline);
1450        inc_dl_migration(dl_se, dl_rq);
1451}
1452
1453static inline
1454void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1455{
1456        int prio = dl_task_of(dl_se)->prio;
1457
1458        WARN_ON(!dl_prio(prio));
1459        WARN_ON(!dl_rq->dl_nr_running);
1460        dl_rq->dl_nr_running--;
1461        sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1462
1463        dec_dl_deadline(dl_rq, dl_se->deadline);
1464        dec_dl_migration(dl_se, dl_rq);
1465}
1466
1467#define __node_2_dle(node) \
1468        rb_entry((node), struct sched_dl_entity, rb_node)
1469
1470static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1471{
1472        return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1473}
1474
1475static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1476{
1477        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1478
1479        BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1480
1481        rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1482
1483        inc_dl_tasks(dl_se, dl_rq);
1484}
1485
1486static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1487{
1488        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1489
1490        if (RB_EMPTY_NODE(&dl_se->rb_node))
1491                return;
1492
1493        rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1494
1495        RB_CLEAR_NODE(&dl_se->rb_node);
1496
1497        dec_dl_tasks(dl_se, dl_rq);
1498}
1499
1500static void
1501enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1502{
1503        BUG_ON(on_dl_rq(dl_se));
1504
1505        /*
1506         * If this is a wakeup or a new instance, the scheduling
1507         * parameters of the task might need updating. Otherwise,
1508         * we want a replenishment of its runtime.
1509         */
1510        if (flags & ENQUEUE_WAKEUP) {
1511                task_contending(dl_se, flags);
1512                update_dl_entity(dl_se);
1513        } else if (flags & ENQUEUE_REPLENISH) {
1514                replenish_dl_entity(dl_se);
1515        } else if ((flags & ENQUEUE_RESTORE) &&
1516                  dl_time_before(dl_se->deadline,
1517                                 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1518                setup_new_dl_entity(dl_se);
1519        }
1520
1521        __enqueue_dl_entity(dl_se);
1522}
1523
1524static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1525{
1526        __dequeue_dl_entity(dl_se);
1527}
1528
1529static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1530{
1531        if (is_dl_boosted(&p->dl)) {
1532                /*
1533                 * Because of delays in the detection of the overrun of a
1534                 * thread's runtime, it might be the case that a thread
1535                 * goes to sleep in a rt mutex with negative runtime. As
1536                 * a consequence, the thread will be throttled.
1537                 *
1538                 * While waiting for the mutex, this thread can also be
1539                 * boosted via PI, resulting in a thread that is throttled
1540                 * and boosted at the same time.
1541                 *
1542                 * In this case, the boost overrides the throttle.
1543                 */
1544                if (p->dl.dl_throttled) {
1545                        /*
1546                         * The replenish timer needs to be canceled. No
1547                         * problem if it fires concurrently: boosted threads
1548                         * are ignored in dl_task_timer().
1549                         */
1550                        hrtimer_try_to_cancel(&p->dl.dl_timer);
1551                        p->dl.dl_throttled = 0;
1552                }
1553        } else if (!dl_prio(p->normal_prio)) {
1554                /*
1555                 * Special case in which we have a !SCHED_DEADLINE task that is going
1556                 * to be deboosted, but exceeds its runtime while doing so. No point in
1557                 * replenishing it, as it's going to return back to its original
1558                 * scheduling class after this. If it has been throttled, we need to
1559                 * clear the flag, otherwise the task may wake up as throttled after
1560                 * being boosted again with no means to replenish the runtime and clear
1561                 * the throttle.
1562                 */
1563                p->dl.dl_throttled = 0;
1564                BUG_ON(!is_dl_boosted(&p->dl) || flags != ENQUEUE_REPLENISH);
1565                return;
1566        }
1567
1568        /*
1569         * Check if a constrained deadline task was activated
1570         * after the deadline but before the next period.
1571         * If that is the case, the task will be throttled and
1572         * the replenishment timer will be set to the next period.
1573         */
1574        if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1575                dl_check_constrained_dl(&p->dl);
1576
1577        if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1578                add_rq_bw(&p->dl, &rq->dl);
1579                add_running_bw(&p->dl, &rq->dl);
1580        }
1581
1582        /*
1583         * If p is throttled, we do not enqueue it. In fact, if it exhausted
1584         * its budget it needs a replenishment and, since it now is on
1585         * its rq, the bandwidth timer callback (which clearly has not
1586         * run yet) will take care of this.
1587         * However, the active utilization does not depend on the fact
1588         * that the task is on the runqueue or not (but depends on the
1589         * task's state - in GRUB parlance, "inactive" vs "active contending").
1590         * In other words, even if a task is throttled its utilization must
1591         * be counted in the active utilization; hence, we need to call
1592         * add_running_bw().
1593         */
1594        if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1595                if (flags & ENQUEUE_WAKEUP)
1596                        task_contending(&p->dl, flags);
1597
1598                return;
1599        }
1600
1601        enqueue_dl_entity(&p->dl, flags);
1602
1603        if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1604                enqueue_pushable_dl_task(rq, p);
1605}
1606
1607static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1608{
1609        dequeue_dl_entity(&p->dl);
1610        dequeue_pushable_dl_task(rq, p);
1611}
1612
1613static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1614{
1615        update_curr_dl(rq);
1616        __dequeue_task_dl(rq, p, flags);
1617
1618        if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1619                sub_running_bw(&p->dl, &rq->dl);
1620                sub_rq_bw(&p->dl, &rq->dl);
1621        }
1622
1623        /*
1624         * This check allows to start the inactive timer (or to immediately
1625         * decrease the active utilization, if needed) in two cases:
1626         * when the task blocks and when it is terminating
1627         * (p->state == TASK_DEAD). We can handle the two cases in the same
1628         * way, because from GRUB's point of view the same thing is happening
1629         * (the task moves from "active contending" to "active non contending"
1630         * or "inactive")
1631         */
1632        if (flags & DEQUEUE_SLEEP)
1633                task_non_contending(p);
1634}
1635
1636/*
1637 * Yield task semantic for -deadline tasks is:
1638 *
1639 *   get off from the CPU until our next instance, with
1640 *   a new runtime. This is of little use now, since we
1641 *   don't have a bandwidth reclaiming mechanism. Anyway,
1642 *   bandwidth reclaiming is planned for the future, and
1643 *   yield_task_dl will indicate that some spare budget
1644 *   is available for other task instances to use it.
1645 */
1646static void yield_task_dl(struct rq *rq)
1647{
1648        /*
1649         * We make the task go to sleep until its current deadline by
1650         * forcing its runtime to zero. This way, update_curr_dl() stops
1651         * it and the bandwidth timer will wake it up and will give it
1652         * new scheduling parameters (thanks to dl_yielded=1).
1653         */
1654        rq->curr->dl.dl_yielded = 1;
1655
1656        update_rq_clock(rq);
1657        update_curr_dl(rq);
1658        /*
1659         * Tell update_rq_clock() that we've just updated,
1660         * so we don't do microscopic update in schedule()
1661         * and double the fastpath cost.
1662         */
1663        rq_clock_skip_update(rq);
1664}
1665
1666#ifdef CONFIG_SMP
1667
1668static int find_later_rq(struct task_struct *task);
1669
1670static int
1671select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1672{
1673        struct task_struct *curr;
1674        bool select_rq;
1675        struct rq *rq;
1676
1677        if (!(flags & WF_TTWU))
1678                goto out;
1679
1680        rq = cpu_rq(cpu);
1681
1682        rcu_read_lock();
1683        curr = READ_ONCE(rq->curr); /* unlocked access */
1684
1685        /*
1686         * If we are dealing with a -deadline task, we must
1687         * decide where to wake it up.
1688         * If it has a later deadline and the current task
1689         * on this rq can't move (provided the waking task
1690         * can!) we prefer to send it somewhere else. On the
1691         * other hand, if it has a shorter deadline, we
1692         * try to make it stay here, it might be important.
1693         */
1694        select_rq = unlikely(dl_task(curr)) &&
1695                    (curr->nr_cpus_allowed < 2 ||
1696                     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1697                    p->nr_cpus_allowed > 1;
1698
1699        /*
1700         * Take the capacity of the CPU into account to
1701         * ensure it fits the requirement of the task.
1702         */
1703        if (static_branch_unlikely(&sched_asym_cpucapacity))
1704                select_rq |= !dl_task_fits_capacity(p, cpu);
1705
1706        if (select_rq) {
1707                int target = find_later_rq(p);
1708
1709                if (target != -1 &&
1710                                (dl_time_before(p->dl.deadline,
1711                                        cpu_rq(target)->dl.earliest_dl.curr) ||
1712                                (cpu_rq(target)->dl.dl_nr_running == 0)))
1713                        cpu = target;
1714        }
1715        rcu_read_unlock();
1716
1717out:
1718        return cpu;
1719}
1720
1721static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1722{
1723        struct rq *rq;
1724
1725        if (READ_ONCE(p->__state) != TASK_WAKING)
1726                return;
1727
1728        rq = task_rq(p);
1729        /*
1730         * Since p->state == TASK_WAKING, set_task_cpu() has been called
1731         * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1732         * rq->lock is not... So, lock it
1733         */
1734        raw_spin_rq_lock(rq);
1735        if (p->dl.dl_non_contending) {
1736                update_rq_clock(rq);
1737                sub_running_bw(&p->dl, &rq->dl);
1738                p->dl.dl_non_contending = 0;
1739                /*
1740                 * If the timer handler is currently running and the
1741                 * timer cannot be canceled, inactive_task_timer()
1742                 * will see that dl_not_contending is not set, and
1743                 * will not touch the rq's active utilization,
1744                 * so we are still safe.
1745                 */
1746                if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1747                        put_task_struct(p);
1748        }
1749        sub_rq_bw(&p->dl, &rq->dl);
1750        raw_spin_rq_unlock(rq);
1751}
1752
1753static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1754{
1755        /*
1756         * Current can't be migrated, useless to reschedule,
1757         * let's hope p can move out.
1758         */
1759        if (rq->curr->nr_cpus_allowed == 1 ||
1760            !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1761                return;
1762
1763        /*
1764         * p is migratable, so let's not schedule it and
1765         * see if it is pushed or pulled somewhere else.
1766         */
1767        if (p->nr_cpus_allowed != 1 &&
1768            cpudl_find(&rq->rd->cpudl, p, NULL))
1769                return;
1770
1771        resched_curr(rq);
1772}
1773
1774static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1775{
1776        if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1777                /*
1778                 * This is OK, because current is on_cpu, which avoids it being
1779                 * picked for load-balance and preemption/IRQs are still
1780                 * disabled avoiding further scheduler activity on it and we've
1781                 * not yet started the picking loop.
1782                 */
1783                rq_unpin_lock(rq, rf);
1784                pull_dl_task(rq);
1785                rq_repin_lock(rq, rf);
1786        }
1787
1788        return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1789}
1790#endif /* CONFIG_SMP */
1791
1792/*
1793 * Only called when both the current and waking task are -deadline
1794 * tasks.
1795 */
1796static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1797                                  int flags)
1798{
1799        if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1800                resched_curr(rq);
1801                return;
1802        }
1803
1804#ifdef CONFIG_SMP
1805        /*
1806         * In the unlikely case current and p have the same deadline
1807         * let us try to decide what's the best thing to do...
1808         */
1809        if ((p->dl.deadline == rq->curr->dl.deadline) &&
1810            !test_tsk_need_resched(rq->curr))
1811                check_preempt_equal_dl(rq, p);
1812#endif /* CONFIG_SMP */
1813}
1814
1815#ifdef CONFIG_SCHED_HRTICK
1816static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1817{
1818        hrtick_start(rq, p->dl.runtime);
1819}
1820#else /* !CONFIG_SCHED_HRTICK */
1821static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1822{
1823}
1824#endif
1825
1826static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1827{
1828        p->se.exec_start = rq_clock_task(rq);
1829
1830        /* You can't push away the running task */
1831        dequeue_pushable_dl_task(rq, p);
1832
1833        if (!first)
1834                return;
1835
1836        if (hrtick_enabled_dl(rq))
1837                start_hrtick_dl(rq, p);
1838
1839        if (rq->curr->sched_class != &dl_sched_class)
1840                update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1841
1842        deadline_queue_push_tasks(rq);
1843}
1844
1845static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1846                                                   struct dl_rq *dl_rq)
1847{
1848        struct rb_node *left = rb_first_cached(&dl_rq->root);
1849
1850        if (!left)
1851                return NULL;
1852
1853        return rb_entry(left, struct sched_dl_entity, rb_node);
1854}
1855
1856static struct task_struct *pick_task_dl(struct rq *rq)
1857{
1858        struct sched_dl_entity *dl_se;
1859        struct dl_rq *dl_rq = &rq->dl;
1860        struct task_struct *p;
1861
1862        if (!sched_dl_runnable(rq))
1863                return NULL;
1864
1865        dl_se = pick_next_dl_entity(rq, dl_rq);
1866        BUG_ON(!dl_se);
1867        p = dl_task_of(dl_se);
1868
1869        return p;
1870}
1871
1872static struct task_struct *pick_next_task_dl(struct rq *rq)
1873{
1874        struct task_struct *p;
1875
1876        p = pick_task_dl(rq);
1877        if (p)
1878                set_next_task_dl(rq, p, true);
1879
1880        return p;
1881}
1882
1883static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1884{
1885        update_curr_dl(rq);
1886
1887        update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1888        if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1889                enqueue_pushable_dl_task(rq, p);
1890}
1891
1892/*
1893 * scheduler tick hitting a task of our scheduling class.
1894 *
1895 * NOTE: This function can be called remotely by the tick offload that
1896 * goes along full dynticks. Therefore no local assumption can be made
1897 * and everything must be accessed through the @rq and @curr passed in
1898 * parameters.
1899 */
1900static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1901{
1902        update_curr_dl(rq);
1903
1904        update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1905        /*
1906         * Even when we have runtime, update_curr_dl() might have resulted in us
1907         * not being the leftmost task anymore. In that case NEED_RESCHED will
1908         * be set and schedule() will start a new hrtick for the next task.
1909         */
1910        if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
1911            is_leftmost(p, &rq->dl))
1912                start_hrtick_dl(rq, p);
1913}
1914
1915static void task_fork_dl(struct task_struct *p)
1916{
1917        /*
1918         * SCHED_DEADLINE tasks cannot fork and this is achieved through
1919         * sched_fork()
1920         */
1921}
1922
1923#ifdef CONFIG_SMP
1924
1925/* Only try algorithms three times */
1926#define DL_MAX_TRIES 3
1927
1928static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1929{
1930        if (!task_running(rq, p) &&
1931            cpumask_test_cpu(cpu, &p->cpus_mask))
1932                return 1;
1933        return 0;
1934}
1935
1936/*
1937 * Return the earliest pushable rq's task, which is suitable to be executed
1938 * on the CPU, NULL otherwise:
1939 */
1940static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1941{
1942        struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1943        struct task_struct *p = NULL;
1944
1945        if (!has_pushable_dl_tasks(rq))
1946                return NULL;
1947
1948next_node:
1949        if (next_node) {
1950                p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1951
1952                if (pick_dl_task(rq, p, cpu))
1953                        return p;
1954
1955                next_node = rb_next(next_node);
1956                goto next_node;
1957        }
1958
1959        return NULL;
1960}
1961
1962static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1963
1964static int find_later_rq(struct task_struct *task)
1965{
1966        struct sched_domain *sd;
1967        struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1968        int this_cpu = smp_processor_id();
1969        int cpu = task_cpu(task);
1970
1971        /* Make sure the mask is initialized first */
1972        if (unlikely(!later_mask))
1973                return -1;
1974
1975        if (task->nr_cpus_allowed == 1)
1976                return -1;
1977
1978        /*
1979         * We have to consider system topology and task affinity
1980         * first, then we can look for a suitable CPU.
1981         */
1982        if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1983                return -1;
1984
1985        /*
1986         * If we are here, some targets have been found, including
1987         * the most suitable which is, among the runqueues where the
1988         * current tasks have later deadlines than the task's one, the
1989         * rq with the latest possible one.
1990         *
1991         * Now we check how well this matches with task's
1992         * affinity and system topology.
1993         *
1994         * The last CPU where the task run is our first
1995         * guess, since it is most likely cache-hot there.
1996         */
1997        if (cpumask_test_cpu(cpu, later_mask))
1998                return cpu;
1999        /*
2000         * Check if this_cpu is to be skipped (i.e., it is
2001         * not in the mask) or not.
2002         */
2003        if (!cpumask_test_cpu(this_cpu, later_mask))
2004                this_cpu = -1;
2005
2006        rcu_read_lock();
2007        for_each_domain(cpu, sd) {
2008                if (sd->flags & SD_WAKE_AFFINE) {
2009                        int best_cpu;
2010
2011                        /*
2012                         * If possible, preempting this_cpu is
2013                         * cheaper than migrating.
2014                         */
2015                        if (this_cpu != -1 &&
2016                            cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2017                                rcu_read_unlock();
2018                                return this_cpu;
2019                        }
2020
2021                        best_cpu = cpumask_any_and_distribute(later_mask,
2022                                                              sched_domain_span(sd));
2023                        /*
2024                         * Last chance: if a CPU being in both later_mask
2025                         * and current sd span is valid, that becomes our
2026                         * choice. Of course, the latest possible CPU is
2027                         * already under consideration through later_mask.
2028                         */
2029                        if (best_cpu < nr_cpu_ids) {
2030                                rcu_read_unlock();
2031                                return best_cpu;
2032                        }
2033                }
2034        }
2035        rcu_read_unlock();
2036
2037        /*
2038         * At this point, all our guesses failed, we just return
2039         * 'something', and let the caller sort the things out.
2040         */
2041        if (this_cpu != -1)
2042                return this_cpu;
2043
2044        cpu = cpumask_any_distribute(later_mask);
2045        if (cpu < nr_cpu_ids)
2046                return cpu;
2047
2048        return -1;
2049}
2050
2051/* Locks the rq it finds */
2052static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2053{
2054        struct rq *later_rq = NULL;
2055        int tries;
2056        int cpu;
2057
2058        for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2059                cpu = find_later_rq(task);
2060
2061                if ((cpu == -1) || (cpu == rq->cpu))
2062                        break;
2063
2064                later_rq = cpu_rq(cpu);
2065
2066                if (later_rq->dl.dl_nr_running &&
2067                    !dl_time_before(task->dl.deadline,
2068                                        later_rq->dl.earliest_dl.curr)) {
2069                        /*
2070                         * Target rq has tasks of equal or earlier deadline,
2071                         * retrying does not release any lock and is unlikely
2072                         * to yield a different result.
2073                         */
2074                        later_rq = NULL;
2075                        break;
2076                }
2077
2078                /* Retry if something changed. */
2079                if (double_lock_balance(rq, later_rq)) {
2080                        if (unlikely(task_rq(task) != rq ||
2081                                     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2082                                     task_running(rq, task) ||
2083                                     !dl_task(task) ||
2084                                     !task_on_rq_queued(task))) {
2085                                double_unlock_balance(rq, later_rq);
2086                                later_rq = NULL;
2087                                break;
2088                        }
2089                }
2090
2091                /*
2092                 * If the rq we found has no -deadline task, or
2093                 * its earliest one has a later deadline than our
2094                 * task, the rq is a good one.
2095                 */
2096                if (!later_rq->dl.dl_nr_running ||
2097                    dl_time_before(task->dl.deadline,
2098                                   later_rq->dl.earliest_dl.curr))
2099                        break;
2100
2101                /* Otherwise we try again. */
2102                double_unlock_balance(rq, later_rq);
2103                later_rq = NULL;
2104        }
2105
2106        return later_rq;
2107}
2108
2109static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2110{
2111        struct task_struct *p;
2112
2113        if (!has_pushable_dl_tasks(rq))
2114                return NULL;
2115
2116        p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2117                     struct task_struct, pushable_dl_tasks);
2118
2119        BUG_ON(rq->cpu != task_cpu(p));
2120        BUG_ON(task_current(rq, p));
2121        BUG_ON(p->nr_cpus_allowed <= 1);
2122
2123        BUG_ON(!task_on_rq_queued(p));
2124        BUG_ON(!dl_task(p));
2125
2126        return p;
2127}
2128
2129/*
2130 * See if the non running -deadline tasks on this rq
2131 * can be sent to some other CPU where they can preempt
2132 * and start executing.
2133 */
2134static int push_dl_task(struct rq *rq)
2135{
2136        struct task_struct *next_task;
2137        struct rq *later_rq;
2138        int ret = 0;
2139
2140        if (!rq->dl.overloaded)
2141                return 0;
2142
2143        next_task = pick_next_pushable_dl_task(rq);
2144        if (!next_task)
2145                return 0;
2146
2147retry:
2148        if (is_migration_disabled(next_task))
2149                return 0;
2150
2151        if (WARN_ON(next_task == rq->curr))
2152                return 0;
2153
2154        /*
2155         * If next_task preempts rq->curr, and rq->curr
2156         * can move away, it makes sense to just reschedule
2157         * without going further in pushing next_task.
2158         */
2159        if (dl_task(rq->curr) &&
2160            dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2161            rq->curr->nr_cpus_allowed > 1) {
2162                resched_curr(rq);
2163                return 0;
2164        }
2165
2166        /* We might release rq lock */
2167        get_task_struct(next_task);
2168
2169        /* Will lock the rq it'll find */
2170        later_rq = find_lock_later_rq(next_task, rq);
2171        if (!later_rq) {
2172                struct task_struct *task;
2173
2174                /*
2175                 * We must check all this again, since
2176                 * find_lock_later_rq releases rq->lock and it is
2177                 * then possible that next_task has migrated.
2178                 */
2179                task = pick_next_pushable_dl_task(rq);
2180                if (task == next_task) {
2181                        /*
2182                         * The task is still there. We don't try
2183                         * again, some other CPU will pull it when ready.
2184                         */
2185                        goto out;
2186                }
2187
2188                if (!task)
2189                        /* No more tasks */
2190                        goto out;
2191
2192                put_task_struct(next_task);
2193                next_task = task;
2194                goto retry;
2195        }
2196
2197        deactivate_task(rq, next_task, 0);
2198        set_task_cpu(next_task, later_rq->cpu);
2199
2200        /*
2201         * Update the later_rq clock here, because the clock is used
2202         * by the cpufreq_update_util() inside __add_running_bw().
2203         */
2204        update_rq_clock(later_rq);
2205        activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2206        ret = 1;
2207
2208        resched_curr(later_rq);
2209
2210        double_unlock_balance(rq, later_rq);
2211
2212out:
2213        put_task_struct(next_task);
2214
2215        return ret;
2216}
2217
2218static void push_dl_tasks(struct rq *rq)
2219{
2220        /* push_dl_task() will return true if it moved a -deadline task */
2221        while (push_dl_task(rq))
2222                ;
2223}
2224
2225static void pull_dl_task(struct rq *this_rq)
2226{
2227        int this_cpu = this_rq->cpu, cpu;
2228        struct task_struct *p, *push_task;
2229        bool resched = false;
2230        struct rq *src_rq;
2231        u64 dmin = LONG_MAX;
2232
2233        if (likely(!dl_overloaded(this_rq)))
2234                return;
2235
2236        /*
2237         * Match the barrier from dl_set_overloaded; this guarantees that if we
2238         * see overloaded we must also see the dlo_mask bit.
2239         */
2240        smp_rmb();
2241
2242        for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2243                if (this_cpu == cpu)
2244                        continue;
2245
2246                src_rq = cpu_rq(cpu);
2247
2248                /*
2249                 * It looks racy, abd it is! However, as in sched_rt.c,
2250                 * we are fine with this.
2251                 */
2252                if (this_rq->dl.dl_nr_running &&
2253                    dl_time_before(this_rq->dl.earliest_dl.curr,
2254                                   src_rq->dl.earliest_dl.next))
2255                        continue;
2256
2257                /* Might drop this_rq->lock */
2258                push_task = NULL;
2259                double_lock_balance(this_rq, src_rq);
2260
2261                /*
2262                 * If there are no more pullable tasks on the
2263                 * rq, we're done with it.
2264                 */
2265                if (src_rq->dl.dl_nr_running <= 1)
2266                        goto skip;
2267
2268                p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2269
2270                /*
2271                 * We found a task to be pulled if:
2272                 *  - it preempts our current (if there's one),
2273                 *  - it will preempt the last one we pulled (if any).
2274                 */
2275                if (p && dl_time_before(p->dl.deadline, dmin) &&
2276                    (!this_rq->dl.dl_nr_running ||
2277                     dl_time_before(p->dl.deadline,
2278                                    this_rq->dl.earliest_dl.curr))) {
2279                        WARN_ON(p == src_rq->curr);
2280                        WARN_ON(!task_on_rq_queued(p));
2281
2282                        /*
2283                         * Then we pull iff p has actually an earlier
2284                         * deadline than the current task of its runqueue.
2285                         */
2286                        if (dl_time_before(p->dl.deadline,
2287                                           src_rq->curr->dl.deadline))
2288                                goto skip;
2289
2290                        if (is_migration_disabled(p)) {
2291                                push_task = get_push_task(src_rq);
2292                        } else {
2293                                deactivate_task(src_rq, p, 0);
2294                                set_task_cpu(p, this_cpu);
2295                                activate_task(this_rq, p, 0);
2296                                dmin = p->dl.deadline;
2297                                resched = true;
2298                        }
2299
2300                        /* Is there any other task even earlier? */
2301                }
2302skip:
2303                double_unlock_balance(this_rq, src_rq);
2304
2305                if (push_task) {
2306                        raw_spin_rq_unlock(this_rq);
2307                        stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2308                                            push_task, &src_rq->push_work);
2309                        raw_spin_rq_lock(this_rq);
2310                }
2311        }
2312
2313        if (resched)
2314                resched_curr(this_rq);
2315}
2316
2317/*
2318 * Since the task is not running and a reschedule is not going to happen
2319 * anytime soon on its runqueue, we try pushing it away now.
2320 */
2321static void task_woken_dl(struct rq *rq, struct task_struct *p)
2322{
2323        if (!task_running(rq, p) &&
2324            !test_tsk_need_resched(rq->curr) &&
2325            p->nr_cpus_allowed > 1 &&
2326            dl_task(rq->curr) &&
2327            (rq->curr->nr_cpus_allowed < 2 ||
2328             !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2329                push_dl_tasks(rq);
2330        }
2331}
2332
2333static void set_cpus_allowed_dl(struct task_struct *p,
2334                                const struct cpumask *new_mask,
2335                                u32 flags)
2336{
2337        struct root_domain *src_rd;
2338        struct rq *rq;
2339
2340        BUG_ON(!dl_task(p));
2341
2342        rq = task_rq(p);
2343        src_rd = rq->rd;
2344        /*
2345         * Migrating a SCHED_DEADLINE task between exclusive
2346         * cpusets (different root_domains) entails a bandwidth
2347         * update. We already made space for us in the destination
2348         * domain (see cpuset_can_attach()).
2349         */
2350        if (!cpumask_intersects(src_rd->span, new_mask)) {
2351                struct dl_bw *src_dl_b;
2352
2353                src_dl_b = dl_bw_of(cpu_of(rq));
2354                /*
2355                 * We now free resources of the root_domain we are migrating
2356                 * off. In the worst case, sched_setattr() may temporary fail
2357                 * until we complete the update.
2358                 */
2359                raw_spin_lock(&src_dl_b->lock);
2360                __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2361                raw_spin_unlock(&src_dl_b->lock);
2362        }
2363
2364        set_cpus_allowed_common(p, new_mask, flags);
2365}
2366
2367/* Assumes rq->lock is held */
2368static void rq_online_dl(struct rq *rq)
2369{
2370        if (rq->dl.overloaded)
2371                dl_set_overload(rq);
2372
2373        cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2374        if (rq->dl.dl_nr_running > 0)
2375                cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2376}
2377
2378/* Assumes rq->lock is held */
2379static void rq_offline_dl(struct rq *rq)
2380{
2381        if (rq->dl.overloaded)
2382                dl_clear_overload(rq);
2383
2384        cpudl_clear(&rq->rd->cpudl, rq->cpu);
2385        cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2386}
2387
2388void __init init_sched_dl_class(void)
2389{
2390        unsigned int i;
2391
2392        for_each_possible_cpu(i)
2393                zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2394                                        GFP_KERNEL, cpu_to_node(i));
2395}
2396
2397void dl_add_task_root_domain(struct task_struct *p)
2398{
2399        struct rq_flags rf;
2400        struct rq *rq;
2401        struct dl_bw *dl_b;
2402
2403        raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2404        if (!dl_task(p)) {
2405                raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2406                return;
2407        }
2408
2409        rq = __task_rq_lock(p, &rf);
2410
2411        dl_b = &rq->rd->dl_bw;
2412        raw_spin_lock(&dl_b->lock);
2413
2414        __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2415
2416        raw_spin_unlock(&dl_b->lock);
2417
2418        task_rq_unlock(rq, p, &rf);
2419}
2420
2421void dl_clear_root_domain(struct root_domain *rd)
2422{
2423        unsigned long flags;
2424
2425        raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2426        rd->dl_bw.total_bw = 0;
2427        raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2428}
2429
2430#endif /* CONFIG_SMP */
2431
2432static void switched_from_dl(struct rq *rq, struct task_struct *p)
2433{
2434        /*
2435         * task_non_contending() can start the "inactive timer" (if the 0-lag
2436         * time is in the future). If the task switches back to dl before
2437         * the "inactive timer" fires, it can continue to consume its current
2438         * runtime using its current deadline. If it stays outside of
2439         * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2440         * will reset the task parameters.
2441         */
2442        if (task_on_rq_queued(p) && p->dl.dl_runtime)
2443                task_non_contending(p);
2444
2445        if (!task_on_rq_queued(p)) {
2446                /*
2447                 * Inactive timer is armed. However, p is leaving DEADLINE and
2448                 * might migrate away from this rq while continuing to run on
2449                 * some other class. We need to remove its contribution from
2450                 * this rq running_bw now, or sub_rq_bw (below) will complain.
2451                 */
2452                if (p->dl.dl_non_contending)
2453                        sub_running_bw(&p->dl, &rq->dl);
2454                sub_rq_bw(&p->dl, &rq->dl);
2455        }
2456
2457        /*
2458         * We cannot use inactive_task_timer() to invoke sub_running_bw()
2459         * at the 0-lag time, because the task could have been migrated
2460         * while SCHED_OTHER in the meanwhile.
2461         */
2462        if (p->dl.dl_non_contending)
2463                p->dl.dl_non_contending = 0;
2464
2465        /*
2466         * Since this might be the only -deadline task on the rq,
2467         * this is the right place to try to pull some other one
2468         * from an overloaded CPU, if any.
2469         */
2470        if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2471                return;
2472
2473        deadline_queue_pull_task(rq);
2474}
2475
2476/*
2477 * When switching to -deadline, we may overload the rq, then
2478 * we try to push someone off, if possible.
2479 */
2480static void switched_to_dl(struct rq *rq, struct task_struct *p)
2481{
2482        if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2483                put_task_struct(p);
2484
2485        /* If p is not queued we will update its parameters at next wakeup. */
2486        if (!task_on_rq_queued(p)) {
2487                add_rq_bw(&p->dl, &rq->dl);
2488
2489                return;
2490        }
2491
2492        if (rq->curr != p) {
2493#ifdef CONFIG_SMP
2494                if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2495                        deadline_queue_push_tasks(rq);
2496#endif
2497                if (dl_task(rq->curr))
2498                        check_preempt_curr_dl(rq, p, 0);
2499                else
2500                        resched_curr(rq);
2501        } else {
2502                update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2503        }
2504}
2505
2506/*
2507 * If the scheduling parameters of a -deadline task changed,
2508 * a push or pull operation might be needed.
2509 */
2510static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2511                            int oldprio)
2512{
2513        if (task_on_rq_queued(p) || task_current(rq, p)) {
2514#ifdef CONFIG_SMP
2515                /*
2516                 * This might be too much, but unfortunately
2517                 * we don't have the old deadline value, and
2518                 * we can't argue if the task is increasing
2519                 * or lowering its prio, so...
2520                 */
2521                if (!rq->dl.overloaded)
2522                        deadline_queue_pull_task(rq);
2523
2524                /*
2525                 * If we now have a earlier deadline task than p,
2526                 * then reschedule, provided p is still on this
2527                 * runqueue.
2528                 */
2529                if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2530                        resched_curr(rq);
2531#else
2532                /*
2533                 * Again, we don't know if p has a earlier
2534                 * or later deadline, so let's blindly set a
2535                 * (maybe not needed) rescheduling point.
2536                 */
2537                resched_curr(rq);
2538#endif /* CONFIG_SMP */
2539        }
2540}
2541
2542DEFINE_SCHED_CLASS(dl) = {
2543
2544        .enqueue_task           = enqueue_task_dl,
2545        .dequeue_task           = dequeue_task_dl,
2546        .yield_task             = yield_task_dl,
2547
2548        .check_preempt_curr     = check_preempt_curr_dl,
2549
2550        .pick_next_task         = pick_next_task_dl,
2551        .put_prev_task          = put_prev_task_dl,
2552        .set_next_task          = set_next_task_dl,
2553
2554#ifdef CONFIG_SMP
2555        .balance                = balance_dl,
2556        .pick_task              = pick_task_dl,
2557        .select_task_rq         = select_task_rq_dl,
2558        .migrate_task_rq        = migrate_task_rq_dl,
2559        .set_cpus_allowed       = set_cpus_allowed_dl,
2560        .rq_online              = rq_online_dl,
2561        .rq_offline             = rq_offline_dl,
2562        .task_woken             = task_woken_dl,
2563        .find_lock_rq           = find_lock_later_rq,
2564#endif
2565
2566        .task_tick              = task_tick_dl,
2567        .task_fork              = task_fork_dl,
2568
2569        .prio_changed           = prio_changed_dl,
2570        .switched_from          = switched_from_dl,
2571        .switched_to            = switched_to_dl,
2572
2573        .update_curr            = update_curr_dl,
2574};
2575
2576/* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2577static u64 dl_generation;
2578
2579int sched_dl_global_validate(void)
2580{
2581        u64 runtime = global_rt_runtime();
2582        u64 period = global_rt_period();
2583        u64 new_bw = to_ratio(period, runtime);
2584        u64 gen = ++dl_generation;
2585        struct dl_bw *dl_b;
2586        int cpu, cpus, ret = 0;
2587        unsigned long flags;
2588
2589        /*
2590         * Here we want to check the bandwidth not being set to some
2591         * value smaller than the currently allocated bandwidth in
2592         * any of the root_domains.
2593         */
2594        for_each_possible_cpu(cpu) {
2595                rcu_read_lock_sched();
2596
2597                if (dl_bw_visited(cpu, gen))
2598                        goto next;
2599
2600                dl_b = dl_bw_of(cpu);
2601                cpus = dl_bw_cpus(cpu);
2602
2603                raw_spin_lock_irqsave(&dl_b->lock, flags);
2604                if (new_bw * cpus < dl_b->total_bw)
2605                        ret = -EBUSY;
2606                raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2607
2608next:
2609                rcu_read_unlock_sched();
2610
2611                if (ret)
2612                        break;
2613        }
2614
2615        return ret;
2616}
2617
2618static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2619{
2620        if (global_rt_runtime() == RUNTIME_INF) {
2621                dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2622                dl_rq->extra_bw = 1 << BW_SHIFT;
2623        } else {
2624                dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2625                          global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2626                dl_rq->extra_bw = to_ratio(global_rt_period(),
2627                                                    global_rt_runtime());
2628        }
2629}
2630
2631void sched_dl_do_global(void)
2632{
2633        u64 new_bw = -1;
2634        u64 gen = ++dl_generation;
2635        struct dl_bw *dl_b;
2636        int cpu;
2637        unsigned long flags;
2638
2639        def_dl_bandwidth.dl_period = global_rt_period();
2640        def_dl_bandwidth.dl_runtime = global_rt_runtime();
2641
2642        if (global_rt_runtime() != RUNTIME_INF)
2643                new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2644
2645        for_each_possible_cpu(cpu) {
2646                rcu_read_lock_sched();
2647
2648                if (dl_bw_visited(cpu, gen)) {
2649                        rcu_read_unlock_sched();
2650                        continue;
2651                }
2652
2653                dl_b = dl_bw_of(cpu);
2654
2655                raw_spin_lock_irqsave(&dl_b->lock, flags);
2656                dl_b->bw = new_bw;
2657                raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2658
2659                rcu_read_unlock_sched();
2660                init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2661        }
2662}
2663
2664/*
2665 * We must be sure that accepting a new task (or allowing changing the
2666 * parameters of an existing one) is consistent with the bandwidth
2667 * constraints. If yes, this function also accordingly updates the currently
2668 * allocated bandwidth to reflect the new situation.
2669 *
2670 * This function is called while holding p's rq->lock.
2671 */
2672int sched_dl_overflow(struct task_struct *p, int policy,
2673                      const struct sched_attr *attr)
2674{
2675        u64 period = attr->sched_period ?: attr->sched_deadline;
2676        u64 runtime = attr->sched_runtime;
2677        u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2678        int cpus, err = -1, cpu = task_cpu(p);
2679        struct dl_bw *dl_b = dl_bw_of(cpu);
2680        unsigned long cap;
2681
2682        if (attr->sched_flags & SCHED_FLAG_SUGOV)
2683                return 0;
2684
2685        /* !deadline task may carry old deadline bandwidth */
2686        if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2687                return 0;
2688
2689        /*
2690         * Either if a task, enters, leave, or stays -deadline but changes
2691         * its parameters, we may need to update accordingly the total
2692         * allocated bandwidth of the container.
2693         */
2694        raw_spin_lock(&dl_b->lock);
2695        cpus = dl_bw_cpus(cpu);
2696        cap = dl_bw_capacity(cpu);
2697
2698        if (dl_policy(policy) && !task_has_dl_policy(p) &&
2699            !__dl_overflow(dl_b, cap, 0, new_bw)) {
2700                if (hrtimer_active(&p->dl.inactive_timer))
2701                        __dl_sub(dl_b, p->dl.dl_bw, cpus);
2702                __dl_add(dl_b, new_bw, cpus);
2703                err = 0;
2704        } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2705                   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2706                /*
2707                 * XXX this is slightly incorrect: when the task
2708                 * utilization decreases, we should delay the total
2709                 * utilization change until the task's 0-lag point.
2710                 * But this would require to set the task's "inactive
2711                 * timer" when the task is not inactive.
2712                 */
2713                __dl_sub(dl_b, p->dl.dl_bw, cpus);
2714                __dl_add(dl_b, new_bw, cpus);
2715                dl_change_utilization(p, new_bw);
2716                err = 0;
2717        } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2718                /*
2719                 * Do not decrease the total deadline utilization here,
2720                 * switched_from_dl() will take care to do it at the correct
2721                 * (0-lag) time.
2722                 */
2723                err = 0;
2724        }
2725        raw_spin_unlock(&dl_b->lock);
2726
2727        return err;
2728}
2729
2730/*
2731 * This function initializes the sched_dl_entity of a newly becoming
2732 * SCHED_DEADLINE task.
2733 *
2734 * Only the static values are considered here, the actual runtime and the
2735 * absolute deadline will be properly calculated when the task is enqueued
2736 * for the first time with its new policy.
2737 */
2738void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2739{
2740        struct sched_dl_entity *dl_se = &p->dl;
2741
2742        dl_se->dl_runtime = attr->sched_runtime;
2743        dl_se->dl_deadline = attr->sched_deadline;
2744        dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2745        dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2746        dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2747        dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2748}
2749
2750void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2751{
2752        struct sched_dl_entity *dl_se = &p->dl;
2753
2754        attr->sched_priority = p->rt_priority;
2755        attr->sched_runtime = dl_se->dl_runtime;
2756        attr->sched_deadline = dl_se->dl_deadline;
2757        attr->sched_period = dl_se->dl_period;
2758        attr->sched_flags &= ~SCHED_DL_FLAGS;
2759        attr->sched_flags |= dl_se->flags;
2760}
2761
2762/*
2763 * Default limits for DL period; on the top end we guard against small util
2764 * tasks still getting ridiculously long effective runtimes, on the bottom end we
2765 * guard against timer DoS.
2766 */
2767unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2768unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
2769
2770/*
2771 * This function validates the new parameters of a -deadline task.
2772 * We ask for the deadline not being zero, and greater or equal
2773 * than the runtime, as well as the period of being zero or
2774 * greater than deadline. Furthermore, we have to be sure that
2775 * user parameters are above the internal resolution of 1us (we
2776 * check sched_runtime only since it is always the smaller one) and
2777 * below 2^63 ns (we have to check both sched_deadline and
2778 * sched_period, as the latter can be zero).
2779 */
2780bool __checkparam_dl(const struct sched_attr *attr)
2781{
2782        u64 period, max, min;
2783
2784        /* special dl tasks don't actually use any parameter */
2785        if (attr->sched_flags & SCHED_FLAG_SUGOV)
2786                return true;
2787
2788        /* deadline != 0 */
2789        if (attr->sched_deadline == 0)
2790                return false;
2791
2792        /*
2793         * Since we truncate DL_SCALE bits, make sure we're at least
2794         * that big.
2795         */
2796        if (attr->sched_runtime < (1ULL << DL_SCALE))
2797                return false;
2798
2799        /*
2800         * Since we use the MSB for wrap-around and sign issues, make
2801         * sure it's not set (mind that period can be equal to zero).
2802         */
2803        if (attr->sched_deadline & (1ULL << 63) ||
2804            attr->sched_period & (1ULL << 63))
2805                return false;
2806
2807        period = attr->sched_period;
2808        if (!period)
2809                period = attr->sched_deadline;
2810
2811        /* runtime <= deadline <= period (if period != 0) */
2812        if (period < attr->sched_deadline ||
2813            attr->sched_deadline < attr->sched_runtime)
2814                return false;
2815
2816        max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2817        min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2818
2819        if (period < min || period > max)
2820                return false;
2821
2822        return true;
2823}
2824
2825/*
2826 * This function clears the sched_dl_entity static params.
2827 */
2828void __dl_clear_params(struct task_struct *p)
2829{
2830        struct sched_dl_entity *dl_se = &p->dl;
2831
2832        dl_se->dl_runtime               = 0;
2833        dl_se->dl_deadline              = 0;
2834        dl_se->dl_period                = 0;
2835        dl_se->flags                    = 0;
2836        dl_se->dl_bw                    = 0;
2837        dl_se->dl_density               = 0;
2838
2839        dl_se->dl_throttled             = 0;
2840        dl_se->dl_yielded               = 0;
2841        dl_se->dl_non_contending        = 0;
2842        dl_se->dl_overrun               = 0;
2843
2844#ifdef CONFIG_RT_MUTEXES
2845        dl_se->pi_se                    = dl_se;
2846#endif
2847}
2848
2849bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2850{
2851        struct sched_dl_entity *dl_se = &p->dl;
2852
2853        if (dl_se->dl_runtime != attr->sched_runtime ||
2854            dl_se->dl_deadline != attr->sched_deadline ||
2855            dl_se->dl_period != attr->sched_period ||
2856            dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
2857                return true;
2858
2859        return false;
2860}
2861
2862#ifdef CONFIG_SMP
2863int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2864{
2865        unsigned long flags, cap;
2866        unsigned int dest_cpu;
2867        struct dl_bw *dl_b;
2868        bool overflow;
2869        int ret;
2870
2871        dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2872
2873        rcu_read_lock_sched();
2874        dl_b = dl_bw_of(dest_cpu);
2875        raw_spin_lock_irqsave(&dl_b->lock, flags);
2876        cap = dl_bw_capacity(dest_cpu);
2877        overflow = __dl_overflow(dl_b, cap, 0, p->dl.dl_bw);
2878        if (overflow) {
2879                ret = -EBUSY;
2880        } else {
2881                /*
2882                 * We reserve space for this task in the destination
2883                 * root_domain, as we can't fail after this point.
2884                 * We will free resources in the source root_domain
2885                 * later on (see set_cpus_allowed_dl()).
2886                 */
2887                int cpus = dl_bw_cpus(dest_cpu);
2888
2889                __dl_add(dl_b, p->dl.dl_bw, cpus);
2890                ret = 0;
2891        }
2892        raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2893        rcu_read_unlock_sched();
2894
2895        return ret;
2896}
2897
2898int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2899                                 const struct cpumask *trial)
2900{
2901        int ret = 1, trial_cpus;
2902        struct dl_bw *cur_dl_b;
2903        unsigned long flags;
2904
2905        rcu_read_lock_sched();
2906        cur_dl_b = dl_bw_of(cpumask_any(cur));
2907        trial_cpus = cpumask_weight(trial);
2908
2909        raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2910        if (cur_dl_b->bw != -1 &&
2911            cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2912                ret = 0;
2913        raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2914        rcu_read_unlock_sched();
2915
2916        return ret;
2917}
2918
2919bool dl_cpu_busy(unsigned int cpu)
2920{
2921        unsigned long flags, cap;
2922        struct dl_bw *dl_b;
2923        bool overflow;
2924
2925        rcu_read_lock_sched();
2926        dl_b = dl_bw_of(cpu);
2927        raw_spin_lock_irqsave(&dl_b->lock, flags);
2928        cap = dl_bw_capacity(cpu);
2929        overflow = __dl_overflow(dl_b, cap, 0, 0);
2930        raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2931        rcu_read_unlock_sched();
2932
2933        return overflow;
2934}
2935#endif
2936
2937#ifdef CONFIG_SCHED_DEBUG
2938void print_dl_stats(struct seq_file *m, int cpu)
2939{
2940        print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2941}
2942#endif /* CONFIG_SCHED_DEBUG */
2943