linux/kernel/sched/fair.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   4 *
   5 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   6 *
   7 *  Interactivity improvements by Mike Galbraith
   8 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   9 *
  10 *  Various enhancements by Dmitry Adamushko.
  11 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  12 *
  13 *  Group scheduling enhancements by Srivatsa Vaddagiri
  14 *  Copyright IBM Corporation, 2007
  15 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  16 *
  17 *  Scaled math optimizations by Thomas Gleixner
  18 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  19 *
  20 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  21 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  22 */
  23#include "sched.h"
  24
  25/*
  26 * Targeted preemption latency for CPU-bound tasks:
  27 *
  28 * NOTE: this latency value is not the same as the concept of
  29 * 'timeslice length' - timeslices in CFS are of variable length
  30 * and have no persistent notion like in traditional, time-slice
  31 * based scheduling concepts.
  32 *
  33 * (to see the precise effective timeslice length of your workload,
  34 *  run vmstat and monitor the context-switches (cs) field)
  35 *
  36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  37 */
  38unsigned int sysctl_sched_latency                       = 6000000ULL;
  39static unsigned int normalized_sysctl_sched_latency     = 6000000ULL;
  40
  41/*
  42 * The initial- and re-scaling of tunables is configurable
  43 *
  44 * Options are:
  45 *
  46 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
  47 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  48 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  49 *
  50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  51 */
  52unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
  53
  54/*
  55 * Minimal preemption granularity for CPU-bound tasks:
  56 *
  57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  58 */
  59unsigned int sysctl_sched_min_granularity                       = 750000ULL;
  60static unsigned int normalized_sysctl_sched_min_granularity     = 750000ULL;
  61
  62/*
  63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
  64 */
  65static unsigned int sched_nr_latency = 8;
  66
  67/*
  68 * After fork, child runs first. If set to 0 (default) then
  69 * parent will (try to) run first.
  70 */
  71unsigned int sysctl_sched_child_runs_first __read_mostly;
  72
  73/*
  74 * SCHED_OTHER wake-up granularity.
  75 *
  76 * This option delays the preemption effects of decoupled workloads
  77 * and reduces their over-scheduling. Synchronous workloads will still
  78 * have immediate wakeup/sleep latencies.
  79 *
  80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  81 */
  82unsigned int sysctl_sched_wakeup_granularity                    = 1000000UL;
  83static unsigned int normalized_sysctl_sched_wakeup_granularity  = 1000000UL;
  84
  85const_debug unsigned int sysctl_sched_migration_cost    = 500000UL;
  86
  87int sched_thermal_decay_shift;
  88static int __init setup_sched_thermal_decay_shift(char *str)
  89{
  90        int _shift = 0;
  91
  92        if (kstrtoint(str, 0, &_shift))
  93                pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
  94
  95        sched_thermal_decay_shift = clamp(_shift, 0, 10);
  96        return 1;
  97}
  98__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
  99
 100#ifdef CONFIG_SMP
 101/*
 102 * For asym packing, by default the lower numbered CPU has higher priority.
 103 */
 104int __weak arch_asym_cpu_priority(int cpu)
 105{
 106        return -cpu;
 107}
 108
 109/*
 110 * The margin used when comparing utilization with CPU capacity.
 111 *
 112 * (default: ~20%)
 113 */
 114#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
 115
 116/*
 117 * The margin used when comparing CPU capacities.
 118 * is 'cap1' noticeably greater than 'cap2'
 119 *
 120 * (default: ~5%)
 121 */
 122#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
 123#endif
 124
 125#ifdef CONFIG_CFS_BANDWIDTH
 126/*
 127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 128 * each time a cfs_rq requests quota.
 129 *
 130 * Note: in the case that the slice exceeds the runtime remaining (either due
 131 * to consumption or the quota being specified to be smaller than the slice)
 132 * we will always only issue the remaining available time.
 133 *
 134 * (default: 5 msec, units: microseconds)
 135 */
 136unsigned int sysctl_sched_cfs_bandwidth_slice           = 5000UL;
 137#endif
 138
 139static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 140{
 141        lw->weight += inc;
 142        lw->inv_weight = 0;
 143}
 144
 145static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 146{
 147        lw->weight -= dec;
 148        lw->inv_weight = 0;
 149}
 150
 151static inline void update_load_set(struct load_weight *lw, unsigned long w)
 152{
 153        lw->weight = w;
 154        lw->inv_weight = 0;
 155}
 156
 157/*
 158 * Increase the granularity value when there are more CPUs,
 159 * because with more CPUs the 'effective latency' as visible
 160 * to users decreases. But the relationship is not linear,
 161 * so pick a second-best guess by going with the log2 of the
 162 * number of CPUs.
 163 *
 164 * This idea comes from the SD scheduler of Con Kolivas:
 165 */
 166static unsigned int get_update_sysctl_factor(void)
 167{
 168        unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
 169        unsigned int factor;
 170
 171        switch (sysctl_sched_tunable_scaling) {
 172        case SCHED_TUNABLESCALING_NONE:
 173                factor = 1;
 174                break;
 175        case SCHED_TUNABLESCALING_LINEAR:
 176                factor = cpus;
 177                break;
 178        case SCHED_TUNABLESCALING_LOG:
 179        default:
 180                factor = 1 + ilog2(cpus);
 181                break;
 182        }
 183
 184        return factor;
 185}
 186
 187static void update_sysctl(void)
 188{
 189        unsigned int factor = get_update_sysctl_factor();
 190
 191#define SET_SYSCTL(name) \
 192        (sysctl_##name = (factor) * normalized_sysctl_##name)
 193        SET_SYSCTL(sched_min_granularity);
 194        SET_SYSCTL(sched_latency);
 195        SET_SYSCTL(sched_wakeup_granularity);
 196#undef SET_SYSCTL
 197}
 198
 199void __init sched_init_granularity(void)
 200{
 201        update_sysctl();
 202}
 203
 204#define WMULT_CONST     (~0U)
 205#define WMULT_SHIFT     32
 206
 207static void __update_inv_weight(struct load_weight *lw)
 208{
 209        unsigned long w;
 210
 211        if (likely(lw->inv_weight))
 212                return;
 213
 214        w = scale_load_down(lw->weight);
 215
 216        if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 217                lw->inv_weight = 1;
 218        else if (unlikely(!w))
 219                lw->inv_weight = WMULT_CONST;
 220        else
 221                lw->inv_weight = WMULT_CONST / w;
 222}
 223
 224/*
 225 * delta_exec * weight / lw.weight
 226 *   OR
 227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 228 *
 229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
 230 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 232 *
 233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 234 * weight/lw.weight <= 1, and therefore our shift will also be positive.
 235 */
 236static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
 237{
 238        u64 fact = scale_load_down(weight);
 239        u32 fact_hi = (u32)(fact >> 32);
 240        int shift = WMULT_SHIFT;
 241        int fs;
 242
 243        __update_inv_weight(lw);
 244
 245        if (unlikely(fact_hi)) {
 246                fs = fls(fact_hi);
 247                shift -= fs;
 248                fact >>= fs;
 249        }
 250
 251        fact = mul_u32_u32(fact, lw->inv_weight);
 252
 253        fact_hi = (u32)(fact >> 32);
 254        if (fact_hi) {
 255                fs = fls(fact_hi);
 256                shift -= fs;
 257                fact >>= fs;
 258        }
 259
 260        return mul_u64_u32_shr(delta_exec, fact, shift);
 261}
 262
 263
 264const struct sched_class fair_sched_class;
 265
 266/**************************************************************
 267 * CFS operations on generic schedulable entities:
 268 */
 269
 270#ifdef CONFIG_FAIR_GROUP_SCHED
 271
 272/* Walk up scheduling entities hierarchy */
 273#define for_each_sched_entity(se) \
 274                for (; se; se = se->parent)
 275
 276static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
 277{
 278        if (!path)
 279                return;
 280
 281        if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
 282                autogroup_path(cfs_rq->tg, path, len);
 283        else if (cfs_rq && cfs_rq->tg->css.cgroup)
 284                cgroup_path(cfs_rq->tg->css.cgroup, path, len);
 285        else
 286                strlcpy(path, "(null)", len);
 287}
 288
 289static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 290{
 291        struct rq *rq = rq_of(cfs_rq);
 292        int cpu = cpu_of(rq);
 293
 294        if (cfs_rq->on_list)
 295                return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
 296
 297        cfs_rq->on_list = 1;
 298
 299        /*
 300         * Ensure we either appear before our parent (if already
 301         * enqueued) or force our parent to appear after us when it is
 302         * enqueued. The fact that we always enqueue bottom-up
 303         * reduces this to two cases and a special case for the root
 304         * cfs_rq. Furthermore, it also means that we will always reset
 305         * tmp_alone_branch either when the branch is connected
 306         * to a tree or when we reach the top of the tree
 307         */
 308        if (cfs_rq->tg->parent &&
 309            cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
 310                /*
 311                 * If parent is already on the list, we add the child
 312                 * just before. Thanks to circular linked property of
 313                 * the list, this means to put the child at the tail
 314                 * of the list that starts by parent.
 315                 */
 316                list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 317                        &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
 318                /*
 319                 * The branch is now connected to its tree so we can
 320                 * reset tmp_alone_branch to the beginning of the
 321                 * list.
 322                 */
 323                rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 324                return true;
 325        }
 326
 327        if (!cfs_rq->tg->parent) {
 328                /*
 329                 * cfs rq without parent should be put
 330                 * at the tail of the list.
 331                 */
 332                list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 333                        &rq->leaf_cfs_rq_list);
 334                /*
 335                 * We have reach the top of a tree so we can reset
 336                 * tmp_alone_branch to the beginning of the list.
 337                 */
 338                rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 339                return true;
 340        }
 341
 342        /*
 343         * The parent has not already been added so we want to
 344         * make sure that it will be put after us.
 345         * tmp_alone_branch points to the begin of the branch
 346         * where we will add parent.
 347         */
 348        list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
 349        /*
 350         * update tmp_alone_branch to points to the new begin
 351         * of the branch
 352         */
 353        rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
 354        return false;
 355}
 356
 357static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 358{
 359        if (cfs_rq->on_list) {
 360                struct rq *rq = rq_of(cfs_rq);
 361
 362                /*
 363                 * With cfs_rq being unthrottled/throttled during an enqueue,
 364                 * it can happen the tmp_alone_branch points the a leaf that
 365                 * we finally want to del. In this case, tmp_alone_branch moves
 366                 * to the prev element but it will point to rq->leaf_cfs_rq_list
 367                 * at the end of the enqueue.
 368                 */
 369                if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
 370                        rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
 371
 372                list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 373                cfs_rq->on_list = 0;
 374        }
 375}
 376
 377static inline void assert_list_leaf_cfs_rq(struct rq *rq)
 378{
 379        SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
 380}
 381
 382/* Iterate thr' all leaf cfs_rq's on a runqueue */
 383#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)                      \
 384        list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,    \
 385                                 leaf_cfs_rq_list)
 386
 387/* Do the two (enqueued) entities belong to the same group ? */
 388static inline struct cfs_rq *
 389is_same_group(struct sched_entity *se, struct sched_entity *pse)
 390{
 391        if (se->cfs_rq == pse->cfs_rq)
 392                return se->cfs_rq;
 393
 394        return NULL;
 395}
 396
 397static inline struct sched_entity *parent_entity(struct sched_entity *se)
 398{
 399        return se->parent;
 400}
 401
 402static void
 403find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 404{
 405        int se_depth, pse_depth;
 406
 407        /*
 408         * preemption test can be made between sibling entities who are in the
 409         * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 410         * both tasks until we find their ancestors who are siblings of common
 411         * parent.
 412         */
 413
 414        /* First walk up until both entities are at same depth */
 415        se_depth = (*se)->depth;
 416        pse_depth = (*pse)->depth;
 417
 418        while (se_depth > pse_depth) {
 419                se_depth--;
 420                *se = parent_entity(*se);
 421        }
 422
 423        while (pse_depth > se_depth) {
 424                pse_depth--;
 425                *pse = parent_entity(*pse);
 426        }
 427
 428        while (!is_same_group(*se, *pse)) {
 429                *se = parent_entity(*se);
 430                *pse = parent_entity(*pse);
 431        }
 432}
 433
 434static int tg_is_idle(struct task_group *tg)
 435{
 436        return tg->idle > 0;
 437}
 438
 439static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
 440{
 441        return cfs_rq->idle > 0;
 442}
 443
 444static int se_is_idle(struct sched_entity *se)
 445{
 446        if (entity_is_task(se))
 447                return task_has_idle_policy(task_of(se));
 448        return cfs_rq_is_idle(group_cfs_rq(se));
 449}
 450
 451#else   /* !CONFIG_FAIR_GROUP_SCHED */
 452
 453#define for_each_sched_entity(se) \
 454                for (; se; se = NULL)
 455
 456static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
 457{
 458        if (path)
 459                strlcpy(path, "(null)", len);
 460}
 461
 462static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 463{
 464        return true;
 465}
 466
 467static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 468{
 469}
 470
 471static inline void assert_list_leaf_cfs_rq(struct rq *rq)
 472{
 473}
 474
 475#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)      \
 476                for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
 477
 478static inline struct sched_entity *parent_entity(struct sched_entity *se)
 479{
 480        return NULL;
 481}
 482
 483static inline void
 484find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 485{
 486}
 487
 488static inline int tg_is_idle(struct task_group *tg)
 489{
 490        return 0;
 491}
 492
 493static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
 494{
 495        return 0;
 496}
 497
 498static int se_is_idle(struct sched_entity *se)
 499{
 500        return 0;
 501}
 502
 503#endif  /* CONFIG_FAIR_GROUP_SCHED */
 504
 505static __always_inline
 506void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
 507
 508/**************************************************************
 509 * Scheduling class tree data structure manipulation methods:
 510 */
 511
 512static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 513{
 514        s64 delta = (s64)(vruntime - max_vruntime);
 515        if (delta > 0)
 516                max_vruntime = vruntime;
 517
 518        return max_vruntime;
 519}
 520
 521static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 522{
 523        s64 delta = (s64)(vruntime - min_vruntime);
 524        if (delta < 0)
 525                min_vruntime = vruntime;
 526
 527        return min_vruntime;
 528}
 529
 530static inline bool entity_before(struct sched_entity *a,
 531                                struct sched_entity *b)
 532{
 533        return (s64)(a->vruntime - b->vruntime) < 0;
 534}
 535
 536#define __node_2_se(node) \
 537        rb_entry((node), struct sched_entity, run_node)
 538
 539static void update_min_vruntime(struct cfs_rq *cfs_rq)
 540{
 541        struct sched_entity *curr = cfs_rq->curr;
 542        struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
 543
 544        u64 vruntime = cfs_rq->min_vruntime;
 545
 546        if (curr) {
 547                if (curr->on_rq)
 548                        vruntime = curr->vruntime;
 549                else
 550                        curr = NULL;
 551        }
 552
 553        if (leftmost) { /* non-empty tree */
 554                struct sched_entity *se = __node_2_se(leftmost);
 555
 556                if (!curr)
 557                        vruntime = se->vruntime;
 558                else
 559                        vruntime = min_vruntime(vruntime, se->vruntime);
 560        }
 561
 562        /* ensure we never gain time by being placed backwards. */
 563        cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 564#ifndef CONFIG_64BIT
 565        smp_wmb();
 566        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 567#endif
 568}
 569
 570static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
 571{
 572        return entity_before(__node_2_se(a), __node_2_se(b));
 573}
 574
 575/*
 576 * Enqueue an entity into the rb-tree:
 577 */
 578static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 579{
 580        rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
 581}
 582
 583static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 584{
 585        rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
 586}
 587
 588struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 589{
 590        struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
 591
 592        if (!left)
 593                return NULL;
 594
 595        return __node_2_se(left);
 596}
 597
 598static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 599{
 600        struct rb_node *next = rb_next(&se->run_node);
 601
 602        if (!next)
 603                return NULL;
 604
 605        return __node_2_se(next);
 606}
 607
 608#ifdef CONFIG_SCHED_DEBUG
 609struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 610{
 611        struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
 612
 613        if (!last)
 614                return NULL;
 615
 616        return __node_2_se(last);
 617}
 618
 619/**************************************************************
 620 * Scheduling class statistics methods:
 621 */
 622
 623int sched_update_scaling(void)
 624{
 625        unsigned int factor = get_update_sysctl_factor();
 626
 627        sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 628                                        sysctl_sched_min_granularity);
 629
 630#define WRT_SYSCTL(name) \
 631        (normalized_sysctl_##name = sysctl_##name / (factor))
 632        WRT_SYSCTL(sched_min_granularity);
 633        WRT_SYSCTL(sched_latency);
 634        WRT_SYSCTL(sched_wakeup_granularity);
 635#undef WRT_SYSCTL
 636
 637        return 0;
 638}
 639#endif
 640
 641/*
 642 * delta /= w
 643 */
 644static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
 645{
 646        if (unlikely(se->load.weight != NICE_0_LOAD))
 647                delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
 648
 649        return delta;
 650}
 651
 652/*
 653 * The idea is to set a period in which each task runs once.
 654 *
 655 * When there are too many tasks (sched_nr_latency) we have to stretch
 656 * this period because otherwise the slices get too small.
 657 *
 658 * p = (nr <= nl) ? l : l*nr/nl
 659 */
 660static u64 __sched_period(unsigned long nr_running)
 661{
 662        if (unlikely(nr_running > sched_nr_latency))
 663                return nr_running * sysctl_sched_min_granularity;
 664        else
 665                return sysctl_sched_latency;
 666}
 667
 668/*
 669 * We calculate the wall-time slice from the period by taking a part
 670 * proportional to the weight.
 671 *
 672 * s = p*P[w/rw]
 673 */
 674static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 675{
 676        unsigned int nr_running = cfs_rq->nr_running;
 677        u64 slice;
 678
 679        if (sched_feat(ALT_PERIOD))
 680                nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
 681
 682        slice = __sched_period(nr_running + !se->on_rq);
 683
 684        for_each_sched_entity(se) {
 685                struct load_weight *load;
 686                struct load_weight lw;
 687
 688                cfs_rq = cfs_rq_of(se);
 689                load = &cfs_rq->load;
 690
 691                if (unlikely(!se->on_rq)) {
 692                        lw = cfs_rq->load;
 693
 694                        update_load_add(&lw, se->load.weight);
 695                        load = &lw;
 696                }
 697                slice = __calc_delta(slice, se->load.weight, load);
 698        }
 699
 700        if (sched_feat(BASE_SLICE))
 701                slice = max(slice, (u64)sysctl_sched_min_granularity);
 702
 703        return slice;
 704}
 705
 706/*
 707 * We calculate the vruntime slice of a to-be-inserted task.
 708 *
 709 * vs = s/w
 710 */
 711static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 712{
 713        return calc_delta_fair(sched_slice(cfs_rq, se), se);
 714}
 715
 716#include "pelt.h"
 717#ifdef CONFIG_SMP
 718
 719static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
 720static unsigned long task_h_load(struct task_struct *p);
 721static unsigned long capacity_of(int cpu);
 722
 723/* Give new sched_entity start runnable values to heavy its load in infant time */
 724void init_entity_runnable_average(struct sched_entity *se)
 725{
 726        struct sched_avg *sa = &se->avg;
 727
 728        memset(sa, 0, sizeof(*sa));
 729
 730        /*
 731         * Tasks are initialized with full load to be seen as heavy tasks until
 732         * they get a chance to stabilize to their real load level.
 733         * Group entities are initialized with zero load to reflect the fact that
 734         * nothing has been attached to the task group yet.
 735         */
 736        if (entity_is_task(se))
 737                sa->load_avg = scale_load_down(se->load.weight);
 738
 739        /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
 740}
 741
 742static void attach_entity_cfs_rq(struct sched_entity *se);
 743
 744/*
 745 * With new tasks being created, their initial util_avgs are extrapolated
 746 * based on the cfs_rq's current util_avg:
 747 *
 748 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 749 *
 750 * However, in many cases, the above util_avg does not give a desired
 751 * value. Moreover, the sum of the util_avgs may be divergent, such
 752 * as when the series is a harmonic series.
 753 *
 754 * To solve this problem, we also cap the util_avg of successive tasks to
 755 * only 1/2 of the left utilization budget:
 756 *
 757 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
 758 *
 759 * where n denotes the nth task and cpu_scale the CPU capacity.
 760 *
 761 * For example, for a CPU with 1024 of capacity, a simplest series from
 762 * the beginning would be like:
 763 *
 764 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 765 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 766 *
 767 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 768 * if util_avg > util_avg_cap.
 769 */
 770void post_init_entity_util_avg(struct task_struct *p)
 771{
 772        struct sched_entity *se = &p->se;
 773        struct cfs_rq *cfs_rq = cfs_rq_of(se);
 774        struct sched_avg *sa = &se->avg;
 775        long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
 776        long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
 777
 778        if (cap > 0) {
 779                if (cfs_rq->avg.util_avg != 0) {
 780                        sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
 781                        sa->util_avg /= (cfs_rq->avg.load_avg + 1);
 782
 783                        if (sa->util_avg > cap)
 784                                sa->util_avg = cap;
 785                } else {
 786                        sa->util_avg = cap;
 787                }
 788        }
 789
 790        sa->runnable_avg = sa->util_avg;
 791
 792        if (p->sched_class != &fair_sched_class) {
 793                /*
 794                 * For !fair tasks do:
 795                 *
 796                update_cfs_rq_load_avg(now, cfs_rq);
 797                attach_entity_load_avg(cfs_rq, se);
 798                switched_from_fair(rq, p);
 799                 *
 800                 * such that the next switched_to_fair() has the
 801                 * expected state.
 802                 */
 803                se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
 804                return;
 805        }
 806
 807        attach_entity_cfs_rq(se);
 808}
 809
 810#else /* !CONFIG_SMP */
 811void init_entity_runnable_average(struct sched_entity *se)
 812{
 813}
 814void post_init_entity_util_avg(struct task_struct *p)
 815{
 816}
 817static void update_tg_load_avg(struct cfs_rq *cfs_rq)
 818{
 819}
 820#endif /* CONFIG_SMP */
 821
 822/*
 823 * Update the current task's runtime statistics.
 824 */
 825static void update_curr(struct cfs_rq *cfs_rq)
 826{
 827        struct sched_entity *curr = cfs_rq->curr;
 828        u64 now = rq_clock_task(rq_of(cfs_rq));
 829        u64 delta_exec;
 830
 831        if (unlikely(!curr))
 832                return;
 833
 834        delta_exec = now - curr->exec_start;
 835        if (unlikely((s64)delta_exec <= 0))
 836                return;
 837
 838        curr->exec_start = now;
 839
 840        schedstat_set(curr->statistics.exec_max,
 841                      max(delta_exec, curr->statistics.exec_max));
 842
 843        curr->sum_exec_runtime += delta_exec;
 844        schedstat_add(cfs_rq->exec_clock, delta_exec);
 845
 846        curr->vruntime += calc_delta_fair(delta_exec, curr);
 847        update_min_vruntime(cfs_rq);
 848
 849        if (entity_is_task(curr)) {
 850                struct task_struct *curtask = task_of(curr);
 851
 852                trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 853                cgroup_account_cputime(curtask, delta_exec);
 854                account_group_exec_runtime(curtask, delta_exec);
 855        }
 856
 857        account_cfs_rq_runtime(cfs_rq, delta_exec);
 858}
 859
 860static void update_curr_fair(struct rq *rq)
 861{
 862        update_curr(cfs_rq_of(&rq->curr->se));
 863}
 864
 865static inline void
 866update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 867{
 868        u64 wait_start, prev_wait_start;
 869
 870        if (!schedstat_enabled())
 871                return;
 872
 873        wait_start = rq_clock(rq_of(cfs_rq));
 874        prev_wait_start = schedstat_val(se->statistics.wait_start);
 875
 876        if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
 877            likely(wait_start > prev_wait_start))
 878                wait_start -= prev_wait_start;
 879
 880        __schedstat_set(se->statistics.wait_start, wait_start);
 881}
 882
 883static inline void
 884update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 885{
 886        struct task_struct *p;
 887        u64 delta;
 888
 889        if (!schedstat_enabled())
 890                return;
 891
 892        /*
 893         * When the sched_schedstat changes from 0 to 1, some sched se
 894         * maybe already in the runqueue, the se->statistics.wait_start
 895         * will be 0.So it will let the delta wrong. We need to avoid this
 896         * scenario.
 897         */
 898        if (unlikely(!schedstat_val(se->statistics.wait_start)))
 899                return;
 900
 901        delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
 902
 903        if (entity_is_task(se)) {
 904                p = task_of(se);
 905                if (task_on_rq_migrating(p)) {
 906                        /*
 907                         * Preserve migrating task's wait time so wait_start
 908                         * time stamp can be adjusted to accumulate wait time
 909                         * prior to migration.
 910                         */
 911                        __schedstat_set(se->statistics.wait_start, delta);
 912                        return;
 913                }
 914                trace_sched_stat_wait(p, delta);
 915        }
 916
 917        __schedstat_set(se->statistics.wait_max,
 918                      max(schedstat_val(se->statistics.wait_max), delta));
 919        __schedstat_inc(se->statistics.wait_count);
 920        __schedstat_add(se->statistics.wait_sum, delta);
 921        __schedstat_set(se->statistics.wait_start, 0);
 922}
 923
 924static inline void
 925update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 926{
 927        struct task_struct *tsk = NULL;
 928        u64 sleep_start, block_start;
 929
 930        if (!schedstat_enabled())
 931                return;
 932
 933        sleep_start = schedstat_val(se->statistics.sleep_start);
 934        block_start = schedstat_val(se->statistics.block_start);
 935
 936        if (entity_is_task(se))
 937                tsk = task_of(se);
 938
 939        if (sleep_start) {
 940                u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
 941
 942                if ((s64)delta < 0)
 943                        delta = 0;
 944
 945                if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
 946                        __schedstat_set(se->statistics.sleep_max, delta);
 947
 948                __schedstat_set(se->statistics.sleep_start, 0);
 949                __schedstat_add(se->statistics.sum_sleep_runtime, delta);
 950
 951                if (tsk) {
 952                        account_scheduler_latency(tsk, delta >> 10, 1);
 953                        trace_sched_stat_sleep(tsk, delta);
 954                }
 955        }
 956        if (block_start) {
 957                u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
 958
 959                if ((s64)delta < 0)
 960                        delta = 0;
 961
 962                if (unlikely(delta > schedstat_val(se->statistics.block_max)))
 963                        __schedstat_set(se->statistics.block_max, delta);
 964
 965                __schedstat_set(se->statistics.block_start, 0);
 966                __schedstat_add(se->statistics.sum_sleep_runtime, delta);
 967
 968                if (tsk) {
 969                        if (tsk->in_iowait) {
 970                                __schedstat_add(se->statistics.iowait_sum, delta);
 971                                __schedstat_inc(se->statistics.iowait_count);
 972                                trace_sched_stat_iowait(tsk, delta);
 973                        }
 974
 975                        trace_sched_stat_blocked(tsk, delta);
 976
 977                        /*
 978                         * Blocking time is in units of nanosecs, so shift by
 979                         * 20 to get a milliseconds-range estimation of the
 980                         * amount of time that the task spent sleeping:
 981                         */
 982                        if (unlikely(prof_on == SLEEP_PROFILING)) {
 983                                profile_hits(SLEEP_PROFILING,
 984                                                (void *)get_wchan(tsk),
 985                                                delta >> 20);
 986                        }
 987                        account_scheduler_latency(tsk, delta >> 10, 0);
 988                }
 989        }
 990}
 991
 992/*
 993 * Task is being enqueued - update stats:
 994 */
 995static inline void
 996update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 997{
 998        if (!schedstat_enabled())
 999                return;
1000
1001        /*
1002         * Are we enqueueing a waiting task? (for current tasks
1003         * a dequeue/enqueue event is a NOP)
1004         */
1005        if (se != cfs_rq->curr)
1006                update_stats_wait_start(cfs_rq, se);
1007
1008        if (flags & ENQUEUE_WAKEUP)
1009                update_stats_enqueue_sleeper(cfs_rq, se);
1010}
1011
1012static inline void
1013update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1014{
1015
1016        if (!schedstat_enabled())
1017                return;
1018
1019        /*
1020         * Mark the end of the wait period if dequeueing a
1021         * waiting task:
1022         */
1023        if (se != cfs_rq->curr)
1024                update_stats_wait_end(cfs_rq, se);
1025
1026        if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1027                struct task_struct *tsk = task_of(se);
1028                unsigned int state;
1029
1030                /* XXX racy against TTWU */
1031                state = READ_ONCE(tsk->__state);
1032                if (state & TASK_INTERRUPTIBLE)
1033                        __schedstat_set(se->statistics.sleep_start,
1034                                      rq_clock(rq_of(cfs_rq)));
1035                if (state & TASK_UNINTERRUPTIBLE)
1036                        __schedstat_set(se->statistics.block_start,
1037                                      rq_clock(rq_of(cfs_rq)));
1038        }
1039}
1040
1041/*
1042 * We are picking a new current task - update its stats:
1043 */
1044static inline void
1045update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1046{
1047        /*
1048         * We are starting a new run period:
1049         */
1050        se->exec_start = rq_clock_task(rq_of(cfs_rq));
1051}
1052
1053/**************************************************
1054 * Scheduling class queueing methods:
1055 */
1056
1057#ifdef CONFIG_NUMA_BALANCING
1058/*
1059 * Approximate time to scan a full NUMA task in ms. The task scan period is
1060 * calculated based on the tasks virtual memory size and
1061 * numa_balancing_scan_size.
1062 */
1063unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1064unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1065
1066/* Portion of address space to scan in MB */
1067unsigned int sysctl_numa_balancing_scan_size = 256;
1068
1069/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1070unsigned int sysctl_numa_balancing_scan_delay = 1000;
1071
1072struct numa_group {
1073        refcount_t refcount;
1074
1075        spinlock_t lock; /* nr_tasks, tasks */
1076        int nr_tasks;
1077        pid_t gid;
1078        int active_nodes;
1079
1080        struct rcu_head rcu;
1081        unsigned long total_faults;
1082        unsigned long max_faults_cpu;
1083        /*
1084         * Faults_cpu is used to decide whether memory should move
1085         * towards the CPU. As a consequence, these stats are weighted
1086         * more by CPU use than by memory faults.
1087         */
1088        unsigned long *faults_cpu;
1089        unsigned long faults[];
1090};
1091
1092/*
1093 * For functions that can be called in multiple contexts that permit reading
1094 * ->numa_group (see struct task_struct for locking rules).
1095 */
1096static struct numa_group *deref_task_numa_group(struct task_struct *p)
1097{
1098        return rcu_dereference_check(p->numa_group, p == current ||
1099                (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1100}
1101
1102static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1103{
1104        return rcu_dereference_protected(p->numa_group, p == current);
1105}
1106
1107static inline unsigned long group_faults_priv(struct numa_group *ng);
1108static inline unsigned long group_faults_shared(struct numa_group *ng);
1109
1110static unsigned int task_nr_scan_windows(struct task_struct *p)
1111{
1112        unsigned long rss = 0;
1113        unsigned long nr_scan_pages;
1114
1115        /*
1116         * Calculations based on RSS as non-present and empty pages are skipped
1117         * by the PTE scanner and NUMA hinting faults should be trapped based
1118         * on resident pages
1119         */
1120        nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1121        rss = get_mm_rss(p->mm);
1122        if (!rss)
1123                rss = nr_scan_pages;
1124
1125        rss = round_up(rss, nr_scan_pages);
1126        return rss / nr_scan_pages;
1127}
1128
1129/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1130#define MAX_SCAN_WINDOW 2560
1131
1132static unsigned int task_scan_min(struct task_struct *p)
1133{
1134        unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1135        unsigned int scan, floor;
1136        unsigned int windows = 1;
1137
1138        if (scan_size < MAX_SCAN_WINDOW)
1139                windows = MAX_SCAN_WINDOW / scan_size;
1140        floor = 1000 / windows;
1141
1142        scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1143        return max_t(unsigned int, floor, scan);
1144}
1145
1146static unsigned int task_scan_start(struct task_struct *p)
1147{
1148        unsigned long smin = task_scan_min(p);
1149        unsigned long period = smin;
1150        struct numa_group *ng;
1151
1152        /* Scale the maximum scan period with the amount of shared memory. */
1153        rcu_read_lock();
1154        ng = rcu_dereference(p->numa_group);
1155        if (ng) {
1156                unsigned long shared = group_faults_shared(ng);
1157                unsigned long private = group_faults_priv(ng);
1158
1159                period *= refcount_read(&ng->refcount);
1160                period *= shared + 1;
1161                period /= private + shared + 1;
1162        }
1163        rcu_read_unlock();
1164
1165        return max(smin, period);
1166}
1167
1168static unsigned int task_scan_max(struct task_struct *p)
1169{
1170        unsigned long smin = task_scan_min(p);
1171        unsigned long smax;
1172        struct numa_group *ng;
1173
1174        /* Watch for min being lower than max due to floor calculations */
1175        smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1176
1177        /* Scale the maximum scan period with the amount of shared memory. */
1178        ng = deref_curr_numa_group(p);
1179        if (ng) {
1180                unsigned long shared = group_faults_shared(ng);
1181                unsigned long private = group_faults_priv(ng);
1182                unsigned long period = smax;
1183
1184                period *= refcount_read(&ng->refcount);
1185                period *= shared + 1;
1186                period /= private + shared + 1;
1187
1188                smax = max(smax, period);
1189        }
1190
1191        return max(smin, smax);
1192}
1193
1194static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1195{
1196        rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1197        rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1198}
1199
1200static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1201{
1202        rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1203        rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1204}
1205
1206/* Shared or private faults. */
1207#define NR_NUMA_HINT_FAULT_TYPES 2
1208
1209/* Memory and CPU locality */
1210#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1211
1212/* Averaged statistics, and temporary buffers. */
1213#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1214
1215pid_t task_numa_group_id(struct task_struct *p)
1216{
1217        struct numa_group *ng;
1218        pid_t gid = 0;
1219
1220        rcu_read_lock();
1221        ng = rcu_dereference(p->numa_group);
1222        if (ng)
1223                gid = ng->gid;
1224        rcu_read_unlock();
1225
1226        return gid;
1227}
1228
1229/*
1230 * The averaged statistics, shared & private, memory & CPU,
1231 * occupy the first half of the array. The second half of the
1232 * array is for current counters, which are averaged into the
1233 * first set by task_numa_placement.
1234 */
1235static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1236{
1237        return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1238}
1239
1240static inline unsigned long task_faults(struct task_struct *p, int nid)
1241{
1242        if (!p->numa_faults)
1243                return 0;
1244
1245        return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1246                p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1247}
1248
1249static inline unsigned long group_faults(struct task_struct *p, int nid)
1250{
1251        struct numa_group *ng = deref_task_numa_group(p);
1252
1253        if (!ng)
1254                return 0;
1255
1256        return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1257                ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1258}
1259
1260static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1261{
1262        return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1263                group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1264}
1265
1266static inline unsigned long group_faults_priv(struct numa_group *ng)
1267{
1268        unsigned long faults = 0;
1269        int node;
1270
1271        for_each_online_node(node) {
1272                faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1273        }
1274
1275        return faults;
1276}
1277
1278static inline unsigned long group_faults_shared(struct numa_group *ng)
1279{
1280        unsigned long faults = 0;
1281        int node;
1282
1283        for_each_online_node(node) {
1284                faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1285        }
1286
1287        return faults;
1288}
1289
1290/*
1291 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1292 * considered part of a numa group's pseudo-interleaving set. Migrations
1293 * between these nodes are slowed down, to allow things to settle down.
1294 */
1295#define ACTIVE_NODE_FRACTION 3
1296
1297static bool numa_is_active_node(int nid, struct numa_group *ng)
1298{
1299        return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1300}
1301
1302/* Handle placement on systems where not all nodes are directly connected. */
1303static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1304                                        int maxdist, bool task)
1305{
1306        unsigned long score = 0;
1307        int node;
1308
1309        /*
1310         * All nodes are directly connected, and the same distance
1311         * from each other. No need for fancy placement algorithms.
1312         */
1313        if (sched_numa_topology_type == NUMA_DIRECT)
1314                return 0;
1315
1316        /*
1317         * This code is called for each node, introducing N^2 complexity,
1318         * which should be ok given the number of nodes rarely exceeds 8.
1319         */
1320        for_each_online_node(node) {
1321                unsigned long faults;
1322                int dist = node_distance(nid, node);
1323
1324                /*
1325                 * The furthest away nodes in the system are not interesting
1326                 * for placement; nid was already counted.
1327                 */
1328                if (dist == sched_max_numa_distance || node == nid)
1329                        continue;
1330
1331                /*
1332                 * On systems with a backplane NUMA topology, compare groups
1333                 * of nodes, and move tasks towards the group with the most
1334                 * memory accesses. When comparing two nodes at distance
1335                 * "hoplimit", only nodes closer by than "hoplimit" are part
1336                 * of each group. Skip other nodes.
1337                 */
1338                if (sched_numa_topology_type == NUMA_BACKPLANE &&
1339                                        dist >= maxdist)
1340                        continue;
1341
1342                /* Add up the faults from nearby nodes. */
1343                if (task)
1344                        faults = task_faults(p, node);
1345                else
1346                        faults = group_faults(p, node);
1347
1348                /*
1349                 * On systems with a glueless mesh NUMA topology, there are
1350                 * no fixed "groups of nodes". Instead, nodes that are not
1351                 * directly connected bounce traffic through intermediate
1352                 * nodes; a numa_group can occupy any set of nodes.
1353                 * The further away a node is, the less the faults count.
1354                 * This seems to result in good task placement.
1355                 */
1356                if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1357                        faults *= (sched_max_numa_distance - dist);
1358                        faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1359                }
1360
1361                score += faults;
1362        }
1363
1364        return score;
1365}
1366
1367/*
1368 * These return the fraction of accesses done by a particular task, or
1369 * task group, on a particular numa node.  The group weight is given a
1370 * larger multiplier, in order to group tasks together that are almost
1371 * evenly spread out between numa nodes.
1372 */
1373static inline unsigned long task_weight(struct task_struct *p, int nid,
1374                                        int dist)
1375{
1376        unsigned long faults, total_faults;
1377
1378        if (!p->numa_faults)
1379                return 0;
1380
1381        total_faults = p->total_numa_faults;
1382
1383        if (!total_faults)
1384                return 0;
1385
1386        faults = task_faults(p, nid);
1387        faults += score_nearby_nodes(p, nid, dist, true);
1388
1389        return 1000 * faults / total_faults;
1390}
1391
1392static inline unsigned long group_weight(struct task_struct *p, int nid,
1393                                         int dist)
1394{
1395        struct numa_group *ng = deref_task_numa_group(p);
1396        unsigned long faults, total_faults;
1397
1398        if (!ng)
1399                return 0;
1400
1401        total_faults = ng->total_faults;
1402
1403        if (!total_faults)
1404                return 0;
1405
1406        faults = group_faults(p, nid);
1407        faults += score_nearby_nodes(p, nid, dist, false);
1408
1409        return 1000 * faults / total_faults;
1410}
1411
1412bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1413                                int src_nid, int dst_cpu)
1414{
1415        struct numa_group *ng = deref_curr_numa_group(p);
1416        int dst_nid = cpu_to_node(dst_cpu);
1417        int last_cpupid, this_cpupid;
1418
1419        this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1420        last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1421
1422        /*
1423         * Allow first faults or private faults to migrate immediately early in
1424         * the lifetime of a task. The magic number 4 is based on waiting for
1425         * two full passes of the "multi-stage node selection" test that is
1426         * executed below.
1427         */
1428        if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1429            (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1430                return true;
1431
1432        /*
1433         * Multi-stage node selection is used in conjunction with a periodic
1434         * migration fault to build a temporal task<->page relation. By using
1435         * a two-stage filter we remove short/unlikely relations.
1436         *
1437         * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1438         * a task's usage of a particular page (n_p) per total usage of this
1439         * page (n_t) (in a given time-span) to a probability.
1440         *
1441         * Our periodic faults will sample this probability and getting the
1442         * same result twice in a row, given these samples are fully
1443         * independent, is then given by P(n)^2, provided our sample period
1444         * is sufficiently short compared to the usage pattern.
1445         *
1446         * This quadric squishes small probabilities, making it less likely we
1447         * act on an unlikely task<->page relation.
1448         */
1449        if (!cpupid_pid_unset(last_cpupid) &&
1450                                cpupid_to_nid(last_cpupid) != dst_nid)
1451                return false;
1452
1453        /* Always allow migrate on private faults */
1454        if (cpupid_match_pid(p, last_cpupid))
1455                return true;
1456
1457        /* A shared fault, but p->numa_group has not been set up yet. */
1458        if (!ng)
1459                return true;
1460
1461        /*
1462         * Destination node is much more heavily used than the source
1463         * node? Allow migration.
1464         */
1465        if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1466                                        ACTIVE_NODE_FRACTION)
1467                return true;
1468
1469        /*
1470         * Distribute memory according to CPU & memory use on each node,
1471         * with 3/4 hysteresis to avoid unnecessary memory migrations:
1472         *
1473         * faults_cpu(dst)   3   faults_cpu(src)
1474         * --------------- * - > ---------------
1475         * faults_mem(dst)   4   faults_mem(src)
1476         */
1477        return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1478               group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1479}
1480
1481/*
1482 * 'numa_type' describes the node at the moment of load balancing.
1483 */
1484enum numa_type {
1485        /* The node has spare capacity that can be used to run more tasks.  */
1486        node_has_spare = 0,
1487        /*
1488         * The node is fully used and the tasks don't compete for more CPU
1489         * cycles. Nevertheless, some tasks might wait before running.
1490         */
1491        node_fully_busy,
1492        /*
1493         * The node is overloaded and can't provide expected CPU cycles to all
1494         * tasks.
1495         */
1496        node_overloaded
1497};
1498
1499/* Cached statistics for all CPUs within a node */
1500struct numa_stats {
1501        unsigned long load;
1502        unsigned long runnable;
1503        unsigned long util;
1504        /* Total compute capacity of CPUs on a node */
1505        unsigned long compute_capacity;
1506        unsigned int nr_running;
1507        unsigned int weight;
1508        enum numa_type node_type;
1509        int idle_cpu;
1510};
1511
1512static inline bool is_core_idle(int cpu)
1513{
1514#ifdef CONFIG_SCHED_SMT
1515        int sibling;
1516
1517        for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1518                if (cpu == sibling)
1519                        continue;
1520
1521                if (!idle_cpu(sibling))
1522                        return false;
1523        }
1524#endif
1525
1526        return true;
1527}
1528
1529struct task_numa_env {
1530        struct task_struct *p;
1531
1532        int src_cpu, src_nid;
1533        int dst_cpu, dst_nid;
1534
1535        struct numa_stats src_stats, dst_stats;
1536
1537        int imbalance_pct;
1538        int dist;
1539
1540        struct task_struct *best_task;
1541        long best_imp;
1542        int best_cpu;
1543};
1544
1545static unsigned long cpu_load(struct rq *rq);
1546static unsigned long cpu_runnable(struct rq *rq);
1547static unsigned long cpu_util(int cpu);
1548static inline long adjust_numa_imbalance(int imbalance,
1549                                        int dst_running, int dst_weight);
1550
1551static inline enum
1552numa_type numa_classify(unsigned int imbalance_pct,
1553                         struct numa_stats *ns)
1554{
1555        if ((ns->nr_running > ns->weight) &&
1556            (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1557             ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1558                return node_overloaded;
1559
1560        if ((ns->nr_running < ns->weight) ||
1561            (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1562             ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1563                return node_has_spare;
1564
1565        return node_fully_busy;
1566}
1567
1568#ifdef CONFIG_SCHED_SMT
1569/* Forward declarations of select_idle_sibling helpers */
1570static inline bool test_idle_cores(int cpu, bool def);
1571static inline int numa_idle_core(int idle_core, int cpu)
1572{
1573        if (!static_branch_likely(&sched_smt_present) ||
1574            idle_core >= 0 || !test_idle_cores(cpu, false))
1575                return idle_core;
1576
1577        /*
1578         * Prefer cores instead of packing HT siblings
1579         * and triggering future load balancing.
1580         */
1581        if (is_core_idle(cpu))
1582                idle_core = cpu;
1583
1584        return idle_core;
1585}
1586#else
1587static inline int numa_idle_core(int idle_core, int cpu)
1588{
1589        return idle_core;
1590}
1591#endif
1592
1593/*
1594 * Gather all necessary information to make NUMA balancing placement
1595 * decisions that are compatible with standard load balancer. This
1596 * borrows code and logic from update_sg_lb_stats but sharing a
1597 * common implementation is impractical.
1598 */
1599static void update_numa_stats(struct task_numa_env *env,
1600                              struct numa_stats *ns, int nid,
1601                              bool find_idle)
1602{
1603        int cpu, idle_core = -1;
1604
1605        memset(ns, 0, sizeof(*ns));
1606        ns->idle_cpu = -1;
1607
1608        rcu_read_lock();
1609        for_each_cpu(cpu, cpumask_of_node(nid)) {
1610                struct rq *rq = cpu_rq(cpu);
1611
1612                ns->load += cpu_load(rq);
1613                ns->runnable += cpu_runnable(rq);
1614                ns->util += cpu_util(cpu);
1615                ns->nr_running += rq->cfs.h_nr_running;
1616                ns->compute_capacity += capacity_of(cpu);
1617
1618                if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1619                        if (READ_ONCE(rq->numa_migrate_on) ||
1620                            !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1621                                continue;
1622
1623                        if (ns->idle_cpu == -1)
1624                                ns->idle_cpu = cpu;
1625
1626                        idle_core = numa_idle_core(idle_core, cpu);
1627                }
1628        }
1629        rcu_read_unlock();
1630
1631        ns->weight = cpumask_weight(cpumask_of_node(nid));
1632
1633        ns->node_type = numa_classify(env->imbalance_pct, ns);
1634
1635        if (idle_core >= 0)
1636                ns->idle_cpu = idle_core;
1637}
1638
1639static void task_numa_assign(struct task_numa_env *env,
1640                             struct task_struct *p, long imp)
1641{
1642        struct rq *rq = cpu_rq(env->dst_cpu);
1643
1644        /* Check if run-queue part of active NUMA balance. */
1645        if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1646                int cpu;
1647                int start = env->dst_cpu;
1648
1649                /* Find alternative idle CPU. */
1650                for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1651                        if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1652                            !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1653                                continue;
1654                        }
1655
1656                        env->dst_cpu = cpu;
1657                        rq = cpu_rq(env->dst_cpu);
1658                        if (!xchg(&rq->numa_migrate_on, 1))
1659                                goto assign;
1660                }
1661
1662                /* Failed to find an alternative idle CPU */
1663                return;
1664        }
1665
1666assign:
1667        /*
1668         * Clear previous best_cpu/rq numa-migrate flag, since task now
1669         * found a better CPU to move/swap.
1670         */
1671        if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1672                rq = cpu_rq(env->best_cpu);
1673                WRITE_ONCE(rq->numa_migrate_on, 0);
1674        }
1675
1676        if (env->best_task)
1677                put_task_struct(env->best_task);
1678        if (p)
1679                get_task_struct(p);
1680
1681        env->best_task = p;
1682        env->best_imp = imp;
1683        env->best_cpu = env->dst_cpu;
1684}
1685
1686static bool load_too_imbalanced(long src_load, long dst_load,
1687                                struct task_numa_env *env)
1688{
1689        long imb, old_imb;
1690        long orig_src_load, orig_dst_load;
1691        long src_capacity, dst_capacity;
1692
1693        /*
1694         * The load is corrected for the CPU capacity available on each node.
1695         *
1696         * src_load        dst_load
1697         * ------------ vs ---------
1698         * src_capacity    dst_capacity
1699         */
1700        src_capacity = env->src_stats.compute_capacity;
1701        dst_capacity = env->dst_stats.compute_capacity;
1702
1703        imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1704
1705        orig_src_load = env->src_stats.load;
1706        orig_dst_load = env->dst_stats.load;
1707
1708        old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1709
1710        /* Would this change make things worse? */
1711        return (imb > old_imb);
1712}
1713
1714/*
1715 * Maximum NUMA importance can be 1998 (2*999);
1716 * SMALLIMP @ 30 would be close to 1998/64.
1717 * Used to deter task migration.
1718 */
1719#define SMALLIMP        30
1720
1721/*
1722 * This checks if the overall compute and NUMA accesses of the system would
1723 * be improved if the source tasks was migrated to the target dst_cpu taking
1724 * into account that it might be best if task running on the dst_cpu should
1725 * be exchanged with the source task
1726 */
1727static bool task_numa_compare(struct task_numa_env *env,
1728                              long taskimp, long groupimp, bool maymove)
1729{
1730        struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1731        struct rq *dst_rq = cpu_rq(env->dst_cpu);
1732        long imp = p_ng ? groupimp : taskimp;
1733        struct task_struct *cur;
1734        long src_load, dst_load;
1735        int dist = env->dist;
1736        long moveimp = imp;
1737        long load;
1738        bool stopsearch = false;
1739
1740        if (READ_ONCE(dst_rq->numa_migrate_on))
1741                return false;
1742
1743        rcu_read_lock();
1744        cur = rcu_dereference(dst_rq->curr);
1745        if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1746                cur = NULL;
1747
1748        /*
1749         * Because we have preemption enabled we can get migrated around and
1750         * end try selecting ourselves (current == env->p) as a swap candidate.
1751         */
1752        if (cur == env->p) {
1753                stopsearch = true;
1754                goto unlock;
1755        }
1756
1757        if (!cur) {
1758                if (maymove && moveimp >= env->best_imp)
1759                        goto assign;
1760                else
1761                        goto unlock;
1762        }
1763
1764        /* Skip this swap candidate if cannot move to the source cpu. */
1765        if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1766                goto unlock;
1767
1768        /*
1769         * Skip this swap candidate if it is not moving to its preferred
1770         * node and the best task is.
1771         */
1772        if (env->best_task &&
1773            env->best_task->numa_preferred_nid == env->src_nid &&
1774            cur->numa_preferred_nid != env->src_nid) {
1775                goto unlock;
1776        }
1777
1778        /*
1779         * "imp" is the fault differential for the source task between the
1780         * source and destination node. Calculate the total differential for
1781         * the source task and potential destination task. The more negative
1782         * the value is, the more remote accesses that would be expected to
1783         * be incurred if the tasks were swapped.
1784         *
1785         * If dst and source tasks are in the same NUMA group, or not
1786         * in any group then look only at task weights.
1787         */
1788        cur_ng = rcu_dereference(cur->numa_group);
1789        if (cur_ng == p_ng) {
1790                imp = taskimp + task_weight(cur, env->src_nid, dist) -
1791                      task_weight(cur, env->dst_nid, dist);
1792                /*
1793                 * Add some hysteresis to prevent swapping the
1794                 * tasks within a group over tiny differences.
1795                 */
1796                if (cur_ng)
1797                        imp -= imp / 16;
1798        } else {
1799                /*
1800                 * Compare the group weights. If a task is all by itself
1801                 * (not part of a group), use the task weight instead.
1802                 */
1803                if (cur_ng && p_ng)
1804                        imp += group_weight(cur, env->src_nid, dist) -
1805                               group_weight(cur, env->dst_nid, dist);
1806                else
1807                        imp += task_weight(cur, env->src_nid, dist) -
1808                               task_weight(cur, env->dst_nid, dist);
1809        }
1810
1811        /* Discourage picking a task already on its preferred node */
1812        if (cur->numa_preferred_nid == env->dst_nid)
1813                imp -= imp / 16;
1814
1815        /*
1816         * Encourage picking a task that moves to its preferred node.
1817         * This potentially makes imp larger than it's maximum of
1818         * 1998 (see SMALLIMP and task_weight for why) but in this
1819         * case, it does not matter.
1820         */
1821        if (cur->numa_preferred_nid == env->src_nid)
1822                imp += imp / 8;
1823
1824        if (maymove && moveimp > imp && moveimp > env->best_imp) {
1825                imp = moveimp;
1826                cur = NULL;
1827                goto assign;
1828        }
1829
1830        /*
1831         * Prefer swapping with a task moving to its preferred node over a
1832         * task that is not.
1833         */
1834        if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1835            env->best_task->numa_preferred_nid != env->src_nid) {
1836                goto assign;
1837        }
1838
1839        /*
1840         * If the NUMA importance is less than SMALLIMP,
1841         * task migration might only result in ping pong
1842         * of tasks and also hurt performance due to cache
1843         * misses.
1844         */
1845        if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1846                goto unlock;
1847
1848        /*
1849         * In the overloaded case, try and keep the load balanced.
1850         */
1851        load = task_h_load(env->p) - task_h_load(cur);
1852        if (!load)
1853                goto assign;
1854
1855        dst_load = env->dst_stats.load + load;
1856        src_load = env->src_stats.load - load;
1857
1858        if (load_too_imbalanced(src_load, dst_load, env))
1859                goto unlock;
1860
1861assign:
1862        /* Evaluate an idle CPU for a task numa move. */
1863        if (!cur) {
1864                int cpu = env->dst_stats.idle_cpu;
1865
1866                /* Nothing cached so current CPU went idle since the search. */
1867                if (cpu < 0)
1868                        cpu = env->dst_cpu;
1869
1870                /*
1871                 * If the CPU is no longer truly idle and the previous best CPU
1872                 * is, keep using it.
1873                 */
1874                if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1875                    idle_cpu(env->best_cpu)) {
1876                        cpu = env->best_cpu;
1877                }
1878
1879                env->dst_cpu = cpu;
1880        }
1881
1882        task_numa_assign(env, cur, imp);
1883
1884        /*
1885         * If a move to idle is allowed because there is capacity or load
1886         * balance improves then stop the search. While a better swap
1887         * candidate may exist, a search is not free.
1888         */
1889        if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1890                stopsearch = true;
1891
1892        /*
1893         * If a swap candidate must be identified and the current best task
1894         * moves its preferred node then stop the search.
1895         */
1896        if (!maymove && env->best_task &&
1897            env->best_task->numa_preferred_nid == env->src_nid) {
1898                stopsearch = true;
1899        }
1900unlock:
1901        rcu_read_unlock();
1902
1903        return stopsearch;
1904}
1905
1906static void task_numa_find_cpu(struct task_numa_env *env,
1907                                long taskimp, long groupimp)
1908{
1909        bool maymove = false;
1910        int cpu;
1911
1912        /*
1913         * If dst node has spare capacity, then check if there is an
1914         * imbalance that would be overruled by the load balancer.
1915         */
1916        if (env->dst_stats.node_type == node_has_spare) {
1917                unsigned int imbalance;
1918                int src_running, dst_running;
1919
1920                /*
1921                 * Would movement cause an imbalance? Note that if src has
1922                 * more running tasks that the imbalance is ignored as the
1923                 * move improves the imbalance from the perspective of the
1924                 * CPU load balancer.
1925                 * */
1926                src_running = env->src_stats.nr_running - 1;
1927                dst_running = env->dst_stats.nr_running + 1;
1928                imbalance = max(0, dst_running - src_running);
1929                imbalance = adjust_numa_imbalance(imbalance, dst_running,
1930                                                        env->dst_stats.weight);
1931
1932                /* Use idle CPU if there is no imbalance */
1933                if (!imbalance) {
1934                        maymove = true;
1935                        if (env->dst_stats.idle_cpu >= 0) {
1936                                env->dst_cpu = env->dst_stats.idle_cpu;
1937                                task_numa_assign(env, NULL, 0);
1938                                return;
1939                        }
1940                }
1941        } else {
1942                long src_load, dst_load, load;
1943                /*
1944                 * If the improvement from just moving env->p direction is better
1945                 * than swapping tasks around, check if a move is possible.
1946                 */
1947                load = task_h_load(env->p);
1948                dst_load = env->dst_stats.load + load;
1949                src_load = env->src_stats.load - load;
1950                maymove = !load_too_imbalanced(src_load, dst_load, env);
1951        }
1952
1953        for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1954                /* Skip this CPU if the source task cannot migrate */
1955                if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1956                        continue;
1957
1958                env->dst_cpu = cpu;
1959                if (task_numa_compare(env, taskimp, groupimp, maymove))
1960                        break;
1961        }
1962}
1963
1964static int task_numa_migrate(struct task_struct *p)
1965{
1966        struct task_numa_env env = {
1967                .p = p,
1968
1969                .src_cpu = task_cpu(p),
1970                .src_nid = task_node(p),
1971
1972                .imbalance_pct = 112,
1973
1974                .best_task = NULL,
1975                .best_imp = 0,
1976                .best_cpu = -1,
1977        };
1978        unsigned long taskweight, groupweight;
1979        struct sched_domain *sd;
1980        long taskimp, groupimp;
1981        struct numa_group *ng;
1982        struct rq *best_rq;
1983        int nid, ret, dist;
1984
1985        /*
1986         * Pick the lowest SD_NUMA domain, as that would have the smallest
1987         * imbalance and would be the first to start moving tasks about.
1988         *
1989         * And we want to avoid any moving of tasks about, as that would create
1990         * random movement of tasks -- counter the numa conditions we're trying
1991         * to satisfy here.
1992         */
1993        rcu_read_lock();
1994        sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1995        if (sd)
1996                env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1997        rcu_read_unlock();
1998
1999        /*
2000         * Cpusets can break the scheduler domain tree into smaller
2001         * balance domains, some of which do not cross NUMA boundaries.
2002         * Tasks that are "trapped" in such domains cannot be migrated
2003         * elsewhere, so there is no point in (re)trying.
2004         */
2005        if (unlikely(!sd)) {
2006                sched_setnuma(p, task_node(p));
2007                return -EINVAL;
2008        }
2009
2010        env.dst_nid = p->numa_preferred_nid;
2011        dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2012        taskweight = task_weight(p, env.src_nid, dist);
2013        groupweight = group_weight(p, env.src_nid, dist);
2014        update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2015        taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2016        groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2017        update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2018
2019        /* Try to find a spot on the preferred nid. */
2020        task_numa_find_cpu(&env, taskimp, groupimp);
2021
2022        /*
2023         * Look at other nodes in these cases:
2024         * - there is no space available on the preferred_nid
2025         * - the task is part of a numa_group that is interleaved across
2026         *   multiple NUMA nodes; in order to better consolidate the group,
2027         *   we need to check other locations.
2028         */
2029        ng = deref_curr_numa_group(p);
2030        if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2031                for_each_online_node(nid) {
2032                        if (nid == env.src_nid || nid == p->numa_preferred_nid)
2033                                continue;
2034
2035                        dist = node_distance(env.src_nid, env.dst_nid);
2036                        if (sched_numa_topology_type == NUMA_BACKPLANE &&
2037                                                dist != env.dist) {
2038                                taskweight = task_weight(p, env.src_nid, dist);
2039                                groupweight = group_weight(p, env.src_nid, dist);
2040                        }
2041
2042                        /* Only consider nodes where both task and groups benefit */
2043                        taskimp = task_weight(p, nid, dist) - taskweight;
2044                        groupimp = group_weight(p, nid, dist) - groupweight;
2045                        if (taskimp < 0 && groupimp < 0)
2046                                continue;
2047
2048                        env.dist = dist;
2049                        env.dst_nid = nid;
2050                        update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2051                        task_numa_find_cpu(&env, taskimp, groupimp);
2052                }
2053        }
2054
2055        /*
2056         * If the task is part of a workload that spans multiple NUMA nodes,
2057         * and is migrating into one of the workload's active nodes, remember
2058         * this node as the task's preferred numa node, so the workload can
2059         * settle down.
2060         * A task that migrated to a second choice node will be better off
2061         * trying for a better one later. Do not set the preferred node here.
2062         */
2063        if (ng) {
2064                if (env.best_cpu == -1)
2065                        nid = env.src_nid;
2066                else
2067                        nid = cpu_to_node(env.best_cpu);
2068
2069                if (nid != p->numa_preferred_nid)
2070                        sched_setnuma(p, nid);
2071        }
2072
2073        /* No better CPU than the current one was found. */
2074        if (env.best_cpu == -1) {
2075                trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2076                return -EAGAIN;
2077        }
2078
2079        best_rq = cpu_rq(env.best_cpu);
2080        if (env.best_task == NULL) {
2081                ret = migrate_task_to(p, env.best_cpu);
2082                WRITE_ONCE(best_rq->numa_migrate_on, 0);
2083                if (ret != 0)
2084                        trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2085                return ret;
2086        }
2087
2088        ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2089        WRITE_ONCE(best_rq->numa_migrate_on, 0);
2090
2091        if (ret != 0)
2092                trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2093        put_task_struct(env.best_task);
2094        return ret;
2095}
2096
2097/* Attempt to migrate a task to a CPU on the preferred node. */
2098static void numa_migrate_preferred(struct task_struct *p)
2099{
2100        unsigned long interval = HZ;
2101
2102        /* This task has no NUMA fault statistics yet */
2103        if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2104                return;
2105
2106        /* Periodically retry migrating the task to the preferred node */
2107        interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2108        p->numa_migrate_retry = jiffies + interval;
2109
2110        /* Success if task is already running on preferred CPU */
2111        if (task_node(p) == p->numa_preferred_nid)
2112                return;
2113
2114        /* Otherwise, try migrate to a CPU on the preferred node */
2115        task_numa_migrate(p);
2116}
2117
2118/*
2119 * Find out how many nodes on the workload is actively running on. Do this by
2120 * tracking the nodes from which NUMA hinting faults are triggered. This can
2121 * be different from the set of nodes where the workload's memory is currently
2122 * located.
2123 */
2124static void numa_group_count_active_nodes(struct numa_group *numa_group)
2125{
2126        unsigned long faults, max_faults = 0;
2127        int nid, active_nodes = 0;
2128
2129        for_each_online_node(nid) {
2130                faults = group_faults_cpu(numa_group, nid);
2131                if (faults > max_faults)
2132                        max_faults = faults;
2133        }
2134
2135        for_each_online_node(nid) {
2136                faults = group_faults_cpu(numa_group, nid);
2137                if (faults * ACTIVE_NODE_FRACTION > max_faults)
2138                        active_nodes++;
2139        }
2140
2141        numa_group->max_faults_cpu = max_faults;
2142        numa_group->active_nodes = active_nodes;
2143}
2144
2145/*
2146 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2147 * increments. The more local the fault statistics are, the higher the scan
2148 * period will be for the next scan window. If local/(local+remote) ratio is
2149 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2150 * the scan period will decrease. Aim for 70% local accesses.
2151 */
2152#define NUMA_PERIOD_SLOTS 10
2153#define NUMA_PERIOD_THRESHOLD 7
2154
2155/*
2156 * Increase the scan period (slow down scanning) if the majority of
2157 * our memory is already on our local node, or if the majority of
2158 * the page accesses are shared with other processes.
2159 * Otherwise, decrease the scan period.
2160 */
2161static void update_task_scan_period(struct task_struct *p,
2162                        unsigned long shared, unsigned long private)
2163{
2164        unsigned int period_slot;
2165        int lr_ratio, ps_ratio;
2166        int diff;
2167
2168        unsigned long remote = p->numa_faults_locality[0];
2169        unsigned long local = p->numa_faults_locality[1];
2170
2171        /*
2172         * If there were no record hinting faults then either the task is
2173         * completely idle or all activity is areas that are not of interest
2174         * to automatic numa balancing. Related to that, if there were failed
2175         * migration then it implies we are migrating too quickly or the local
2176         * node is overloaded. In either case, scan slower
2177         */
2178        if (local + shared == 0 || p->numa_faults_locality[2]) {
2179                p->numa_scan_period = min(p->numa_scan_period_max,
2180                        p->numa_scan_period << 1);
2181
2182                p->mm->numa_next_scan = jiffies +
2183                        msecs_to_jiffies(p->numa_scan_period);
2184
2185                return;
2186        }
2187
2188        /*
2189         * Prepare to scale scan period relative to the current period.
2190         *       == NUMA_PERIOD_THRESHOLD scan period stays the same
2191         *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2192         *       >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2193         */
2194        period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2195        lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2196        ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2197
2198        if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2199                /*
2200                 * Most memory accesses are local. There is no need to
2201                 * do fast NUMA scanning, since memory is already local.
2202                 */
2203                int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2204                if (!slot)
2205                        slot = 1;
2206                diff = slot * period_slot;
2207        } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2208                /*
2209                 * Most memory accesses are shared with other tasks.
2210                 * There is no point in continuing fast NUMA scanning,
2211                 * since other tasks may just move the memory elsewhere.
2212                 */
2213                int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2214                if (!slot)
2215                        slot = 1;
2216                diff = slot * period_slot;
2217        } else {
2218                /*
2219                 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2220                 * yet they are not on the local NUMA node. Speed up
2221                 * NUMA scanning to get the memory moved over.
2222                 */
2223                int ratio = max(lr_ratio, ps_ratio);
2224                diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2225        }
2226
2227        p->numa_scan_period = clamp(p->numa_scan_period + diff,
2228                        task_scan_min(p), task_scan_max(p));
2229        memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2230}
2231
2232/*
2233 * Get the fraction of time the task has been running since the last
2234 * NUMA placement cycle. The scheduler keeps similar statistics, but
2235 * decays those on a 32ms period, which is orders of magnitude off
2236 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2237 * stats only if the task is so new there are no NUMA statistics yet.
2238 */
2239static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2240{
2241        u64 runtime, delta, now;
2242        /* Use the start of this time slice to avoid calculations. */
2243        now = p->se.exec_start;
2244        runtime = p->se.sum_exec_runtime;
2245
2246        if (p->last_task_numa_placement) {
2247                delta = runtime - p->last_sum_exec_runtime;
2248                *period = now - p->last_task_numa_placement;
2249
2250                /* Avoid time going backwards, prevent potential divide error: */
2251                if (unlikely((s64)*period < 0))
2252                        *period = 0;
2253        } else {
2254                delta = p->se.avg.load_sum;
2255                *period = LOAD_AVG_MAX;
2256        }
2257
2258        p->last_sum_exec_runtime = runtime;
2259        p->last_task_numa_placement = now;
2260
2261        return delta;
2262}
2263
2264/*
2265 * Determine the preferred nid for a task in a numa_group. This needs to
2266 * be done in a way that produces consistent results with group_weight,
2267 * otherwise workloads might not converge.
2268 */
2269static int preferred_group_nid(struct task_struct *p, int nid)
2270{
2271        nodemask_t nodes;
2272        int dist;
2273
2274        /* Direct connections between all NUMA nodes. */
2275        if (sched_numa_topology_type == NUMA_DIRECT)
2276                return nid;
2277
2278        /*
2279         * On a system with glueless mesh NUMA topology, group_weight
2280         * scores nodes according to the number of NUMA hinting faults on
2281         * both the node itself, and on nearby nodes.
2282         */
2283        if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2284                unsigned long score, max_score = 0;
2285                int node, max_node = nid;
2286
2287                dist = sched_max_numa_distance;
2288
2289                for_each_online_node(node) {
2290                        score = group_weight(p, node, dist);
2291                        if (score > max_score) {
2292                                max_score = score;
2293                                max_node = node;
2294                        }
2295                }
2296                return max_node;
2297        }
2298
2299        /*
2300         * Finding the preferred nid in a system with NUMA backplane
2301         * interconnect topology is more involved. The goal is to locate
2302         * tasks from numa_groups near each other in the system, and
2303         * untangle workloads from different sides of the system. This requires
2304         * searching down the hierarchy of node groups, recursively searching
2305         * inside the highest scoring group of nodes. The nodemask tricks
2306         * keep the complexity of the search down.
2307         */
2308        nodes = node_online_map;
2309        for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2310                unsigned long max_faults = 0;
2311                nodemask_t max_group = NODE_MASK_NONE;
2312                int a, b;
2313
2314                /* Are there nodes at this distance from each other? */
2315                if (!find_numa_distance(dist))
2316                        continue;
2317
2318                for_each_node_mask(a, nodes) {
2319                        unsigned long faults = 0;
2320                        nodemask_t this_group;
2321                        nodes_clear(this_group);
2322
2323                        /* Sum group's NUMA faults; includes a==b case. */
2324                        for_each_node_mask(b, nodes) {
2325                                if (node_distance(a, b) < dist) {
2326                                        faults += group_faults(p, b);
2327                                        node_set(b, this_group);
2328                                        node_clear(b, nodes);
2329                                }
2330                        }
2331
2332                        /* Remember the top group. */
2333                        if (faults > max_faults) {
2334                                max_faults = faults;
2335                                max_group = this_group;
2336                                /*
2337                                 * subtle: at the smallest distance there is
2338                                 * just one node left in each "group", the
2339                                 * winner is the preferred nid.
2340                                 */
2341                                nid = a;
2342                        }
2343                }
2344                /* Next round, evaluate the nodes within max_group. */
2345                if (!max_faults)
2346                        break;
2347                nodes = max_group;
2348        }
2349        return nid;
2350}
2351
2352static void task_numa_placement(struct task_struct *p)
2353{
2354        int seq, nid, max_nid = NUMA_NO_NODE;
2355        unsigned long max_faults = 0;
2356        unsigned long fault_types[2] = { 0, 0 };
2357        unsigned long total_faults;
2358        u64 runtime, period;
2359        spinlock_t *group_lock = NULL;
2360        struct numa_group *ng;
2361
2362        /*
2363         * The p->mm->numa_scan_seq field gets updated without
2364         * exclusive access. Use READ_ONCE() here to ensure
2365         * that the field is read in a single access:
2366         */
2367        seq = READ_ONCE(p->mm->numa_scan_seq);
2368        if (p->numa_scan_seq == seq)
2369                return;
2370        p->numa_scan_seq = seq;
2371        p->numa_scan_period_max = task_scan_max(p);
2372
2373        total_faults = p->numa_faults_locality[0] +
2374                       p->numa_faults_locality[1];
2375        runtime = numa_get_avg_runtime(p, &period);
2376
2377        /* If the task is part of a group prevent parallel updates to group stats */
2378        ng = deref_curr_numa_group(p);
2379        if (ng) {
2380                group_lock = &ng->lock;
2381                spin_lock_irq(group_lock);
2382        }
2383
2384        /* Find the node with the highest number of faults */
2385        for_each_online_node(nid) {
2386                /* Keep track of the offsets in numa_faults array */
2387                int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2388                unsigned long faults = 0, group_faults = 0;
2389                int priv;
2390
2391                for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2392                        long diff, f_diff, f_weight;
2393
2394                        mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2395                        membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2396                        cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2397                        cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2398
2399                        /* Decay existing window, copy faults since last scan */
2400                        diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2401                        fault_types[priv] += p->numa_faults[membuf_idx];
2402                        p->numa_faults[membuf_idx] = 0;
2403
2404                        /*
2405                         * Normalize the faults_from, so all tasks in a group
2406                         * count according to CPU use, instead of by the raw
2407                         * number of faults. Tasks with little runtime have
2408                         * little over-all impact on throughput, and thus their
2409                         * faults are less important.
2410                         */
2411                        f_weight = div64_u64(runtime << 16, period + 1);
2412                        f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2413                                   (total_faults + 1);
2414                        f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2415                        p->numa_faults[cpubuf_idx] = 0;
2416
2417                        p->numa_faults[mem_idx] += diff;
2418                        p->numa_faults[cpu_idx] += f_diff;
2419                        faults += p->numa_faults[mem_idx];
2420                        p->total_numa_faults += diff;
2421                        if (ng) {
2422                                /*
2423                                 * safe because we can only change our own group
2424                                 *
2425                                 * mem_idx represents the offset for a given
2426                                 * nid and priv in a specific region because it
2427                                 * is at the beginning of the numa_faults array.
2428                                 */
2429                                ng->faults[mem_idx] += diff;
2430                                ng->faults_cpu[mem_idx] += f_diff;
2431                                ng->total_faults += diff;
2432                                group_faults += ng->faults[mem_idx];
2433                        }
2434                }
2435
2436                if (!ng) {
2437                        if (faults > max_faults) {
2438                                max_faults = faults;
2439                                max_nid = nid;
2440                        }
2441                } else if (group_faults > max_faults) {
2442                        max_faults = group_faults;
2443                        max_nid = nid;
2444                }
2445        }
2446
2447        if (ng) {
2448                numa_group_count_active_nodes(ng);
2449                spin_unlock_irq(group_lock);
2450                max_nid = preferred_group_nid(p, max_nid);
2451        }
2452
2453        if (max_faults) {
2454                /* Set the new preferred node */
2455                if (max_nid != p->numa_preferred_nid)
2456                        sched_setnuma(p, max_nid);
2457        }
2458
2459        update_task_scan_period(p, fault_types[0], fault_types[1]);
2460}
2461
2462static inline int get_numa_group(struct numa_group *grp)
2463{
2464        return refcount_inc_not_zero(&grp->refcount);
2465}
2466
2467static inline void put_numa_group(struct numa_group *grp)
2468{
2469        if (refcount_dec_and_test(&grp->refcount))
2470                kfree_rcu(grp, rcu);
2471}
2472
2473static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2474                        int *priv)
2475{
2476        struct numa_group *grp, *my_grp;
2477        struct task_struct *tsk;
2478        bool join = false;
2479        int cpu = cpupid_to_cpu(cpupid);
2480        int i;
2481
2482        if (unlikely(!deref_curr_numa_group(p))) {
2483                unsigned int size = sizeof(struct numa_group) +
2484                                    4*nr_node_ids*sizeof(unsigned long);
2485
2486                grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2487                if (!grp)
2488                        return;
2489
2490                refcount_set(&grp->refcount, 1);
2491                grp->active_nodes = 1;
2492                grp->max_faults_cpu = 0;
2493                spin_lock_init(&grp->lock);
2494                grp->gid = p->pid;
2495                /* Second half of the array tracks nids where faults happen */
2496                grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2497                                                nr_node_ids;
2498
2499                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2500                        grp->faults[i] = p->numa_faults[i];
2501
2502                grp->total_faults = p->total_numa_faults;
2503
2504                grp->nr_tasks++;
2505                rcu_assign_pointer(p->numa_group, grp);
2506        }
2507
2508        rcu_read_lock();
2509        tsk = READ_ONCE(cpu_rq(cpu)->curr);
2510
2511        if (!cpupid_match_pid(tsk, cpupid))
2512                goto no_join;
2513
2514        grp = rcu_dereference(tsk->numa_group);
2515        if (!grp)
2516                goto no_join;
2517
2518        my_grp = deref_curr_numa_group(p);
2519        if (grp == my_grp)
2520                goto no_join;
2521
2522        /*
2523         * Only join the other group if its bigger; if we're the bigger group,
2524         * the other task will join us.
2525         */
2526        if (my_grp->nr_tasks > grp->nr_tasks)
2527                goto no_join;
2528
2529        /*
2530         * Tie-break on the grp address.
2531         */
2532        if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2533                goto no_join;
2534
2535        /* Always join threads in the same process. */
2536        if (tsk->mm == current->mm)
2537                join = true;
2538
2539        /* Simple filter to avoid false positives due to PID collisions */
2540        if (flags & TNF_SHARED)
2541                join = true;
2542
2543        /* Update priv based on whether false sharing was detected */
2544        *priv = !join;
2545
2546        if (join && !get_numa_group(grp))
2547                goto no_join;
2548
2549        rcu_read_unlock();
2550
2551        if (!join)
2552                return;
2553
2554        BUG_ON(irqs_disabled());
2555        double_lock_irq(&my_grp->lock, &grp->lock);
2556
2557        for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2558                my_grp->faults[i] -= p->numa_faults[i];
2559                grp->faults[i] += p->numa_faults[i];
2560        }
2561        my_grp->total_faults -= p->total_numa_faults;
2562        grp->total_faults += p->total_numa_faults;
2563
2564        my_grp->nr_tasks--;
2565        grp->nr_tasks++;
2566
2567        spin_unlock(&my_grp->lock);
2568        spin_unlock_irq(&grp->lock);
2569
2570        rcu_assign_pointer(p->numa_group, grp);
2571
2572        put_numa_group(my_grp);
2573        return;
2574
2575no_join:
2576        rcu_read_unlock();
2577        return;
2578}
2579
2580/*
2581 * Get rid of NUMA statistics associated with a task (either current or dead).
2582 * If @final is set, the task is dead and has reached refcount zero, so we can
2583 * safely free all relevant data structures. Otherwise, there might be
2584 * concurrent reads from places like load balancing and procfs, and we should
2585 * reset the data back to default state without freeing ->numa_faults.
2586 */
2587void task_numa_free(struct task_struct *p, bool final)
2588{
2589        /* safe: p either is current or is being freed by current */
2590        struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2591        unsigned long *numa_faults = p->numa_faults;
2592        unsigned long flags;
2593        int i;
2594
2595        if (!numa_faults)
2596                return;
2597
2598        if (grp) {
2599                spin_lock_irqsave(&grp->lock, flags);
2600                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2601                        grp->faults[i] -= p->numa_faults[i];
2602                grp->total_faults -= p->total_numa_faults;
2603
2604                grp->nr_tasks--;
2605                spin_unlock_irqrestore(&grp->lock, flags);
2606                RCU_INIT_POINTER(p->numa_group, NULL);
2607                put_numa_group(grp);
2608        }
2609
2610        if (final) {
2611                p->numa_faults = NULL;
2612                kfree(numa_faults);
2613        } else {
2614                p->total_numa_faults = 0;
2615                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2616                        numa_faults[i] = 0;
2617        }
2618}
2619
2620/*
2621 * Got a PROT_NONE fault for a page on @node.
2622 */
2623void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2624{
2625        struct task_struct *p = current;
2626        bool migrated = flags & TNF_MIGRATED;
2627        int cpu_node = task_node(current);
2628        int local = !!(flags & TNF_FAULT_LOCAL);
2629        struct numa_group *ng;
2630        int priv;
2631
2632        if (!static_branch_likely(&sched_numa_balancing))
2633                return;
2634
2635        /* for example, ksmd faulting in a user's mm */
2636        if (!p->mm)
2637                return;
2638
2639        /* Allocate buffer to track faults on a per-node basis */
2640        if (unlikely(!p->numa_faults)) {
2641                int size = sizeof(*p->numa_faults) *
2642                           NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2643
2644                p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2645                if (!p->numa_faults)
2646                        return;
2647
2648                p->total_numa_faults = 0;
2649                memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2650        }
2651
2652        /*
2653         * First accesses are treated as private, otherwise consider accesses
2654         * to be private if the accessing pid has not changed
2655         */
2656        if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2657                priv = 1;
2658        } else {
2659                priv = cpupid_match_pid(p, last_cpupid);
2660                if (!priv && !(flags & TNF_NO_GROUP))
2661                        task_numa_group(p, last_cpupid, flags, &priv);
2662        }
2663
2664        /*
2665         * If a workload spans multiple NUMA nodes, a shared fault that
2666         * occurs wholly within the set of nodes that the workload is
2667         * actively using should be counted as local. This allows the
2668         * scan rate to slow down when a workload has settled down.
2669         */
2670        ng = deref_curr_numa_group(p);
2671        if (!priv && !local && ng && ng->active_nodes > 1 &&
2672                                numa_is_active_node(cpu_node, ng) &&
2673                                numa_is_active_node(mem_node, ng))
2674                local = 1;
2675
2676        /*
2677         * Retry to migrate task to preferred node periodically, in case it
2678         * previously failed, or the scheduler moved us.
2679         */
2680        if (time_after(jiffies, p->numa_migrate_retry)) {
2681                task_numa_placement(p);
2682                numa_migrate_preferred(p);
2683        }
2684
2685        if (migrated)
2686                p->numa_pages_migrated += pages;
2687        if (flags & TNF_MIGRATE_FAIL)
2688                p->numa_faults_locality[2] += pages;
2689
2690        p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2691        p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2692        p->numa_faults_locality[local] += pages;
2693}
2694
2695static void reset_ptenuma_scan(struct task_struct *p)
2696{
2697        /*
2698         * We only did a read acquisition of the mmap sem, so
2699         * p->mm->numa_scan_seq is written to without exclusive access
2700         * and the update is not guaranteed to be atomic. That's not
2701         * much of an issue though, since this is just used for
2702         * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2703         * expensive, to avoid any form of compiler optimizations:
2704         */
2705        WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2706        p->mm->numa_scan_offset = 0;
2707}
2708
2709/*
2710 * The expensive part of numa migration is done from task_work context.
2711 * Triggered from task_tick_numa().
2712 */
2713static void task_numa_work(struct callback_head *work)
2714{
2715        unsigned long migrate, next_scan, now = jiffies;
2716        struct task_struct *p = current;
2717        struct mm_struct *mm = p->mm;
2718        u64 runtime = p->se.sum_exec_runtime;
2719        struct vm_area_struct *vma;
2720        unsigned long start, end;
2721        unsigned long nr_pte_updates = 0;
2722        long pages, virtpages;
2723
2724        SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2725
2726        work->next = work;
2727        /*
2728         * Who cares about NUMA placement when they're dying.
2729         *
2730         * NOTE: make sure not to dereference p->mm before this check,
2731         * exit_task_work() happens _after_ exit_mm() so we could be called
2732         * without p->mm even though we still had it when we enqueued this
2733         * work.
2734         */
2735        if (p->flags & PF_EXITING)
2736                return;
2737
2738        if (!mm->numa_next_scan) {
2739                mm->numa_next_scan = now +
2740                        msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2741        }
2742
2743        /*
2744         * Enforce maximal scan/migration frequency..
2745         */
2746        migrate = mm->numa_next_scan;
2747        if (time_before(now, migrate))
2748                return;
2749
2750        if (p->numa_scan_period == 0) {
2751                p->numa_scan_period_max = task_scan_max(p);
2752                p->numa_scan_period = task_scan_start(p);
2753        }
2754
2755        next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2756        if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2757                return;
2758
2759        /*
2760         * Delay this task enough that another task of this mm will likely win
2761         * the next time around.
2762         */
2763        p->node_stamp += 2 * TICK_NSEC;
2764
2765        start = mm->numa_scan_offset;
2766        pages = sysctl_numa_balancing_scan_size;
2767        pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2768        virtpages = pages * 8;     /* Scan up to this much virtual space */
2769        if (!pages)
2770                return;
2771
2772
2773        if (!mmap_read_trylock(mm))
2774                return;
2775        vma = find_vma(mm, start);
2776        if (!vma) {
2777                reset_ptenuma_scan(p);
2778                start = 0;
2779                vma = mm->mmap;
2780        }
2781        for (; vma; vma = vma->vm_next) {
2782                if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2783                        is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2784                        continue;
2785                }
2786
2787                /*
2788                 * Shared library pages mapped by multiple processes are not
2789                 * migrated as it is expected they are cache replicated. Avoid
2790                 * hinting faults in read-only file-backed mappings or the vdso
2791                 * as migrating the pages will be of marginal benefit.
2792                 */
2793                if (!vma->vm_mm ||
2794                    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2795                        continue;
2796
2797                /*
2798                 * Skip inaccessible VMAs to avoid any confusion between
2799                 * PROT_NONE and NUMA hinting ptes
2800                 */
2801                if (!vma_is_accessible(vma))
2802                        continue;
2803
2804                do {
2805                        start = max(start, vma->vm_start);
2806                        end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2807                        end = min(end, vma->vm_end);
2808                        nr_pte_updates = change_prot_numa(vma, start, end);
2809
2810                        /*
2811                         * Try to scan sysctl_numa_balancing_size worth of
2812                         * hpages that have at least one present PTE that
2813                         * is not already pte-numa. If the VMA contains
2814                         * areas that are unused or already full of prot_numa
2815                         * PTEs, scan up to virtpages, to skip through those
2816                         * areas faster.
2817                         */
2818                        if (nr_pte_updates)
2819                                pages -= (end - start) >> PAGE_SHIFT;
2820                        virtpages -= (end - start) >> PAGE_SHIFT;
2821
2822                        start = end;
2823                        if (pages <= 0 || virtpages <= 0)
2824                                goto out;
2825
2826                        cond_resched();
2827                } while (end != vma->vm_end);
2828        }
2829
2830out:
2831        /*
2832         * It is possible to reach the end of the VMA list but the last few
2833         * VMAs are not guaranteed to the vma_migratable. If they are not, we
2834         * would find the !migratable VMA on the next scan but not reset the
2835         * scanner to the start so check it now.
2836         */
2837        if (vma)
2838                mm->numa_scan_offset = start;
2839        else
2840                reset_ptenuma_scan(p);
2841        mmap_read_unlock(mm);
2842
2843        /*
2844         * Make sure tasks use at least 32x as much time to run other code
2845         * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2846         * Usually update_task_scan_period slows down scanning enough; on an
2847         * overloaded system we need to limit overhead on a per task basis.
2848         */
2849        if (unlikely(p->se.sum_exec_runtime != runtime)) {
2850                u64 diff = p->se.sum_exec_runtime - runtime;
2851                p->node_stamp += 32 * diff;
2852        }
2853}
2854
2855void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2856{
2857        int mm_users = 0;
2858        struct mm_struct *mm = p->mm;
2859
2860        if (mm) {
2861                mm_users = atomic_read(&mm->mm_users);
2862                if (mm_users == 1) {
2863                        mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2864                        mm->numa_scan_seq = 0;
2865                }
2866        }
2867        p->node_stamp                   = 0;
2868        p->numa_scan_seq                = mm ? mm->numa_scan_seq : 0;
2869        p->numa_scan_period             = sysctl_numa_balancing_scan_delay;
2870        /* Protect against double add, see task_tick_numa and task_numa_work */
2871        p->numa_work.next               = &p->numa_work;
2872        p->numa_faults                  = NULL;
2873        RCU_INIT_POINTER(p->numa_group, NULL);
2874        p->last_task_numa_placement     = 0;
2875        p->last_sum_exec_runtime        = 0;
2876
2877        init_task_work(&p->numa_work, task_numa_work);
2878
2879        /* New address space, reset the preferred nid */
2880        if (!(clone_flags & CLONE_VM)) {
2881                p->numa_preferred_nid = NUMA_NO_NODE;
2882                return;
2883        }
2884
2885        /*
2886         * New thread, keep existing numa_preferred_nid which should be copied
2887         * already by arch_dup_task_struct but stagger when scans start.
2888         */
2889        if (mm) {
2890                unsigned int delay;
2891
2892                delay = min_t(unsigned int, task_scan_max(current),
2893                        current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2894                delay += 2 * TICK_NSEC;
2895                p->node_stamp = delay;
2896        }
2897}
2898
2899/*
2900 * Drive the periodic memory faults..
2901 */
2902static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2903{
2904        struct callback_head *work = &curr->numa_work;
2905        u64 period, now;
2906
2907        /*
2908         * We don't care about NUMA placement if we don't have memory.
2909         */
2910        if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2911                return;
2912
2913        /*
2914         * Using runtime rather than walltime has the dual advantage that
2915         * we (mostly) drive the selection from busy threads and that the
2916         * task needs to have done some actual work before we bother with
2917         * NUMA placement.
2918         */
2919        now = curr->se.sum_exec_runtime;
2920        period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2921
2922        if (now > curr->node_stamp + period) {
2923                if (!curr->node_stamp)
2924                        curr->numa_scan_period = task_scan_start(curr);
2925                curr->node_stamp += period;
2926
2927                if (!time_before(jiffies, curr->mm->numa_next_scan))
2928                        task_work_add(curr, work, TWA_RESUME);
2929        }
2930}
2931
2932static void update_scan_period(struct task_struct *p, int new_cpu)
2933{
2934        int src_nid = cpu_to_node(task_cpu(p));
2935        int dst_nid = cpu_to_node(new_cpu);
2936
2937        if (!static_branch_likely(&sched_numa_balancing))
2938                return;
2939
2940        if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2941                return;
2942
2943        if (src_nid == dst_nid)
2944                return;
2945
2946        /*
2947         * Allow resets if faults have been trapped before one scan
2948         * has completed. This is most likely due to a new task that
2949         * is pulled cross-node due to wakeups or load balancing.
2950         */
2951        if (p->numa_scan_seq) {
2952                /*
2953                 * Avoid scan adjustments if moving to the preferred
2954                 * node or if the task was not previously running on
2955                 * the preferred node.
2956                 */
2957                if (dst_nid == p->numa_preferred_nid ||
2958                    (p->numa_preferred_nid != NUMA_NO_NODE &&
2959                        src_nid != p->numa_preferred_nid))
2960                        return;
2961        }
2962
2963        p->numa_scan_period = task_scan_start(p);
2964}
2965
2966#else
2967static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2968{
2969}
2970
2971static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2972{
2973}
2974
2975static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2976{
2977}
2978
2979static inline void update_scan_period(struct task_struct *p, int new_cpu)
2980{
2981}
2982
2983#endif /* CONFIG_NUMA_BALANCING */
2984
2985static void
2986account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2987{
2988        update_load_add(&cfs_rq->load, se->load.weight);
2989#ifdef CONFIG_SMP
2990        if (entity_is_task(se)) {
2991                struct rq *rq = rq_of(cfs_rq);
2992
2993                account_numa_enqueue(rq, task_of(se));
2994                list_add(&se->group_node, &rq->cfs_tasks);
2995        }
2996#endif
2997        cfs_rq->nr_running++;
2998}
2999
3000static void
3001account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3002{
3003        update_load_sub(&cfs_rq->load, se->load.weight);
3004#ifdef CONFIG_SMP
3005        if (entity_is_task(se)) {
3006                account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3007                list_del_init(&se->group_node);
3008        }
3009#endif
3010        cfs_rq->nr_running--;
3011}
3012
3013/*
3014 * Signed add and clamp on underflow.
3015 *
3016 * Explicitly do a load-store to ensure the intermediate value never hits
3017 * memory. This allows lockless observations without ever seeing the negative
3018 * values.
3019 */
3020#define add_positive(_ptr, _val) do {                           \
3021        typeof(_ptr) ptr = (_ptr);                              \
3022        typeof(_val) val = (_val);                              \
3023        typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3024                                                                \
3025        res = var + val;                                        \
3026                                                                \
3027        if (val < 0 && res > var)                               \
3028                res = 0;                                        \
3029                                                                \
3030        WRITE_ONCE(*ptr, res);                                  \
3031} while (0)
3032
3033/*
3034 * Unsigned subtract and clamp on underflow.
3035 *
3036 * Explicitly do a load-store to ensure the intermediate value never hits
3037 * memory. This allows lockless observations without ever seeing the negative
3038 * values.
3039 */
3040#define sub_positive(_ptr, _val) do {                           \
3041        typeof(_ptr) ptr = (_ptr);                              \
3042        typeof(*ptr) val = (_val);                              \
3043        typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3044        res = var - val;                                        \
3045        if (res > var)                                          \
3046                res = 0;                                        \
3047        WRITE_ONCE(*ptr, res);                                  \
3048} while (0)
3049
3050/*
3051 * Remove and clamp on negative, from a local variable.
3052 *
3053 * A variant of sub_positive(), which does not use explicit load-store
3054 * and is thus optimized for local variable updates.
3055 */
3056#define lsub_positive(_ptr, _val) do {                          \
3057        typeof(_ptr) ptr = (_ptr);                              \
3058        *ptr -= min_t(typeof(*ptr), *ptr, _val);                \
3059} while (0)
3060
3061#ifdef CONFIG_SMP
3062static inline void
3063enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3064{
3065        cfs_rq->avg.load_avg += se->avg.load_avg;
3066        cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3067}
3068
3069static inline void
3070dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3071{
3072        u32 divider = get_pelt_divider(&se->avg);
3073        sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3074        cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3075}
3076#else
3077static inline void
3078enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3079static inline void
3080dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3081#endif
3082
3083static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3084                            unsigned long weight)
3085{
3086        if (se->on_rq) {
3087                /* commit outstanding execution time */
3088                if (cfs_rq->curr == se)
3089                        update_curr(cfs_rq);
3090                update_load_sub(&cfs_rq->load, se->load.weight);
3091        }
3092        dequeue_load_avg(cfs_rq, se);
3093
3094        update_load_set(&se->load, weight);
3095
3096#ifdef CONFIG_SMP
3097        do {
3098                u32 divider = get_pelt_divider(&se->avg);
3099
3100                se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3101        } while (0);
3102#endif
3103
3104        enqueue_load_avg(cfs_rq, se);
3105        if (se->on_rq)
3106                update_load_add(&cfs_rq->load, se->load.weight);
3107
3108}
3109
3110void reweight_task(struct task_struct *p, int prio)
3111{
3112        struct sched_entity *se = &p->se;
3113        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3114        struct load_weight *load = &se->load;
3115        unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3116
3117        reweight_entity(cfs_rq, se, weight);
3118        load->inv_weight = sched_prio_to_wmult[prio];
3119}
3120
3121#ifdef CONFIG_FAIR_GROUP_SCHED
3122#ifdef CONFIG_SMP
3123/*
3124 * All this does is approximate the hierarchical proportion which includes that
3125 * global sum we all love to hate.
3126 *
3127 * That is, the weight of a group entity, is the proportional share of the
3128 * group weight based on the group runqueue weights. That is:
3129 *
3130 *                     tg->weight * grq->load.weight
3131 *   ge->load.weight = -----------------------------               (1)
3132 *                       \Sum grq->load.weight
3133 *
3134 * Now, because computing that sum is prohibitively expensive to compute (been
3135 * there, done that) we approximate it with this average stuff. The average
3136 * moves slower and therefore the approximation is cheaper and more stable.
3137 *
3138 * So instead of the above, we substitute:
3139 *
3140 *   grq->load.weight -> grq->avg.load_avg                         (2)
3141 *
3142 * which yields the following:
3143 *
3144 *                     tg->weight * grq->avg.load_avg
3145 *   ge->load.weight = ------------------------------              (3)
3146 *                             tg->load_avg
3147 *
3148 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3149 *
3150 * That is shares_avg, and it is right (given the approximation (2)).
3151 *
3152 * The problem with it is that because the average is slow -- it was designed
3153 * to be exactly that of course -- this leads to transients in boundary
3154 * conditions. In specific, the case where the group was idle and we start the
3155 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3156 * yielding bad latency etc..
3157 *
3158 * Now, in that special case (1) reduces to:
3159 *
3160 *                     tg->weight * grq->load.weight
3161 *   ge->load.weight = ----------------------------- = tg->weight   (4)
3162 *                         grp->load.weight
3163 *
3164 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3165 *
3166 * So what we do is modify our approximation (3) to approach (4) in the (near)
3167 * UP case, like:
3168 *
3169 *   ge->load.weight =
3170 *
3171 *              tg->weight * grq->load.weight
3172 *     ---------------------------------------------------         (5)
3173 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3174 *
3175 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3176 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3177 *
3178 *
3179 *                     tg->weight * grq->load.weight
3180 *   ge->load.weight = -----------------------------               (6)
3181 *                             tg_load_avg'
3182 *
3183 * Where:
3184 *
3185 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3186 *                  max(grq->load.weight, grq->avg.load_avg)
3187 *
3188 * And that is shares_weight and is icky. In the (near) UP case it approaches
3189 * (4) while in the normal case it approaches (3). It consistently
3190 * overestimates the ge->load.weight and therefore:
3191 *
3192 *   \Sum ge->load.weight >= tg->weight
3193 *
3194 * hence icky!
3195 */
3196static long calc_group_shares(struct cfs_rq *cfs_rq)
3197{
3198        long tg_weight, tg_shares, load, shares;
3199        struct task_group *tg = cfs_rq->tg;
3200
3201        tg_shares = READ_ONCE(tg->shares);
3202
3203        load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3204
3205        tg_weight = atomic_long_read(&tg->load_avg);
3206
3207        /* Ensure tg_weight >= load */
3208        tg_weight -= cfs_rq->tg_load_avg_contrib;
3209        tg_weight += load;
3210
3211        shares = (tg_shares * load);
3212        if (tg_weight)
3213                shares /= tg_weight;
3214
3215        /*
3216         * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3217         * of a group with small tg->shares value. It is a floor value which is
3218         * assigned as a minimum load.weight to the sched_entity representing
3219         * the group on a CPU.
3220         *
3221         * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3222         * on an 8-core system with 8 tasks each runnable on one CPU shares has
3223         * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3224         * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3225         * instead of 0.
3226         */
3227        return clamp_t(long, shares, MIN_SHARES, tg_shares);
3228}
3229#endif /* CONFIG_SMP */
3230
3231static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3232
3233/*
3234 * Recomputes the group entity based on the current state of its group
3235 * runqueue.
3236 */
3237static void update_cfs_group(struct sched_entity *se)
3238{
3239        struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3240        long shares;
3241
3242        if (!gcfs_rq)
3243                return;
3244
3245        if (throttled_hierarchy(gcfs_rq))
3246                return;
3247
3248#ifndef CONFIG_SMP
3249        shares = READ_ONCE(gcfs_rq->tg->shares);
3250
3251        if (likely(se->load.weight == shares))
3252                return;
3253#else
3254        shares   = calc_group_shares(gcfs_rq);
3255#endif
3256
3257        reweight_entity(cfs_rq_of(se), se, shares);
3258}
3259
3260#else /* CONFIG_FAIR_GROUP_SCHED */
3261static inline void update_cfs_group(struct sched_entity *se)
3262{
3263}
3264#endif /* CONFIG_FAIR_GROUP_SCHED */
3265
3266static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3267{
3268        struct rq *rq = rq_of(cfs_rq);
3269
3270        if (&rq->cfs == cfs_rq) {
3271                /*
3272                 * There are a few boundary cases this might miss but it should
3273                 * get called often enough that that should (hopefully) not be
3274                 * a real problem.
3275                 *
3276                 * It will not get called when we go idle, because the idle
3277                 * thread is a different class (!fair), nor will the utilization
3278                 * number include things like RT tasks.
3279                 *
3280                 * As is, the util number is not freq-invariant (we'd have to
3281                 * implement arch_scale_freq_capacity() for that).
3282                 *
3283                 * See cpu_util().
3284                 */
3285                cpufreq_update_util(rq, flags);
3286        }
3287}
3288
3289#ifdef CONFIG_SMP
3290#ifdef CONFIG_FAIR_GROUP_SCHED
3291/*
3292 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3293 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3294 * bottom-up, we only have to test whether the cfs_rq before us on the list
3295 * is our child.
3296 * If cfs_rq is not on the list, test whether a child needs its to be added to
3297 * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3298 */
3299static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3300{
3301        struct cfs_rq *prev_cfs_rq;
3302        struct list_head *prev;
3303
3304        if (cfs_rq->on_list) {
3305                prev = cfs_rq->leaf_cfs_rq_list.prev;
3306        } else {
3307                struct rq *rq = rq_of(cfs_rq);
3308
3309                prev = rq->tmp_alone_branch;
3310        }
3311
3312        prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3313
3314        return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3315}
3316
3317static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3318{
3319        if (cfs_rq->load.weight)
3320                return false;
3321
3322        if (cfs_rq->avg.load_sum)
3323                return false;
3324
3325        if (cfs_rq->avg.util_sum)
3326                return false;
3327
3328        if (cfs_rq->avg.runnable_sum)
3329                return false;
3330
3331        if (child_cfs_rq_on_list(cfs_rq))
3332                return false;
3333
3334        /*
3335         * _avg must be null when _sum are null because _avg = _sum / divider
3336         * Make sure that rounding and/or propagation of PELT values never
3337         * break this.
3338         */
3339        SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3340                      cfs_rq->avg.util_avg ||
3341                      cfs_rq->avg.runnable_avg);
3342
3343        return true;
3344}
3345
3346/**
3347 * update_tg_load_avg - update the tg's load avg
3348 * @cfs_rq: the cfs_rq whose avg changed
3349 *
3350 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3351 * However, because tg->load_avg is a global value there are performance
3352 * considerations.
3353 *
3354 * In order to avoid having to look at the other cfs_rq's, we use a
3355 * differential update where we store the last value we propagated. This in
3356 * turn allows skipping updates if the differential is 'small'.
3357 *
3358 * Updating tg's load_avg is necessary before update_cfs_share().
3359 */
3360static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3361{
3362        long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3363
3364        /*
3365         * No need to update load_avg for root_task_group as it is not used.
3366         */
3367        if (cfs_rq->tg == &root_task_group)
3368                return;
3369
3370        if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3371                atomic_long_add(delta, &cfs_rq->tg->load_avg);
3372                cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3373        }
3374}
3375
3376/*
3377 * Called within set_task_rq() right before setting a task's CPU. The
3378 * caller only guarantees p->pi_lock is held; no other assumptions,
3379 * including the state of rq->lock, should be made.
3380 */
3381void set_task_rq_fair(struct sched_entity *se,
3382                      struct cfs_rq *prev, struct cfs_rq *next)
3383{
3384        u64 p_last_update_time;
3385        u64 n_last_update_time;
3386
3387        if (!sched_feat(ATTACH_AGE_LOAD))
3388                return;
3389
3390        /*
3391         * We are supposed to update the task to "current" time, then its up to
3392         * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3393         * getting what current time is, so simply throw away the out-of-date
3394         * time. This will result in the wakee task is less decayed, but giving
3395         * the wakee more load sounds not bad.
3396         */
3397        if (!(se->avg.last_update_time && prev))
3398                return;
3399
3400#ifndef CONFIG_64BIT
3401        {
3402                u64 p_last_update_time_copy;
3403                u64 n_last_update_time_copy;
3404
3405                do {
3406                        p_last_update_time_copy = prev->load_last_update_time_copy;
3407                        n_last_update_time_copy = next->load_last_update_time_copy;
3408
3409                        smp_rmb();
3410
3411                        p_last_update_time = prev->avg.last_update_time;
3412                        n_last_update_time = next->avg.last_update_time;
3413
3414                } while (p_last_update_time != p_last_update_time_copy ||
3415                         n_last_update_time != n_last_update_time_copy);
3416        }
3417#else
3418        p_last_update_time = prev->avg.last_update_time;
3419        n_last_update_time = next->avg.last_update_time;
3420#endif
3421        __update_load_avg_blocked_se(p_last_update_time, se);
3422        se->avg.last_update_time = n_last_update_time;
3423}
3424
3425
3426/*
3427 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3428 * propagate its contribution. The key to this propagation is the invariant
3429 * that for each group:
3430 *
3431 *   ge->avg == grq->avg                                                (1)
3432 *
3433 * _IFF_ we look at the pure running and runnable sums. Because they
3434 * represent the very same entity, just at different points in the hierarchy.
3435 *
3436 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3437 * and simply copies the running/runnable sum over (but still wrong, because
3438 * the group entity and group rq do not have their PELT windows aligned).
3439 *
3440 * However, update_tg_cfs_load() is more complex. So we have:
3441 *
3442 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg          (2)
3443 *
3444 * And since, like util, the runnable part should be directly transferable,
3445 * the following would _appear_ to be the straight forward approach:
3446 *
3447 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg       (3)
3448 *
3449 * And per (1) we have:
3450 *
3451 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3452 *
3453 * Which gives:
3454 *
3455 *                      ge->load.weight * grq->avg.load_avg
3456 *   ge->avg.load_avg = -----------------------------------             (4)
3457 *                               grq->load.weight
3458 *
3459 * Except that is wrong!
3460 *
3461 * Because while for entities historical weight is not important and we
3462 * really only care about our future and therefore can consider a pure
3463 * runnable sum, runqueues can NOT do this.
3464 *
3465 * We specifically want runqueues to have a load_avg that includes
3466 * historical weights. Those represent the blocked load, the load we expect
3467 * to (shortly) return to us. This only works by keeping the weights as
3468 * integral part of the sum. We therefore cannot decompose as per (3).
3469 *
3470 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3471 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3472 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3473 * runnable section of these tasks overlap (or not). If they were to perfectly
3474 * align the rq as a whole would be runnable 2/3 of the time. If however we
3475 * always have at least 1 runnable task, the rq as a whole is always runnable.
3476 *
3477 * So we'll have to approximate.. :/
3478 *
3479 * Given the constraint:
3480 *
3481 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3482 *
3483 * We can construct a rule that adds runnable to a rq by assuming minimal
3484 * overlap.
3485 *
3486 * On removal, we'll assume each task is equally runnable; which yields:
3487 *
3488 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3489 *
3490 * XXX: only do this for the part of runnable > running ?
3491 *
3492 */
3493
3494static inline void
3495update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3496{
3497        long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3498        u32 divider;
3499
3500        /* Nothing to update */
3501        if (!delta)
3502                return;
3503
3504        /*
3505         * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3506         * See ___update_load_avg() for details.
3507         */
3508        divider = get_pelt_divider(&cfs_rq->avg);
3509
3510        /* Set new sched_entity's utilization */
3511        se->avg.util_avg = gcfs_rq->avg.util_avg;
3512        se->avg.util_sum = se->avg.util_avg * divider;
3513
3514        /* Update parent cfs_rq utilization */
3515        add_positive(&cfs_rq->avg.util_avg, delta);
3516        cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3517}
3518
3519static inline void
3520update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3521{
3522        long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3523        u32 divider;
3524
3525        /* Nothing to update */
3526        if (!delta)
3527                return;
3528
3529        /*
3530         * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3531         * See ___update_load_avg() for details.
3532         */
3533        divider = get_pelt_divider(&cfs_rq->avg);
3534
3535        /* Set new sched_entity's runnable */
3536        se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3537        se->avg.runnable_sum = se->avg.runnable_avg * divider;
3538
3539        /* Update parent cfs_rq runnable */
3540        add_positive(&cfs_rq->avg.runnable_avg, delta);
3541        cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3542}
3543
3544static inline void
3545update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3546{
3547        long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3548        unsigned long load_avg;
3549        u64 load_sum = 0;
3550        u32 divider;
3551
3552        if (!runnable_sum)
3553                return;
3554
3555        gcfs_rq->prop_runnable_sum = 0;
3556
3557        /*
3558         * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3559         * See ___update_load_avg() for details.
3560         */
3561        divider = get_pelt_divider(&cfs_rq->avg);
3562
3563        if (runnable_sum >= 0) {
3564                /*
3565                 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3566                 * the CPU is saturated running == runnable.
3567                 */
3568                runnable_sum += se->avg.load_sum;
3569                runnable_sum = min_t(long, runnable_sum, divider);
3570        } else {
3571                /*
3572                 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3573                 * assuming all tasks are equally runnable.
3574                 */
3575                if (scale_load_down(gcfs_rq->load.weight)) {
3576                        load_sum = div_s64(gcfs_rq->avg.load_sum,
3577                                scale_load_down(gcfs_rq->load.weight));
3578                }
3579
3580                /* But make sure to not inflate se's runnable */
3581                runnable_sum = min(se->avg.load_sum, load_sum);
3582        }
3583
3584        /*
3585         * runnable_sum can't be lower than running_sum
3586         * Rescale running sum to be in the same range as runnable sum
3587         * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3588         * runnable_sum is in [0 : LOAD_AVG_MAX]
3589         */
3590        running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3591        runnable_sum = max(runnable_sum, running_sum);
3592
3593        load_sum = (s64)se_weight(se) * runnable_sum;
3594        load_avg = div_s64(load_sum, divider);
3595
3596        se->avg.load_sum = runnable_sum;
3597
3598        delta = load_avg - se->avg.load_avg;
3599        if (!delta)
3600                return;
3601
3602        se->avg.load_avg = load_avg;
3603
3604        add_positive(&cfs_rq->avg.load_avg, delta);
3605        cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3606}
3607
3608static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3609{
3610        cfs_rq->propagate = 1;
3611        cfs_rq->prop_runnable_sum += runnable_sum;
3612}
3613
3614/* Update task and its cfs_rq load average */
3615static inline int propagate_entity_load_avg(struct sched_entity *se)
3616{
3617        struct cfs_rq *cfs_rq, *gcfs_rq;
3618
3619        if (entity_is_task(se))
3620                return 0;
3621
3622        gcfs_rq = group_cfs_rq(se);
3623        if (!gcfs_rq->propagate)
3624                return 0;
3625
3626        gcfs_rq->propagate = 0;
3627
3628        cfs_rq = cfs_rq_of(se);
3629
3630        add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3631
3632        update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3633        update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3634        update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3635
3636        trace_pelt_cfs_tp(cfs_rq);
3637        trace_pelt_se_tp(se);
3638
3639        return 1;
3640}
3641
3642/*
3643 * Check if we need to update the load and the utilization of a blocked
3644 * group_entity:
3645 */
3646static inline bool skip_blocked_update(struct sched_entity *se)
3647{
3648        struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3649
3650        /*
3651         * If sched_entity still have not zero load or utilization, we have to
3652         * decay it:
3653         */
3654        if (se->avg.load_avg || se->avg.util_avg)
3655                return false;
3656
3657        /*
3658         * If there is a pending propagation, we have to update the load and
3659         * the utilization of the sched_entity:
3660         */
3661        if (gcfs_rq->propagate)
3662                return false;
3663
3664        /*
3665         * Otherwise, the load and the utilization of the sched_entity is
3666         * already zero and there is no pending propagation, so it will be a
3667         * waste of time to try to decay it:
3668         */
3669        return true;
3670}
3671
3672#else /* CONFIG_FAIR_GROUP_SCHED */
3673
3674static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3675
3676static inline int propagate_entity_load_avg(struct sched_entity *se)
3677{
3678        return 0;
3679}
3680
3681static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3682
3683#endif /* CONFIG_FAIR_GROUP_SCHED */
3684
3685/**
3686 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3687 * @now: current time, as per cfs_rq_clock_pelt()
3688 * @cfs_rq: cfs_rq to update
3689 *
3690 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3691 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3692 * post_init_entity_util_avg().
3693 *
3694 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3695 *
3696 * Returns true if the load decayed or we removed load.
3697 *
3698 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3699 * call update_tg_load_avg() when this function returns true.
3700 */
3701static inline int
3702update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3703{
3704        unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3705        struct sched_avg *sa = &cfs_rq->avg;
3706        int decayed = 0;
3707
3708        if (cfs_rq->removed.nr) {
3709                unsigned long r;
3710                u32 divider = get_pelt_divider(&cfs_rq->avg);
3711
3712                raw_spin_lock(&cfs_rq->removed.lock);
3713                swap(cfs_rq->removed.util_avg, removed_util);
3714                swap(cfs_rq->removed.load_avg, removed_load);
3715                swap(cfs_rq->removed.runnable_avg, removed_runnable);
3716                cfs_rq->removed.nr = 0;
3717                raw_spin_unlock(&cfs_rq->removed.lock);
3718
3719                r = removed_load;
3720                sub_positive(&sa->load_avg, r);
3721                sa->load_sum = sa->load_avg * divider;
3722
3723                r = removed_util;
3724                sub_positive(&sa->util_avg, r);
3725                sa->util_sum = sa->util_avg * divider;
3726
3727                r = removed_runnable;
3728                sub_positive(&sa->runnable_avg, r);
3729                sa->runnable_sum = sa->runnable_avg * divider;
3730
3731                /*
3732                 * removed_runnable is the unweighted version of removed_load so we
3733                 * can use it to estimate removed_load_sum.
3734                 */
3735                add_tg_cfs_propagate(cfs_rq,
3736                        -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3737
3738                decayed = 1;
3739        }
3740
3741        decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3742
3743#ifndef CONFIG_64BIT
3744        smp_wmb();
3745        cfs_rq->load_last_update_time_copy = sa->last_update_time;
3746#endif
3747
3748        return decayed;
3749}
3750
3751/**
3752 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3753 * @cfs_rq: cfs_rq to attach to
3754 * @se: sched_entity to attach
3755 *
3756 * Must call update_cfs_rq_load_avg() before this, since we rely on
3757 * cfs_rq->avg.last_update_time being current.
3758 */
3759static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3760{
3761        /*
3762         * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3763         * See ___update_load_avg() for details.
3764         */
3765        u32 divider = get_pelt_divider(&cfs_rq->avg);
3766
3767        /*
3768         * When we attach the @se to the @cfs_rq, we must align the decay
3769         * window because without that, really weird and wonderful things can
3770         * happen.
3771         *
3772         * XXX illustrate
3773         */
3774        se->avg.last_update_time = cfs_rq->avg.last_update_time;
3775        se->avg.period_contrib = cfs_rq->avg.period_contrib;
3776
3777        /*
3778         * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3779         * period_contrib. This isn't strictly correct, but since we're
3780         * entirely outside of the PELT hierarchy, nobody cares if we truncate
3781         * _sum a little.
3782         */
3783        se->avg.util_sum = se->avg.util_avg * divider;
3784
3785        se->avg.runnable_sum = se->avg.runnable_avg * divider;
3786
3787        se->avg.load_sum = divider;
3788        if (se_weight(se)) {
3789                se->avg.load_sum =
3790                        div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3791        }
3792
3793        enqueue_load_avg(cfs_rq, se);
3794        cfs_rq->avg.util_avg += se->avg.util_avg;
3795        cfs_rq->avg.util_sum += se->avg.util_sum;
3796        cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3797        cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3798
3799        add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3800
3801        cfs_rq_util_change(cfs_rq, 0);
3802
3803        trace_pelt_cfs_tp(cfs_rq);
3804}
3805
3806/**
3807 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3808 * @cfs_rq: cfs_rq to detach from
3809 * @se: sched_entity to detach
3810 *
3811 * Must call update_cfs_rq_load_avg() before this, since we rely on
3812 * cfs_rq->avg.last_update_time being current.
3813 */
3814static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3815{
3816        /*
3817         * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3818         * See ___update_load_avg() for details.
3819         */
3820        u32 divider = get_pelt_divider(&cfs_rq->avg);
3821
3822        dequeue_load_avg(cfs_rq, se);
3823        sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3824        cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3825        sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3826        cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3827
3828        add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3829
3830        cfs_rq_util_change(cfs_rq, 0);
3831
3832        trace_pelt_cfs_tp(cfs_rq);
3833}
3834
3835/*
3836 * Optional action to be done while updating the load average
3837 */
3838#define UPDATE_TG       0x1
3839#define SKIP_AGE_LOAD   0x2
3840#define DO_ATTACH       0x4
3841
3842/* Update task and its cfs_rq load average */
3843static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3844{
3845        u64 now = cfs_rq_clock_pelt(cfs_rq);
3846        int decayed;
3847
3848        /*
3849         * Track task load average for carrying it to new CPU after migrated, and
3850         * track group sched_entity load average for task_h_load calc in migration
3851         */
3852        if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3853                __update_load_avg_se(now, cfs_rq, se);
3854
3855        decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3856        decayed |= propagate_entity_load_avg(se);
3857
3858        if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3859
3860                /*
3861                 * DO_ATTACH means we're here from enqueue_entity().
3862                 * !last_update_time means we've passed through
3863                 * migrate_task_rq_fair() indicating we migrated.
3864                 *
3865                 * IOW we're enqueueing a task on a new CPU.
3866                 */
3867                attach_entity_load_avg(cfs_rq, se);
3868                update_tg_load_avg(cfs_rq);
3869
3870        } else if (decayed) {
3871                cfs_rq_util_change(cfs_rq, 0);
3872
3873                if (flags & UPDATE_TG)
3874                        update_tg_load_avg(cfs_rq);
3875        }
3876}
3877
3878#ifndef CONFIG_64BIT
3879static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3880{
3881        u64 last_update_time_copy;
3882        u64 last_update_time;
3883
3884        do {
3885                last_update_time_copy = cfs_rq->load_last_update_time_copy;
3886                smp_rmb();
3887                last_update_time = cfs_rq->avg.last_update_time;
3888        } while (last_update_time != last_update_time_copy);
3889
3890        return last_update_time;
3891}
3892#else
3893static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3894{
3895        return cfs_rq->avg.last_update_time;
3896}
3897#endif
3898
3899/*
3900 * Synchronize entity load avg of dequeued entity without locking
3901 * the previous rq.
3902 */
3903static void sync_entity_load_avg(struct sched_entity *se)
3904{
3905        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3906        u64 last_update_time;
3907
3908        last_update_time = cfs_rq_last_update_time(cfs_rq);
3909        __update_load_avg_blocked_se(last_update_time, se);
3910}
3911
3912/*
3913 * Task first catches up with cfs_rq, and then subtract
3914 * itself from the cfs_rq (task must be off the queue now).
3915 */
3916static void remove_entity_load_avg(struct sched_entity *se)
3917{
3918        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3919        unsigned long flags;
3920
3921        /*
3922         * tasks cannot exit without having gone through wake_up_new_task() ->
3923         * post_init_entity_util_avg() which will have added things to the
3924         * cfs_rq, so we can remove unconditionally.
3925         */
3926
3927        sync_entity_load_avg(se);
3928
3929        raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3930        ++cfs_rq->removed.nr;
3931        cfs_rq->removed.util_avg        += se->avg.util_avg;
3932        cfs_rq->removed.load_avg        += se->avg.load_avg;
3933        cfs_rq->removed.runnable_avg    += se->avg.runnable_avg;
3934        raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3935}
3936
3937static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3938{
3939        return cfs_rq->avg.runnable_avg;
3940}
3941
3942static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3943{
3944        return cfs_rq->avg.load_avg;
3945}
3946
3947static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3948
3949static inline unsigned long task_util(struct task_struct *p)
3950{
3951        return READ_ONCE(p->se.avg.util_avg);
3952}
3953
3954static inline unsigned long _task_util_est(struct task_struct *p)
3955{
3956        struct util_est ue = READ_ONCE(p->se.avg.util_est);
3957
3958        return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3959}
3960
3961static inline unsigned long task_util_est(struct task_struct *p)
3962{
3963        return max(task_util(p), _task_util_est(p));
3964}
3965
3966#ifdef CONFIG_UCLAMP_TASK
3967static inline unsigned long uclamp_task_util(struct task_struct *p)
3968{
3969        return clamp(task_util_est(p),
3970                     uclamp_eff_value(p, UCLAMP_MIN),
3971                     uclamp_eff_value(p, UCLAMP_MAX));
3972}
3973#else
3974static inline unsigned long uclamp_task_util(struct task_struct *p)
3975{
3976        return task_util_est(p);
3977}
3978#endif
3979
3980static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3981                                    struct task_struct *p)
3982{
3983        unsigned int enqueued;
3984
3985        if (!sched_feat(UTIL_EST))
3986                return;
3987
3988        /* Update root cfs_rq's estimated utilization */
3989        enqueued  = cfs_rq->avg.util_est.enqueued;
3990        enqueued += _task_util_est(p);
3991        WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3992
3993        trace_sched_util_est_cfs_tp(cfs_rq);
3994}
3995
3996static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3997                                    struct task_struct *p)
3998{
3999        unsigned int enqueued;
4000
4001        if (!sched_feat(UTIL_EST))
4002                return;
4003
4004        /* Update root cfs_rq's estimated utilization */
4005        enqueued  = cfs_rq->avg.util_est.enqueued;
4006        enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4007        WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4008
4009        trace_sched_util_est_cfs_tp(cfs_rq);
4010}
4011
4012#define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4013
4014/*
4015 * Check if a (signed) value is within a specified (unsigned) margin,
4016 * based on the observation that:
4017 *
4018 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4019 *
4020 * NOTE: this only works when value + margin < INT_MAX.
4021 */
4022static inline bool within_margin(int value, int margin)
4023{
4024        return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4025}
4026
4027static inline void util_est_update(struct cfs_rq *cfs_rq,
4028                                   struct task_struct *p,
4029                                   bool task_sleep)
4030{
4031        long last_ewma_diff, last_enqueued_diff;
4032        struct util_est ue;
4033
4034        if (!sched_feat(UTIL_EST))
4035                return;
4036
4037        /*
4038         * Skip update of task's estimated utilization when the task has not
4039         * yet completed an activation, e.g. being migrated.
4040         */
4041        if (!task_sleep)
4042                return;
4043
4044        /*
4045         * If the PELT values haven't changed since enqueue time,
4046         * skip the util_est update.
4047         */
4048        ue = p->se.avg.util_est;
4049        if (ue.enqueued & UTIL_AVG_UNCHANGED)
4050                return;
4051
4052        last_enqueued_diff = ue.enqueued;
4053
4054        /*
4055         * Reset EWMA on utilization increases, the moving average is used only
4056         * to smooth utilization decreases.
4057         */
4058        ue.enqueued = task_util(p);
4059        if (sched_feat(UTIL_EST_FASTUP)) {
4060                if (ue.ewma < ue.enqueued) {
4061                        ue.ewma = ue.enqueued;
4062                        goto done;
4063                }
4064        }
4065
4066        /*
4067         * Skip update of task's estimated utilization when its members are
4068         * already ~1% close to its last activation value.
4069         */
4070        last_ewma_diff = ue.enqueued - ue.ewma;
4071        last_enqueued_diff -= ue.enqueued;
4072        if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4073                if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4074                        goto done;
4075
4076                return;
4077        }
4078
4079        /*
4080         * To avoid overestimation of actual task utilization, skip updates if
4081         * we cannot grant there is idle time in this CPU.
4082         */
4083        if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4084                return;
4085
4086        /*
4087         * Update Task's estimated utilization
4088         *
4089         * When *p completes an activation we can consolidate another sample
4090         * of the task size. This is done by storing the current PELT value
4091         * as ue.enqueued and by using this value to update the Exponential
4092         * Weighted Moving Average (EWMA):
4093         *
4094         *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4095         *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4096         *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4097         *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4098         *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4099         *
4100         * Where 'w' is the weight of new samples, which is configured to be
4101         * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4102         */
4103        ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4104        ue.ewma  += last_ewma_diff;
4105        ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4106done:
4107        ue.enqueued |= UTIL_AVG_UNCHANGED;
4108        WRITE_ONCE(p->se.avg.util_est, ue);
4109
4110        trace_sched_util_est_se_tp(&p->se);
4111}
4112
4113static inline int task_fits_capacity(struct task_struct *p, long capacity)
4114{
4115        return fits_capacity(uclamp_task_util(p), capacity);
4116}
4117
4118static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4119{
4120        if (!static_branch_unlikely(&sched_asym_cpucapacity))
4121                return;
4122
4123        if (!p || p->nr_cpus_allowed == 1) {
4124                rq->misfit_task_load = 0;
4125                return;
4126        }
4127
4128        if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4129                rq->misfit_task_load = 0;
4130                return;
4131        }
4132
4133        /*
4134         * Make sure that misfit_task_load will not be null even if
4135         * task_h_load() returns 0.
4136         */
4137        rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4138}
4139
4140#else /* CONFIG_SMP */
4141
4142static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4143{
4144        return true;
4145}
4146
4147#define UPDATE_TG       0x0
4148#define SKIP_AGE_LOAD   0x0
4149#define DO_ATTACH       0x0
4150
4151static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4152{
4153        cfs_rq_util_change(cfs_rq, 0);
4154}
4155
4156static inline void remove_entity_load_avg(struct sched_entity *se) {}
4157
4158static inline void
4159attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4160static inline void
4161detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4162
4163static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4164{
4165        return 0;
4166}
4167
4168static inline void
4169util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4170
4171static inline void
4172util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4173
4174static inline void
4175util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4176                bool task_sleep) {}
4177static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4178
4179#endif /* CONFIG_SMP */
4180
4181static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4182{
4183#ifdef CONFIG_SCHED_DEBUG
4184        s64 d = se->vruntime - cfs_rq->min_vruntime;
4185
4186        if (d < 0)
4187                d = -d;
4188
4189        if (d > 3*sysctl_sched_latency)
4190                schedstat_inc(cfs_rq->nr_spread_over);
4191#endif
4192}
4193
4194static void
4195place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4196{
4197        u64 vruntime = cfs_rq->min_vruntime;
4198
4199        /*
4200         * The 'current' period is already promised to the current tasks,
4201         * however the extra weight of the new task will slow them down a
4202         * little, place the new task so that it fits in the slot that
4203         * stays open at the end.
4204         */
4205        if (initial && sched_feat(START_DEBIT))
4206                vruntime += sched_vslice(cfs_rq, se);
4207
4208        /* sleeps up to a single latency don't count. */
4209        if (!initial) {
4210                unsigned long thresh = sysctl_sched_latency;
4211
4212                /*
4213                 * Halve their sleep time's effect, to allow
4214                 * for a gentler effect of sleepers:
4215                 */
4216                if (sched_feat(GENTLE_FAIR_SLEEPERS))
4217                        thresh >>= 1;
4218
4219                vruntime -= thresh;
4220        }
4221
4222        /* ensure we never gain time by being placed backwards. */
4223        se->vruntime = max_vruntime(se->vruntime, vruntime);
4224}
4225
4226static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4227
4228static inline void check_schedstat_required(void)
4229{
4230#ifdef CONFIG_SCHEDSTATS
4231        if (schedstat_enabled())
4232                return;
4233
4234        /* Force schedstat enabled if a dependent tracepoint is active */
4235        if (trace_sched_stat_wait_enabled()    ||
4236                        trace_sched_stat_sleep_enabled()   ||
4237                        trace_sched_stat_iowait_enabled()  ||
4238                        trace_sched_stat_blocked_enabled() ||
4239                        trace_sched_stat_runtime_enabled())  {
4240                printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4241                             "stat_blocked and stat_runtime require the "
4242                             "kernel parameter schedstats=enable or "
4243                             "kernel.sched_schedstats=1\n");
4244        }
4245#endif
4246}
4247
4248static inline bool cfs_bandwidth_used(void);
4249
4250/*
4251 * MIGRATION
4252 *
4253 *      dequeue
4254 *        update_curr()
4255 *          update_min_vruntime()
4256 *        vruntime -= min_vruntime
4257 *
4258 *      enqueue
4259 *        update_curr()
4260 *          update_min_vruntime()
4261 *        vruntime += min_vruntime
4262 *
4263 * this way the vruntime transition between RQs is done when both
4264 * min_vruntime are up-to-date.
4265 *
4266 * WAKEUP (remote)
4267 *
4268 *      ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4269 *        vruntime -= min_vruntime
4270 *
4271 *      enqueue
4272 *        update_curr()
4273 *          update_min_vruntime()
4274 *        vruntime += min_vruntime
4275 *
4276 * this way we don't have the most up-to-date min_vruntime on the originating
4277 * CPU and an up-to-date min_vruntime on the destination CPU.
4278 */
4279
4280static void
4281enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4282{
4283        bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4284        bool curr = cfs_rq->curr == se;
4285
4286        /*
4287         * If we're the current task, we must renormalise before calling
4288         * update_curr().
4289         */
4290        if (renorm && curr)
4291                se->vruntime += cfs_rq->min_vruntime;
4292
4293        update_curr(cfs_rq);
4294
4295        /*
4296         * Otherwise, renormalise after, such that we're placed at the current
4297         * moment in time, instead of some random moment in the past. Being
4298         * placed in the past could significantly boost this task to the
4299         * fairness detriment of existing tasks.
4300         */
4301        if (renorm && !curr)
4302                se->vruntime += cfs_rq->min_vruntime;
4303
4304        /*
4305         * When enqueuing a sched_entity, we must:
4306         *   - Update loads to have both entity and cfs_rq synced with now.
4307         *   - Add its load to cfs_rq->runnable_avg
4308         *   - For group_entity, update its weight to reflect the new share of
4309         *     its group cfs_rq
4310         *   - Add its new weight to cfs_rq->load.weight
4311         */
4312        update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4313        se_update_runnable(se);
4314        update_cfs_group(se);
4315        account_entity_enqueue(cfs_rq, se);
4316
4317        if (flags & ENQUEUE_WAKEUP)
4318                place_entity(cfs_rq, se, 0);
4319
4320        check_schedstat_required();
4321        update_stats_enqueue(cfs_rq, se, flags);
4322        check_spread(cfs_rq, se);
4323        if (!curr)
4324                __enqueue_entity(cfs_rq, se);
4325        se->on_rq = 1;
4326
4327        /*
4328         * When bandwidth control is enabled, cfs might have been removed
4329         * because of a parent been throttled but cfs->nr_running > 1. Try to
4330         * add it unconditionally.
4331         */
4332        if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4333                list_add_leaf_cfs_rq(cfs_rq);
4334
4335        if (cfs_rq->nr_running == 1)
4336                check_enqueue_throttle(cfs_rq);
4337}
4338
4339static void __clear_buddies_last(struct sched_entity *se)
4340{
4341        for_each_sched_entity(se) {
4342                struct cfs_rq *cfs_rq = cfs_rq_of(se);
4343                if (cfs_rq->last != se)
4344                        break;
4345
4346                cfs_rq->last = NULL;
4347        }
4348}
4349
4350static void __clear_buddies_next(struct sched_entity *se)
4351{
4352        for_each_sched_entity(se) {
4353                struct cfs_rq *cfs_rq = cfs_rq_of(se);
4354                if (cfs_rq->next != se)
4355                        break;
4356
4357                cfs_rq->next = NULL;
4358        }
4359}
4360
4361static void __clear_buddies_skip(struct sched_entity *se)
4362{
4363        for_each_sched_entity(se) {
4364                struct cfs_rq *cfs_rq = cfs_rq_of(se);
4365                if (cfs_rq->skip != se)
4366                        break;
4367
4368                cfs_rq->skip = NULL;
4369        }
4370}
4371
4372static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4373{
4374        if (cfs_rq->last == se)
4375                __clear_buddies_last(se);
4376
4377        if (cfs_rq->next == se)
4378                __clear_buddies_next(se);
4379
4380        if (cfs_rq->skip == se)
4381                __clear_buddies_skip(se);
4382}
4383
4384static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4385
4386static void
4387dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4388{
4389        /*
4390         * Update run-time statistics of the 'current'.
4391         */
4392        update_curr(cfs_rq);
4393
4394        /*
4395         * When dequeuing a sched_entity, we must:
4396         *   - Update loads to have both entity and cfs_rq synced with now.
4397         *   - Subtract its load from the cfs_rq->runnable_avg.
4398         *   - Subtract its previous weight from cfs_rq->load.weight.
4399         *   - For group entity, update its weight to reflect the new share
4400         *     of its group cfs_rq.
4401         */
4402        update_load_avg(cfs_rq, se, UPDATE_TG);
4403        se_update_runnable(se);
4404
4405        update_stats_dequeue(cfs_rq, se, flags);
4406
4407        clear_buddies(cfs_rq, se);
4408
4409        if (se != cfs_rq->curr)
4410                __dequeue_entity(cfs_rq, se);
4411        se->on_rq = 0;
4412        account_entity_dequeue(cfs_rq, se);
4413
4414        /*
4415         * Normalize after update_curr(); which will also have moved
4416         * min_vruntime if @se is the one holding it back. But before doing
4417         * update_min_vruntime() again, which will discount @se's position and
4418         * can move min_vruntime forward still more.
4419         */
4420        if (!(flags & DEQUEUE_SLEEP))
4421                se->vruntime -= cfs_rq->min_vruntime;
4422
4423        /* return excess runtime on last dequeue */
4424        return_cfs_rq_runtime(cfs_rq);
4425
4426        update_cfs_group(se);
4427
4428        /*
4429         * Now advance min_vruntime if @se was the entity holding it back,
4430         * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4431         * put back on, and if we advance min_vruntime, we'll be placed back
4432         * further than we started -- ie. we'll be penalized.
4433         */
4434        if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4435                update_min_vruntime(cfs_rq);
4436}
4437
4438/*
4439 * Preempt the current task with a newly woken task if needed:
4440 */
4441static void
4442check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4443{
4444        unsigned long ideal_runtime, delta_exec;
4445        struct sched_entity *se;
4446        s64 delta;
4447
4448        ideal_runtime = sched_slice(cfs_rq, curr);
4449        delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4450        if (delta_exec > ideal_runtime) {
4451                resched_curr(rq_of(cfs_rq));
4452                /*
4453                 * The current task ran long enough, ensure it doesn't get
4454                 * re-elected due to buddy favours.
4455                 */
4456                clear_buddies(cfs_rq, curr);
4457                return;
4458        }
4459
4460        /*
4461         * Ensure that a task that missed wakeup preemption by a
4462         * narrow margin doesn't have to wait for a full slice.
4463         * This also mitigates buddy induced latencies under load.
4464         */
4465        if (delta_exec < sysctl_sched_min_granularity)
4466                return;
4467
4468        se = __pick_first_entity(cfs_rq);
4469        delta = curr->vruntime - se->vruntime;
4470
4471        if (delta < 0)
4472                return;
4473
4474        if (delta > ideal_runtime)
4475                resched_curr(rq_of(cfs_rq));
4476}
4477
4478static void
4479set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4480{
4481        clear_buddies(cfs_rq, se);
4482
4483        /* 'current' is not kept within the tree. */
4484        if (se->on_rq) {
4485                /*
4486                 * Any task has to be enqueued before it get to execute on
4487                 * a CPU. So account for the time it spent waiting on the
4488                 * runqueue.
4489                 */
4490                update_stats_wait_end(cfs_rq, se);
4491                __dequeue_entity(cfs_rq, se);
4492                update_load_avg(cfs_rq, se, UPDATE_TG);
4493        }
4494
4495        update_stats_curr_start(cfs_rq, se);
4496        cfs_rq->curr = se;
4497
4498        /*
4499         * Track our maximum slice length, if the CPU's load is at
4500         * least twice that of our own weight (i.e. dont track it
4501         * when there are only lesser-weight tasks around):
4502         */
4503        if (schedstat_enabled() &&
4504            rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4505                schedstat_set(se->statistics.slice_max,
4506                        max((u64)schedstat_val(se->statistics.slice_max),
4507                            se->sum_exec_runtime - se->prev_sum_exec_runtime));
4508        }
4509
4510        se->prev_sum_exec_runtime = se->sum_exec_runtime;
4511}
4512
4513static int
4514wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4515
4516/*
4517 * Pick the next process, keeping these things in mind, in this order:
4518 * 1) keep things fair between processes/task groups
4519 * 2) pick the "next" process, since someone really wants that to run
4520 * 3) pick the "last" process, for cache locality
4521 * 4) do not run the "skip" process, if something else is available
4522 */
4523static struct sched_entity *
4524pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4525{
4526        struct sched_entity *left = __pick_first_entity(cfs_rq);
4527        struct sched_entity *se;
4528
4529        /*
4530         * If curr is set we have to see if its left of the leftmost entity
4531         * still in the tree, provided there was anything in the tree at all.
4532         */
4533        if (!left || (curr && entity_before(curr, left)))
4534                left = curr;
4535
4536        se = left; /* ideally we run the leftmost entity */
4537
4538        /*
4539         * Avoid running the skip buddy, if running something else can
4540         * be done without getting too unfair.
4541         */
4542        if (cfs_rq->skip && cfs_rq->skip == se) {
4543                struct sched_entity *second;
4544
4545                if (se == curr) {
4546                        second = __pick_first_entity(cfs_rq);
4547                } else {
4548                        second = __pick_next_entity(se);
4549                        if (!second || (curr && entity_before(curr, second)))
4550                                second = curr;
4551                }
4552
4553                if (second && wakeup_preempt_entity(second, left) < 1)
4554                        se = second;
4555        }
4556
4557        if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4558                /*
4559                 * Someone really wants this to run. If it's not unfair, run it.
4560                 */
4561                se = cfs_rq->next;
4562        } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4563                /*
4564                 * Prefer last buddy, try to return the CPU to a preempted task.
4565                 */
4566                se = cfs_rq->last;
4567        }
4568
4569        return se;
4570}
4571
4572static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4573
4574static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4575{
4576        /*
4577         * If still on the runqueue then deactivate_task()
4578         * was not called and update_curr() has to be done:
4579         */
4580        if (prev->on_rq)
4581                update_curr(cfs_rq);
4582
4583        /* throttle cfs_rqs exceeding runtime */
4584        check_cfs_rq_runtime(cfs_rq);
4585
4586        check_spread(cfs_rq, prev);
4587
4588        if (prev->on_rq) {
4589                update_stats_wait_start(cfs_rq, prev);
4590                /* Put 'current' back into the tree. */
4591                __enqueue_entity(cfs_rq, prev);
4592                /* in !on_rq case, update occurred at dequeue */
4593                update_load_avg(cfs_rq, prev, 0);
4594        }
4595        cfs_rq->curr = NULL;
4596}
4597
4598static void
4599entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4600{
4601        /*
4602         * Update run-time statistics of the 'current'.
4603         */
4604        update_curr(cfs_rq);
4605
4606        /*
4607         * Ensure that runnable average is periodically updated.
4608         */
4609        update_load_avg(cfs_rq, curr, UPDATE_TG);
4610        update_cfs_group(curr);
4611
4612#ifdef CONFIG_SCHED_HRTICK
4613        /*
4614         * queued ticks are scheduled to match the slice, so don't bother
4615         * validating it and just reschedule.
4616         */
4617        if (queued) {
4618                resched_curr(rq_of(cfs_rq));
4619                return;
4620        }
4621        /*
4622         * don't let the period tick interfere with the hrtick preemption
4623         */
4624        if (!sched_feat(DOUBLE_TICK) &&
4625                        hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4626                return;
4627#endif
4628
4629        if (cfs_rq->nr_running > 1)
4630                check_preempt_tick(cfs_rq, curr);
4631}
4632
4633
4634/**************************************************
4635 * CFS bandwidth control machinery
4636 */
4637
4638#ifdef CONFIG_CFS_BANDWIDTH
4639
4640#ifdef CONFIG_JUMP_LABEL
4641static struct static_key __cfs_bandwidth_used;
4642
4643static inline bool cfs_bandwidth_used(void)
4644{
4645        return static_key_false(&__cfs_bandwidth_used);
4646}
4647
4648void cfs_bandwidth_usage_inc(void)
4649{
4650        static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4651}
4652
4653void cfs_bandwidth_usage_dec(void)
4654{
4655        static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4656}
4657#else /* CONFIG_JUMP_LABEL */
4658static bool cfs_bandwidth_used(void)
4659{
4660        return true;
4661}
4662
4663void cfs_bandwidth_usage_inc(void) {}
4664void cfs_bandwidth_usage_dec(void) {}
4665#endif /* CONFIG_JUMP_LABEL */
4666
4667/*
4668 * default period for cfs group bandwidth.
4669 * default: 0.1s, units: nanoseconds
4670 */
4671static inline u64 default_cfs_period(void)
4672{
4673        return 100000000ULL;
4674}
4675
4676static inline u64 sched_cfs_bandwidth_slice(void)
4677{
4678        return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4679}
4680
4681/*
4682 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4683 * directly instead of rq->clock to avoid adding additional synchronization
4684 * around rq->lock.
4685 *
4686 * requires cfs_b->lock
4687 */
4688void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4689{
4690        if (unlikely(cfs_b->quota == RUNTIME_INF))
4691                return;
4692
4693        cfs_b->runtime += cfs_b->quota;
4694        cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4695}
4696
4697static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4698{
4699        return &tg->cfs_bandwidth;
4700}
4701
4702/* returns 0 on failure to allocate runtime */
4703static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4704                                   struct cfs_rq *cfs_rq, u64 target_runtime)
4705{
4706        u64 min_amount, amount = 0;
4707
4708        lockdep_assert_held(&cfs_b->lock);
4709
4710        /* note: this is a positive sum as runtime_remaining <= 0 */
4711        min_amount = target_runtime - cfs_rq->runtime_remaining;
4712
4713        if (cfs_b->quota == RUNTIME_INF)
4714                amount = min_amount;
4715        else {
4716                start_cfs_bandwidth(cfs_b);
4717
4718                if (cfs_b->runtime > 0) {
4719                        amount = min(cfs_b->runtime, min_amount);
4720                        cfs_b->runtime -= amount;
4721                        cfs_b->idle = 0;
4722                }
4723        }
4724
4725        cfs_rq->runtime_remaining += amount;
4726
4727        return cfs_rq->runtime_remaining > 0;
4728}
4729
4730/* returns 0 on failure to allocate runtime */
4731static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4732{
4733        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4734        int ret;
4735
4736        raw_spin_lock(&cfs_b->lock);
4737        ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4738        raw_spin_unlock(&cfs_b->lock);
4739
4740        return ret;
4741}
4742
4743static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4744{
4745        /* dock delta_exec before expiring quota (as it could span periods) */
4746        cfs_rq->runtime_remaining -= delta_exec;
4747
4748        if (likely(cfs_rq->runtime_remaining > 0))
4749                return;
4750
4751        if (cfs_rq->throttled)
4752                return;
4753        /*
4754         * if we're unable to extend our runtime we resched so that the active
4755         * hierarchy can be throttled
4756         */
4757        if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4758                resched_curr(rq_of(cfs_rq));
4759}
4760
4761static __always_inline
4762void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4763{
4764        if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4765                return;
4766
4767        __account_cfs_rq_runtime(cfs_rq, delta_exec);
4768}
4769
4770static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4771{
4772        return cfs_bandwidth_used() && cfs_rq->throttled;
4773}
4774
4775/* check whether cfs_rq, or any parent, is throttled */
4776static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4777{
4778        return cfs_bandwidth_used() && cfs_rq->throttle_count;
4779}
4780
4781/*
4782 * Ensure that neither of the group entities corresponding to src_cpu or
4783 * dest_cpu are members of a throttled hierarchy when performing group
4784 * load-balance operations.
4785 */
4786static inline int throttled_lb_pair(struct task_group *tg,
4787                                    int src_cpu, int dest_cpu)
4788{
4789        struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4790
4791        src_cfs_rq = tg->cfs_rq[src_cpu];
4792        dest_cfs_rq = tg->cfs_rq[dest_cpu];
4793
4794        return throttled_hierarchy(src_cfs_rq) ||
4795               throttled_hierarchy(dest_cfs_rq);
4796}
4797
4798static int tg_unthrottle_up(struct task_group *tg, void *data)
4799{
4800        struct rq *rq = data;
4801        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4802
4803        cfs_rq->throttle_count--;
4804        if (!cfs_rq->throttle_count) {
4805                cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4806                                             cfs_rq->throttled_clock_task;
4807
4808                /* Add cfs_rq with load or one or more already running entities to the list */
4809                if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4810                        list_add_leaf_cfs_rq(cfs_rq);
4811        }
4812
4813        return 0;
4814}
4815
4816static int tg_throttle_down(struct task_group *tg, void *data)
4817{
4818        struct rq *rq = data;
4819        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4820
4821        /* group is entering throttled state, stop time */
4822        if (!cfs_rq->throttle_count) {
4823                cfs_rq->throttled_clock_task = rq_clock_task(rq);
4824                list_del_leaf_cfs_rq(cfs_rq);
4825        }
4826        cfs_rq->throttle_count++;
4827
4828        return 0;
4829}
4830
4831static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4832{
4833        struct rq *rq = rq_of(cfs_rq);
4834        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4835        struct sched_entity *se;
4836        long task_delta, idle_task_delta, dequeue = 1;
4837
4838        raw_spin_lock(&cfs_b->lock);
4839        /* This will start the period timer if necessary */
4840        if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4841                /*
4842                 * We have raced with bandwidth becoming available, and if we
4843                 * actually throttled the timer might not unthrottle us for an
4844                 * entire period. We additionally needed to make sure that any
4845                 * subsequent check_cfs_rq_runtime calls agree not to throttle
4846                 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4847                 * for 1ns of runtime rather than just check cfs_b.
4848                 */
4849                dequeue = 0;
4850        } else {
4851                list_add_tail_rcu(&cfs_rq->throttled_list,
4852                                  &cfs_b->throttled_cfs_rq);
4853        }
4854        raw_spin_unlock(&cfs_b->lock);
4855
4856        if (!dequeue)
4857                return false;  /* Throttle no longer required. */
4858
4859        se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4860
4861        /* freeze hierarchy runnable averages while throttled */
4862        rcu_read_lock();
4863        walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4864        rcu_read_unlock();
4865
4866        task_delta = cfs_rq->h_nr_running;
4867        idle_task_delta = cfs_rq->idle_h_nr_running;
4868        for_each_sched_entity(se) {
4869                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4870                /* throttled entity or throttle-on-deactivate */
4871                if (!se->on_rq)
4872                        goto done;
4873
4874                dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4875
4876                if (cfs_rq_is_idle(group_cfs_rq(se)))
4877                        idle_task_delta = cfs_rq->h_nr_running;
4878
4879                qcfs_rq->h_nr_running -= task_delta;
4880                qcfs_rq->idle_h_nr_running -= idle_task_delta;
4881
4882                if (qcfs_rq->load.weight) {
4883                        /* Avoid re-evaluating load for this entity: */
4884                        se = parent_entity(se);
4885                        break;
4886                }
4887        }
4888
4889        for_each_sched_entity(se) {
4890                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4891                /* throttled entity or throttle-on-deactivate */
4892                if (!se->on_rq)
4893                        goto done;
4894
4895                update_load_avg(qcfs_rq, se, 0);
4896                se_update_runnable(se);
4897
4898                if (cfs_rq_is_idle(group_cfs_rq(se)))
4899                        idle_task_delta = cfs_rq->h_nr_running;
4900
4901                qcfs_rq->h_nr_running -= task_delta;
4902                qcfs_rq->idle_h_nr_running -= idle_task_delta;
4903        }
4904
4905        /* At this point se is NULL and we are at root level*/
4906        sub_nr_running(rq, task_delta);
4907
4908done:
4909        /*
4910         * Note: distribution will already see us throttled via the
4911         * throttled-list.  rq->lock protects completion.
4912         */
4913        cfs_rq->throttled = 1;
4914        cfs_rq->throttled_clock = rq_clock(rq);
4915        return true;
4916}
4917
4918void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4919{
4920        struct rq *rq = rq_of(cfs_rq);
4921        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4922        struct sched_entity *se;
4923        long task_delta, idle_task_delta;
4924
4925        se = cfs_rq->tg->se[cpu_of(rq)];
4926
4927        cfs_rq->throttled = 0;
4928
4929        update_rq_clock(rq);
4930
4931        raw_spin_lock(&cfs_b->lock);
4932        cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4933        list_del_rcu(&cfs_rq->throttled_list);
4934        raw_spin_unlock(&cfs_b->lock);
4935
4936        /* update hierarchical throttle state */
4937        walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4938
4939        /* Nothing to run but something to decay (on_list)? Complete the branch */
4940        if (!cfs_rq->load.weight) {
4941                if (cfs_rq->on_list)
4942                        goto unthrottle_throttle;
4943                return;
4944        }
4945
4946        task_delta = cfs_rq->h_nr_running;
4947        idle_task_delta = cfs_rq->idle_h_nr_running;
4948        for_each_sched_entity(se) {
4949                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4950
4951                if (se->on_rq)
4952                        break;
4953                enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
4954
4955                if (cfs_rq_is_idle(group_cfs_rq(se)))
4956                        idle_task_delta = cfs_rq->h_nr_running;
4957
4958                qcfs_rq->h_nr_running += task_delta;
4959                qcfs_rq->idle_h_nr_running += idle_task_delta;
4960
4961                /* end evaluation on encountering a throttled cfs_rq */
4962                if (cfs_rq_throttled(qcfs_rq))
4963                        goto unthrottle_throttle;
4964        }
4965
4966        for_each_sched_entity(se) {
4967                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4968
4969                update_load_avg(qcfs_rq, se, UPDATE_TG);
4970                se_update_runnable(se);
4971
4972                if (cfs_rq_is_idle(group_cfs_rq(se)))
4973                        idle_task_delta = cfs_rq->h_nr_running;
4974
4975                qcfs_rq->h_nr_running += task_delta;
4976                qcfs_rq->idle_h_nr_running += idle_task_delta;
4977
4978                /* end evaluation on encountering a throttled cfs_rq */
4979                if (cfs_rq_throttled(qcfs_rq))
4980                        goto unthrottle_throttle;
4981
4982                /*
4983                 * One parent has been throttled and cfs_rq removed from the
4984                 * list. Add it back to not break the leaf list.
4985                 */
4986                if (throttled_hierarchy(qcfs_rq))
4987                        list_add_leaf_cfs_rq(qcfs_rq);
4988        }
4989
4990        /* At this point se is NULL and we are at root level*/
4991        add_nr_running(rq, task_delta);
4992
4993unthrottle_throttle:
4994        /*
4995         * The cfs_rq_throttled() breaks in the above iteration can result in
4996         * incomplete leaf list maintenance, resulting in triggering the
4997         * assertion below.
4998         */
4999        for_each_sched_entity(se) {
5000                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5001
5002                if (list_add_leaf_cfs_rq(qcfs_rq))
5003                        break;
5004        }
5005
5006        assert_list_leaf_cfs_rq(rq);
5007
5008        /* Determine whether we need to wake up potentially idle CPU: */
5009        if (rq->curr == rq->idle && rq->cfs.nr_running)
5010                resched_curr(rq);
5011}
5012
5013static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5014{
5015        struct cfs_rq *cfs_rq;
5016        u64 runtime, remaining = 1;
5017
5018        rcu_read_lock();
5019        list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5020                                throttled_list) {
5021                struct rq *rq = rq_of(cfs_rq);
5022                struct rq_flags rf;
5023
5024                rq_lock_irqsave(rq, &rf);
5025                if (!cfs_rq_throttled(cfs_rq))
5026                        goto next;
5027
5028                /* By the above check, this should never be true */
5029                SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5030
5031                raw_spin_lock(&cfs_b->lock);
5032                runtime = -cfs_rq->runtime_remaining + 1;
5033                if (runtime > cfs_b->runtime)
5034                        runtime = cfs_b->runtime;
5035                cfs_b->runtime -= runtime;
5036                remaining = cfs_b->runtime;
5037                raw_spin_unlock(&cfs_b->lock);
5038
5039                cfs_rq->runtime_remaining += runtime;
5040
5041                /* we check whether we're throttled above */
5042                if (cfs_rq->runtime_remaining > 0)
5043                        unthrottle_cfs_rq(cfs_rq);
5044
5045next:
5046                rq_unlock_irqrestore(rq, &rf);
5047
5048                if (!remaining)
5049                        break;
5050        }
5051        rcu_read_unlock();
5052}
5053
5054/*
5055 * Responsible for refilling a task_group's bandwidth and unthrottling its
5056 * cfs_rqs as appropriate. If there has been no activity within the last
5057 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5058 * used to track this state.
5059 */
5060static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5061{
5062        int throttled;
5063
5064        /* no need to continue the timer with no bandwidth constraint */
5065        if (cfs_b->quota == RUNTIME_INF)
5066                goto out_deactivate;
5067
5068        throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5069        cfs_b->nr_periods += overrun;
5070
5071        /* Refill extra burst quota even if cfs_b->idle */
5072        __refill_cfs_bandwidth_runtime(cfs_b);
5073
5074        /*
5075         * idle depends on !throttled (for the case of a large deficit), and if
5076         * we're going inactive then everything else can be deferred
5077         */
5078        if (cfs_b->idle && !throttled)
5079                goto out_deactivate;
5080
5081        if (!throttled) {
5082                /* mark as potentially idle for the upcoming period */
5083                cfs_b->idle = 1;
5084                return 0;
5085        }
5086
5087        /* account preceding periods in which throttling occurred */
5088        cfs_b->nr_throttled += overrun;
5089
5090        /*
5091         * This check is repeated as we release cfs_b->lock while we unthrottle.
5092         */
5093        while (throttled && cfs_b->runtime > 0) {
5094                raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5095                /* we can't nest cfs_b->lock while distributing bandwidth */
5096                distribute_cfs_runtime(cfs_b);
5097                raw_spin_lock_irqsave(&cfs_b->lock, flags);
5098
5099                throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5100        }
5101
5102        /*
5103         * While we are ensured activity in the period following an
5104         * unthrottle, this also covers the case in which the new bandwidth is
5105         * insufficient to cover the existing bandwidth deficit.  (Forcing the
5106         * timer to remain active while there are any throttled entities.)
5107         */
5108        cfs_b->idle = 0;
5109
5110        return 0;
5111
5112out_deactivate:
5113        return 1;
5114}
5115
5116/* a cfs_rq won't donate quota below this amount */
5117static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5118/* minimum remaining period time to redistribute slack quota */
5119static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5120/* how long we wait to gather additional slack before distributing */
5121static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5122
5123/*
5124 * Are we near the end of the current quota period?
5125 *
5126 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5127 * hrtimer base being cleared by hrtimer_start. In the case of
5128 * migrate_hrtimers, base is never cleared, so we are fine.
5129 */
5130static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5131{
5132        struct hrtimer *refresh_timer = &cfs_b->period_timer;
5133        s64 remaining;
5134
5135        /* if the call-back is running a quota refresh is already occurring */
5136        if (hrtimer_callback_running(refresh_timer))
5137                return 1;
5138
5139        /* is a quota refresh about to occur? */
5140        remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5141        if (remaining < (s64)min_expire)
5142                return 1;
5143
5144        return 0;
5145}
5146
5147static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5148{
5149        u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5150
5151        /* if there's a quota refresh soon don't bother with slack */
5152        if (runtime_refresh_within(cfs_b, min_left))
5153                return;
5154
5155        /* don't push forwards an existing deferred unthrottle */
5156        if (cfs_b->slack_started)
5157                return;
5158        cfs_b->slack_started = true;
5159
5160        hrtimer_start(&cfs_b->slack_timer,
5161                        ns_to_ktime(cfs_bandwidth_slack_period),
5162                        HRTIMER_MODE_REL);
5163}
5164
5165/* we know any runtime found here is valid as update_curr() precedes return */
5166static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5167{
5168        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5169        s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5170
5171        if (slack_runtime <= 0)
5172                return;
5173
5174        raw_spin_lock(&cfs_b->lock);
5175        if (cfs_b->quota != RUNTIME_INF) {
5176                cfs_b->runtime += slack_runtime;
5177
5178                /* we are under rq->lock, defer unthrottling using a timer */
5179                if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5180                    !list_empty(&cfs_b->throttled_cfs_rq))
5181                        start_cfs_slack_bandwidth(cfs_b);
5182        }
5183        raw_spin_unlock(&cfs_b->lock);
5184
5185        /* even if it's not valid for return we don't want to try again */
5186        cfs_rq->runtime_remaining -= slack_runtime;
5187}
5188
5189static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5190{
5191        if (!cfs_bandwidth_used())
5192                return;
5193
5194        if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5195                return;
5196
5197        __return_cfs_rq_runtime(cfs_rq);
5198}
5199
5200/*
5201 * This is done with a timer (instead of inline with bandwidth return) since
5202 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5203 */
5204static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5205{
5206        u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5207        unsigned long flags;
5208
5209        /* confirm we're still not at a refresh boundary */
5210        raw_spin_lock_irqsave(&cfs_b->lock, flags);
5211        cfs_b->slack_started = false;
5212
5213        if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5214                raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5215                return;
5216        }
5217
5218        if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5219                runtime = cfs_b->runtime;
5220
5221        raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5222
5223        if (!runtime)
5224                return;
5225
5226        distribute_cfs_runtime(cfs_b);
5227}
5228
5229/*
5230 * When a group wakes up we want to make sure that its quota is not already
5231 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5232 * runtime as update_curr() throttling can not trigger until it's on-rq.
5233 */
5234static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5235{
5236        if (!cfs_bandwidth_used())
5237                return;
5238
5239        /* an active group must be handled by the update_curr()->put() path */
5240        if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5241                return;
5242
5243        /* ensure the group is not already throttled */
5244        if (cfs_rq_throttled(cfs_rq))
5245                return;
5246
5247        /* update runtime allocation */
5248        account_cfs_rq_runtime(cfs_rq, 0);
5249        if (cfs_rq->runtime_remaining <= 0)
5250                throttle_cfs_rq(cfs_rq);
5251}
5252
5253static void sync_throttle(struct task_group *tg, int cpu)
5254{
5255        struct cfs_rq *pcfs_rq, *cfs_rq;
5256
5257        if (!cfs_bandwidth_used())
5258                return;
5259
5260        if (!tg->parent)
5261                return;
5262
5263        cfs_rq = tg->cfs_rq[cpu];
5264        pcfs_rq = tg->parent->cfs_rq[cpu];
5265
5266        cfs_rq->throttle_count = pcfs_rq->throttle_count;
5267        cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5268}
5269
5270/* conditionally throttle active cfs_rq's from put_prev_entity() */
5271static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5272{
5273        if (!cfs_bandwidth_used())
5274                return false;
5275
5276        if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5277                return false;
5278
5279        /*
5280         * it's possible for a throttled entity to be forced into a running
5281         * state (e.g. set_curr_task), in this case we're finished.
5282         */
5283        if (cfs_rq_throttled(cfs_rq))
5284                return true;
5285
5286        return throttle_cfs_rq(cfs_rq);
5287}
5288
5289static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5290{
5291        struct cfs_bandwidth *cfs_b =
5292                container_of(timer, struct cfs_bandwidth, slack_timer);
5293
5294        do_sched_cfs_slack_timer(cfs_b);
5295
5296        return HRTIMER_NORESTART;
5297}
5298
5299extern const u64 max_cfs_quota_period;
5300
5301static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5302{
5303        struct cfs_bandwidth *cfs_b =
5304                container_of(timer, struct cfs_bandwidth, period_timer);
5305        unsigned long flags;
5306        int overrun;
5307        int idle = 0;
5308        int count = 0;
5309
5310        raw_spin_lock_irqsave(&cfs_b->lock, flags);
5311        for (;;) {
5312                overrun = hrtimer_forward_now(timer, cfs_b->period);
5313                if (!overrun)
5314                        break;
5315
5316                idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5317
5318                if (++count > 3) {
5319                        u64 new, old = ktime_to_ns(cfs_b->period);
5320
5321                        /*
5322                         * Grow period by a factor of 2 to avoid losing precision.
5323                         * Precision loss in the quota/period ratio can cause __cfs_schedulable
5324                         * to fail.
5325                         */
5326                        new = old * 2;
5327                        if (new < max_cfs_quota_period) {
5328                                cfs_b->period = ns_to_ktime(new);
5329                                cfs_b->quota *= 2;
5330                                cfs_b->burst *= 2;
5331
5332                                pr_warn_ratelimited(
5333        "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5334                                        smp_processor_id(),
5335                                        div_u64(new, NSEC_PER_USEC),
5336                                        div_u64(cfs_b->quota, NSEC_PER_USEC));
5337                        } else {
5338                                pr_warn_ratelimited(
5339        "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5340                                        smp_processor_id(),
5341                                        div_u64(old, NSEC_PER_USEC),
5342                                        div_u64(cfs_b->quota, NSEC_PER_USEC));
5343                        }
5344
5345                        /* reset count so we don't come right back in here */
5346                        count = 0;
5347                }
5348        }
5349        if (idle)
5350                cfs_b->period_active = 0;
5351        raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5352
5353        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5354}
5355
5356void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5357{
5358        raw_spin_lock_init(&cfs_b->lock);
5359        cfs_b->runtime = 0;
5360        cfs_b->quota = RUNTIME_INF;
5361        cfs_b->period = ns_to_ktime(default_cfs_period());
5362        cfs_b->burst = 0;
5363
5364        INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5365        hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5366        cfs_b->period_timer.function = sched_cfs_period_timer;
5367        hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5368        cfs_b->slack_timer.function = sched_cfs_slack_timer;
5369        cfs_b->slack_started = false;
5370}
5371
5372static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5373{
5374        cfs_rq->runtime_enabled = 0;
5375        INIT_LIST_HEAD(&cfs_rq->throttled_list);
5376}
5377
5378void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5379{
5380        lockdep_assert_held(&cfs_b->lock);
5381
5382        if (cfs_b->period_active)
5383                return;
5384
5385        cfs_b->period_active = 1;
5386        hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5387        hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5388}
5389
5390static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5391{
5392        /* init_cfs_bandwidth() was not called */
5393        if (!cfs_b->throttled_cfs_rq.next)
5394                return;
5395
5396        hrtimer_cancel(&cfs_b->period_timer);
5397        hrtimer_cancel(&cfs_b->slack_timer);
5398}
5399
5400/*
5401 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5402 *
5403 * The race is harmless, since modifying bandwidth settings of unhooked group
5404 * bits doesn't do much.
5405 */
5406
5407/* cpu online callback */
5408static void __maybe_unused update_runtime_enabled(struct rq *rq)
5409{
5410        struct task_group *tg;
5411
5412        lockdep_assert_rq_held(rq);
5413
5414        rcu_read_lock();
5415        list_for_each_entry_rcu(tg, &task_groups, list) {
5416                struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5417                struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5418
5419                raw_spin_lock(&cfs_b->lock);
5420                cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5421                raw_spin_unlock(&cfs_b->lock);
5422        }
5423        rcu_read_unlock();
5424}
5425
5426/* cpu offline callback */
5427static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5428{
5429        struct task_group *tg;
5430
5431        lockdep_assert_rq_held(rq);
5432
5433        rcu_read_lock();
5434        list_for_each_entry_rcu(tg, &task_groups, list) {
5435                struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5436
5437                if (!cfs_rq->runtime_enabled)
5438                        continue;
5439
5440                /*
5441                 * clock_task is not advancing so we just need to make sure
5442                 * there's some valid quota amount
5443                 */
5444                cfs_rq->runtime_remaining = 1;
5445                /*
5446                 * Offline rq is schedulable till CPU is completely disabled
5447                 * in take_cpu_down(), so we prevent new cfs throttling here.
5448                 */
5449                cfs_rq->runtime_enabled = 0;
5450
5451                if (cfs_rq_throttled(cfs_rq))
5452                        unthrottle_cfs_rq(cfs_rq);
5453        }
5454        rcu_read_unlock();
5455}
5456
5457#else /* CONFIG_CFS_BANDWIDTH */
5458
5459static inline bool cfs_bandwidth_used(void)
5460{
5461        return false;
5462}
5463
5464static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5465static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5466static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5467static inline void sync_throttle(struct task_group *tg, int cpu) {}
5468static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5469
5470static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5471{
5472        return 0;
5473}
5474
5475static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5476{
5477        return 0;
5478}
5479
5480static inline int throttled_lb_pair(struct task_group *tg,
5481                                    int src_cpu, int dest_cpu)
5482{
5483        return 0;
5484}
5485
5486void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5487
5488#ifdef CONFIG_FAIR_GROUP_SCHED
5489static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5490#endif
5491
5492static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5493{
5494        return NULL;
5495}
5496static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5497static inline void update_runtime_enabled(struct rq *rq) {}
5498static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5499
5500#endif /* CONFIG_CFS_BANDWIDTH */
5501
5502/**************************************************
5503 * CFS operations on tasks:
5504 */
5505
5506#ifdef CONFIG_SCHED_HRTICK
5507static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5508{
5509        struct sched_entity *se = &p->se;
5510        struct cfs_rq *cfs_rq = cfs_rq_of(se);
5511
5512        SCHED_WARN_ON(task_rq(p) != rq);
5513
5514        if (rq->cfs.h_nr_running > 1) {
5515                u64 slice = sched_slice(cfs_rq, se);
5516                u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5517                s64 delta = slice - ran;
5518
5519                if (delta < 0) {
5520                        if (task_current(rq, p))
5521                                resched_curr(rq);
5522                        return;
5523                }
5524                hrtick_start(rq, delta);
5525        }
5526}
5527
5528/*
5529 * called from enqueue/dequeue and updates the hrtick when the
5530 * current task is from our class and nr_running is low enough
5531 * to matter.
5532 */
5533static void hrtick_update(struct rq *rq)
5534{
5535        struct task_struct *curr = rq->curr;
5536
5537        if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5538                return;
5539
5540        if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5541                hrtick_start_fair(rq, curr);
5542}
5543#else /* !CONFIG_SCHED_HRTICK */
5544static inline void
5545hrtick_start_fair(struct rq *rq, struct task_struct *p)
5546{
5547}
5548
5549static inline void hrtick_update(struct rq *rq)
5550{
5551}
5552#endif
5553
5554#ifdef CONFIG_SMP
5555static inline unsigned long cpu_util(int cpu);
5556
5557static inline bool cpu_overutilized(int cpu)
5558{
5559        return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5560}
5561
5562static inline void update_overutilized_status(struct rq *rq)
5563{
5564        if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5565                WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5566                trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5567        }
5568}
5569#else
5570static inline void update_overutilized_status(struct rq *rq) { }
5571#endif
5572
5573/* Runqueue only has SCHED_IDLE tasks enqueued */
5574static int sched_idle_rq(struct rq *rq)
5575{
5576        return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5577                        rq->nr_running);
5578}
5579
5580#ifdef CONFIG_SMP
5581static int sched_idle_cpu(int cpu)
5582{
5583        return sched_idle_rq(cpu_rq(cpu));
5584}
5585#endif
5586
5587/*
5588 * The enqueue_task method is called before nr_running is
5589 * increased. Here we update the fair scheduling stats and
5590 * then put the task into the rbtree:
5591 */
5592static void
5593enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5594{
5595        struct cfs_rq *cfs_rq;
5596        struct sched_entity *se = &p->se;
5597        int idle_h_nr_running = task_has_idle_policy(p);
5598        int task_new = !(flags & ENQUEUE_WAKEUP);
5599
5600        /*
5601         * The code below (indirectly) updates schedutil which looks at
5602         * the cfs_rq utilization to select a frequency.
5603         * Let's add the task's estimated utilization to the cfs_rq's
5604         * estimated utilization, before we update schedutil.
5605         */
5606        util_est_enqueue(&rq->cfs, p);
5607
5608        /*
5609         * If in_iowait is set, the code below may not trigger any cpufreq
5610         * utilization updates, so do it here explicitly with the IOWAIT flag
5611         * passed.
5612         */
5613        if (p->in_iowait)
5614                cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5615
5616        for_each_sched_entity(se) {
5617                if (se->on_rq)
5618                        break;
5619                cfs_rq = cfs_rq_of(se);
5620                enqueue_entity(cfs_rq, se, flags);
5621
5622                cfs_rq->h_nr_running++;
5623                cfs_rq->idle_h_nr_running += idle_h_nr_running;
5624
5625                if (cfs_rq_is_idle(cfs_rq))
5626                        idle_h_nr_running = 1;
5627
5628                /* end evaluation on encountering a throttled cfs_rq */
5629                if (cfs_rq_throttled(cfs_rq))
5630                        goto enqueue_throttle;
5631
5632                flags = ENQUEUE_WAKEUP;
5633        }
5634
5635        for_each_sched_entity(se) {
5636                cfs_rq = cfs_rq_of(se);
5637
5638                update_load_avg(cfs_rq, se, UPDATE_TG);
5639                se_update_runnable(se);
5640                update_cfs_group(se);
5641
5642                cfs_rq->h_nr_running++;
5643                cfs_rq->idle_h_nr_running += idle_h_nr_running;
5644
5645                if (cfs_rq_is_idle(cfs_rq))
5646                        idle_h_nr_running = 1;
5647
5648                /* end evaluation on encountering a throttled cfs_rq */
5649                if (cfs_rq_throttled(cfs_rq))
5650                        goto enqueue_throttle;
5651
5652               /*
5653                * One parent has been throttled and cfs_rq removed from the
5654                * list. Add it back to not break the leaf list.
5655                */
5656               if (throttled_hierarchy(cfs_rq))
5657                       list_add_leaf_cfs_rq(cfs_rq);
5658        }
5659
5660        /* At this point se is NULL and we are at root level*/
5661        add_nr_running(rq, 1);
5662
5663        /*
5664         * Since new tasks are assigned an initial util_avg equal to
5665         * half of the spare capacity of their CPU, tiny tasks have the
5666         * ability to cross the overutilized threshold, which will
5667         * result in the load balancer ruining all the task placement
5668         * done by EAS. As a way to mitigate that effect, do not account
5669         * for the first enqueue operation of new tasks during the
5670         * overutilized flag detection.
5671         *
5672         * A better way of solving this problem would be to wait for
5673         * the PELT signals of tasks to converge before taking them
5674         * into account, but that is not straightforward to implement,
5675         * and the following generally works well enough in practice.
5676         */
5677        if (!task_new)
5678                update_overutilized_status(rq);
5679
5680enqueue_throttle:
5681        if (cfs_bandwidth_used()) {
5682                /*
5683                 * When bandwidth control is enabled; the cfs_rq_throttled()
5684                 * breaks in the above iteration can result in incomplete
5685                 * leaf list maintenance, resulting in triggering the assertion
5686                 * below.
5687                 */
5688                for_each_sched_entity(se) {
5689                        cfs_rq = cfs_rq_of(se);
5690
5691                        if (list_add_leaf_cfs_rq(cfs_rq))
5692                                break;
5693                }
5694        }
5695
5696        assert_list_leaf_cfs_rq(rq);
5697
5698        hrtick_update(rq);
5699}
5700
5701static void set_next_buddy(struct sched_entity *se);
5702
5703/*
5704 * The dequeue_task method is called before nr_running is
5705 * decreased. We remove the task from the rbtree and
5706 * update the fair scheduling stats:
5707 */
5708static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5709{
5710        struct cfs_rq *cfs_rq;
5711        struct sched_entity *se = &p->se;
5712        int task_sleep = flags & DEQUEUE_SLEEP;
5713        int idle_h_nr_running = task_has_idle_policy(p);
5714        bool was_sched_idle = sched_idle_rq(rq);
5715
5716        util_est_dequeue(&rq->cfs, p);
5717
5718        for_each_sched_entity(se) {
5719                cfs_rq = cfs_rq_of(se);
5720                dequeue_entity(cfs_rq, se, flags);
5721
5722                cfs_rq->h_nr_running--;
5723                cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5724
5725                if (cfs_rq_is_idle(cfs_rq))
5726                        idle_h_nr_running = 1;
5727
5728                /* end evaluation on encountering a throttled cfs_rq */
5729                if (cfs_rq_throttled(cfs_rq))
5730                        goto dequeue_throttle;
5731
5732                /* Don't dequeue parent if it has other entities besides us */
5733                if (cfs_rq->load.weight) {
5734                        /* Avoid re-evaluating load for this entity: */
5735                        se = parent_entity(se);
5736                        /*
5737                         * Bias pick_next to pick a task from this cfs_rq, as
5738                         * p is sleeping when it is within its sched_slice.
5739                         */
5740                        if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5741                                set_next_buddy(se);
5742                        break;
5743                }
5744                flags |= DEQUEUE_SLEEP;
5745        }
5746
5747        for_each_sched_entity(se) {
5748                cfs_rq = cfs_rq_of(se);
5749
5750                update_load_avg(cfs_rq, se, UPDATE_TG);
5751                se_update_runnable(se);
5752                update_cfs_group(se);
5753
5754                cfs_rq->h_nr_running--;
5755                cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5756
5757                if (cfs_rq_is_idle(cfs_rq))
5758                        idle_h_nr_running = 1;
5759
5760                /* end evaluation on encountering a throttled cfs_rq */
5761                if (cfs_rq_throttled(cfs_rq))
5762                        goto dequeue_throttle;
5763
5764        }
5765
5766        /* At this point se is NULL and we are at root level*/
5767        sub_nr_running(rq, 1);
5768
5769        /* balance early to pull high priority tasks */
5770        if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5771                rq->next_balance = jiffies;
5772
5773dequeue_throttle:
5774        util_est_update(&rq->cfs, p, task_sleep);
5775        hrtick_update(rq);
5776}
5777
5778#ifdef CONFIG_SMP
5779
5780/* Working cpumask for: load_balance, load_balance_newidle. */
5781DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5782DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5783
5784#ifdef CONFIG_NO_HZ_COMMON
5785
5786static struct {
5787        cpumask_var_t idle_cpus_mask;
5788        atomic_t nr_cpus;
5789        int has_blocked;                /* Idle CPUS has blocked load */
5790        unsigned long next_balance;     /* in jiffy units */
5791        unsigned long next_blocked;     /* Next update of blocked load in jiffies */
5792} nohz ____cacheline_aligned;
5793
5794#endif /* CONFIG_NO_HZ_COMMON */
5795
5796static unsigned long cpu_load(struct rq *rq)
5797{
5798        return cfs_rq_load_avg(&rq->cfs);
5799}
5800
5801/*
5802 * cpu_load_without - compute CPU load without any contributions from *p
5803 * @cpu: the CPU which load is requested
5804 * @p: the task which load should be discounted
5805 *
5806 * The load of a CPU is defined by the load of tasks currently enqueued on that
5807 * CPU as well as tasks which are currently sleeping after an execution on that
5808 * CPU.
5809 *
5810 * This method returns the load of the specified CPU by discounting the load of
5811 * the specified task, whenever the task is currently contributing to the CPU
5812 * load.
5813 */
5814static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5815{
5816        struct cfs_rq *cfs_rq;
5817        unsigned int load;
5818
5819        /* Task has no contribution or is new */
5820        if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5821                return cpu_load(rq);
5822
5823        cfs_rq = &rq->cfs;
5824        load = READ_ONCE(cfs_rq->avg.load_avg);
5825
5826        /* Discount task's util from CPU's util */
5827        lsub_positive(&load, task_h_load(p));
5828
5829        return load;
5830}
5831
5832static unsigned long cpu_runnable(struct rq *rq)
5833{
5834        return cfs_rq_runnable_avg(&rq->cfs);
5835}
5836
5837static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5838{
5839        struct cfs_rq *cfs_rq;
5840        unsigned int runnable;
5841
5842        /* Task has no contribution or is new */
5843        if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5844                return cpu_runnable(rq);
5845
5846        cfs_rq = &rq->cfs;
5847        runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5848
5849        /* Discount task's runnable from CPU's runnable */
5850        lsub_positive(&runnable, p->se.avg.runnable_avg);
5851
5852        return runnable;
5853}
5854
5855static unsigned long capacity_of(int cpu)
5856{
5857        return cpu_rq(cpu)->cpu_capacity;
5858}
5859
5860static void record_wakee(struct task_struct *p)
5861{
5862        /*
5863         * Only decay a single time; tasks that have less then 1 wakeup per
5864         * jiffy will not have built up many flips.
5865         */
5866        if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5867                current->wakee_flips >>= 1;
5868                current->wakee_flip_decay_ts = jiffies;
5869        }
5870
5871        if (current->last_wakee != p) {
5872                current->last_wakee = p;
5873                current->wakee_flips++;
5874        }
5875}
5876
5877/*
5878 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5879 *
5880 * A waker of many should wake a different task than the one last awakened
5881 * at a frequency roughly N times higher than one of its wakees.
5882 *
5883 * In order to determine whether we should let the load spread vs consolidating
5884 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5885 * partner, and a factor of lls_size higher frequency in the other.
5886 *
5887 * With both conditions met, we can be relatively sure that the relationship is
5888 * non-monogamous, with partner count exceeding socket size.
5889 *
5890 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5891 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5892 * socket size.
5893 */
5894static int wake_wide(struct task_struct *p)
5895{
5896        unsigned int master = current->wakee_flips;
5897        unsigned int slave = p->wakee_flips;
5898        int factor = __this_cpu_read(sd_llc_size);
5899
5900        if (master < slave)
5901                swap(master, slave);
5902        if (slave < factor || master < slave * factor)
5903                return 0;
5904        return 1;
5905}
5906
5907/*
5908 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5909 * soonest. For the purpose of speed we only consider the waking and previous
5910 * CPU.
5911 *
5912 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5913 *                      cache-affine and is (or will be) idle.
5914 *
5915 * wake_affine_weight() - considers the weight to reflect the average
5916 *                        scheduling latency of the CPUs. This seems to work
5917 *                        for the overloaded case.
5918 */
5919static int
5920wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5921{
5922        /*
5923         * If this_cpu is idle, it implies the wakeup is from interrupt
5924         * context. Only allow the move if cache is shared. Otherwise an
5925         * interrupt intensive workload could force all tasks onto one
5926         * node depending on the IO topology or IRQ affinity settings.
5927         *
5928         * If the prev_cpu is idle and cache affine then avoid a migration.
5929         * There is no guarantee that the cache hot data from an interrupt
5930         * is more important than cache hot data on the prev_cpu and from
5931         * a cpufreq perspective, it's better to have higher utilisation
5932         * on one CPU.
5933         */
5934        if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5935                return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5936
5937        if (sync && cpu_rq(this_cpu)->nr_running == 1)
5938                return this_cpu;
5939
5940        if (available_idle_cpu(prev_cpu))
5941                return prev_cpu;
5942
5943        return nr_cpumask_bits;
5944}
5945
5946static int
5947wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5948                   int this_cpu, int prev_cpu, int sync)
5949{
5950        s64 this_eff_load, prev_eff_load;
5951        unsigned long task_load;
5952
5953        this_eff_load = cpu_load(cpu_rq(this_cpu));
5954
5955        if (sync) {
5956                unsigned long current_load = task_h_load(current);
5957
5958                if (current_load > this_eff_load)
5959                        return this_cpu;
5960
5961                this_eff_load -= current_load;
5962        }
5963
5964        task_load = task_h_load(p);
5965
5966        this_eff_load += task_load;
5967        if (sched_feat(WA_BIAS))
5968                this_eff_load *= 100;
5969        this_eff_load *= capacity_of(prev_cpu);
5970
5971        prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5972        prev_eff_load -= task_load;
5973        if (sched_feat(WA_BIAS))
5974                prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5975        prev_eff_load *= capacity_of(this_cpu);
5976
5977        /*
5978         * If sync, adjust the weight of prev_eff_load such that if
5979         * prev_eff == this_eff that select_idle_sibling() will consider
5980         * stacking the wakee on top of the waker if no other CPU is
5981         * idle.
5982         */
5983        if (sync)
5984                prev_eff_load += 1;
5985
5986        return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5987}
5988
5989static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5990                       int this_cpu, int prev_cpu, int sync)
5991{
5992        int target = nr_cpumask_bits;
5993
5994        if (sched_feat(WA_IDLE))
5995                target = wake_affine_idle(this_cpu, prev_cpu, sync);
5996
5997        if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5998                target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5999
6000        schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
6001        if (target == nr_cpumask_bits)
6002                return prev_cpu;
6003
6004        schedstat_inc(sd->ttwu_move_affine);
6005        schedstat_inc(p->se.statistics.nr_wakeups_affine);
6006        return target;
6007}
6008
6009static struct sched_group *
6010find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6011
6012/*
6013 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6014 */
6015static int
6016find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6017{
6018        unsigned long load, min_load = ULONG_MAX;
6019        unsigned int min_exit_latency = UINT_MAX;
6020        u64 latest_idle_timestamp = 0;
6021        int least_loaded_cpu = this_cpu;
6022        int shallowest_idle_cpu = -1;
6023        int i;
6024
6025        /* Check if we have any choice: */
6026        if (group->group_weight == 1)
6027                return cpumask_first(sched_group_span(group));
6028
6029        /* Traverse only the allowed CPUs */
6030        for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6031                struct rq *rq = cpu_rq(i);
6032
6033                if (!sched_core_cookie_match(rq, p))
6034                        continue;
6035
6036                if (sched_idle_cpu(i))
6037                        return i;
6038
6039                if (available_idle_cpu(i)) {
6040                        struct cpuidle_state *idle = idle_get_state(rq);
6041                        if (idle && idle->exit_latency < min_exit_latency) {
6042                                /*
6043                                 * We give priority to a CPU whose idle state
6044                                 * has the smallest exit latency irrespective
6045                                 * of any idle timestamp.
6046                                 */
6047                                min_exit_latency = idle->exit_latency;
6048                                latest_idle_timestamp = rq->idle_stamp;
6049                                shallowest_idle_cpu = i;
6050                        } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6051                                   rq->idle_stamp > latest_idle_timestamp) {
6052                                /*
6053                                 * If equal or no active idle state, then
6054                                 * the most recently idled CPU might have
6055                                 * a warmer cache.
6056                                 */
6057                                latest_idle_timestamp = rq->idle_stamp;
6058                                shallowest_idle_cpu = i;
6059                        }
6060                } else if (shallowest_idle_cpu == -1) {
6061                        load = cpu_load(cpu_rq(i));
6062                        if (load < min_load) {
6063                                min_load = load;
6064                                least_loaded_cpu = i;
6065                        }
6066                }
6067        }
6068
6069        return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6070}
6071
6072static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6073                                  int cpu, int prev_cpu, int sd_flag)
6074{
6075        int new_cpu = cpu;
6076
6077        if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6078                return prev_cpu;
6079
6080        /*
6081         * We need task's util for cpu_util_without, sync it up to
6082         * prev_cpu's last_update_time.
6083         */
6084        if (!(sd_flag & SD_BALANCE_FORK))
6085                sync_entity_load_avg(&p->se);
6086
6087        while (sd) {
6088                struct sched_group *group;
6089                struct sched_domain *tmp;
6090                int weight;
6091
6092                if (!(sd->flags & sd_flag)) {
6093                        sd = sd->child;
6094                        continue;
6095                }
6096
6097                group = find_idlest_group(sd, p, cpu);
6098                if (!group) {
6099                        sd = sd->child;
6100                        continue;
6101                }
6102
6103                new_cpu = find_idlest_group_cpu(group, p, cpu);
6104                if (new_cpu == cpu) {
6105                        /* Now try balancing at a lower domain level of 'cpu': */
6106                        sd = sd->child;
6107                        continue;
6108                }
6109
6110                /* Now try balancing at a lower domain level of 'new_cpu': */
6111                cpu = new_cpu;
6112                weight = sd->span_weight;
6113                sd = NULL;
6114                for_each_domain(cpu, tmp) {
6115                        if (weight <= tmp->span_weight)
6116                                break;
6117                        if (tmp->flags & sd_flag)
6118                                sd = tmp;
6119                }
6120        }
6121
6122        return new_cpu;
6123}
6124
6125static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6126{
6127        if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6128            sched_cpu_cookie_match(cpu_rq(cpu), p))
6129                return cpu;
6130
6131        return -1;
6132}
6133
6134#ifdef CONFIG_SCHED_SMT
6135DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6136EXPORT_SYMBOL_GPL(sched_smt_present);
6137
6138static inline void set_idle_cores(int cpu, int val)
6139{
6140        struct sched_domain_shared *sds;
6141
6142        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6143        if (sds)
6144                WRITE_ONCE(sds->has_idle_cores, val);
6145}
6146
6147static inline bool test_idle_cores(int cpu, bool def)
6148{
6149        struct sched_domain_shared *sds;
6150
6151        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6152        if (sds)
6153                return READ_ONCE(sds->has_idle_cores);
6154
6155        return def;
6156}
6157
6158/*
6159 * Scans the local SMT mask to see if the entire core is idle, and records this
6160 * information in sd_llc_shared->has_idle_cores.
6161 *
6162 * Since SMT siblings share all cache levels, inspecting this limited remote
6163 * state should be fairly cheap.
6164 */
6165void __update_idle_core(struct rq *rq)
6166{
6167        int core = cpu_of(rq);
6168        int cpu;
6169
6170        rcu_read_lock();
6171        if (test_idle_cores(core, true))
6172                goto unlock;
6173
6174        for_each_cpu(cpu, cpu_smt_mask(core)) {
6175                if (cpu == core)
6176                        continue;
6177
6178                if (!available_idle_cpu(cpu))
6179                        goto unlock;
6180        }
6181
6182        set_idle_cores(core, 1);
6183unlock:
6184        rcu_read_unlock();
6185}
6186
6187/*
6188 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6189 * there are no idle cores left in the system; tracked through
6190 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6191 */
6192static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6193{
6194        bool idle = true;
6195        int cpu;
6196
6197        if (!static_branch_likely(&sched_smt_present))
6198                return __select_idle_cpu(core, p);
6199
6200        for_each_cpu(cpu, cpu_smt_mask(core)) {
6201                if (!available_idle_cpu(cpu)) {
6202                        idle = false;
6203                        if (*idle_cpu == -1) {
6204                                if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6205                                        *idle_cpu = cpu;
6206                                        break;
6207                                }
6208                                continue;
6209                        }
6210                        break;
6211                }
6212                if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6213                        *idle_cpu = cpu;
6214        }
6215
6216        if (idle)
6217                return core;
6218
6219        cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6220        return -1;
6221}
6222
6223/*
6224 * Scan the local SMT mask for idle CPUs.
6225 */
6226static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6227{
6228        int cpu;
6229
6230        for_each_cpu(cpu, cpu_smt_mask(target)) {
6231                if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6232                    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6233                        continue;
6234                if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6235                        return cpu;
6236        }
6237
6238        return -1;
6239}
6240
6241#else /* CONFIG_SCHED_SMT */
6242
6243static inline void set_idle_cores(int cpu, int val)
6244{
6245}
6246
6247static inline bool test_idle_cores(int cpu, bool def)
6248{
6249        return def;
6250}
6251
6252static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6253{
6254        return __select_idle_cpu(core, p);
6255}
6256
6257static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6258{
6259        return -1;
6260}
6261
6262#endif /* CONFIG_SCHED_SMT */
6263
6264/*
6265 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6266 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6267 * average idle time for this rq (as found in rq->avg_idle).
6268 */
6269static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6270{
6271        struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6272        int i, cpu, idle_cpu = -1, nr = INT_MAX;
6273        struct rq *this_rq = this_rq();
6274        int this = smp_processor_id();
6275        struct sched_domain *this_sd;
6276        u64 time = 0;
6277
6278        this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6279        if (!this_sd)
6280                return -1;
6281
6282        cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6283
6284        if (sched_feat(SIS_PROP) && !has_idle_core) {
6285                u64 avg_cost, avg_idle, span_avg;
6286                unsigned long now = jiffies;
6287
6288                /*
6289                 * If we're busy, the assumption that the last idle period
6290                 * predicts the future is flawed; age away the remaining
6291                 * predicted idle time.
6292                 */
6293                if (unlikely(this_rq->wake_stamp < now)) {
6294                        while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6295                                this_rq->wake_stamp++;
6296                                this_rq->wake_avg_idle >>= 1;
6297                        }
6298                }
6299
6300                avg_idle = this_rq->wake_avg_idle;
6301                avg_cost = this_sd->avg_scan_cost + 1;
6302
6303                span_avg = sd->span_weight * avg_idle;
6304                if (span_avg > 4*avg_cost)
6305                        nr = div_u64(span_avg, avg_cost);
6306                else
6307                        nr = 4;
6308
6309                time = cpu_clock(this);
6310        }
6311
6312        for_each_cpu_wrap(cpu, cpus, target + 1) {
6313                if (has_idle_core) {
6314                        i = select_idle_core(p, cpu, cpus, &idle_cpu);
6315                        if ((unsigned int)i < nr_cpumask_bits)
6316                                return i;
6317
6318                } else {
6319                        if (!--nr)
6320                                return -1;
6321                        idle_cpu = __select_idle_cpu(cpu, p);
6322                        if ((unsigned int)idle_cpu < nr_cpumask_bits)
6323                                break;
6324                }
6325        }
6326
6327        if (has_idle_core)
6328                set_idle_cores(target, false);
6329
6330        if (sched_feat(SIS_PROP) && !has_idle_core) {
6331                time = cpu_clock(this) - time;
6332
6333                /*
6334                 * Account for the scan cost of wakeups against the average
6335                 * idle time.
6336                 */
6337                this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6338
6339                update_avg(&this_sd->avg_scan_cost, time);
6340        }
6341
6342        return idle_cpu;
6343}
6344
6345/*
6346 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6347 * the task fits. If no CPU is big enough, but there are idle ones, try to
6348 * maximize capacity.
6349 */
6350static int
6351select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6352{
6353        unsigned long task_util, best_cap = 0;
6354        int cpu, best_cpu = -1;
6355        struct cpumask *cpus;
6356
6357        cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6358        cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6359
6360        task_util = uclamp_task_util(p);
6361
6362        for_each_cpu_wrap(cpu, cpus, target) {
6363                unsigned long cpu_cap = capacity_of(cpu);
6364
6365                if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6366                        continue;
6367                if (fits_capacity(task_util, cpu_cap))
6368                        return cpu;
6369
6370                if (cpu_cap > best_cap) {
6371                        best_cap = cpu_cap;
6372                        best_cpu = cpu;
6373                }
6374        }
6375
6376        return best_cpu;
6377}
6378
6379static inline bool asym_fits_capacity(int task_util, int cpu)
6380{
6381        if (static_branch_unlikely(&sched_asym_cpucapacity))
6382                return fits_capacity(task_util, capacity_of(cpu));
6383
6384        return true;
6385}
6386
6387/*
6388 * Try and locate an idle core/thread in the LLC cache domain.
6389 */
6390static int select_idle_sibling(struct task_struct *p, int prev, int target)
6391{
6392        bool has_idle_core = false;
6393        struct sched_domain *sd;
6394        unsigned long task_util;
6395        int i, recent_used_cpu;
6396
6397        /*
6398         * On asymmetric system, update task utilization because we will check
6399         * that the task fits with cpu's capacity.
6400         */
6401        if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6402                sync_entity_load_avg(&p->se);
6403                task_util = uclamp_task_util(p);
6404        }
6405
6406        /*
6407         * per-cpu select_idle_mask usage
6408         */
6409        lockdep_assert_irqs_disabled();
6410
6411        if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6412            asym_fits_capacity(task_util, target))
6413                return target;
6414
6415        /*
6416         * If the previous CPU is cache affine and idle, don't be stupid:
6417         */
6418        if (prev != target && cpus_share_cache(prev, target) &&
6419            (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6420            asym_fits_capacity(task_util, prev))
6421                return prev;
6422
6423        /*
6424         * Allow a per-cpu kthread to stack with the wakee if the
6425         * kworker thread and the tasks previous CPUs are the same.
6426         * The assumption is that the wakee queued work for the
6427         * per-cpu kthread that is now complete and the wakeup is
6428         * essentially a sync wakeup. An obvious example of this
6429         * pattern is IO completions.
6430         */
6431        if (is_per_cpu_kthread(current) &&
6432            prev == smp_processor_id() &&
6433            this_rq()->nr_running <= 1) {
6434                return prev;
6435        }
6436
6437        /* Check a recently used CPU as a potential idle candidate: */
6438        recent_used_cpu = p->recent_used_cpu;
6439        p->recent_used_cpu = prev;
6440        if (recent_used_cpu != prev &&
6441            recent_used_cpu != target &&
6442            cpus_share_cache(recent_used_cpu, target) &&
6443            (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6444            cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6445            asym_fits_capacity(task_util, recent_used_cpu)) {
6446                /*
6447                 * Replace recent_used_cpu with prev as it is a potential
6448                 * candidate for the next wake:
6449                 */
6450                p->recent_used_cpu = prev;
6451                return recent_used_cpu;
6452        }
6453
6454        /*
6455         * For asymmetric CPU capacity systems, our domain of interest is
6456         * sd_asym_cpucapacity rather than sd_llc.
6457         */
6458        if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6459                sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6460                /*
6461                 * On an asymmetric CPU capacity system where an exclusive
6462                 * cpuset defines a symmetric island (i.e. one unique
6463                 * capacity_orig value through the cpuset), the key will be set
6464                 * but the CPUs within that cpuset will not have a domain with
6465                 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6466                 * capacity path.
6467                 */
6468                if (sd) {
6469                        i = select_idle_capacity(p, sd, target);
6470                        return ((unsigned)i < nr_cpumask_bits) ? i : target;
6471                }
6472        }
6473
6474        sd = rcu_dereference(per_cpu(sd_llc, target));
6475        if (!sd)
6476                return target;
6477
6478        if (sched_smt_active()) {
6479                has_idle_core = test_idle_cores(target, false);
6480
6481                if (!has_idle_core && cpus_share_cache(prev, target)) {
6482                        i = select_idle_smt(p, sd, prev);
6483                        if ((unsigned int)i < nr_cpumask_bits)
6484                                return i;
6485                }
6486        }
6487
6488        i = select_idle_cpu(p, sd, has_idle_core, target);
6489        if ((unsigned)i < nr_cpumask_bits)
6490                return i;
6491
6492        return target;
6493}
6494
6495/**
6496 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6497 * @cpu: the CPU to get the utilization of
6498 *
6499 * The unit of the return value must be the one of capacity so we can compare
6500 * the utilization with the capacity of the CPU that is available for CFS task
6501 * (ie cpu_capacity).
6502 *
6503 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6504 * recent utilization of currently non-runnable tasks on a CPU. It represents
6505 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6506 * capacity_orig is the cpu_capacity available at the highest frequency
6507 * (arch_scale_freq_capacity()).
6508 * The utilization of a CPU converges towards a sum equal to or less than the
6509 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6510 * the running time on this CPU scaled by capacity_curr.
6511 *
6512 * The estimated utilization of a CPU is defined to be the maximum between its
6513 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6514 * currently RUNNABLE on that CPU.
6515 * This allows to properly represent the expected utilization of a CPU which
6516 * has just got a big task running since a long sleep period. At the same time
6517 * however it preserves the benefits of the "blocked utilization" in
6518 * describing the potential for other tasks waking up on the same CPU.
6519 *
6520 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6521 * higher than capacity_orig because of unfortunate rounding in
6522 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6523 * the average stabilizes with the new running time. We need to check that the
6524 * utilization stays within the range of [0..capacity_orig] and cap it if
6525 * necessary. Without utilization capping, a group could be seen as overloaded
6526 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6527 * available capacity. We allow utilization to overshoot capacity_curr (but not
6528 * capacity_orig) as it useful for predicting the capacity required after task
6529 * migrations (scheduler-driven DVFS).
6530 *
6531 * Return: the (estimated) utilization for the specified CPU
6532 */
6533static inline unsigned long cpu_util(int cpu)
6534{
6535        struct cfs_rq *cfs_rq;
6536        unsigned int util;
6537
6538        cfs_rq = &cpu_rq(cpu)->cfs;
6539        util = READ_ONCE(cfs_rq->avg.util_avg);
6540
6541        if (sched_feat(UTIL_EST))
6542                util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6543
6544        return min_t(unsigned long, util, capacity_orig_of(cpu));
6545}
6546
6547/*
6548 * cpu_util_without: compute cpu utilization without any contributions from *p
6549 * @cpu: the CPU which utilization is requested
6550 * @p: the task which utilization should be discounted
6551 *
6552 * The utilization of a CPU is defined by the utilization of tasks currently
6553 * enqueued on that CPU as well as tasks which are currently sleeping after an
6554 * execution on that CPU.
6555 *
6556 * This method returns the utilization of the specified CPU by discounting the
6557 * utilization of the specified task, whenever the task is currently
6558 * contributing to the CPU utilization.
6559 */
6560static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6561{
6562        struct cfs_rq *cfs_rq;
6563        unsigned int util;
6564
6565        /* Task has no contribution or is new */
6566        if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6567                return cpu_util(cpu);
6568
6569        cfs_rq = &cpu_rq(cpu)->cfs;
6570        util = READ_ONCE(cfs_rq->avg.util_avg);
6571
6572        /* Discount task's util from CPU's util */
6573        lsub_positive(&util, task_util(p));
6574
6575        /*
6576         * Covered cases:
6577         *
6578         * a) if *p is the only task sleeping on this CPU, then:
6579         *      cpu_util (== task_util) > util_est (== 0)
6580         *    and thus we return:
6581         *      cpu_util_without = (cpu_util - task_util) = 0
6582         *
6583         * b) if other tasks are SLEEPING on this CPU, which is now exiting
6584         *    IDLE, then:
6585         *      cpu_util >= task_util
6586         *      cpu_util > util_est (== 0)
6587         *    and thus we discount *p's blocked utilization to return:
6588         *      cpu_util_without = (cpu_util - task_util) >= 0
6589         *
6590         * c) if other tasks are RUNNABLE on that CPU and
6591         *      util_est > cpu_util
6592         *    then we use util_est since it returns a more restrictive
6593         *    estimation of the spare capacity on that CPU, by just
6594         *    considering the expected utilization of tasks already
6595         *    runnable on that CPU.
6596         *
6597         * Cases a) and b) are covered by the above code, while case c) is
6598         * covered by the following code when estimated utilization is
6599         * enabled.
6600         */
6601        if (sched_feat(UTIL_EST)) {
6602                unsigned int estimated =
6603                        READ_ONCE(cfs_rq->avg.util_est.enqueued);
6604
6605                /*
6606                 * Despite the following checks we still have a small window
6607                 * for a possible race, when an execl's select_task_rq_fair()
6608                 * races with LB's detach_task():
6609                 *
6610                 *   detach_task()
6611                 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6612                 *     ---------------------------------- A
6613                 *     deactivate_task()                   \
6614                 *       dequeue_task()                     + RaceTime
6615                 *         util_est_dequeue()              /
6616                 *     ---------------------------------- B
6617                 *
6618                 * The additional check on "current == p" it's required to
6619                 * properly fix the execl regression and it helps in further
6620                 * reducing the chances for the above race.
6621                 */
6622                if (unlikely(task_on_rq_queued(p) || current == p))
6623                        lsub_positive(&estimated, _task_util_est(p));
6624
6625                util = max(util, estimated);
6626        }
6627
6628        /*
6629         * Utilization (estimated) can exceed the CPU capacity, thus let's
6630         * clamp to the maximum CPU capacity to ensure consistency with
6631         * the cpu_util call.
6632         */
6633        return min_t(unsigned long, util, capacity_orig_of(cpu));
6634}
6635
6636/*
6637 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6638 * to @dst_cpu.
6639 */
6640static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6641{
6642        struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6643        unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6644
6645        /*
6646         * If @p migrates from @cpu to another, remove its contribution. Or,
6647         * if @p migrates from another CPU to @cpu, add its contribution. In
6648         * the other cases, @cpu is not impacted by the migration, so the
6649         * util_avg should already be correct.
6650         */
6651        if (task_cpu(p) == cpu && dst_cpu != cpu)
6652                lsub_positive(&util, task_util(p));
6653        else if (task_cpu(p) != cpu && dst_cpu == cpu)
6654                util += task_util(p);
6655
6656        if (sched_feat(UTIL_EST)) {
6657                util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6658
6659                /*
6660                 * During wake-up, the task isn't enqueued yet and doesn't
6661                 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6662                 * so just add it (if needed) to "simulate" what will be
6663                 * cpu_util() after the task has been enqueued.
6664                 */
6665                if (dst_cpu == cpu)
6666                        util_est += _task_util_est(p);
6667
6668                util = max(util, util_est);
6669        }
6670
6671        return min(util, capacity_orig_of(cpu));
6672}
6673
6674/*
6675 * compute_energy(): Estimates the energy that @pd would consume if @p was
6676 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6677 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6678 * to compute what would be the energy if we decided to actually migrate that
6679 * task.
6680 */
6681static long
6682compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6683{
6684        struct cpumask *pd_mask = perf_domain_span(pd);
6685        unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6686        unsigned long max_util = 0, sum_util = 0;
6687        unsigned long _cpu_cap = cpu_cap;
6688        int cpu;
6689
6690        _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6691
6692        /*
6693         * The capacity state of CPUs of the current rd can be driven by CPUs
6694         * of another rd if they belong to the same pd. So, account for the
6695         * utilization of these CPUs too by masking pd with cpu_online_mask
6696         * instead of the rd span.
6697         *
6698         * If an entire pd is outside of the current rd, it will not appear in
6699         * its pd list and will not be accounted by compute_energy().
6700         */
6701        for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6702                unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6703                unsigned long cpu_util, util_running = util_freq;
6704                struct task_struct *tsk = NULL;
6705
6706                /*
6707                 * When @p is placed on @cpu:
6708                 *
6709                 * util_running = max(cpu_util, cpu_util_est) +
6710                 *                max(task_util, _task_util_est)
6711                 *
6712                 * while cpu_util_next is: max(cpu_util + task_util,
6713                 *                             cpu_util_est + _task_util_est)
6714                 */
6715                if (cpu == dst_cpu) {
6716                        tsk = p;
6717                        util_running =
6718                                cpu_util_next(cpu, p, -1) + task_util_est(p);
6719                }
6720
6721                /*
6722                 * Busy time computation: utilization clamping is not
6723                 * required since the ratio (sum_util / cpu_capacity)
6724                 * is already enough to scale the EM reported power
6725                 * consumption at the (eventually clamped) cpu_capacity.
6726                 */
6727                cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6728                                              ENERGY_UTIL, NULL);
6729
6730                sum_util += min(cpu_util, _cpu_cap);
6731
6732                /*
6733                 * Performance domain frequency: utilization clamping
6734                 * must be considered since it affects the selection
6735                 * of the performance domain frequency.
6736                 * NOTE: in case RT tasks are running, by default the
6737                 * FREQUENCY_UTIL's utilization can be max OPP.
6738                 */
6739                cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6740                                              FREQUENCY_UTIL, tsk);
6741                max_util = max(max_util, min(cpu_util, _cpu_cap));
6742        }
6743
6744        return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6745}
6746
6747/*
6748 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6749 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6750 * spare capacity in each performance domain and uses it as a potential
6751 * candidate to execute the task. Then, it uses the Energy Model to figure
6752 * out which of the CPU candidates is the most energy-efficient.
6753 *
6754 * The rationale for this heuristic is as follows. In a performance domain,
6755 * all the most energy efficient CPU candidates (according to the Energy
6756 * Model) are those for which we'll request a low frequency. When there are
6757 * several CPUs for which the frequency request will be the same, we don't
6758 * have enough data to break the tie between them, because the Energy Model
6759 * only includes active power costs. With this model, if we assume that
6760 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6761 * the maximum spare capacity in a performance domain is guaranteed to be among
6762 * the best candidates of the performance domain.
6763 *
6764 * In practice, it could be preferable from an energy standpoint to pack
6765 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6766 * but that could also hurt our chances to go cluster idle, and we have no
6767 * ways to tell with the current Energy Model if this is actually a good
6768 * idea or not. So, find_energy_efficient_cpu() basically favors
6769 * cluster-packing, and spreading inside a cluster. That should at least be
6770 * a good thing for latency, and this is consistent with the idea that most
6771 * of the energy savings of EAS come from the asymmetry of the system, and
6772 * not so much from breaking the tie between identical CPUs. That's also the
6773 * reason why EAS is enabled in the topology code only for systems where
6774 * SD_ASYM_CPUCAPACITY is set.
6775 *
6776 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6777 * they don't have any useful utilization data yet and it's not possible to
6778 * forecast their impact on energy consumption. Consequently, they will be
6779 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6780 * to be energy-inefficient in some use-cases. The alternative would be to
6781 * bias new tasks towards specific types of CPUs first, or to try to infer
6782 * their util_avg from the parent task, but those heuristics could hurt
6783 * other use-cases too. So, until someone finds a better way to solve this,
6784 * let's keep things simple by re-using the existing slow path.
6785 */
6786static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6787{
6788        unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6789        struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6790        int cpu, best_energy_cpu = prev_cpu, target = -1;
6791        unsigned long cpu_cap, util, base_energy = 0;
6792        struct sched_domain *sd;
6793        struct perf_domain *pd;
6794
6795        rcu_read_lock();
6796        pd = rcu_dereference(rd->pd);
6797        if (!pd || READ_ONCE(rd->overutilized))
6798                goto unlock;
6799
6800        /*
6801         * Energy-aware wake-up happens on the lowest sched_domain starting
6802         * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6803         */
6804        sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6805        while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6806                sd = sd->parent;
6807        if (!sd)
6808                goto unlock;
6809
6810        target = prev_cpu;
6811
6812        sync_entity_load_avg(&p->se);
6813        if (!task_util_est(p))
6814                goto unlock;
6815
6816        for (; pd; pd = pd->next) {
6817                unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6818                bool compute_prev_delta = false;
6819                unsigned long base_energy_pd;
6820                int max_spare_cap_cpu = -1;
6821
6822                for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6823                        if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6824                                continue;
6825
6826                        util = cpu_util_next(cpu, p, cpu);
6827                        cpu_cap = capacity_of(cpu);
6828                        spare_cap = cpu_cap;
6829                        lsub_positive(&spare_cap, util);
6830
6831                        /*
6832                         * Skip CPUs that cannot satisfy the capacity request.
6833                         * IOW, placing the task there would make the CPU
6834                         * overutilized. Take uclamp into account to see how
6835                         * much capacity we can get out of the CPU; this is
6836                         * aligned with sched_cpu_util().
6837                         */
6838                        util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6839                        if (!fits_capacity(util, cpu_cap))
6840                                continue;
6841
6842                        if (cpu == prev_cpu) {
6843                                /* Always use prev_cpu as a candidate. */
6844                                compute_prev_delta = true;
6845                        } else if (spare_cap > max_spare_cap) {
6846                                /*
6847                                 * Find the CPU with the maximum spare capacity
6848                                 * in the performance domain.
6849                                 */
6850                                max_spare_cap = spare_cap;
6851                                max_spare_cap_cpu = cpu;
6852                        }
6853                }
6854
6855                if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6856                        continue;
6857
6858                /* Compute the 'base' energy of the pd, without @p */
6859                base_energy_pd = compute_energy(p, -1, pd);
6860                base_energy += base_energy_pd;
6861
6862                /* Evaluate the energy impact of using prev_cpu. */
6863                if (compute_prev_delta) {
6864                        prev_delta = compute_energy(p, prev_cpu, pd);
6865                        if (prev_delta < base_energy_pd)
6866                                goto unlock;
6867                        prev_delta -= base_energy_pd;
6868                        best_delta = min(best_delta, prev_delta);
6869                }
6870
6871                /* Evaluate the energy impact of using max_spare_cap_cpu. */
6872                if (max_spare_cap_cpu >= 0) {
6873                        cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6874                        if (cur_delta < base_energy_pd)
6875                                goto unlock;
6876                        cur_delta -= base_energy_pd;
6877                        if (cur_delta < best_delta) {
6878                                best_delta = cur_delta;
6879                                best_energy_cpu = max_spare_cap_cpu;
6880                        }
6881                }
6882        }
6883        rcu_read_unlock();
6884
6885        /*
6886         * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6887         * least 6% of the energy used by prev_cpu.
6888         */
6889        if ((prev_delta == ULONG_MAX) ||
6890            (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6891                target = best_energy_cpu;
6892
6893        return target;
6894
6895unlock:
6896        rcu_read_unlock();
6897
6898        return target;
6899}
6900
6901/*
6902 * select_task_rq_fair: Select target runqueue for the waking task in domains
6903 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6904 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6905 *
6906 * Balances load by selecting the idlest CPU in the idlest group, or under
6907 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6908 *
6909 * Returns the target CPU number.
6910 */
6911static int
6912select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6913{
6914        int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6915        struct sched_domain *tmp, *sd = NULL;
6916        int cpu = smp_processor_id();
6917        int new_cpu = prev_cpu;
6918        int want_affine = 0;
6919        /* SD_flags and WF_flags share the first nibble */
6920        int sd_flag = wake_flags & 0xF;
6921
6922        /*
6923         * required for stable ->cpus_allowed
6924         */
6925        lockdep_assert_held(&p->pi_lock);
6926        if (wake_flags & WF_TTWU) {
6927                record_wakee(p);
6928
6929                if (sched_energy_enabled()) {
6930                        new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6931                        if (new_cpu >= 0)
6932                                return new_cpu;
6933                        new_cpu = prev_cpu;
6934                }
6935
6936                want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6937        }
6938
6939        rcu_read_lock();
6940        for_each_domain(cpu, tmp) {
6941                /*
6942                 * If both 'cpu' and 'prev_cpu' are part of this domain,
6943                 * cpu is a valid SD_WAKE_AFFINE target.
6944                 */
6945                if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6946                    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6947                        if (cpu != prev_cpu)
6948                                new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6949
6950                        sd = NULL; /* Prefer wake_affine over balance flags */
6951                        break;
6952                }
6953
6954                if (tmp->flags & sd_flag)
6955                        sd = tmp;
6956                else if (!want_affine)
6957                        break;
6958        }
6959
6960        if (unlikely(sd)) {
6961                /* Slow path */
6962                new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6963        } else if (wake_flags & WF_TTWU) { /* XXX always ? */
6964                /* Fast path */
6965                new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6966        }
6967        rcu_read_unlock();
6968
6969        return new_cpu;
6970}
6971
6972static void detach_entity_cfs_rq(struct sched_entity *se);
6973
6974/*
6975 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6976 * cfs_rq_of(p) references at time of call are still valid and identify the
6977 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6978 */
6979static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6980{
6981        /*
6982         * As blocked tasks retain absolute vruntime the migration needs to
6983         * deal with this by subtracting the old and adding the new
6984         * min_vruntime -- the latter is done by enqueue_entity() when placing
6985         * the task on the new runqueue.
6986         */
6987        if (READ_ONCE(p->__state) == TASK_WAKING) {
6988                struct sched_entity *se = &p->se;
6989                struct cfs_rq *cfs_rq = cfs_rq_of(se);
6990                u64 min_vruntime;
6991
6992#ifndef CONFIG_64BIT
6993                u64 min_vruntime_copy;
6994
6995                do {
6996                        min_vruntime_copy = cfs_rq->min_vruntime_copy;
6997                        smp_rmb();
6998                        min_vruntime = cfs_rq->min_vruntime;
6999                } while (min_vruntime != min_vruntime_copy);
7000#else
7001                min_vruntime = cfs_rq->min_vruntime;
7002#endif
7003
7004                se->vruntime -= min_vruntime;
7005        }
7006
7007        if (p->on_rq == TASK_ON_RQ_MIGRATING) {
7008                /*
7009                 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
7010                 * rq->lock and can modify state directly.
7011                 */
7012                lockdep_assert_rq_held(task_rq(p));
7013                detach_entity_cfs_rq(&p->se);
7014
7015        } else {
7016                /*
7017                 * We are supposed to update the task to "current" time, then
7018                 * its up to date and ready to go to new CPU/cfs_rq. But we
7019                 * have difficulty in getting what current time is, so simply
7020                 * throw away the out-of-date time. This will result in the
7021                 * wakee task is less decayed, but giving the wakee more load
7022                 * sounds not bad.
7023                 */
7024                remove_entity_load_avg(&p->se);
7025        }
7026
7027        /* Tell new CPU we are migrated */
7028        p->se.avg.last_update_time = 0;
7029
7030        /* We have migrated, no longer consider this task hot */
7031        p->se.exec_start = 0;
7032
7033        update_scan_period(p, new_cpu);
7034}
7035
7036static void task_dead_fair(struct task_struct *p)
7037{
7038        remove_entity_load_avg(&p->se);
7039}
7040
7041static int
7042balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7043{
7044        if (rq->nr_running)
7045                return 1;
7046
7047        return newidle_balance(rq, rf) != 0;
7048}
7049#endif /* CONFIG_SMP */
7050
7051static unsigned long wakeup_gran(struct sched_entity *se)
7052{
7053        unsigned long gran = sysctl_sched_wakeup_granularity;
7054
7055        /*
7056         * Since its curr running now, convert the gran from real-time
7057         * to virtual-time in his units.
7058         *
7059         * By using 'se' instead of 'curr' we penalize light tasks, so
7060         * they get preempted easier. That is, if 'se' < 'curr' then
7061         * the resulting gran will be larger, therefore penalizing the
7062         * lighter, if otoh 'se' > 'curr' then the resulting gran will
7063         * be smaller, again penalizing the lighter task.
7064         *
7065         * This is especially important for buddies when the leftmost
7066         * task is higher priority than the buddy.
7067         */
7068        return calc_delta_fair(gran, se);
7069}
7070
7071/*
7072 * Should 'se' preempt 'curr'.
7073 *
7074 *             |s1
7075 *        |s2
7076 *   |s3
7077 *         g
7078 *      |<--->|c
7079 *
7080 *  w(c, s1) = -1
7081 *  w(c, s2) =  0
7082 *  w(c, s3) =  1
7083 *
7084 */
7085static int
7086wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7087{
7088        s64 gran, vdiff = curr->vruntime - se->vruntime;
7089
7090        if (vdiff <= 0)
7091                return -1;
7092
7093        gran = wakeup_gran(se);
7094        if (vdiff > gran)
7095                return 1;
7096
7097        return 0;
7098}
7099
7100static void set_last_buddy(struct sched_entity *se)
7101{
7102        for_each_sched_entity(se) {
7103                if (SCHED_WARN_ON(!se->on_rq))
7104                        return;
7105                if (se_is_idle(se))
7106                        return;
7107                cfs_rq_of(se)->last = se;
7108        }
7109}
7110
7111static void set_next_buddy(struct sched_entity *se)
7112{
7113        for_each_sched_entity(se) {
7114                if (SCHED_WARN_ON(!se->on_rq))
7115                        return;
7116                if (se_is_idle(se))
7117                        return;
7118                cfs_rq_of(se)->next = se;
7119        }
7120}
7121
7122static void set_skip_buddy(struct sched_entity *se)
7123{
7124        for_each_sched_entity(se)
7125                cfs_rq_of(se)->skip = se;
7126}
7127
7128/*
7129 * Preempt the current task with a newly woken task if needed:
7130 */
7131static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7132{
7133        struct task_struct *curr = rq->curr;
7134        struct sched_entity *se = &curr->se, *pse = &p->se;
7135        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7136        int scale = cfs_rq->nr_running >= sched_nr_latency;
7137        int next_buddy_marked = 0;
7138        int cse_is_idle, pse_is_idle;
7139
7140        if (unlikely(se == pse))
7141                return;
7142
7143        /*
7144         * This is possible from callers such as attach_tasks(), in which we
7145         * unconditionally check_preempt_curr() after an enqueue (which may have
7146         * lead to a throttle).  This both saves work and prevents false
7147         * next-buddy nomination below.
7148         */
7149        if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7150                return;
7151
7152        if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7153                set_next_buddy(pse);
7154                next_buddy_marked = 1;
7155        }
7156
7157        /*
7158         * We can come here with TIF_NEED_RESCHED already set from new task
7159         * wake up path.
7160         *
7161         * Note: this also catches the edge-case of curr being in a throttled
7162         * group (e.g. via set_curr_task), since update_curr() (in the
7163         * enqueue of curr) will have resulted in resched being set.  This
7164         * prevents us from potentially nominating it as a false LAST_BUDDY
7165         * below.
7166         */
7167        if (test_tsk_need_resched(curr))
7168                return;
7169
7170        /* Idle tasks are by definition preempted by non-idle tasks. */
7171        if (unlikely(task_has_idle_policy(curr)) &&
7172            likely(!task_has_idle_policy(p)))
7173                goto preempt;
7174
7175        /*
7176         * Batch and idle tasks do not preempt non-idle tasks (their preemption
7177         * is driven by the tick):
7178         */
7179        if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7180                return;
7181
7182        find_matching_se(&se, &pse);
7183        BUG_ON(!pse);
7184
7185        cse_is_idle = se_is_idle(se);
7186        pse_is_idle = se_is_idle(pse);
7187
7188        /*
7189         * Preempt an idle group in favor of a non-idle group (and don't preempt
7190         * in the inverse case).
7191         */
7192        if (cse_is_idle && !pse_is_idle)
7193                goto preempt;
7194        if (cse_is_idle != pse_is_idle)
7195                return;
7196
7197        update_curr(cfs_rq_of(se));
7198        if (wakeup_preempt_entity(se, pse) == 1) {
7199                /*
7200                 * Bias pick_next to pick the sched entity that is
7201                 * triggering this preemption.
7202                 */
7203                if (!next_buddy_marked)
7204                        set_next_buddy(pse);
7205                goto preempt;
7206        }
7207
7208        return;
7209
7210preempt:
7211        resched_curr(rq);
7212        /*
7213         * Only set the backward buddy when the current task is still
7214         * on the rq. This can happen when a wakeup gets interleaved
7215         * with schedule on the ->pre_schedule() or idle_balance()
7216         * point, either of which can * drop the rq lock.
7217         *
7218         * Also, during early boot the idle thread is in the fair class,
7219         * for obvious reasons its a bad idea to schedule back to it.
7220         */
7221        if (unlikely(!se->on_rq || curr == rq->idle))
7222                return;
7223
7224        if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7225                set_last_buddy(se);
7226}
7227
7228#ifdef CONFIG_SMP
7229static struct task_struct *pick_task_fair(struct rq *rq)
7230{
7231        struct sched_entity *se;
7232        struct cfs_rq *cfs_rq;
7233
7234again:
7235        cfs_rq = &rq->cfs;
7236        if (!cfs_rq->nr_running)
7237                return NULL;
7238
7239        do {
7240                struct sched_entity *curr = cfs_rq->curr;
7241
7242                /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7243                if (curr) {
7244                        if (curr->on_rq)
7245                                update_curr(cfs_rq);
7246                        else
7247                                curr = NULL;
7248
7249                        if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7250                                goto again;
7251                }
7252
7253                se = pick_next_entity(cfs_rq, curr);
7254                cfs_rq = group_cfs_rq(se);
7255        } while (cfs_rq);
7256
7257        return task_of(se);
7258}
7259#endif
7260
7261struct task_struct *
7262pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7263{
7264        struct cfs_rq *cfs_rq = &rq->cfs;
7265        struct sched_entity *se;
7266        struct task_struct *p;
7267        int new_tasks;
7268
7269again:
7270        if (!sched_fair_runnable(rq))
7271                goto idle;
7272
7273#ifdef CONFIG_FAIR_GROUP_SCHED
7274        if (!prev || prev->sched_class != &fair_sched_class)
7275                goto simple;
7276
7277        /*
7278         * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7279         * likely that a next task is from the same cgroup as the current.
7280         *
7281         * Therefore attempt to avoid putting and setting the entire cgroup
7282         * hierarchy, only change the part that actually changes.
7283         */
7284
7285        do {
7286                struct sched_entity *curr = cfs_rq->curr;
7287
7288                /*
7289                 * Since we got here without doing put_prev_entity() we also
7290                 * have to consider cfs_rq->curr. If it is still a runnable
7291                 * entity, update_curr() will update its vruntime, otherwise
7292                 * forget we've ever seen it.
7293                 */
7294                if (curr) {
7295                        if (curr->on_rq)
7296                                update_curr(cfs_rq);
7297                        else
7298                                curr = NULL;
7299
7300                        /*
7301                         * This call to check_cfs_rq_runtime() will do the
7302                         * throttle and dequeue its entity in the parent(s).
7303                         * Therefore the nr_running test will indeed
7304                         * be correct.
7305                         */
7306                        if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7307                                cfs_rq = &rq->cfs;
7308
7309                                if (!cfs_rq->nr_running)
7310                                        goto idle;
7311
7312                                goto simple;
7313                        }
7314                }
7315
7316                se = pick_next_entity(cfs_rq, curr);
7317                cfs_rq = group_cfs_rq(se);
7318        } while (cfs_rq);
7319
7320        p = task_of(se);
7321
7322        /*
7323         * Since we haven't yet done put_prev_entity and if the selected task
7324         * is a different task than we started out with, try and touch the
7325         * least amount of cfs_rqs.
7326         */
7327        if (prev != p) {
7328                struct sched_entity *pse = &prev->se;
7329
7330                while (!(cfs_rq = is_same_group(se, pse))) {
7331                        int se_depth = se->depth;
7332                        int pse_depth = pse->depth;
7333
7334                        if (se_depth <= pse_depth) {
7335                                put_prev_entity(cfs_rq_of(pse), pse);
7336                                pse = parent_entity(pse);
7337                        }
7338                        if (se_depth >= pse_depth) {
7339                                set_next_entity(cfs_rq_of(se), se);
7340                                se = parent_entity(se);
7341                        }
7342                }
7343
7344                put_prev_entity(cfs_rq, pse);
7345                set_next_entity(cfs_rq, se);
7346        }
7347
7348        goto done;
7349simple:
7350#endif
7351        if (prev)
7352                put_prev_task(rq, prev);
7353
7354        do {
7355                se = pick_next_entity(cfs_rq, NULL);
7356                set_next_entity(cfs_rq, se);
7357                cfs_rq = group_cfs_rq(se);
7358        } while (cfs_rq);
7359
7360        p = task_of(se);
7361
7362done: __maybe_unused;
7363#ifdef CONFIG_SMP
7364        /*
7365         * Move the next running task to the front of
7366         * the list, so our cfs_tasks list becomes MRU
7367         * one.
7368         */
7369        list_move(&p->se.group_node, &rq->cfs_tasks);
7370#endif
7371
7372        if (hrtick_enabled_fair(rq))
7373                hrtick_start_fair(rq, p);
7374
7375        update_misfit_status(p, rq);
7376
7377        return p;
7378
7379idle:
7380        if (!rf)
7381                return NULL;
7382
7383        new_tasks = newidle_balance(rq, rf);
7384
7385        /*
7386         * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7387         * possible for any higher priority task to appear. In that case we
7388         * must re-start the pick_next_entity() loop.
7389         */
7390        if (new_tasks < 0)
7391                return RETRY_TASK;
7392
7393        if (new_tasks > 0)
7394                goto again;
7395
7396        /*
7397         * rq is about to be idle, check if we need to update the
7398         * lost_idle_time of clock_pelt
7399         */
7400        update_idle_rq_clock_pelt(rq);
7401
7402        return NULL;
7403}
7404
7405static struct task_struct *__pick_next_task_fair(struct rq *rq)
7406{
7407        return pick_next_task_fair(rq, NULL, NULL);
7408}
7409
7410/*
7411 * Account for a descheduled task:
7412 */
7413static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7414{
7415        struct sched_entity *se = &prev->se;
7416        struct cfs_rq *cfs_rq;
7417
7418        for_each_sched_entity(se) {
7419                cfs_rq = cfs_rq_of(se);
7420                put_prev_entity(cfs_rq, se);
7421        }
7422}
7423
7424/*
7425 * sched_yield() is very simple
7426 *
7427 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7428 */
7429static void yield_task_fair(struct rq *rq)
7430{
7431        struct task_struct *curr = rq->curr;
7432        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7433        struct sched_entity *se = &curr->se;
7434
7435        /*
7436         * Are we the only task in the tree?
7437         */
7438        if (unlikely(rq->nr_running == 1))
7439                return;
7440
7441        clear_buddies(cfs_rq, se);
7442
7443        if (curr->policy != SCHED_BATCH) {
7444                update_rq_clock(rq);
7445                /*
7446                 * Update run-time statistics of the 'current'.
7447                 */
7448                update_curr(cfs_rq);
7449                /*
7450                 * Tell update_rq_clock() that we've just updated,
7451                 * so we don't do microscopic update in schedule()
7452                 * and double the fastpath cost.
7453                 */
7454                rq_clock_skip_update(rq);
7455        }
7456
7457        set_skip_buddy(se);
7458}
7459
7460static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7461{
7462        struct sched_entity *se = &p->se;
7463
7464        /* throttled hierarchies are not runnable */
7465        if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7466                return false;
7467
7468        /* Tell the scheduler that we'd really like pse to run next. */
7469        set_next_buddy(se);
7470
7471        yield_task_fair(rq);
7472
7473        return true;
7474}
7475
7476#ifdef CONFIG_SMP
7477/**************************************************
7478 * Fair scheduling class load-balancing methods.
7479 *
7480 * BASICS
7481 *
7482 * The purpose of load-balancing is to achieve the same basic fairness the
7483 * per-CPU scheduler provides, namely provide a proportional amount of compute
7484 * time to each task. This is expressed in the following equation:
7485 *
7486 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7487 *
7488 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7489 * W_i,0 is defined as:
7490 *
7491 *   W_i,0 = \Sum_j w_i,j                                             (2)
7492 *
7493 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7494 * is derived from the nice value as per sched_prio_to_weight[].
7495 *
7496 * The weight average is an exponential decay average of the instantaneous
7497 * weight:
7498 *
7499 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7500 *
7501 * C_i is the compute capacity of CPU i, typically it is the
7502 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7503 * can also include other factors [XXX].
7504 *
7505 * To achieve this balance we define a measure of imbalance which follows
7506 * directly from (1):
7507 *
7508 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7509 *
7510 * We them move tasks around to minimize the imbalance. In the continuous
7511 * function space it is obvious this converges, in the discrete case we get
7512 * a few fun cases generally called infeasible weight scenarios.
7513 *
7514 * [XXX expand on:
7515 *     - infeasible weights;
7516 *     - local vs global optima in the discrete case. ]
7517 *
7518 *
7519 * SCHED DOMAINS
7520 *
7521 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7522 * for all i,j solution, we create a tree of CPUs that follows the hardware
7523 * topology where each level pairs two lower groups (or better). This results
7524 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7525 * tree to only the first of the previous level and we decrease the frequency
7526 * of load-balance at each level inv. proportional to the number of CPUs in
7527 * the groups.
7528 *
7529 * This yields:
7530 *
7531 *     log_2 n     1     n
7532 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7533 *     i = 0      2^i   2^i
7534 *                               `- size of each group
7535 *         |         |     `- number of CPUs doing load-balance
7536 *         |         `- freq
7537 *         `- sum over all levels
7538 *
7539 * Coupled with a limit on how many tasks we can migrate every balance pass,
7540 * this makes (5) the runtime complexity of the balancer.
7541 *
7542 * An important property here is that each CPU is still (indirectly) connected
7543 * to every other CPU in at most O(log n) steps:
7544 *
7545 * The adjacency matrix of the resulting graph is given by:
7546 *
7547 *             log_2 n
7548 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7549 *             k = 0
7550 *
7551 * And you'll find that:
7552 *
7553 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7554 *
7555 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7556 * The task movement gives a factor of O(m), giving a convergence complexity
7557 * of:
7558 *
7559 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7560 *
7561 *
7562 * WORK CONSERVING
7563 *
7564 * In order to avoid CPUs going idle while there's still work to do, new idle
7565 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7566 * tree itself instead of relying on other CPUs to bring it work.
7567 *
7568 * This adds some complexity to both (5) and (8) but it reduces the total idle
7569 * time.
7570 *
7571 * [XXX more?]
7572 *
7573 *
7574 * CGROUPS
7575 *
7576 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7577 *
7578 *                                s_k,i
7579 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7580 *                                 S_k
7581 *
7582 * Where
7583 *
7584 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7585 *
7586 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7587 *
7588 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7589 * property.
7590 *
7591 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7592 *      rewrite all of this once again.]
7593 */
7594
7595static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7596
7597enum fbq_type { regular, remote, all };
7598
7599/*
7600 * 'group_type' describes the group of CPUs at the moment of load balancing.
7601 *
7602 * The enum is ordered by pulling priority, with the group with lowest priority
7603 * first so the group_type can simply be compared when selecting the busiest
7604 * group. See update_sd_pick_busiest().
7605 */
7606enum group_type {
7607        /* The group has spare capacity that can be used to run more tasks.  */
7608        group_has_spare = 0,
7609        /*
7610         * The group is fully used and the tasks don't compete for more CPU
7611         * cycles. Nevertheless, some tasks might wait before running.
7612         */
7613        group_fully_busy,
7614        /*
7615         * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7616         * and must be migrated to a more powerful CPU.
7617         */
7618        group_misfit_task,
7619        /*
7620         * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7621         * and the task should be migrated to it instead of running on the
7622         * current CPU.
7623         */
7624        group_asym_packing,
7625        /*
7626         * The tasks' affinity constraints previously prevented the scheduler
7627         * from balancing the load across the system.
7628         */
7629        group_imbalanced,
7630        /*
7631         * The CPU is overloaded and can't provide expected CPU cycles to all
7632         * tasks.
7633         */
7634        group_overloaded
7635};
7636
7637enum migration_type {
7638        migrate_load = 0,
7639        migrate_util,
7640        migrate_task,
7641        migrate_misfit
7642};
7643
7644#define LBF_ALL_PINNED  0x01
7645#define LBF_NEED_BREAK  0x02
7646#define LBF_DST_PINNED  0x04
7647#define LBF_SOME_PINNED 0x08
7648#define LBF_ACTIVE_LB   0x10
7649
7650struct lb_env {
7651        struct sched_domain     *sd;
7652
7653        struct rq               *src_rq;
7654        int                     src_cpu;
7655
7656        int                     dst_cpu;
7657        struct rq               *dst_rq;
7658
7659        struct cpumask          *dst_grpmask;
7660        int                     new_dst_cpu;
7661        enum cpu_idle_type      idle;
7662        long                    imbalance;
7663        /* The set of CPUs under consideration for load-balancing */
7664        struct cpumask          *cpus;
7665
7666        unsigned int            flags;
7667
7668        unsigned int            loop;
7669        unsigned int            loop_break;
7670        unsigned int            loop_max;
7671
7672        enum fbq_type           fbq_type;
7673        enum migration_type     migration_type;
7674        struct list_head        tasks;
7675};
7676
7677/*
7678 * Is this task likely cache-hot:
7679 */
7680static int task_hot(struct task_struct *p, struct lb_env *env)
7681{
7682        s64 delta;
7683
7684        lockdep_assert_rq_held(env->src_rq);
7685
7686        if (p->sched_class != &fair_sched_class)
7687                return 0;
7688
7689        if (unlikely(task_has_idle_policy(p)))
7690                return 0;
7691
7692        /* SMT siblings share cache */
7693        if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7694                return 0;
7695
7696        /*
7697         * Buddy candidates are cache hot:
7698         */
7699        if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7700                        (&p->se == cfs_rq_of(&p->se)->next ||
7701                         &p->se == cfs_rq_of(&p->se)->last))
7702                return 1;
7703
7704        if (sysctl_sched_migration_cost == -1)
7705                return 1;
7706
7707        /*
7708         * Don't migrate task if the task's cookie does not match
7709         * with the destination CPU's core cookie.
7710         */
7711        if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7712                return 1;
7713
7714        if (sysctl_sched_migration_cost == 0)
7715                return 0;
7716
7717        delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7718
7719        return delta < (s64)sysctl_sched_migration_cost;
7720}
7721
7722#ifdef CONFIG_NUMA_BALANCING
7723/*
7724 * Returns 1, if task migration degrades locality
7725 * Returns 0, if task migration improves locality i.e migration preferred.
7726 * Returns -1, if task migration is not affected by locality.
7727 */
7728static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7729{
7730        struct numa_group *numa_group = rcu_dereference(p->numa_group);
7731        unsigned long src_weight, dst_weight;
7732        int src_nid, dst_nid, dist;
7733
7734        if (!static_branch_likely(&sched_numa_balancing))
7735                return -1;
7736
7737        if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7738                return -1;
7739
7740        src_nid = cpu_to_node(env->src_cpu);
7741        dst_nid = cpu_to_node(env->dst_cpu);
7742
7743        if (src_nid == dst_nid)
7744                return -1;
7745
7746        /* Migrating away from the preferred node is always bad. */
7747        if (src_nid == p->numa_preferred_nid) {
7748                if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7749                        return 1;
7750                else
7751                        return -1;
7752        }
7753
7754        /* Encourage migration to the preferred node. */
7755        if (dst_nid == p->numa_preferred_nid)
7756                return 0;
7757
7758        /* Leaving a core idle is often worse than degrading locality. */
7759        if (env->idle == CPU_IDLE)
7760                return -1;
7761
7762        dist = node_distance(src_nid, dst_nid);
7763        if (numa_group) {
7764                src_weight = group_weight(p, src_nid, dist);
7765                dst_weight = group_weight(p, dst_nid, dist);
7766        } else {
7767                src_weight = task_weight(p, src_nid, dist);
7768                dst_weight = task_weight(p, dst_nid, dist);
7769        }
7770
7771        return dst_weight < src_weight;
7772}
7773
7774#else
7775static inline int migrate_degrades_locality(struct task_struct *p,
7776                                             struct lb_env *env)
7777{
7778        return -1;
7779}
7780#endif
7781
7782/*
7783 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7784 */
7785static
7786int can_migrate_task(struct task_struct *p, struct lb_env *env)
7787{
7788        int tsk_cache_hot;
7789
7790        lockdep_assert_rq_held(env->src_rq);
7791
7792        /*
7793         * We do not migrate tasks that are:
7794         * 1) throttled_lb_pair, or
7795         * 2) cannot be migrated to this CPU due to cpus_ptr, or
7796         * 3) running (obviously), or
7797         * 4) are cache-hot on their current CPU.
7798         */
7799        if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7800                return 0;
7801
7802        /* Disregard pcpu kthreads; they are where they need to be. */
7803        if (kthread_is_per_cpu(p))
7804                return 0;
7805
7806        if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7807                int cpu;
7808
7809                schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7810
7811                env->flags |= LBF_SOME_PINNED;
7812
7813                /*
7814                 * Remember if this task can be migrated to any other CPU in
7815                 * our sched_group. We may want to revisit it if we couldn't
7816                 * meet load balance goals by pulling other tasks on src_cpu.
7817                 *
7818                 * Avoid computing new_dst_cpu
7819                 * - for NEWLY_IDLE
7820                 * - if we have already computed one in current iteration
7821                 * - if it's an active balance
7822                 */
7823                if (env->idle == CPU_NEWLY_IDLE ||
7824                    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7825                        return 0;
7826
7827                /* Prevent to re-select dst_cpu via env's CPUs: */
7828                for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7829                        if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7830                                env->flags |= LBF_DST_PINNED;
7831                                env->new_dst_cpu = cpu;
7832                                break;
7833                        }
7834                }
7835
7836                return 0;
7837        }
7838
7839        /* Record that we found at least one task that could run on dst_cpu */
7840        env->flags &= ~LBF_ALL_PINNED;
7841
7842        if (task_running(env->src_rq, p)) {
7843                schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7844                return 0;
7845        }
7846
7847        /*
7848         * Aggressive migration if:
7849         * 1) active balance
7850         * 2) destination numa is preferred
7851         * 3) task is cache cold, or
7852         * 4) too many balance attempts have failed.
7853         */
7854        if (env->flags & LBF_ACTIVE_LB)
7855                return 1;
7856
7857        tsk_cache_hot = migrate_degrades_locality(p, env);
7858        if (tsk_cache_hot == -1)
7859                tsk_cache_hot = task_hot(p, env);
7860
7861        if (tsk_cache_hot <= 0 ||
7862            env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7863                if (tsk_cache_hot == 1) {
7864                        schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7865                        schedstat_inc(p->se.statistics.nr_forced_migrations);
7866                }
7867                return 1;
7868        }
7869
7870        schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7871        return 0;
7872}
7873
7874/*
7875 * detach_task() -- detach the task for the migration specified in env
7876 */
7877static void detach_task(struct task_struct *p, struct lb_env *env)
7878{
7879        lockdep_assert_rq_held(env->src_rq);
7880
7881        deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7882        set_task_cpu(p, env->dst_cpu);
7883}
7884
7885/*
7886 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7887 * part of active balancing operations within "domain".
7888 *
7889 * Returns a task if successful and NULL otherwise.
7890 */
7891static struct task_struct *detach_one_task(struct lb_env *env)
7892{
7893        struct task_struct *p;
7894
7895        lockdep_assert_rq_held(env->src_rq);
7896
7897        list_for_each_entry_reverse(p,
7898                        &env->src_rq->cfs_tasks, se.group_node) {
7899                if (!can_migrate_task(p, env))
7900                        continue;
7901
7902                detach_task(p, env);
7903
7904                /*
7905                 * Right now, this is only the second place where
7906                 * lb_gained[env->idle] is updated (other is detach_tasks)
7907                 * so we can safely collect stats here rather than
7908                 * inside detach_tasks().
7909                 */
7910                schedstat_inc(env->sd->lb_gained[env->idle]);
7911                return p;
7912        }
7913        return NULL;
7914}
7915
7916static const unsigned int sched_nr_migrate_break = 32;
7917
7918/*
7919 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7920 * busiest_rq, as part of a balancing operation within domain "sd".
7921 *
7922 * Returns number of detached tasks if successful and 0 otherwise.
7923 */
7924static int detach_tasks(struct lb_env *env)
7925{
7926        struct list_head *tasks = &env->src_rq->cfs_tasks;
7927        unsigned long util, load;
7928        struct task_struct *p;
7929        int detached = 0;
7930
7931        lockdep_assert_rq_held(env->src_rq);
7932
7933        /*
7934         * Source run queue has been emptied by another CPU, clear
7935         * LBF_ALL_PINNED flag as we will not test any task.
7936         */
7937        if (env->src_rq->nr_running <= 1) {
7938                env->flags &= ~LBF_ALL_PINNED;
7939                return 0;
7940        }
7941
7942        if (env->imbalance <= 0)
7943                return 0;
7944
7945        while (!list_empty(tasks)) {
7946                /*
7947                 * We don't want to steal all, otherwise we may be treated likewise,
7948                 * which could at worst lead to a livelock crash.
7949                 */
7950                if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7951                        break;
7952
7953                p = list_last_entry(tasks, struct task_struct, se.group_node);
7954
7955                env->loop++;
7956                /* We've more or less seen every task there is, call it quits */
7957                if (env->loop > env->loop_max)
7958                        break;
7959
7960                /* take a breather every nr_migrate tasks */
7961                if (env->loop > env->loop_break) {
7962                        env->loop_break += sched_nr_migrate_break;
7963                        env->flags |= LBF_NEED_BREAK;
7964                        break;
7965                }
7966
7967                if (!can_migrate_task(p, env))
7968                        goto next;
7969
7970                switch (env->migration_type) {
7971                case migrate_load:
7972                        /*
7973                         * Depending of the number of CPUs and tasks and the
7974                         * cgroup hierarchy, task_h_load() can return a null
7975                         * value. Make sure that env->imbalance decreases
7976                         * otherwise detach_tasks() will stop only after
7977                         * detaching up to loop_max tasks.
7978                         */
7979                        load = max_t(unsigned long, task_h_load(p), 1);
7980
7981                        if (sched_feat(LB_MIN) &&
7982                            load < 16 && !env->sd->nr_balance_failed)
7983                                goto next;
7984
7985                        /*
7986                         * Make sure that we don't migrate too much load.
7987                         * Nevertheless, let relax the constraint if
7988                         * scheduler fails to find a good waiting task to
7989                         * migrate.
7990                         */
7991                        if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7992                                goto next;
7993
7994                        env->imbalance -= load;
7995                        break;
7996
7997                case migrate_util:
7998                        util = task_util_est(p);
7999
8000                        if (util > env->imbalance)
8001                                goto next;
8002
8003                        env->imbalance -= util;
8004                        break;
8005
8006                case migrate_task:
8007                        env->imbalance--;
8008                        break;
8009
8010                case migrate_misfit:
8011                        /* This is not a misfit task */
8012                        if (task_fits_capacity(p, capacity_of(env->src_cpu)))
8013                                goto next;
8014
8015                        env->imbalance = 0;
8016                        break;
8017                }
8018
8019                detach_task(p, env);
8020                list_add(&p->se.group_node, &env->tasks);
8021
8022                detached++;
8023
8024#ifdef CONFIG_PREEMPTION
8025                /*
8026                 * NEWIDLE balancing is a source of latency, so preemptible
8027                 * kernels will stop after the first task is detached to minimize
8028                 * the critical section.
8029                 */
8030                if (env->idle == CPU_NEWLY_IDLE)
8031                        break;
8032#endif
8033
8034                /*
8035                 * We only want to steal up to the prescribed amount of
8036                 * load/util/tasks.
8037                 */
8038                if (env->imbalance <= 0)
8039                        break;
8040
8041                continue;
8042next:
8043                list_move(&p->se.group_node, tasks);
8044        }
8045
8046        /*
8047         * Right now, this is one of only two places we collect this stat
8048         * so we can safely collect detach_one_task() stats here rather
8049         * than inside detach_one_task().
8050         */
8051        schedstat_add(env->sd->lb_gained[env->idle], detached);
8052
8053        return detached;
8054}
8055
8056/*
8057 * attach_task() -- attach the task detached by detach_task() to its new rq.
8058 */
8059static void attach_task(struct rq *rq, struct task_struct *p)
8060{
8061        lockdep_assert_rq_held(rq);
8062
8063        BUG_ON(task_rq(p) != rq);
8064        activate_task(rq, p, ENQUEUE_NOCLOCK);
8065        check_preempt_curr(rq, p, 0);
8066}
8067
8068/*
8069 * attach_one_task() -- attaches the task returned from detach_one_task() to
8070 * its new rq.
8071 */
8072static void attach_one_task(struct rq *rq, struct task_struct *p)
8073{
8074        struct rq_flags rf;
8075
8076        rq_lock(rq, &rf);
8077        update_rq_clock(rq);
8078        attach_task(rq, p);
8079        rq_unlock(rq, &rf);
8080}
8081
8082/*
8083 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8084 * new rq.
8085 */
8086static void attach_tasks(struct lb_env *env)
8087{
8088        struct list_head *tasks = &env->tasks;
8089        struct task_struct *p;
8090        struct rq_flags rf;
8091
8092        rq_lock(env->dst_rq, &rf);
8093        update_rq_clock(env->dst_rq);
8094
8095        while (!list_empty(tasks)) {
8096                p = list_first_entry(tasks, struct task_struct, se.group_node);
8097                list_del_init(&p->se.group_node);
8098
8099                attach_task(env->dst_rq, p);
8100        }
8101
8102        rq_unlock(env->dst_rq, &rf);
8103}
8104
8105#ifdef CONFIG_NO_HZ_COMMON
8106static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8107{
8108        if (cfs_rq->avg.load_avg)
8109                return true;
8110
8111        if (cfs_rq->avg.util_avg)
8112                return true;
8113
8114        return false;
8115}
8116
8117static inline bool others_have_blocked(struct rq *rq)
8118{
8119        if (READ_ONCE(rq->avg_rt.util_avg))
8120                return true;
8121
8122        if (READ_ONCE(rq->avg_dl.util_avg))
8123                return true;
8124
8125        if (thermal_load_avg(rq))
8126                return true;
8127
8128#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8129        if (READ_ONCE(rq->avg_irq.util_avg))
8130                return true;
8131#endif
8132
8133        return false;
8134}
8135
8136static inline void update_blocked_load_tick(struct rq *rq)
8137{
8138        WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8139}
8140
8141static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8142{
8143        if (!has_blocked)
8144                rq->has_blocked_load = 0;
8145}
8146#else
8147static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8148static inline bool others_have_blocked(struct rq *rq) { return false; }
8149static inline void update_blocked_load_tick(struct rq *rq) {}
8150static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8151#endif
8152
8153static bool __update_blocked_others(struct rq *rq, bool *done)
8154{
8155        const struct sched_class *curr_class;
8156        u64 now = rq_clock_pelt(rq);
8157        unsigned long thermal_pressure;
8158        bool decayed;
8159
8160        /*
8161         * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8162         * DL and IRQ signals have been updated before updating CFS.
8163         */
8164        curr_class = rq->curr->sched_class;
8165
8166        thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8167
8168        decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8169                  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8170                  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8171                  update_irq_load_avg(rq, 0);
8172
8173        if (others_have_blocked(rq))
8174                *done = false;
8175
8176        return decayed;
8177}
8178
8179#ifdef CONFIG_FAIR_GROUP_SCHED
8180
8181static bool __update_blocked_fair(struct rq *rq, bool *done)
8182{
8183        struct cfs_rq *cfs_rq, *pos;
8184        bool decayed = false;
8185        int cpu = cpu_of(rq);
8186
8187        /*
8188         * Iterates the task_group tree in a bottom up fashion, see
8189         * list_add_leaf_cfs_rq() for details.
8190         */
8191        for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8192                struct sched_entity *se;
8193
8194                if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8195                        update_tg_load_avg(cfs_rq);
8196
8197                        if (cfs_rq == &rq->cfs)
8198                                decayed = true;
8199                }
8200
8201                /* Propagate pending load changes to the parent, if any: */
8202                se = cfs_rq->tg->se[cpu];
8203                if (se && !skip_blocked_update(se))
8204                        update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8205
8206                /*
8207                 * There can be a lot of idle CPU cgroups.  Don't let fully
8208                 * decayed cfs_rqs linger on the list.
8209                 */
8210                if (cfs_rq_is_decayed(cfs_rq))
8211                        list_del_leaf_cfs_rq(cfs_rq);
8212
8213                /* Don't need periodic decay once load/util_avg are null */
8214                if (cfs_rq_has_blocked(cfs_rq))
8215                        *done = false;
8216        }
8217
8218        return decayed;
8219}
8220
8221/*
8222 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8223 * This needs to be done in a top-down fashion because the load of a child
8224 * group is a fraction of its parents load.
8225 */
8226static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8227{
8228        struct rq *rq = rq_of(cfs_rq);
8229        struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8230        unsigned long now = jiffies;
8231        unsigned long load;
8232
8233        if (cfs_rq->last_h_load_update == now)
8234                return;
8235
8236        WRITE_ONCE(cfs_rq->h_load_next, NULL);
8237        for_each_sched_entity(se) {
8238                cfs_rq = cfs_rq_of(se);
8239                WRITE_ONCE(cfs_rq->h_load_next, se);
8240                if (cfs_rq->last_h_load_update == now)
8241                        break;
8242        }
8243
8244        if (!se) {
8245                cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8246                cfs_rq->last_h_load_update = now;
8247        }
8248
8249        while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8250                load = cfs_rq->h_load;
8251                load = div64_ul(load * se->avg.load_avg,
8252                        cfs_rq_load_avg(cfs_rq) + 1);
8253                cfs_rq = group_cfs_rq(se);
8254                cfs_rq->h_load = load;
8255                cfs_rq->last_h_load_update = now;
8256        }
8257}
8258
8259static unsigned long task_h_load(struct task_struct *p)
8260{
8261        struct cfs_rq *cfs_rq = task_cfs_rq(p);
8262
8263        update_cfs_rq_h_load(cfs_rq);
8264        return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8265                        cfs_rq_load_avg(cfs_rq) + 1);
8266}
8267#else
8268static bool __update_blocked_fair(struct rq *rq, bool *done)
8269{
8270        struct cfs_rq *cfs_rq = &rq->cfs;
8271        bool decayed;
8272
8273        decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8274        if (cfs_rq_has_blocked(cfs_rq))
8275                *done = false;
8276
8277        return decayed;
8278}
8279
8280static unsigned long task_h_load(struct task_struct *p)
8281{
8282        return p->se.avg.load_avg;
8283}
8284#endif
8285
8286static void update_blocked_averages(int cpu)
8287{
8288        bool decayed = false, done = true;
8289        struct rq *rq = cpu_rq(cpu);
8290        struct rq_flags rf;
8291
8292        rq_lock_irqsave(rq, &rf);
8293        update_blocked_load_tick(rq);
8294        update_rq_clock(rq);
8295
8296        decayed |= __update_blocked_others(rq, &done);
8297        decayed |= __update_blocked_fair(rq, &done);
8298
8299        update_blocked_load_status(rq, !done);
8300        if (decayed)
8301                cpufreq_update_util(rq, 0);
8302        rq_unlock_irqrestore(rq, &rf);
8303}
8304
8305/********** Helpers for find_busiest_group ************************/
8306
8307/*
8308 * sg_lb_stats - stats of a sched_group required for load_balancing
8309 */
8310struct sg_lb_stats {
8311        unsigned long avg_load; /*Avg load across the CPUs of the group */
8312        unsigned long group_load; /* Total load over the CPUs of the group */
8313        unsigned long group_capacity;
8314        unsigned long group_util; /* Total utilization over the CPUs of the group */
8315        unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8316        unsigned int sum_nr_running; /* Nr of tasks running in the group */
8317        unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8318        unsigned int idle_cpus;
8319        unsigned int group_weight;
8320        enum group_type group_type;
8321        unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8322        unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8323#ifdef CONFIG_NUMA_BALANCING
8324        unsigned int nr_numa_running;
8325        unsigned int nr_preferred_running;
8326#endif
8327};
8328
8329/*
8330 * sd_lb_stats - Structure to store the statistics of a sched_domain
8331 *               during load balancing.
8332 */
8333struct sd_lb_stats {
8334        struct sched_group *busiest;    /* Busiest group in this sd */
8335        struct sched_group *local;      /* Local group in this sd */
8336        unsigned long total_load;       /* Total load of all groups in sd */
8337        unsigned long total_capacity;   /* Total capacity of all groups in sd */
8338        unsigned long avg_load; /* Average load across all groups in sd */
8339        unsigned int prefer_sibling; /* tasks should go to sibling first */
8340
8341        struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8342        struct sg_lb_stats local_stat;  /* Statistics of the local group */
8343};
8344
8345static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8346{
8347        /*
8348         * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8349         * local_stat because update_sg_lb_stats() does a full clear/assignment.
8350         * We must however set busiest_stat::group_type and
8351         * busiest_stat::idle_cpus to the worst busiest group because
8352         * update_sd_pick_busiest() reads these before assignment.
8353         */
8354        *sds = (struct sd_lb_stats){
8355                .busiest = NULL,
8356                .local = NULL,
8357                .total_load = 0UL,
8358                .total_capacity = 0UL,
8359                .busiest_stat = {
8360                        .idle_cpus = UINT_MAX,
8361                        .group_type = group_has_spare,
8362                },
8363        };
8364}
8365
8366static unsigned long scale_rt_capacity(int cpu)
8367{
8368        struct rq *rq = cpu_rq(cpu);
8369        unsigned long max = arch_scale_cpu_capacity(cpu);
8370        unsigned long used, free;
8371        unsigned long irq;
8372
8373        irq = cpu_util_irq(rq);
8374
8375        if (unlikely(irq >= max))
8376                return 1;
8377
8378        /*
8379         * avg_rt.util_avg and avg_dl.util_avg track binary signals
8380         * (running and not running) with weights 0 and 1024 respectively.
8381         * avg_thermal.load_avg tracks thermal pressure and the weighted
8382         * average uses the actual delta max capacity(load).
8383         */
8384        used = READ_ONCE(rq->avg_rt.util_avg);
8385        used += READ_ONCE(rq->avg_dl.util_avg);
8386        used += thermal_load_avg(rq);
8387
8388        if (unlikely(used >= max))
8389                return 1;
8390
8391        free = max - used;
8392
8393        return scale_irq_capacity(free, irq, max);
8394}
8395
8396static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8397{
8398        unsigned long capacity = scale_rt_capacity(cpu);
8399        struct sched_group *sdg = sd->groups;
8400
8401        cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8402
8403        if (!capacity)
8404                capacity = 1;
8405
8406        cpu_rq(cpu)->cpu_capacity = capacity;
8407        trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8408
8409        sdg->sgc->capacity = capacity;
8410        sdg->sgc->min_capacity = capacity;
8411        sdg->sgc->max_capacity = capacity;
8412}
8413
8414void update_group_capacity(struct sched_domain *sd, int cpu)
8415{
8416        struct sched_domain *child = sd->child;
8417        struct sched_group *group, *sdg = sd->groups;
8418        unsigned long capacity, min_capacity, max_capacity;
8419        unsigned long interval;
8420
8421        interval = msecs_to_jiffies(sd->balance_interval);
8422        interval = clamp(interval, 1UL, max_load_balance_interval);
8423        sdg->sgc->next_update = jiffies + interval;
8424
8425        if (!child) {
8426                update_cpu_capacity(sd, cpu);
8427                return;
8428        }
8429
8430        capacity = 0;
8431        min_capacity = ULONG_MAX;
8432        max_capacity = 0;
8433
8434        if (child->flags & SD_OVERLAP) {
8435                /*
8436                 * SD_OVERLAP domains cannot assume that child groups
8437                 * span the current group.
8438                 */
8439
8440                for_each_cpu(cpu, sched_group_span(sdg)) {
8441                        unsigned long cpu_cap = capacity_of(cpu);
8442
8443                        capacity += cpu_cap;
8444                        min_capacity = min(cpu_cap, min_capacity);
8445                        max_capacity = max(cpu_cap, max_capacity);
8446                }
8447        } else  {
8448                /*
8449                 * !SD_OVERLAP domains can assume that child groups
8450                 * span the current group.
8451                 */
8452
8453                group = child->groups;
8454                do {
8455                        struct sched_group_capacity *sgc = group->sgc;
8456
8457                        capacity += sgc->capacity;
8458                        min_capacity = min(sgc->min_capacity, min_capacity);
8459                        max_capacity = max(sgc->max_capacity, max_capacity);
8460                        group = group->next;
8461                } while (group != child->groups);
8462        }
8463
8464        sdg->sgc->capacity = capacity;
8465        sdg->sgc->min_capacity = min_capacity;
8466        sdg->sgc->max_capacity = max_capacity;
8467}
8468
8469/*
8470 * Check whether the capacity of the rq has been noticeably reduced by side
8471 * activity. The imbalance_pct is used for the threshold.
8472 * Return true is the capacity is reduced
8473 */
8474static inline int
8475check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8476{
8477        return ((rq->cpu_capacity * sd->imbalance_pct) <
8478                                (rq->cpu_capacity_orig * 100));
8479}
8480
8481/*
8482 * Check whether a rq has a misfit task and if it looks like we can actually
8483 * help that task: we can migrate the task to a CPU of higher capacity, or
8484 * the task's current CPU is heavily pressured.
8485 */
8486static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8487{
8488        return rq->misfit_task_load &&
8489                (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8490                 check_cpu_capacity(rq, sd));
8491}
8492
8493/*
8494 * Group imbalance indicates (and tries to solve) the problem where balancing
8495 * groups is inadequate due to ->cpus_ptr constraints.
8496 *
8497 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8498 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8499 * Something like:
8500 *
8501 *      { 0 1 2 3 } { 4 5 6 7 }
8502 *              *     * * *
8503 *
8504 * If we were to balance group-wise we'd place two tasks in the first group and
8505 * two tasks in the second group. Clearly this is undesired as it will overload
8506 * cpu 3 and leave one of the CPUs in the second group unused.
8507 *
8508 * The current solution to this issue is detecting the skew in the first group
8509 * by noticing the lower domain failed to reach balance and had difficulty
8510 * moving tasks due to affinity constraints.
8511 *
8512 * When this is so detected; this group becomes a candidate for busiest; see
8513 * update_sd_pick_busiest(). And calculate_imbalance() and
8514 * find_busiest_group() avoid some of the usual balance conditions to allow it
8515 * to create an effective group imbalance.
8516 *
8517 * This is a somewhat tricky proposition since the next run might not find the
8518 * group imbalance and decide the groups need to be balanced again. A most
8519 * subtle and fragile situation.
8520 */
8521
8522static inline int sg_imbalanced(struct sched_group *group)
8523{
8524        return group->sgc->imbalance;
8525}
8526
8527/*
8528 * group_has_capacity returns true if the group has spare capacity that could
8529 * be used by some tasks.
8530 * We consider that a group has spare capacity if the  * number of task is
8531 * smaller than the number of CPUs or if the utilization is lower than the
8532 * available capacity for CFS tasks.
8533 * For the latter, we use a threshold to stabilize the state, to take into
8534 * account the variance of the tasks' load and to return true if the available
8535 * capacity in meaningful for the load balancer.
8536 * As an example, an available capacity of 1% can appear but it doesn't make
8537 * any benefit for the load balance.
8538 */
8539static inline bool
8540group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8541{
8542        if (sgs->sum_nr_running < sgs->group_weight)
8543                return true;
8544
8545        if ((sgs->group_capacity * imbalance_pct) <
8546                        (sgs->group_runnable * 100))
8547                return false;
8548
8549        if ((sgs->group_capacity * 100) >
8550                        (sgs->group_util * imbalance_pct))
8551                return true;
8552
8553        return false;
8554}
8555
8556/*
8557 *  group_is_overloaded returns true if the group has more tasks than it can
8558 *  handle.
8559 *  group_is_overloaded is not equals to !group_has_capacity because a group
8560 *  with the exact right number of tasks, has no more spare capacity but is not
8561 *  overloaded so both group_has_capacity and group_is_overloaded return
8562 *  false.
8563 */
8564static inline bool
8565group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8566{
8567        if (sgs->sum_nr_running <= sgs->group_weight)
8568                return false;
8569
8570        if ((sgs->group_capacity * 100) <
8571                        (sgs->group_util * imbalance_pct))
8572                return true;
8573
8574        if ((sgs->group_capacity * imbalance_pct) <
8575                        (sgs->group_runnable * 100))
8576                return true;
8577
8578        return false;
8579}
8580
8581static inline enum
8582group_type group_classify(unsigned int imbalance_pct,
8583                          struct sched_group *group,
8584                          struct sg_lb_stats *sgs)
8585{
8586        if (group_is_overloaded(imbalance_pct, sgs))
8587                return group_overloaded;
8588
8589        if (sg_imbalanced(group))
8590                return group_imbalanced;
8591
8592        if (sgs->group_asym_packing)
8593                return group_asym_packing;
8594
8595        if (sgs->group_misfit_task_load)
8596                return group_misfit_task;
8597
8598        if (!group_has_capacity(imbalance_pct, sgs))
8599                return group_fully_busy;
8600
8601        return group_has_spare;
8602}
8603
8604/**
8605 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8606 * @env: The load balancing environment.
8607 * @group: sched_group whose statistics are to be updated.
8608 * @sgs: variable to hold the statistics for this group.
8609 * @sg_status: Holds flag indicating the status of the sched_group
8610 */
8611static inline void update_sg_lb_stats(struct lb_env *env,
8612                                      struct sched_group *group,
8613                                      struct sg_lb_stats *sgs,
8614                                      int *sg_status)
8615{
8616        int i, nr_running, local_group;
8617
8618        memset(sgs, 0, sizeof(*sgs));
8619
8620        local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8621
8622        for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8623                struct rq *rq = cpu_rq(i);
8624
8625                sgs->group_load += cpu_load(rq);
8626                sgs->group_util += cpu_util(i);
8627                sgs->group_runnable += cpu_runnable(rq);
8628                sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8629
8630                nr_running = rq->nr_running;
8631                sgs->sum_nr_running += nr_running;
8632
8633                if (nr_running > 1)
8634                        *sg_status |= SG_OVERLOAD;
8635
8636                if (cpu_overutilized(i))
8637                        *sg_status |= SG_OVERUTILIZED;
8638
8639#ifdef CONFIG_NUMA_BALANCING
8640                sgs->nr_numa_running += rq->nr_numa_running;
8641                sgs->nr_preferred_running += rq->nr_preferred_running;
8642#endif
8643                /*
8644                 * No need to call idle_cpu() if nr_running is not 0
8645                 */
8646                if (!nr_running && idle_cpu(i)) {
8647                        sgs->idle_cpus++;
8648                        /* Idle cpu can't have misfit task */
8649                        continue;
8650                }
8651
8652                if (local_group)
8653                        continue;
8654
8655                /* Check for a misfit task on the cpu */
8656                if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8657                    sgs->group_misfit_task_load < rq->misfit_task_load) {
8658                        sgs->group_misfit_task_load = rq->misfit_task_load;
8659                        *sg_status |= SG_OVERLOAD;
8660                }
8661        }
8662
8663        /* Check if dst CPU is idle and preferred to this group */
8664        if (env->sd->flags & SD_ASYM_PACKING &&
8665            env->idle != CPU_NOT_IDLE &&
8666            sgs->sum_h_nr_running &&
8667            sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8668                sgs->group_asym_packing = 1;
8669        }
8670
8671        sgs->group_capacity = group->sgc->capacity;
8672
8673        sgs->group_weight = group->group_weight;
8674
8675        sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8676
8677        /* Computing avg_load makes sense only when group is overloaded */
8678        if (sgs->group_type == group_overloaded)
8679                sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8680                                sgs->group_capacity;
8681}
8682
8683/**
8684 * update_sd_pick_busiest - return 1 on busiest group
8685 * @env: The load balancing environment.
8686 * @sds: sched_domain statistics
8687 * @sg: sched_group candidate to be checked for being the busiest
8688 * @sgs: sched_group statistics
8689 *
8690 * Determine if @sg is a busier group than the previously selected
8691 * busiest group.
8692 *
8693 * Return: %true if @sg is a busier group than the previously selected
8694 * busiest group. %false otherwise.
8695 */
8696static bool update_sd_pick_busiest(struct lb_env *env,
8697                                   struct sd_lb_stats *sds,
8698                                   struct sched_group *sg,
8699                                   struct sg_lb_stats *sgs)
8700{
8701        struct sg_lb_stats *busiest = &sds->busiest_stat;
8702
8703        /* Make sure that there is at least one task to pull */
8704        if (!sgs->sum_h_nr_running)
8705                return false;
8706
8707        /*
8708         * Don't try to pull misfit tasks we can't help.
8709         * We can use max_capacity here as reduction in capacity on some
8710         * CPUs in the group should either be possible to resolve
8711         * internally or be covered by avg_load imbalance (eventually).
8712         */
8713        if (sgs->group_type == group_misfit_task &&
8714            (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8715             sds->local_stat.group_type != group_has_spare))
8716                return false;
8717
8718        if (sgs->group_type > busiest->group_type)
8719                return true;
8720
8721        if (sgs->group_type < busiest->group_type)
8722                return false;
8723
8724        /*
8725         * The candidate and the current busiest group are the same type of
8726         * group. Let check which one is the busiest according to the type.
8727         */
8728
8729        switch (sgs->group_type) {
8730        case group_overloaded:
8731                /* Select the overloaded group with highest avg_load. */
8732                if (sgs->avg_load <= busiest->avg_load)
8733                        return false;
8734                break;
8735
8736        case group_imbalanced:
8737                /*
8738                 * Select the 1st imbalanced group as we don't have any way to
8739                 * choose one more than another.
8740                 */
8741                return false;
8742
8743        case group_asym_packing:
8744                /* Prefer to move from lowest priority CPU's work */
8745                if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8746                        return false;
8747                break;
8748
8749        case group_misfit_task:
8750                /*
8751                 * If we have more than one misfit sg go with the biggest
8752                 * misfit.
8753                 */
8754                if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8755                        return false;
8756                break;
8757
8758        case group_fully_busy:
8759                /*
8760                 * Select the fully busy group with highest avg_load. In
8761                 * theory, there is no need to pull task from such kind of
8762                 * group because tasks have all compute capacity that they need
8763                 * but we can still improve the overall throughput by reducing
8764                 * contention when accessing shared HW resources.
8765                 *
8766                 * XXX for now avg_load is not computed and always 0 so we
8767                 * select the 1st one.
8768                 */
8769                if (sgs->avg_load <= busiest->avg_load)
8770                        return false;
8771                break;
8772
8773        case group_has_spare:
8774                /*
8775                 * Select not overloaded group with lowest number of idle cpus
8776                 * and highest number of running tasks. We could also compare
8777                 * the spare capacity which is more stable but it can end up
8778                 * that the group has less spare capacity but finally more idle
8779                 * CPUs which means less opportunity to pull tasks.
8780                 */
8781                if (sgs->idle_cpus > busiest->idle_cpus)
8782                        return false;
8783                else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8784                         (sgs->sum_nr_running <= busiest->sum_nr_running))
8785                        return false;
8786
8787                break;
8788        }
8789
8790        /*
8791         * Candidate sg has no more than one task per CPU and has higher
8792         * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8793         * throughput. Maximize throughput, power/energy consequences are not
8794         * considered.
8795         */
8796        if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8797            (sgs->group_type <= group_fully_busy) &&
8798            (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8799                return false;
8800
8801        return true;
8802}
8803
8804#ifdef CONFIG_NUMA_BALANCING
8805static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8806{
8807        if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8808                return regular;
8809        if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8810                return remote;
8811        return all;
8812}
8813
8814static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8815{
8816        if (rq->nr_running > rq->nr_numa_running)
8817                return regular;
8818        if (rq->nr_running > rq->nr_preferred_running)
8819                return remote;
8820        return all;
8821}
8822#else
8823static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8824{
8825        return all;
8826}
8827
8828static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8829{
8830        return regular;
8831}
8832#endif /* CONFIG_NUMA_BALANCING */
8833
8834
8835struct sg_lb_stats;
8836
8837/*
8838 * task_running_on_cpu - return 1 if @p is running on @cpu.
8839 */
8840
8841static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8842{
8843        /* Task has no contribution or is new */
8844        if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8845                return 0;
8846
8847        if (task_on_rq_queued(p))
8848                return 1;
8849
8850        return 0;
8851}
8852
8853/**
8854 * idle_cpu_without - would a given CPU be idle without p ?
8855 * @cpu: the processor on which idleness is tested.
8856 * @p: task which should be ignored.
8857 *
8858 * Return: 1 if the CPU would be idle. 0 otherwise.
8859 */
8860static int idle_cpu_without(int cpu, struct task_struct *p)
8861{
8862        struct rq *rq = cpu_rq(cpu);
8863
8864        if (rq->curr != rq->idle && rq->curr != p)
8865                return 0;
8866
8867        /*
8868         * rq->nr_running can't be used but an updated version without the
8869         * impact of p on cpu must be used instead. The updated nr_running
8870         * be computed and tested before calling idle_cpu_without().
8871         */
8872
8873#ifdef CONFIG_SMP
8874        if (rq->ttwu_pending)
8875                return 0;
8876#endif
8877
8878        return 1;
8879}
8880
8881/*
8882 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8883 * @sd: The sched_domain level to look for idlest group.
8884 * @group: sched_group whose statistics are to be updated.
8885 * @sgs: variable to hold the statistics for this group.
8886 * @p: The task for which we look for the idlest group/CPU.
8887 */
8888static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8889                                          struct sched_group *group,
8890                                          struct sg_lb_stats *sgs,
8891                                          struct task_struct *p)
8892{
8893        int i, nr_running;
8894
8895        memset(sgs, 0, sizeof(*sgs));
8896
8897        for_each_cpu(i, sched_group_span(group)) {
8898                struct rq *rq = cpu_rq(i);
8899                unsigned int local;
8900
8901                sgs->group_load += cpu_load_without(rq, p);
8902                sgs->group_util += cpu_util_without(i, p);
8903                sgs->group_runnable += cpu_runnable_without(rq, p);
8904                local = task_running_on_cpu(i, p);
8905                sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8906
8907                nr_running = rq->nr_running - local;
8908                sgs->sum_nr_running += nr_running;
8909
8910                /*
8911                 * No need to call idle_cpu_without() if nr_running is not 0
8912                 */
8913                if (!nr_running && idle_cpu_without(i, p))
8914                        sgs->idle_cpus++;
8915
8916        }
8917
8918        /* Check if task fits in the group */
8919        if (sd->flags & SD_ASYM_CPUCAPACITY &&
8920            !task_fits_capacity(p, group->sgc->max_capacity)) {
8921                sgs->group_misfit_task_load = 1;
8922        }
8923
8924        sgs->group_capacity = group->sgc->capacity;
8925
8926        sgs->group_weight = group->group_weight;
8927
8928        sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8929
8930        /*
8931         * Computing avg_load makes sense only when group is fully busy or
8932         * overloaded
8933         */
8934        if (sgs->group_type == group_fully_busy ||
8935                sgs->group_type == group_overloaded)
8936                sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8937                                sgs->group_capacity;
8938}
8939
8940static bool update_pick_idlest(struct sched_group *idlest,
8941                               struct sg_lb_stats *idlest_sgs,
8942                               struct sched_group *group,
8943                               struct sg_lb_stats *sgs)
8944{
8945        if (sgs->group_type < idlest_sgs->group_type)
8946                return true;
8947
8948        if (sgs->group_type > idlest_sgs->group_type)
8949                return false;
8950
8951        /*
8952         * The candidate and the current idlest group are the same type of
8953         * group. Let check which one is the idlest according to the type.
8954         */
8955
8956        switch (sgs->group_type) {
8957        case group_overloaded:
8958        case group_fully_busy:
8959                /* Select the group with lowest avg_load. */
8960                if (idlest_sgs->avg_load <= sgs->avg_load)
8961                        return false;
8962                break;
8963
8964        case group_imbalanced:
8965        case group_asym_packing:
8966                /* Those types are not used in the slow wakeup path */
8967                return false;
8968
8969        case group_misfit_task:
8970                /* Select group with the highest max capacity */
8971                if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8972                        return false;
8973                break;
8974
8975        case group_has_spare:
8976                /* Select group with most idle CPUs */
8977                if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8978                        return false;
8979
8980                /* Select group with lowest group_util */
8981                if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8982                        idlest_sgs->group_util <= sgs->group_util)
8983                        return false;
8984
8985                break;
8986        }
8987
8988        return true;
8989}
8990
8991/*
8992 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8993 * This is an approximation as the number of running tasks may not be
8994 * related to the number of busy CPUs due to sched_setaffinity.
8995 */
8996static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8997{
8998        return (dst_running < (dst_weight >> 2));
8999}
9000
9001/*
9002 * find_idlest_group() finds and returns the least busy CPU group within the
9003 * domain.
9004 *
9005 * Assumes p is allowed on at least one CPU in sd.
9006 */
9007static struct sched_group *
9008find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9009{
9010        struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9011        struct sg_lb_stats local_sgs, tmp_sgs;
9012        struct sg_lb_stats *sgs;
9013        unsigned long imbalance;
9014        struct sg_lb_stats idlest_sgs = {
9015                        .avg_load = UINT_MAX,
9016                        .group_type = group_overloaded,
9017        };
9018
9019        do {
9020                int local_group;
9021
9022                /* Skip over this group if it has no CPUs allowed */
9023                if (!cpumask_intersects(sched_group_span(group),
9024                                        p->cpus_ptr))
9025                        continue;
9026
9027                /* Skip over this group if no cookie matched */
9028                if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9029                        continue;
9030
9031                local_group = cpumask_test_cpu(this_cpu,
9032                                               sched_group_span(group));
9033
9034                if (local_group) {
9035                        sgs = &local_sgs;
9036                        local = group;
9037                } else {
9038                        sgs = &tmp_sgs;
9039                }
9040
9041                update_sg_wakeup_stats(sd, group, sgs, p);
9042
9043                if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9044                        idlest = group;
9045                        idlest_sgs = *sgs;
9046                }
9047
9048        } while (group = group->next, group != sd->groups);
9049
9050
9051        /* There is no idlest group to push tasks to */
9052        if (!idlest)
9053                return NULL;
9054
9055        /* The local group has been skipped because of CPU affinity */
9056        if (!local)
9057                return idlest;
9058
9059        /*
9060         * If the local group is idler than the selected idlest group
9061         * don't try and push the task.
9062         */
9063        if (local_sgs.group_type < idlest_sgs.group_type)
9064                return NULL;
9065
9066        /*
9067         * If the local group is busier than the selected idlest group
9068         * try and push the task.
9069         */
9070        if (local_sgs.group_type > idlest_sgs.group_type)
9071                return idlest;
9072
9073        switch (local_sgs.group_type) {
9074        case group_overloaded:
9075        case group_fully_busy:
9076
9077                /* Calculate allowed imbalance based on load */
9078                imbalance = scale_load_down(NICE_0_LOAD) *
9079                                (sd->imbalance_pct-100) / 100;
9080
9081                /*
9082                 * When comparing groups across NUMA domains, it's possible for
9083                 * the local domain to be very lightly loaded relative to the
9084                 * remote domains but "imbalance" skews the comparison making
9085                 * remote CPUs look much more favourable. When considering
9086                 * cross-domain, add imbalance to the load on the remote node
9087                 * and consider staying local.
9088                 */
9089
9090                if ((sd->flags & SD_NUMA) &&
9091                    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9092                        return NULL;
9093
9094                /*
9095                 * If the local group is less loaded than the selected
9096                 * idlest group don't try and push any tasks.
9097                 */
9098                if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9099                        return NULL;
9100
9101                if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9102                        return NULL;
9103                break;
9104
9105        case group_imbalanced:
9106        case group_asym_packing:
9107                /* Those type are not used in the slow wakeup path */
9108                return NULL;
9109
9110        case group_misfit_task:
9111                /* Select group with the highest max capacity */
9112                if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9113                        return NULL;
9114                break;
9115
9116        case group_has_spare:
9117                if (sd->flags & SD_NUMA) {
9118#ifdef CONFIG_NUMA_BALANCING
9119                        int idlest_cpu;
9120                        /*
9121                         * If there is spare capacity at NUMA, try to select
9122                         * the preferred node
9123                         */
9124                        if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9125                                return NULL;
9126
9127                        idlest_cpu = cpumask_first(sched_group_span(idlest));
9128                        if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9129                                return idlest;
9130#endif
9131                        /*
9132                         * Otherwise, keep the task on this node to stay close
9133                         * its wakeup source and improve locality. If there is
9134                         * a real need of migration, periodic load balance will
9135                         * take care of it.
9136                         */
9137                        if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
9138                                return NULL;
9139                }
9140
9141                /*
9142                 * Select group with highest number of idle CPUs. We could also
9143                 * compare the utilization which is more stable but it can end
9144                 * up that the group has less spare capacity but finally more
9145                 * idle CPUs which means more opportunity to run task.
9146                 */
9147                if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9148                        return NULL;
9149                break;
9150        }
9151
9152        return idlest;
9153}
9154
9155/**
9156 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9157 * @env: The load balancing environment.
9158 * @sds: variable to hold the statistics for this sched_domain.
9159 */
9160
9161static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9162{
9163        struct sched_domain *child = env->sd->child;
9164        struct sched_group *sg = env->sd->groups;
9165        struct sg_lb_stats *local = &sds->local_stat;
9166        struct sg_lb_stats tmp_sgs;
9167        int sg_status = 0;
9168
9169        do {
9170                struct sg_lb_stats *sgs = &tmp_sgs;
9171                int local_group;
9172
9173                local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9174                if (local_group) {
9175                        sds->local = sg;
9176                        sgs = local;
9177
9178                        if (env->idle != CPU_NEWLY_IDLE ||
9179                            time_after_eq(jiffies, sg->sgc->next_update))
9180                                update_group_capacity(env->sd, env->dst_cpu);
9181                }
9182
9183                update_sg_lb_stats(env, sg, sgs, &sg_status);
9184
9185                if (local_group)
9186                        goto next_group;
9187
9188
9189                if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9190                        sds->busiest = sg;
9191                        sds->busiest_stat = *sgs;
9192                }
9193
9194next_group:
9195                /* Now, start updating sd_lb_stats */
9196                sds->total_load += sgs->group_load;
9197                sds->total_capacity += sgs->group_capacity;
9198
9199                sg = sg->next;
9200        } while (sg != env->sd->groups);
9201
9202        /* Tag domain that child domain prefers tasks go to siblings first */
9203        sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9204
9205
9206        if (env->sd->flags & SD_NUMA)
9207                env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9208
9209        if (!env->sd->parent) {
9210                struct root_domain *rd = env->dst_rq->rd;
9211
9212                /* update overload indicator if we are at root domain */
9213                WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9214
9215                /* Update over-utilization (tipping point, U >= 0) indicator */
9216                WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9217                trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9218        } else if (sg_status & SG_OVERUTILIZED) {
9219                struct root_domain *rd = env->dst_rq->rd;
9220
9221                WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9222                trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9223        }
9224}
9225
9226#define NUMA_IMBALANCE_MIN 2
9227
9228static inline long adjust_numa_imbalance(int imbalance,
9229                                int dst_running, int dst_weight)
9230{
9231        if (!allow_numa_imbalance(dst_running, dst_weight))
9232                return imbalance;
9233
9234        /*
9235         * Allow a small imbalance based on a simple pair of communicating
9236         * tasks that remain local when the destination is lightly loaded.
9237         */
9238        if (imbalance <= NUMA_IMBALANCE_MIN)
9239                return 0;
9240
9241        return imbalance;
9242}
9243
9244/**
9245 * calculate_imbalance - Calculate the amount of imbalance present within the
9246 *                       groups of a given sched_domain during load balance.
9247 * @env: load balance environment
9248 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9249 */
9250static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9251{
9252        struct sg_lb_stats *local, *busiest;
9253
9254        local = &sds->local_stat;
9255        busiest = &sds->busiest_stat;
9256
9257        if (busiest->group_type == group_misfit_task) {
9258                /* Set imbalance to allow misfit tasks to be balanced. */
9259                env->migration_type = migrate_misfit;
9260                env->imbalance = 1;
9261                return;
9262        }
9263
9264        if (busiest->group_type == group_asym_packing) {
9265                /*
9266                 * In case of asym capacity, we will try to migrate all load to
9267                 * the preferred CPU.
9268                 */
9269                env->migration_type = migrate_task;
9270                env->imbalance = busiest->sum_h_nr_running;
9271                return;
9272        }
9273
9274        if (busiest->group_type == group_imbalanced) {
9275                /*
9276                 * In the group_imb case we cannot rely on group-wide averages
9277                 * to ensure CPU-load equilibrium, try to move any task to fix
9278                 * the imbalance. The next load balance will take care of
9279                 * balancing back the system.
9280                 */
9281                env->migration_type = migrate_task;
9282                env->imbalance = 1;
9283                return;
9284        }
9285
9286        /*
9287         * Try to use spare capacity of local group without overloading it or
9288         * emptying busiest.
9289         */
9290        if (local->group_type == group_has_spare) {
9291                if ((busiest->group_type > group_fully_busy) &&
9292                    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9293                        /*
9294                         * If busiest is overloaded, try to fill spare
9295                         * capacity. This might end up creating spare capacity
9296                         * in busiest or busiest still being overloaded but
9297                         * there is no simple way to directly compute the
9298                         * amount of load to migrate in order to balance the
9299                         * system.
9300                         */
9301                        env->migration_type = migrate_util;
9302                        env->imbalance = max(local->group_capacity, local->group_util) -
9303                                         local->group_util;
9304
9305                        /*
9306                         * In some cases, the group's utilization is max or even
9307                         * higher than capacity because of migrations but the
9308                         * local CPU is (newly) idle. There is at least one
9309                         * waiting task in this overloaded busiest group. Let's
9310                         * try to pull it.
9311                         */
9312                        if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9313                                env->migration_type = migrate_task;
9314                                env->imbalance = 1;
9315                        }
9316
9317                        return;
9318                }
9319
9320                if (busiest->group_weight == 1 || sds->prefer_sibling) {
9321                        unsigned int nr_diff = busiest->sum_nr_running;
9322                        /*
9323                         * When prefer sibling, evenly spread running tasks on
9324                         * groups.
9325                         */
9326                        env->migration_type = migrate_task;
9327                        lsub_positive(&nr_diff, local->sum_nr_running);
9328                        env->imbalance = nr_diff >> 1;
9329                } else {
9330
9331                        /*
9332                         * If there is no overload, we just want to even the number of
9333                         * idle cpus.
9334                         */
9335                        env->migration_type = migrate_task;
9336                        env->imbalance = max_t(long, 0, (local->idle_cpus -
9337                                                 busiest->idle_cpus) >> 1);
9338                }
9339
9340                /* Consider allowing a small imbalance between NUMA groups */
9341                if (env->sd->flags & SD_NUMA) {
9342                        env->imbalance = adjust_numa_imbalance(env->imbalance,
9343                                busiest->sum_nr_running, busiest->group_weight);
9344                }
9345
9346                return;
9347        }
9348
9349        /*
9350         * Local is fully busy but has to take more load to relieve the
9351         * busiest group
9352         */
9353        if (local->group_type < group_overloaded) {
9354                /*
9355                 * Local will become overloaded so the avg_load metrics are
9356                 * finally needed.
9357                 */
9358
9359                local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9360                                  local->group_capacity;
9361
9362                sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9363                                sds->total_capacity;
9364                /*
9365                 * If the local group is more loaded than the selected
9366                 * busiest group don't try to pull any tasks.
9367                 */
9368                if (local->avg_load >= busiest->avg_load) {
9369                        env->imbalance = 0;
9370                        return;
9371                }
9372        }
9373
9374        /*
9375         * Both group are or will become overloaded and we're trying to get all
9376         * the CPUs to the average_load, so we don't want to push ourselves
9377         * above the average load, nor do we wish to reduce the max loaded CPU
9378         * below the average load. At the same time, we also don't want to
9379         * reduce the group load below the group capacity. Thus we look for
9380         * the minimum possible imbalance.
9381         */
9382        env->migration_type = migrate_load;
9383        env->imbalance = min(
9384                (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9385                (sds->avg_load - local->avg_load) * local->group_capacity
9386        ) / SCHED_CAPACITY_SCALE;
9387}
9388
9389/******* find_busiest_group() helpers end here *********************/
9390
9391/*
9392 * Decision matrix according to the local and busiest group type:
9393 *
9394 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9395 * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9396 * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9397 * misfit_task      force     N/A        N/A    N/A  force      force
9398 * asym_packing     force     force      N/A    N/A  force      force
9399 * imbalanced       force     force      N/A    N/A  force      force
9400 * overloaded       force     force      N/A    N/A  force      avg_load
9401 *
9402 * N/A :      Not Applicable because already filtered while updating
9403 *            statistics.
9404 * balanced : The system is balanced for these 2 groups.
9405 * force :    Calculate the imbalance as load migration is probably needed.
9406 * avg_load : Only if imbalance is significant enough.
9407 * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9408 *            different in groups.
9409 */
9410
9411/**
9412 * find_busiest_group - Returns the busiest group within the sched_domain
9413 * if there is an imbalance.
9414 *
9415 * Also calculates the amount of runnable load which should be moved
9416 * to restore balance.
9417 *
9418 * @env: The load balancing environment.
9419 *
9420 * Return:      - The busiest group if imbalance exists.
9421 */
9422static struct sched_group *find_busiest_group(struct lb_env *env)
9423{
9424        struct sg_lb_stats *local, *busiest;
9425        struct sd_lb_stats sds;
9426
9427        init_sd_lb_stats(&sds);
9428
9429        /*
9430         * Compute the various statistics relevant for load balancing at
9431         * this level.
9432         */
9433        update_sd_lb_stats(env, &sds);
9434
9435        if (sched_energy_enabled()) {
9436                struct root_domain *rd = env->dst_rq->rd;
9437
9438                if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9439                        goto out_balanced;
9440        }
9441
9442        local = &sds.local_stat;
9443        busiest = &sds.busiest_stat;
9444
9445        /* There is no busy sibling group to pull tasks from */
9446        if (!sds.busiest)
9447                goto out_balanced;
9448
9449        /* Misfit tasks should be dealt with regardless of the avg load */
9450        if (busiest->group_type == group_misfit_task)
9451                goto force_balance;
9452
9453        /* ASYM feature bypasses nice load balance check */
9454        if (busiest->group_type == group_asym_packing)
9455                goto force_balance;
9456
9457        /*
9458         * If the busiest group is imbalanced the below checks don't
9459         * work because they assume all things are equal, which typically
9460         * isn't true due to cpus_ptr constraints and the like.
9461         */
9462        if (busiest->group_type == group_imbalanced)
9463                goto force_balance;
9464
9465        /*
9466         * If the local group is busier than the selected busiest group
9467         * don't try and pull any tasks.
9468         */
9469        if (local->group_type > busiest->group_type)
9470                goto out_balanced;
9471
9472        /*
9473         * When groups are overloaded, use the avg_load to ensure fairness
9474         * between tasks.
9475         */
9476        if (local->group_type == group_overloaded) {
9477                /*
9478                 * If the local group is more loaded than the selected
9479                 * busiest group don't try to pull any tasks.
9480                 */
9481                if (local->avg_load >= busiest->avg_load)
9482                        goto out_balanced;
9483
9484                /* XXX broken for overlapping NUMA groups */
9485                sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9486                                sds.total_capacity;
9487
9488                /*
9489                 * Don't pull any tasks if this group is already above the
9490                 * domain average load.
9491                 */
9492                if (local->avg_load >= sds.avg_load)
9493                        goto out_balanced;
9494
9495                /*
9496                 * If the busiest group is more loaded, use imbalance_pct to be
9497                 * conservative.
9498                 */
9499                if (100 * busiest->avg_load <=
9500                                env->sd->imbalance_pct * local->avg_load)
9501                        goto out_balanced;
9502        }
9503
9504        /* Try to move all excess tasks to child's sibling domain */
9505        if (sds.prefer_sibling && local->group_type == group_has_spare &&
9506            busiest->sum_nr_running > local->sum_nr_running + 1)
9507                goto force_balance;
9508
9509        if (busiest->group_type != group_overloaded) {
9510                if (env->idle == CPU_NOT_IDLE)
9511                        /*
9512                         * If the busiest group is not overloaded (and as a
9513                         * result the local one too) but this CPU is already
9514                         * busy, let another idle CPU try to pull task.
9515                         */
9516                        goto out_balanced;
9517
9518                if (busiest->group_weight > 1 &&
9519                    local->idle_cpus <= (busiest->idle_cpus + 1))
9520                        /*
9521                         * If the busiest group is not overloaded
9522                         * and there is no imbalance between this and busiest
9523                         * group wrt idle CPUs, it is balanced. The imbalance
9524                         * becomes significant if the diff is greater than 1
9525                         * otherwise we might end up to just move the imbalance
9526                         * on another group. Of course this applies only if
9527                         * there is more than 1 CPU per group.
9528                         */
9529                        goto out_balanced;
9530
9531                if (busiest->sum_h_nr_running == 1)
9532                        /*
9533                         * busiest doesn't have any tasks waiting to run
9534                         */
9535                        goto out_balanced;
9536        }
9537
9538force_balance:
9539        /* Looks like there is an imbalance. Compute it */
9540        calculate_imbalance(env, &sds);
9541        return env->imbalance ? sds.busiest : NULL;
9542
9543out_balanced:
9544        env->imbalance = 0;
9545        return NULL;
9546}
9547
9548/*
9549 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9550 */
9551static struct rq *find_busiest_queue(struct lb_env *env,
9552                                     struct sched_group *group)
9553{
9554        struct rq *busiest = NULL, *rq;
9555        unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9556        unsigned int busiest_nr = 0;
9557        int i;
9558
9559        for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9560                unsigned long capacity, load, util;
9561                unsigned int nr_running;
9562                enum fbq_type rt;
9563
9564                rq = cpu_rq(i);
9565                rt = fbq_classify_rq(rq);
9566
9567                /*
9568                 * We classify groups/runqueues into three groups:
9569                 *  - regular: there are !numa tasks
9570                 *  - remote:  there are numa tasks that run on the 'wrong' node
9571                 *  - all:     there is no distinction
9572                 *
9573                 * In order to avoid migrating ideally placed numa tasks,
9574                 * ignore those when there's better options.
9575                 *
9576                 * If we ignore the actual busiest queue to migrate another
9577                 * task, the next balance pass can still reduce the busiest
9578                 * queue by moving tasks around inside the node.
9579                 *
9580                 * If we cannot move enough load due to this classification
9581                 * the next pass will adjust the group classification and
9582                 * allow migration of more tasks.
9583                 *
9584                 * Both cases only affect the total convergence complexity.
9585                 */
9586                if (rt > env->fbq_type)
9587                        continue;
9588
9589                nr_running = rq->cfs.h_nr_running;
9590                if (!nr_running)
9591                        continue;
9592
9593                capacity = capacity_of(i);
9594
9595                /*
9596                 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9597                 * eventually lead to active_balancing high->low capacity.
9598                 * Higher per-CPU capacity is considered better than balancing
9599                 * average load.
9600                 */
9601                if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9602                    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9603                    nr_running == 1)
9604                        continue;
9605
9606                switch (env->migration_type) {
9607                case migrate_load:
9608                        /*
9609                         * When comparing with load imbalance, use cpu_load()
9610                         * which is not scaled with the CPU capacity.
9611                         */
9612                        load = cpu_load(rq);
9613
9614                        if (nr_running == 1 && load > env->imbalance &&
9615                            !check_cpu_capacity(rq, env->sd))
9616                                break;
9617
9618                        /*
9619                         * For the load comparisons with the other CPUs,
9620                         * consider the cpu_load() scaled with the CPU
9621                         * capacity, so that the load can be moved away
9622                         * from the CPU that is potentially running at a
9623                         * lower capacity.
9624                         *
9625                         * Thus we're looking for max(load_i / capacity_i),
9626                         * crosswise multiplication to rid ourselves of the
9627                         * division works out to:
9628                         * load_i * capacity_j > load_j * capacity_i;
9629                         * where j is our previous maximum.
9630                         */
9631                        if (load * busiest_capacity > busiest_load * capacity) {
9632                                busiest_load = load;
9633                                busiest_capacity = capacity;
9634                                busiest = rq;
9635                        }
9636                        break;
9637
9638                case migrate_util:
9639                        util = cpu_util(cpu_of(rq));
9640
9641                        /*
9642                         * Don't try to pull utilization from a CPU with one
9643                         * running task. Whatever its utilization, we will fail
9644                         * detach the task.
9645                         */
9646                        if (nr_running <= 1)
9647                                continue;
9648
9649                        if (busiest_util < util) {
9650                                busiest_util = util;
9651                                busiest = rq;
9652                        }
9653                        break;
9654
9655                case migrate_task:
9656                        if (busiest_nr < nr_running) {
9657                                busiest_nr = nr_running;
9658                                busiest = rq;
9659                        }
9660                        break;
9661
9662                case migrate_misfit:
9663                        /*
9664                         * For ASYM_CPUCAPACITY domains with misfit tasks we
9665                         * simply seek the "biggest" misfit task.
9666                         */
9667                        if (rq->misfit_task_load > busiest_load) {
9668                                busiest_load = rq->misfit_task_load;
9669                                busiest = rq;
9670                        }
9671
9672                        break;
9673
9674                }
9675        }
9676
9677        return busiest;
9678}
9679
9680/*
9681 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9682 * so long as it is large enough.
9683 */
9684#define MAX_PINNED_INTERVAL     512
9685
9686static inline bool
9687asym_active_balance(struct lb_env *env)
9688{
9689        /*
9690         * ASYM_PACKING needs to force migrate tasks from busy but
9691         * lower priority CPUs in order to pack all tasks in the
9692         * highest priority CPUs.
9693         */
9694        return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9695               sched_asym_prefer(env->dst_cpu, env->src_cpu);
9696}
9697
9698static inline bool
9699imbalanced_active_balance(struct lb_env *env)
9700{
9701        struct sched_domain *sd = env->sd;
9702
9703        /*
9704         * The imbalanced case includes the case of pinned tasks preventing a fair
9705         * distribution of the load on the system but also the even distribution of the
9706         * threads on a system with spare capacity
9707         */
9708        if ((env->migration_type == migrate_task) &&
9709            (sd->nr_balance_failed > sd->cache_nice_tries+2))
9710                return 1;
9711
9712        return 0;
9713}
9714
9715static int need_active_balance(struct lb_env *env)
9716{
9717        struct sched_domain *sd = env->sd;
9718
9719        if (asym_active_balance(env))
9720                return 1;
9721
9722        if (imbalanced_active_balance(env))
9723                return 1;
9724
9725        /*
9726         * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9727         * It's worth migrating the task if the src_cpu's capacity is reduced
9728         * because of other sched_class or IRQs if more capacity stays
9729         * available on dst_cpu.
9730         */
9731        if ((env->idle != CPU_NOT_IDLE) &&
9732            (env->src_rq->cfs.h_nr_running == 1)) {
9733                if ((check_cpu_capacity(env->src_rq, sd)) &&
9734                    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9735                        return 1;
9736        }
9737
9738        if (env->migration_type == migrate_misfit)
9739                return 1;
9740
9741        return 0;
9742}
9743
9744static int active_load_balance_cpu_stop(void *data);
9745
9746static int should_we_balance(struct lb_env *env)
9747{
9748        struct sched_group *sg = env->sd->groups;
9749        int cpu;
9750
9751        /*
9752         * Ensure the balancing environment is consistent; can happen
9753         * when the softirq triggers 'during' hotplug.
9754         */
9755        if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9756                return 0;
9757
9758        /*
9759         * In the newly idle case, we will allow all the CPUs
9760         * to do the newly idle load balance.
9761         */
9762        if (env->idle == CPU_NEWLY_IDLE)
9763                return 1;
9764
9765        /* Try to find first idle CPU */
9766        for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9767                if (!idle_cpu(cpu))
9768                        continue;
9769
9770                /* Are we the first idle CPU? */
9771                return cpu == env->dst_cpu;
9772        }
9773
9774        /* Are we the first CPU of this group ? */
9775        return group_balance_cpu(sg) == env->dst_cpu;
9776}
9777
9778/*
9779 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9780 * tasks if there is an imbalance.
9781 */
9782static int load_balance(int this_cpu, struct rq *this_rq,
9783                        struct sched_domain *sd, enum cpu_idle_type idle,
9784                        int *continue_balancing)
9785{
9786        int ld_moved, cur_ld_moved, active_balance = 0;
9787        struct sched_domain *sd_parent = sd->parent;
9788        struct sched_group *group;
9789        struct rq *busiest;
9790        struct rq_flags rf;
9791        struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9792
9793        struct lb_env env = {
9794                .sd             = sd,
9795                .dst_cpu        = this_cpu,
9796                .dst_rq         = this_rq,
9797                .dst_grpmask    = sched_group_span(sd->groups),
9798                .idle           = idle,
9799                .loop_break     = sched_nr_migrate_break,
9800                .cpus           = cpus,
9801                .fbq_type       = all,
9802                .tasks          = LIST_HEAD_INIT(env.tasks),
9803        };
9804
9805        cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9806
9807        schedstat_inc(sd->lb_count[idle]);
9808
9809redo:
9810        if (!should_we_balance(&env)) {
9811                *continue_balancing = 0;
9812                goto out_balanced;
9813        }
9814
9815        group = find_busiest_group(&env);
9816        if (!group) {
9817                schedstat_inc(sd->lb_nobusyg[idle]);
9818                goto out_balanced;
9819        }
9820
9821        busiest = find_busiest_queue(&env, group);
9822        if (!busiest) {
9823                schedstat_inc(sd->lb_nobusyq[idle]);
9824                goto out_balanced;
9825        }
9826
9827        BUG_ON(busiest == env.dst_rq);
9828
9829        schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9830
9831        env.src_cpu = busiest->cpu;
9832        env.src_rq = busiest;
9833
9834        ld_moved = 0;
9835        /* Clear this flag as soon as we find a pullable task */
9836        env.flags |= LBF_ALL_PINNED;
9837        if (busiest->nr_running > 1) {
9838                /*
9839                 * Attempt to move tasks. If find_busiest_group has found
9840                 * an imbalance but busiest->nr_running <= 1, the group is
9841                 * still unbalanced. ld_moved simply stays zero, so it is
9842                 * correctly treated as an imbalance.
9843                 */
9844                env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9845
9846more_balance:
9847                rq_lock_irqsave(busiest, &rf);
9848                update_rq_clock(busiest);
9849
9850                /*
9851                 * cur_ld_moved - load moved in current iteration
9852                 * ld_moved     - cumulative load moved across iterations
9853                 */
9854                cur_ld_moved = detach_tasks(&env);
9855
9856                /*
9857                 * We've detached some tasks from busiest_rq. Every
9858                 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9859                 * unlock busiest->lock, and we are able to be sure
9860                 * that nobody can manipulate the tasks in parallel.
9861                 * See task_rq_lock() family for the details.
9862                 */
9863
9864                rq_unlock(busiest, &rf);
9865
9866                if (cur_ld_moved) {
9867                        attach_tasks(&env);
9868                        ld_moved += cur_ld_moved;
9869                }
9870
9871                local_irq_restore(rf.flags);
9872
9873                if (env.flags & LBF_NEED_BREAK) {
9874                        env.flags &= ~LBF_NEED_BREAK;
9875                        goto more_balance;
9876                }
9877
9878                /*
9879                 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9880                 * us and move them to an alternate dst_cpu in our sched_group
9881                 * where they can run. The upper limit on how many times we
9882                 * iterate on same src_cpu is dependent on number of CPUs in our
9883                 * sched_group.
9884                 *
9885                 * This changes load balance semantics a bit on who can move
9886                 * load to a given_cpu. In addition to the given_cpu itself
9887                 * (or a ilb_cpu acting on its behalf where given_cpu is
9888                 * nohz-idle), we now have balance_cpu in a position to move
9889                 * load to given_cpu. In rare situations, this may cause
9890                 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9891                 * _independently_ and at _same_ time to move some load to
9892                 * given_cpu) causing excess load to be moved to given_cpu.
9893                 * This however should not happen so much in practice and
9894                 * moreover subsequent load balance cycles should correct the
9895                 * excess load moved.
9896                 */
9897                if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9898
9899                        /* Prevent to re-select dst_cpu via env's CPUs */
9900                        __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9901
9902                        env.dst_rq       = cpu_rq(env.new_dst_cpu);
9903                        env.dst_cpu      = env.new_dst_cpu;
9904                        env.flags       &= ~LBF_DST_PINNED;
9905                        env.loop         = 0;
9906                        env.loop_break   = sched_nr_migrate_break;
9907
9908                        /*
9909                         * Go back to "more_balance" rather than "redo" since we
9910                         * need to continue with same src_cpu.
9911                         */
9912                        goto more_balance;
9913                }
9914
9915                /*
9916                 * We failed to reach balance because of affinity.
9917                 */
9918                if (sd_parent) {
9919                        int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9920
9921                        if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9922                                *group_imbalance = 1;
9923                }
9924
9925                /* All tasks on this runqueue were pinned by CPU affinity */
9926                if (unlikely(env.flags & LBF_ALL_PINNED)) {
9927                        __cpumask_clear_cpu(cpu_of(busiest), cpus);
9928                        /*
9929                         * Attempting to continue load balancing at the current
9930                         * sched_domain level only makes sense if there are
9931                         * active CPUs remaining as possible busiest CPUs to
9932                         * pull load from which are not contained within the
9933                         * destination group that is receiving any migrated
9934                         * load.
9935                         */
9936                        if (!cpumask_subset(cpus, env.dst_grpmask)) {
9937                                env.loop = 0;
9938                                env.loop_break = sched_nr_migrate_break;
9939                                goto redo;
9940                        }
9941                        goto out_all_pinned;
9942                }
9943        }
9944
9945        if (!ld_moved) {
9946                schedstat_inc(sd->lb_failed[idle]);
9947                /*
9948                 * Increment the failure counter only on periodic balance.
9949                 * We do not want newidle balance, which can be very
9950                 * frequent, pollute the failure counter causing
9951                 * excessive cache_hot migrations and active balances.
9952                 */
9953                if (idle != CPU_NEWLY_IDLE)
9954                        sd->nr_balance_failed++;
9955
9956                if (need_active_balance(&env)) {
9957                        unsigned long flags;
9958
9959                        raw_spin_rq_lock_irqsave(busiest, flags);
9960
9961                        /*
9962                         * Don't kick the active_load_balance_cpu_stop,
9963                         * if the curr task on busiest CPU can't be
9964                         * moved to this_cpu:
9965                         */
9966                        if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9967                                raw_spin_rq_unlock_irqrestore(busiest, flags);
9968                                goto out_one_pinned;
9969                        }
9970
9971                        /* Record that we found at least one task that could run on this_cpu */
9972                        env.flags &= ~LBF_ALL_PINNED;
9973
9974                        /*
9975                         * ->active_balance synchronizes accesses to
9976                         * ->active_balance_work.  Once set, it's cleared
9977                         * only after active load balance is finished.
9978                         */
9979                        if (!busiest->active_balance) {
9980                                busiest->active_balance = 1;
9981                                busiest->push_cpu = this_cpu;
9982                                active_balance = 1;
9983                        }
9984                        raw_spin_rq_unlock_irqrestore(busiest, flags);
9985
9986                        if (active_balance) {
9987                                stop_one_cpu_nowait(cpu_of(busiest),
9988                                        active_load_balance_cpu_stop, busiest,
9989                                        &busiest->active_balance_work);
9990                        }
9991                }
9992        } else {
9993                sd->nr_balance_failed = 0;
9994        }
9995
9996        if (likely(!active_balance) || need_active_balance(&env)) {
9997                /* We were unbalanced, so reset the balancing interval */
9998                sd->balance_interval = sd->min_interval;
9999        }
10000
10001        goto out;
10002
10003out_balanced:
10004        /*
10005         * We reach balance although we may have faced some affinity
10006         * constraints. Clear the imbalance flag only if other tasks got
10007         * a chance to move and fix the imbalance.
10008         */
10009        if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10010                int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10011
10012                if (*group_imbalance)
10013                        *group_imbalance = 0;
10014        }
10015
10016out_all_pinned:
10017        /*
10018         * We reach balance because all tasks are pinned at this level so
10019         * we can't migrate them. Let the imbalance flag set so parent level
10020         * can try to migrate them.
10021         */
10022        schedstat_inc(sd->lb_balanced[idle]);
10023
10024        sd->nr_balance_failed = 0;
10025
10026out_one_pinned:
10027        ld_moved = 0;
10028
10029        /*
10030         * newidle_balance() disregards balance intervals, so we could
10031         * repeatedly reach this code, which would lead to balance_interval
10032         * skyrocketing in a short amount of time. Skip the balance_interval
10033         * increase logic to avoid that.
10034         */
10035        if (env.idle == CPU_NEWLY_IDLE)
10036                goto out;
10037
10038        /* tune up the balancing interval */
10039        if ((env.flags & LBF_ALL_PINNED &&
10040             sd->balance_interval < MAX_PINNED_INTERVAL) ||
10041            sd->balance_interval < sd->max_interval)
10042                sd->balance_interval *= 2;
10043out:
10044        return ld_moved;
10045}
10046
10047static inline unsigned long
10048get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10049{
10050        unsigned long interval = sd->balance_interval;
10051
10052        if (cpu_busy)
10053                interval *= sd->busy_factor;
10054
10055        /* scale ms to jiffies */
10056        interval = msecs_to_jiffies(interval);
10057
10058        /*
10059         * Reduce likelihood of busy balancing at higher domains racing with
10060         * balancing at lower domains by preventing their balancing periods
10061         * from being multiples of each other.
10062         */
10063        if (cpu_busy)
10064                interval -= 1;
10065
10066        interval = clamp(interval, 1UL, max_load_balance_interval);
10067
10068        return interval;
10069}
10070
10071static inline void
10072update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10073{
10074        unsigned long interval, next;
10075
10076        /* used by idle balance, so cpu_busy = 0 */
10077        interval = get_sd_balance_interval(sd, 0);
10078        next = sd->last_balance + interval;
10079
10080        if (time_after(*next_balance, next))
10081                *next_balance = next;
10082}
10083
10084/*
10085 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10086 * running tasks off the busiest CPU onto idle CPUs. It requires at
10087 * least 1 task to be running on each physical CPU where possible, and
10088 * avoids physical / logical imbalances.
10089 */
10090static int active_load_balance_cpu_stop(void *data)
10091{
10092        struct rq *busiest_rq = data;
10093        int busiest_cpu = cpu_of(busiest_rq);
10094        int target_cpu = busiest_rq->push_cpu;
10095        struct rq *target_rq = cpu_rq(target_cpu);
10096        struct sched_domain *sd;
10097        struct task_struct *p = NULL;
10098        struct rq_flags rf;
10099
10100        rq_lock_irq(busiest_rq, &rf);
10101        /*
10102         * Between queueing the stop-work and running it is a hole in which
10103         * CPUs can become inactive. We should not move tasks from or to
10104         * inactive CPUs.
10105         */
10106        if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10107                goto out_unlock;
10108
10109        /* Make sure the requested CPU hasn't gone down in the meantime: */
10110        if (unlikely(busiest_cpu != smp_processor_id() ||
10111                     !busiest_rq->active_balance))
10112                goto out_unlock;
10113
10114        /* Is there any task to move? */
10115        if (busiest_rq->nr_running <= 1)
10116                goto out_unlock;
10117
10118        /*
10119         * This condition is "impossible", if it occurs
10120         * we need to fix it. Originally reported by
10121         * Bjorn Helgaas on a 128-CPU setup.
10122         */
10123        BUG_ON(busiest_rq == target_rq);
10124
10125        /* Search for an sd spanning us and the target CPU. */
10126        rcu_read_lock();
10127        for_each_domain(target_cpu, sd) {
10128                if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10129                        break;
10130        }
10131
10132        if (likely(sd)) {
10133                struct lb_env env = {
10134                        .sd             = sd,
10135                        .dst_cpu        = target_cpu,
10136                        .dst_rq         = target_rq,
10137                        .src_cpu        = busiest_rq->cpu,
10138                        .src_rq         = busiest_rq,
10139                        .idle           = CPU_IDLE,
10140                        .flags          = LBF_ACTIVE_LB,
10141                };
10142
10143                schedstat_inc(sd->alb_count);
10144                update_rq_clock(busiest_rq);
10145
10146                p = detach_one_task(&env);
10147                if (p) {
10148                        schedstat_inc(sd->alb_pushed);
10149                        /* Active balancing done, reset the failure counter. */
10150                        sd->nr_balance_failed = 0;
10151                } else {
10152                        schedstat_inc(sd->alb_failed);
10153                }
10154        }
10155        rcu_read_unlock();
10156out_unlock:
10157        busiest_rq->active_balance = 0;
10158        rq_unlock(busiest_rq, &rf);
10159
10160        if (p)
10161                attach_one_task(target_rq, p);
10162
10163        local_irq_enable();
10164
10165        return 0;
10166}
10167
10168static DEFINE_SPINLOCK(balancing);
10169
10170/*
10171 * Scale the max load_balance interval with the number of CPUs in the system.
10172 * This trades load-balance latency on larger machines for less cross talk.
10173 */
10174void update_max_interval(void)
10175{
10176        max_load_balance_interval = HZ*num_online_cpus()/10;
10177}
10178
10179/*
10180 * It checks each scheduling domain to see if it is due to be balanced,
10181 * and initiates a balancing operation if so.
10182 *
10183 * Balancing parameters are set up in init_sched_domains.
10184 */
10185static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10186{
10187        int continue_balancing = 1;
10188        int cpu = rq->cpu;
10189        int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10190        unsigned long interval;
10191        struct sched_domain *sd;
10192        /* Earliest time when we have to do rebalance again */
10193        unsigned long next_balance = jiffies + 60*HZ;
10194        int update_next_balance = 0;
10195        int need_serialize, need_decay = 0;
10196        u64 max_cost = 0;
10197
10198        rcu_read_lock();
10199        for_each_domain(cpu, sd) {
10200                /*
10201                 * Decay the newidle max times here because this is a regular
10202                 * visit to all the domains. Decay ~1% per second.
10203                 */
10204                if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10205                        sd->max_newidle_lb_cost =
10206                                (sd->max_newidle_lb_cost * 253) / 256;
10207                        sd->next_decay_max_lb_cost = jiffies + HZ;
10208                        need_decay = 1;
10209                }
10210                max_cost += sd->max_newidle_lb_cost;
10211
10212                /*
10213                 * Stop the load balance at this level. There is another
10214                 * CPU in our sched group which is doing load balancing more
10215                 * actively.
10216                 */
10217                if (!continue_balancing) {
10218                        if (need_decay)
10219                                continue;
10220                        break;
10221                }
10222
10223                interval = get_sd_balance_interval(sd, busy);
10224
10225                need_serialize = sd->flags & SD_SERIALIZE;
10226                if (need_serialize) {
10227                        if (!spin_trylock(&balancing))
10228                                goto out;
10229                }
10230
10231                if (time_after_eq(jiffies, sd->last_balance + interval)) {
10232                        if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10233                                /*
10234                                 * The LBF_DST_PINNED logic could have changed
10235                                 * env->dst_cpu, so we can't know our idle
10236                                 * state even if we migrated tasks. Update it.
10237                                 */
10238                                idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10239                                busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10240                        }
10241                        sd->last_balance = jiffies;
10242                        interval = get_sd_balance_interval(sd, busy);
10243                }
10244                if (need_serialize)
10245                        spin_unlock(&balancing);
10246out:
10247                if (time_after(next_balance, sd->last_balance + interval)) {
10248                        next_balance = sd->last_balance + interval;
10249                        update_next_balance = 1;
10250                }
10251        }
10252        if (need_decay) {
10253                /*
10254                 * Ensure the rq-wide value also decays but keep it at a
10255                 * reasonable floor to avoid funnies with rq->avg_idle.
10256                 */
10257                rq->max_idle_balance_cost =
10258                        max((u64)sysctl_sched_migration_cost, max_cost);
10259        }
10260        rcu_read_unlock();
10261
10262        /*
10263         * next_balance will be updated only when there is a need.
10264         * When the cpu is attached to null domain for ex, it will not be
10265         * updated.
10266         */
10267        if (likely(update_next_balance))
10268                rq->next_balance = next_balance;
10269
10270}
10271
10272static inline int on_null_domain(struct rq *rq)
10273{
10274        return unlikely(!rcu_dereference_sched(rq->sd));
10275}
10276
10277#ifdef CONFIG_NO_HZ_COMMON
10278/*
10279 * idle load balancing details
10280 * - When one of the busy CPUs notice that there may be an idle rebalancing
10281 *   needed, they will kick the idle load balancer, which then does idle
10282 *   load balancing for all the idle CPUs.
10283 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10284 *   anywhere yet.
10285 */
10286
10287static inline int find_new_ilb(void)
10288{
10289        int ilb;
10290        const struct cpumask *hk_mask;
10291
10292        hk_mask = housekeeping_cpumask(HK_FLAG_MISC);
10293
10294        for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10295
10296                if (ilb == smp_processor_id())
10297                        continue;
10298
10299                if (idle_cpu(ilb))
10300                        return ilb;
10301        }
10302
10303        return nr_cpu_ids;
10304}
10305
10306/*
10307 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10308 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10309 */
10310static void kick_ilb(unsigned int flags)
10311{
10312        int ilb_cpu;
10313
10314        /*
10315         * Increase nohz.next_balance only when if full ilb is triggered but
10316         * not if we only update stats.
10317         */
10318        if (flags & NOHZ_BALANCE_KICK)
10319                nohz.next_balance = jiffies+1;
10320
10321        ilb_cpu = find_new_ilb();
10322
10323        if (ilb_cpu >= nr_cpu_ids)
10324                return;
10325
10326        /*
10327         * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10328         * the first flag owns it; cleared by nohz_csd_func().
10329         */
10330        flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10331        if (flags & NOHZ_KICK_MASK)
10332                return;
10333
10334        /*
10335         * This way we generate an IPI on the target CPU which
10336         * is idle. And the softirq performing nohz idle load balance
10337         * will be run before returning from the IPI.
10338         */
10339        smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10340}
10341
10342/*
10343 * Current decision point for kicking the idle load balancer in the presence
10344 * of idle CPUs in the system.
10345 */
10346static void nohz_balancer_kick(struct rq *rq)
10347{
10348        unsigned long now = jiffies;
10349        struct sched_domain_shared *sds;
10350        struct sched_domain *sd;
10351        int nr_busy, i, cpu = rq->cpu;
10352        unsigned int flags = 0;
10353
10354        if (unlikely(rq->idle_balance))
10355                return;
10356
10357        /*
10358         * We may be recently in ticked or tickless idle mode. At the first
10359         * busy tick after returning from idle, we will update the busy stats.
10360         */
10361        nohz_balance_exit_idle(rq);
10362
10363        /*
10364         * None are in tickless mode and hence no need for NOHZ idle load
10365         * balancing.
10366         */
10367        if (likely(!atomic_read(&nohz.nr_cpus)))
10368                return;
10369
10370        if (READ_ONCE(nohz.has_blocked) &&
10371            time_after(now, READ_ONCE(nohz.next_blocked)))
10372                flags = NOHZ_STATS_KICK;
10373
10374        if (time_before(now, nohz.next_balance))
10375                goto out;
10376
10377        if (rq->nr_running >= 2) {
10378                flags = NOHZ_KICK_MASK;
10379                goto out;
10380        }
10381
10382        rcu_read_lock();
10383
10384        sd = rcu_dereference(rq->sd);
10385        if (sd) {
10386                /*
10387                 * If there's a CFS task and the current CPU has reduced
10388                 * capacity; kick the ILB to see if there's a better CPU to run
10389                 * on.
10390                 */
10391                if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10392                        flags = NOHZ_KICK_MASK;
10393                        goto unlock;
10394                }
10395        }
10396
10397        sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10398        if (sd) {
10399                /*
10400                 * When ASYM_PACKING; see if there's a more preferred CPU
10401                 * currently idle; in which case, kick the ILB to move tasks
10402                 * around.
10403                 */
10404                for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10405                        if (sched_asym_prefer(i, cpu)) {
10406                                flags = NOHZ_KICK_MASK;
10407                                goto unlock;
10408                        }
10409                }
10410        }
10411
10412        sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10413        if (sd) {
10414                /*
10415                 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10416                 * to run the misfit task on.
10417                 */
10418                if (check_misfit_status(rq, sd)) {
10419                        flags = NOHZ_KICK_MASK;
10420                        goto unlock;
10421                }
10422
10423                /*
10424                 * For asymmetric systems, we do not want to nicely balance
10425                 * cache use, instead we want to embrace asymmetry and only
10426                 * ensure tasks have enough CPU capacity.
10427                 *
10428                 * Skip the LLC logic because it's not relevant in that case.
10429                 */
10430                goto unlock;
10431        }
10432
10433        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10434        if (sds) {
10435                /*
10436                 * If there is an imbalance between LLC domains (IOW we could
10437                 * increase the overall cache use), we need some less-loaded LLC
10438                 * domain to pull some load. Likewise, we may need to spread
10439                 * load within the current LLC domain (e.g. packed SMT cores but
10440                 * other CPUs are idle). We can't really know from here how busy
10441                 * the others are - so just get a nohz balance going if it looks
10442                 * like this LLC domain has tasks we could move.
10443                 */
10444                nr_busy = atomic_read(&sds->nr_busy_cpus);
10445                if (nr_busy > 1) {
10446                        flags = NOHZ_KICK_MASK;
10447                        goto unlock;
10448                }
10449        }
10450unlock:
10451        rcu_read_unlock();
10452out:
10453        if (flags)
10454                kick_ilb(flags);
10455}
10456
10457static void set_cpu_sd_state_busy(int cpu)
10458{
10459        struct sched_domain *sd;
10460
10461        rcu_read_lock();
10462        sd = rcu_dereference(per_cpu(sd_llc, cpu));
10463
10464        if (!sd || !sd->nohz_idle)
10465                goto unlock;
10466        sd->nohz_idle = 0;
10467
10468        atomic_inc(&sd->shared->nr_busy_cpus);
10469unlock:
10470        rcu_read_unlock();
10471}
10472
10473void nohz_balance_exit_idle(struct rq *rq)
10474{
10475        SCHED_WARN_ON(rq != this_rq());
10476
10477        if (likely(!rq->nohz_tick_stopped))
10478                return;
10479
10480        rq->nohz_tick_stopped = 0;
10481        cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10482        atomic_dec(&nohz.nr_cpus);
10483
10484        set_cpu_sd_state_busy(rq->cpu);
10485}
10486
10487static void set_cpu_sd_state_idle(int cpu)
10488{
10489        struct sched_domain *sd;
10490
10491        rcu_read_lock();
10492        sd = rcu_dereference(per_cpu(sd_llc, cpu));
10493
10494        if (!sd || sd->nohz_idle)
10495                goto unlock;
10496        sd->nohz_idle = 1;
10497
10498        atomic_dec(&sd->shared->nr_busy_cpus);
10499unlock:
10500        rcu_read_unlock();
10501}
10502
10503/*
10504 * This routine will record that the CPU is going idle with tick stopped.
10505 * This info will be used in performing idle load balancing in the future.
10506 */
10507void nohz_balance_enter_idle(int cpu)
10508{
10509        struct rq *rq = cpu_rq(cpu);
10510
10511        SCHED_WARN_ON(cpu != smp_processor_id());
10512
10513        /* If this CPU is going down, then nothing needs to be done: */
10514        if (!cpu_active(cpu))
10515                return;
10516
10517        /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10518        if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10519                return;
10520
10521        /*
10522         * Can be set safely without rq->lock held
10523         * If a clear happens, it will have evaluated last additions because
10524         * rq->lock is held during the check and the clear
10525         */
10526        rq->has_blocked_load = 1;
10527
10528        /*
10529         * The tick is still stopped but load could have been added in the
10530         * meantime. We set the nohz.has_blocked flag to trig a check of the
10531         * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10532         * of nohz.has_blocked can only happen after checking the new load
10533         */
10534        if (rq->nohz_tick_stopped)
10535                goto out;
10536
10537        /* If we're a completely isolated CPU, we don't play: */
10538        if (on_null_domain(rq))
10539                return;
10540
10541        rq->nohz_tick_stopped = 1;
10542
10543        cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10544        atomic_inc(&nohz.nr_cpus);
10545
10546        /*
10547         * Ensures that if nohz_idle_balance() fails to observe our
10548         * @idle_cpus_mask store, it must observe the @has_blocked
10549         * store.
10550         */
10551        smp_mb__after_atomic();
10552
10553        set_cpu_sd_state_idle(cpu);
10554
10555out:
10556        /*
10557         * Each time a cpu enter idle, we assume that it has blocked load and
10558         * enable the periodic update of the load of idle cpus
10559         */
10560        WRITE_ONCE(nohz.has_blocked, 1);
10561}
10562
10563static bool update_nohz_stats(struct rq *rq)
10564{
10565        unsigned int cpu = rq->cpu;
10566
10567        if (!rq->has_blocked_load)
10568                return false;
10569
10570        if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10571                return false;
10572
10573        if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10574                return true;
10575
10576        update_blocked_averages(cpu);
10577
10578        return rq->has_blocked_load;
10579}
10580
10581/*
10582 * Internal function that runs load balance for all idle cpus. The load balance
10583 * can be a simple update of blocked load or a complete load balance with
10584 * tasks movement depending of flags.
10585 */
10586static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10587                               enum cpu_idle_type idle)
10588{
10589        /* Earliest time when we have to do rebalance again */
10590        unsigned long now = jiffies;
10591        unsigned long next_balance = now + 60*HZ;
10592        bool has_blocked_load = false;
10593        int update_next_balance = 0;
10594        int this_cpu = this_rq->cpu;
10595        int balance_cpu;
10596        struct rq *rq;
10597
10598        SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10599
10600        /*
10601         * We assume there will be no idle load after this update and clear
10602         * the has_blocked flag. If a cpu enters idle in the mean time, it will
10603         * set the has_blocked flag and trig another update of idle load.
10604         * Because a cpu that becomes idle, is added to idle_cpus_mask before
10605         * setting the flag, we are sure to not clear the state and not
10606         * check the load of an idle cpu.
10607         */
10608        WRITE_ONCE(nohz.has_blocked, 0);
10609
10610        /*
10611         * Ensures that if we miss the CPU, we must see the has_blocked
10612         * store from nohz_balance_enter_idle().
10613         */
10614        smp_mb();
10615
10616        /*
10617         * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10618         * chance for other idle cpu to pull load.
10619         */
10620        for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10621                if (!idle_cpu(balance_cpu))
10622                        continue;
10623
10624                /*
10625                 * If this CPU gets work to do, stop the load balancing
10626                 * work being done for other CPUs. Next load
10627                 * balancing owner will pick it up.
10628                 */
10629                if (need_resched()) {
10630                        has_blocked_load = true;
10631                        goto abort;
10632                }
10633
10634                rq = cpu_rq(balance_cpu);
10635
10636                has_blocked_load |= update_nohz_stats(rq);
10637
10638                /*
10639                 * If time for next balance is due,
10640                 * do the balance.
10641                 */
10642                if (time_after_eq(jiffies, rq->next_balance)) {
10643                        struct rq_flags rf;
10644
10645                        rq_lock_irqsave(rq, &rf);
10646                        update_rq_clock(rq);
10647                        rq_unlock_irqrestore(rq, &rf);
10648
10649                        if (flags & NOHZ_BALANCE_KICK)
10650                                rebalance_domains(rq, CPU_IDLE);
10651                }
10652
10653                if (time_after(next_balance, rq->next_balance)) {
10654                        next_balance = rq->next_balance;
10655                        update_next_balance = 1;
10656                }
10657        }
10658
10659        /*
10660         * next_balance will be updated only when there is a need.
10661         * When the CPU is attached to null domain for ex, it will not be
10662         * updated.
10663         */
10664        if (likely(update_next_balance))
10665                nohz.next_balance = next_balance;
10666
10667        WRITE_ONCE(nohz.next_blocked,
10668                now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10669
10670abort:
10671        /* There is still blocked load, enable periodic update */
10672        if (has_blocked_load)
10673                WRITE_ONCE(nohz.has_blocked, 1);
10674}
10675
10676/*
10677 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10678 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10679 */
10680static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10681{
10682        unsigned int flags = this_rq->nohz_idle_balance;
10683
10684        if (!flags)
10685                return false;
10686
10687        this_rq->nohz_idle_balance = 0;
10688
10689        if (idle != CPU_IDLE)
10690                return false;
10691
10692        _nohz_idle_balance(this_rq, flags, idle);
10693
10694        return true;
10695}
10696
10697/*
10698 * Check if we need to run the ILB for updating blocked load before entering
10699 * idle state.
10700 */
10701void nohz_run_idle_balance(int cpu)
10702{
10703        unsigned int flags;
10704
10705        flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10706
10707        /*
10708         * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10709         * (ie NOHZ_STATS_KICK set) and will do the same.
10710         */
10711        if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10712                _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10713}
10714
10715static void nohz_newidle_balance(struct rq *this_rq)
10716{
10717        int this_cpu = this_rq->cpu;
10718
10719        /*
10720         * This CPU doesn't want to be disturbed by scheduler
10721         * housekeeping
10722         */
10723        if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10724                return;
10725
10726        /* Will wake up very soon. No time for doing anything else*/
10727        if (this_rq->avg_idle < sysctl_sched_migration_cost)
10728                return;
10729
10730        /* Don't need to update blocked load of idle CPUs*/
10731        if (!READ_ONCE(nohz.has_blocked) ||
10732            time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10733                return;
10734
10735        /*
10736         * Set the need to trigger ILB in order to update blocked load
10737         * before entering idle state.
10738         */
10739        atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10740}
10741
10742#else /* !CONFIG_NO_HZ_COMMON */
10743static inline void nohz_balancer_kick(struct rq *rq) { }
10744
10745static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10746{
10747        return false;
10748}
10749
10750static inline void nohz_newidle_balance(struct rq *this_rq) { }
10751#endif /* CONFIG_NO_HZ_COMMON */
10752
10753/*
10754 * newidle_balance is called by schedule() if this_cpu is about to become
10755 * idle. Attempts to pull tasks from other CPUs.
10756 *
10757 * Returns:
10758 *   < 0 - we released the lock and there are !fair tasks present
10759 *     0 - failed, no new tasks
10760 *   > 0 - success, new (fair) tasks present
10761 */
10762static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10763{
10764        unsigned long next_balance = jiffies + HZ;
10765        int this_cpu = this_rq->cpu;
10766        struct sched_domain *sd;
10767        int pulled_task = 0;
10768        u64 curr_cost = 0;
10769
10770        update_misfit_status(NULL, this_rq);
10771
10772        /*
10773         * There is a task waiting to run. No need to search for one.
10774         * Return 0; the task will be enqueued when switching to idle.
10775         */
10776        if (this_rq->ttwu_pending)
10777                return 0;
10778
10779        /*
10780         * We must set idle_stamp _before_ calling idle_balance(), such that we
10781         * measure the duration of idle_balance() as idle time.
10782         */
10783        this_rq->idle_stamp = rq_clock(this_rq);
10784
10785        /*
10786         * Do not pull tasks towards !active CPUs...
10787         */
10788        if (!cpu_active(this_cpu))
10789                return 0;
10790
10791        /*
10792         * This is OK, because current is on_cpu, which avoids it being picked
10793         * for load-balance and preemption/IRQs are still disabled avoiding
10794         * further scheduler activity on it and we're being very careful to
10795         * re-start the picking loop.
10796         */
10797        rq_unpin_lock(this_rq, rf);
10798
10799        if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10800            !READ_ONCE(this_rq->rd->overload)) {
10801
10802                rcu_read_lock();
10803                sd = rcu_dereference_check_sched_domain(this_rq->sd);
10804                if (sd)
10805                        update_next_balance(sd, &next_balance);
10806                rcu_read_unlock();
10807
10808                goto out;
10809        }
10810
10811        raw_spin_rq_unlock(this_rq);
10812
10813        update_blocked_averages(this_cpu);
10814        rcu_read_lock();
10815        for_each_domain(this_cpu, sd) {
10816                int continue_balancing = 1;
10817                u64 t0, domain_cost;
10818
10819                if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10820                        update_next_balance(sd, &next_balance);
10821                        break;
10822                }
10823
10824                if (sd->flags & SD_BALANCE_NEWIDLE) {
10825                        t0 = sched_clock_cpu(this_cpu);
10826
10827                        pulled_task = load_balance(this_cpu, this_rq,
10828                                                   sd, CPU_NEWLY_IDLE,
10829                                                   &continue_balancing);
10830
10831                        domain_cost = sched_clock_cpu(this_cpu) - t0;
10832                        if (domain_cost > sd->max_newidle_lb_cost)
10833                                sd->max_newidle_lb_cost = domain_cost;
10834
10835                        curr_cost += domain_cost;
10836                }
10837
10838                update_next_balance(sd, &next_balance);
10839
10840                /*
10841                 * Stop searching for tasks to pull if there are
10842                 * now runnable tasks on this rq.
10843                 */
10844                if (pulled_task || this_rq->nr_running > 0 ||
10845                    this_rq->ttwu_pending)
10846                        break;
10847        }
10848        rcu_read_unlock();
10849
10850        raw_spin_rq_lock(this_rq);
10851
10852        if (curr_cost > this_rq->max_idle_balance_cost)
10853                this_rq->max_idle_balance_cost = curr_cost;
10854
10855        /*
10856         * While browsing the domains, we released the rq lock, a task could
10857         * have been enqueued in the meantime. Since we're not going idle,
10858         * pretend we pulled a task.
10859         */
10860        if (this_rq->cfs.h_nr_running && !pulled_task)
10861                pulled_task = 1;
10862
10863        /* Is there a task of a high priority class? */
10864        if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10865                pulled_task = -1;
10866
10867out:
10868        /* Move the next balance forward */
10869        if (time_after(this_rq->next_balance, next_balance))
10870                this_rq->next_balance = next_balance;
10871
10872        if (pulled_task)
10873                this_rq->idle_stamp = 0;
10874        else
10875                nohz_newidle_balance(this_rq);
10876
10877        rq_repin_lock(this_rq, rf);
10878
10879        return pulled_task;
10880}
10881
10882/*
10883 * run_rebalance_domains is triggered when needed from the scheduler tick.
10884 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10885 */
10886static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10887{
10888        struct rq *this_rq = this_rq();
10889        enum cpu_idle_type idle = this_rq->idle_balance ?
10890                                                CPU_IDLE : CPU_NOT_IDLE;
10891
10892        /*
10893         * If this CPU has a pending nohz_balance_kick, then do the
10894         * balancing on behalf of the other idle CPUs whose ticks are
10895         * stopped. Do nohz_idle_balance *before* rebalance_domains to
10896         * give the idle CPUs a chance to load balance. Else we may
10897         * load balance only within the local sched_domain hierarchy
10898         * and abort nohz_idle_balance altogether if we pull some load.
10899         */
10900        if (nohz_idle_balance(this_rq, idle))
10901                return;
10902
10903        /* normal load balance */
10904        update_blocked_averages(this_rq->cpu);
10905        rebalance_domains(this_rq, idle);
10906}
10907
10908/*
10909 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10910 */
10911void trigger_load_balance(struct rq *rq)
10912{
10913        /*
10914         * Don't need to rebalance while attached to NULL domain or
10915         * runqueue CPU is not active
10916         */
10917        if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10918                return;
10919
10920        if (time_after_eq(jiffies, rq->next_balance))
10921                raise_softirq(SCHED_SOFTIRQ);
10922
10923        nohz_balancer_kick(rq);
10924}
10925
10926static void rq_online_fair(struct rq *rq)
10927{
10928        update_sysctl();
10929
10930        update_runtime_enabled(rq);
10931}
10932
10933static void rq_offline_fair(struct rq *rq)
10934{
10935        update_sysctl();
10936
10937        /* Ensure any throttled groups are reachable by pick_next_task */
10938        unthrottle_offline_cfs_rqs(rq);
10939}
10940
10941#endif /* CONFIG_SMP */
10942
10943#ifdef CONFIG_SCHED_CORE
10944static inline bool
10945__entity_slice_used(struct sched_entity *se, int min_nr_tasks)
10946{
10947        u64 slice = sched_slice(cfs_rq_of(se), se);
10948        u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
10949
10950        return (rtime * min_nr_tasks > slice);
10951}
10952
10953#define MIN_NR_TASKS_DURING_FORCEIDLE   2
10954static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
10955{
10956        if (!sched_core_enabled(rq))
10957                return;
10958
10959        /*
10960         * If runqueue has only one task which used up its slice and
10961         * if the sibling is forced idle, then trigger schedule to
10962         * give forced idle task a chance.
10963         *
10964         * sched_slice() considers only this active rq and it gets the
10965         * whole slice. But during force idle, we have siblings acting
10966         * like a single runqueue and hence we need to consider runnable
10967         * tasks on this CPU and the forced idle CPU. Ideally, we should
10968         * go through the forced idle rq, but that would be a perf hit.
10969         * We can assume that the forced idle CPU has at least
10970         * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
10971         * if we need to give up the CPU.
10972         */
10973        if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
10974            __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
10975                resched_curr(rq);
10976}
10977
10978/*
10979 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
10980 */
10981static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
10982{
10983        for_each_sched_entity(se) {
10984                struct cfs_rq *cfs_rq = cfs_rq_of(se);
10985
10986                if (forceidle) {
10987                        if (cfs_rq->forceidle_seq == fi_seq)
10988                                break;
10989                        cfs_rq->forceidle_seq = fi_seq;
10990                }
10991
10992                cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
10993        }
10994}
10995
10996void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
10997{
10998        struct sched_entity *se = &p->se;
10999
11000        if (p->sched_class != &fair_sched_class)
11001                return;
11002
11003        se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11004}
11005
11006bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11007{
11008        struct rq *rq = task_rq(a);
11009        struct sched_entity *sea = &a->se;
11010        struct sched_entity *seb = &b->se;
11011        struct cfs_rq *cfs_rqa;
11012        struct cfs_rq *cfs_rqb;
11013        s64 delta;
11014
11015        SCHED_WARN_ON(task_rq(b)->core != rq->core);
11016
11017#ifdef CONFIG_FAIR_GROUP_SCHED
11018        /*
11019         * Find an se in the hierarchy for tasks a and b, such that the se's
11020         * are immediate siblings.
11021         */
11022        while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11023                int sea_depth = sea->depth;
11024                int seb_depth = seb->depth;
11025
11026                if (sea_depth >= seb_depth)
11027                        sea = parent_entity(sea);
11028                if (sea_depth <= seb_depth)
11029                        seb = parent_entity(seb);
11030        }
11031
11032        se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11033        se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11034
11035        cfs_rqa = sea->cfs_rq;
11036        cfs_rqb = seb->cfs_rq;
11037#else
11038        cfs_rqa = &task_rq(a)->cfs;
11039        cfs_rqb = &task_rq(b)->cfs;
11040#endif
11041
11042        /*
11043         * Find delta after normalizing se's vruntime with its cfs_rq's
11044         * min_vruntime_fi, which would have been updated in prior calls
11045         * to se_fi_update().
11046         */
11047        delta = (s64)(sea->vruntime - seb->vruntime) +
11048                (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11049
11050        return delta > 0;
11051}
11052#else
11053static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11054#endif
11055
11056/*
11057 * scheduler tick hitting a task of our scheduling class.
11058 *
11059 * NOTE: This function can be called remotely by the tick offload that
11060 * goes along full dynticks. Therefore no local assumption can be made
11061 * and everything must be accessed through the @rq and @curr passed in
11062 * parameters.
11063 */
11064static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11065{
11066        struct cfs_rq *cfs_rq;
11067        struct sched_entity *se = &curr->se;
11068
11069        for_each_sched_entity(se) {
11070                cfs_rq = cfs_rq_of(se);
11071                entity_tick(cfs_rq, se, queued);
11072        }
11073
11074        if (static_branch_unlikely(&sched_numa_balancing))
11075                task_tick_numa(rq, curr);
11076
11077        update_misfit_status(curr, rq);
11078        update_overutilized_status(task_rq(curr));
11079
11080        task_tick_core(rq, curr);
11081}
11082
11083/*
11084 * called on fork with the child task as argument from the parent's context
11085 *  - child not yet on the tasklist
11086 *  - preemption disabled
11087 */
11088static void task_fork_fair(struct task_struct *p)
11089{
11090        struct cfs_rq *cfs_rq;
11091        struct sched_entity *se = &p->se, *curr;
11092        struct rq *rq = this_rq();
11093        struct rq_flags rf;
11094
11095        rq_lock(rq, &rf);
11096        update_rq_clock(rq);
11097
11098        cfs_rq = task_cfs_rq(current);
11099        curr = cfs_rq->curr;
11100        if (curr) {
11101                update_curr(cfs_rq);
11102                se->vruntime = curr->vruntime;
11103        }
11104        place_entity(cfs_rq, se, 1);
11105
11106        if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11107                /*
11108                 * Upon rescheduling, sched_class::put_prev_task() will place
11109                 * 'current' within the tree based on its new key value.
11110                 */
11111                swap(curr->vruntime, se->vruntime);
11112                resched_curr(rq);
11113        }
11114
11115        se->vruntime -= cfs_rq->min_vruntime;
11116        rq_unlock(rq, &rf);
11117}
11118
11119/*
11120 * Priority of the task has changed. Check to see if we preempt
11121 * the current task.
11122 */
11123static void
11124prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11125{
11126        if (!task_on_rq_queued(p))
11127                return;
11128
11129        if (rq->cfs.nr_running == 1)
11130                return;
11131
11132        /*
11133         * Reschedule if we are currently running on this runqueue and
11134         * our priority decreased, or if we are not currently running on
11135         * this runqueue and our priority is higher than the current's
11136         */
11137        if (task_current(rq, p)) {
11138                if (p->prio > oldprio)
11139                        resched_curr(rq);
11140        } else
11141                check_preempt_curr(rq, p, 0);
11142}
11143
11144static inline bool vruntime_normalized(struct task_struct *p)
11145{
11146        struct sched_entity *se = &p->se;
11147
11148        /*
11149         * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11150         * the dequeue_entity(.flags=0) will already have normalized the
11151         * vruntime.
11152         */
11153        if (p->on_rq)
11154                return true;
11155
11156        /*
11157         * When !on_rq, vruntime of the task has usually NOT been normalized.
11158         * But there are some cases where it has already been normalized:
11159         *
11160         * - A forked child which is waiting for being woken up by
11161         *   wake_up_new_task().
11162         * - A task which has been woken up by try_to_wake_up() and
11163         *   waiting for actually being woken up by sched_ttwu_pending().
11164         */
11165        if (!se->sum_exec_runtime ||
11166            (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11167                return true;
11168
11169        return false;
11170}
11171
11172#ifdef CONFIG_FAIR_GROUP_SCHED
11173/*
11174 * Propagate the changes of the sched_entity across the tg tree to make it
11175 * visible to the root
11176 */
11177static void propagate_entity_cfs_rq(struct sched_entity *se)
11178{
11179        struct cfs_rq *cfs_rq;
11180
11181        list_add_leaf_cfs_rq(cfs_rq_of(se));
11182
11183        /* Start to propagate at parent */
11184        se = se->parent;
11185
11186        for_each_sched_entity(se) {
11187                cfs_rq = cfs_rq_of(se);
11188
11189                if (!cfs_rq_throttled(cfs_rq)){
11190                        update_load_avg(cfs_rq, se, UPDATE_TG);
11191                        list_add_leaf_cfs_rq(cfs_rq);
11192                        continue;
11193                }
11194
11195                if (list_add_leaf_cfs_rq(cfs_rq))
11196                        break;
11197        }
11198}
11199#else
11200static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11201#endif
11202
11203static void detach_entity_cfs_rq(struct sched_entity *se)
11204{
11205        struct cfs_rq *cfs_rq = cfs_rq_of(se);
11206
11207        /* Catch up with the cfs_rq and remove our load when we leave */
11208        update_load_avg(cfs_rq, se, 0);
11209        detach_entity_load_avg(cfs_rq, se);
11210        update_tg_load_avg(cfs_rq);
11211        propagate_entity_cfs_rq(se);
11212}
11213
11214static void attach_entity_cfs_rq(struct sched_entity *se)
11215{
11216        struct cfs_rq *cfs_rq = cfs_rq_of(se);
11217
11218#ifdef CONFIG_FAIR_GROUP_SCHED
11219        /*
11220         * Since the real-depth could have been changed (only FAIR
11221         * class maintain depth value), reset depth properly.
11222         */
11223        se->depth = se->parent ? se->parent->depth + 1 : 0;
11224#endif
11225
11226        /* Synchronize entity with its cfs_rq */
11227        update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11228        attach_entity_load_avg(cfs_rq, se);
11229        update_tg_load_avg(cfs_rq);
11230        propagate_entity_cfs_rq(se);
11231}
11232
11233static void detach_task_cfs_rq(struct task_struct *p)
11234{
11235        struct sched_entity *se = &p->se;
11236        struct cfs_rq *cfs_rq = cfs_rq_of(se);
11237
11238        if (!vruntime_normalized(p)) {
11239                /*
11240                 * Fix up our vruntime so that the current sleep doesn't
11241                 * cause 'unlimited' sleep bonus.
11242                 */
11243                place_entity(cfs_rq, se, 0);
11244                se->vruntime -= cfs_rq->min_vruntime;
11245        }
11246
11247        detach_entity_cfs_rq(se);
11248}
11249
11250static void attach_task_cfs_rq(struct task_struct *p)
11251{
11252        struct sched_entity *se = &p->se;
11253        struct cfs_rq *cfs_rq = cfs_rq_of(se);
11254
11255        attach_entity_cfs_rq(se);
11256
11257        if (!vruntime_normalized(p))
11258                se->vruntime += cfs_rq->min_vruntime;
11259}
11260
11261static void switched_from_fair(struct rq *rq, struct task_struct *p)
11262{
11263        detach_task_cfs_rq(p);
11264}
11265
11266static void switched_to_fair(struct rq *rq, struct task_struct *p)
11267{
11268        attach_task_cfs_rq(p);
11269
11270        if (task_on_rq_queued(p)) {
11271                /*
11272                 * We were most likely switched from sched_rt, so
11273                 * kick off the schedule if running, otherwise just see
11274                 * if we can still preempt the current task.
11275                 */
11276                if (task_current(rq, p))
11277                        resched_curr(rq);
11278                else
11279                        check_preempt_curr(rq, p, 0);
11280        }
11281}
11282
11283/* Account for a task changing its policy or group.
11284 *
11285 * This routine is mostly called to set cfs_rq->curr field when a task
11286 * migrates between groups/classes.
11287 */
11288static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11289{
11290        struct sched_entity *se = &p->se;
11291
11292#ifdef CONFIG_SMP
11293        if (task_on_rq_queued(p)) {
11294                /*
11295                 * Move the next running task to the front of the list, so our
11296                 * cfs_tasks list becomes MRU one.
11297                 */
11298                list_move(&se->group_node, &rq->cfs_tasks);
11299        }
11300#endif
11301
11302        for_each_sched_entity(se) {
11303                struct cfs_rq *cfs_rq = cfs_rq_of(se);
11304
11305                set_next_entity(cfs_rq, se);
11306                /* ensure bandwidth has been allocated on our new cfs_rq */
11307                account_cfs_rq_runtime(cfs_rq, 0);
11308        }
11309}
11310
11311void init_cfs_rq(struct cfs_rq *cfs_rq)
11312{
11313        cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11314        cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11315#ifndef CONFIG_64BIT
11316        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11317#endif
11318#ifdef CONFIG_SMP
11319        raw_spin_lock_init(&cfs_rq->removed.lock);
11320#endif
11321}
11322
11323#ifdef CONFIG_FAIR_GROUP_SCHED
11324static void task_set_group_fair(struct task_struct *p)
11325{
11326        struct sched_entity *se = &p->se;
11327
11328        set_task_rq(p, task_cpu(p));
11329        se->depth = se->parent ? se->parent->depth + 1 : 0;
11330}
11331
11332static void task_move_group_fair(struct task_struct *p)
11333{
11334        detach_task_cfs_rq(p);
11335        set_task_rq(p, task_cpu(p));
11336
11337#ifdef CONFIG_SMP
11338        /* Tell se's cfs_rq has been changed -- migrated */
11339        p->se.avg.last_update_time = 0;
11340#endif
11341        attach_task_cfs_rq(p);
11342}
11343
11344static void task_change_group_fair(struct task_struct *p, int type)
11345{
11346        switch (type) {
11347        case TASK_SET_GROUP:
11348                task_set_group_fair(p);
11349                break;
11350
11351        case TASK_MOVE_GROUP:
11352                task_move_group_fair(p);
11353                break;
11354        }
11355}
11356
11357void free_fair_sched_group(struct task_group *tg)
11358{
11359        int i;
11360
11361        destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11362
11363        for_each_possible_cpu(i) {
11364                if (tg->cfs_rq)
11365                        kfree(tg->cfs_rq[i]);
11366                if (tg->se)
11367                        kfree(tg->se[i]);
11368        }
11369
11370        kfree(tg->cfs_rq);
11371        kfree(tg->se);
11372}
11373
11374int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11375{
11376        struct sched_entity *se;
11377        struct cfs_rq *cfs_rq;
11378        int i;
11379
11380        tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11381        if (!tg->cfs_rq)
11382                goto err;
11383        tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11384        if (!tg->se)
11385                goto err;
11386
11387        tg->shares = NICE_0_LOAD;
11388
11389        init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11390
11391        for_each_possible_cpu(i) {
11392                cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11393                                      GFP_KERNEL, cpu_to_node(i));
11394                if (!cfs_rq)
11395                        goto err;
11396
11397                se = kzalloc_node(sizeof(struct sched_entity),
11398                                  GFP_KERNEL, cpu_to_node(i));
11399                if (!se)
11400                        goto err_free_rq;
11401
11402                init_cfs_rq(cfs_rq);
11403                init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11404                init_entity_runnable_average(se);
11405        }
11406
11407        return 1;
11408
11409err_free_rq:
11410        kfree(cfs_rq);
11411err:
11412        return 0;
11413}
11414
11415void online_fair_sched_group(struct task_group *tg)
11416{
11417        struct sched_entity *se;
11418        struct rq_flags rf;
11419        struct rq *rq;
11420        int i;
11421
11422        for_each_possible_cpu(i) {
11423                rq = cpu_rq(i);
11424                se = tg->se[i];
11425                rq_lock_irq(rq, &rf);
11426                update_rq_clock(rq);
11427                attach_entity_cfs_rq(se);
11428                sync_throttle(tg, i);
11429                rq_unlock_irq(rq, &rf);
11430        }
11431}
11432
11433void unregister_fair_sched_group(struct task_group *tg)
11434{
11435        unsigned long flags;
11436        struct rq *rq;
11437        int cpu;
11438
11439        for_each_possible_cpu(cpu) {
11440                if (tg->se[cpu])
11441                        remove_entity_load_avg(tg->se[cpu]);
11442
11443                /*
11444                 * Only empty task groups can be destroyed; so we can speculatively
11445                 * check on_list without danger of it being re-added.
11446                 */
11447                if (!tg->cfs_rq[cpu]->on_list)
11448                        continue;
11449
11450                rq = cpu_rq(cpu);
11451
11452                raw_spin_rq_lock_irqsave(rq, flags);
11453                list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11454                raw_spin_rq_unlock_irqrestore(rq, flags);
11455        }
11456}
11457
11458void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11459                        struct sched_entity *se, int cpu,
11460                        struct sched_entity *parent)
11461{
11462        struct rq *rq = cpu_rq(cpu);
11463
11464        cfs_rq->tg = tg;
11465        cfs_rq->rq = rq;
11466        init_cfs_rq_runtime(cfs_rq);
11467
11468        tg->cfs_rq[cpu] = cfs_rq;
11469        tg->se[cpu] = se;
11470
11471        /* se could be NULL for root_task_group */
11472        if (!se)
11473                return;
11474
11475        if (!parent) {
11476                se->cfs_rq = &rq->cfs;
11477                se->depth = 0;
11478        } else {
11479                se->cfs_rq = parent->my_q;
11480                se->depth = parent->depth + 1;
11481        }
11482
11483        se->my_q = cfs_rq;
11484        /* guarantee group entities always have weight */
11485        update_load_set(&se->load, NICE_0_LOAD);
11486        se->parent = parent;
11487}
11488
11489static DEFINE_MUTEX(shares_mutex);
11490
11491static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11492{
11493        int i;
11494
11495        lockdep_assert_held(&shares_mutex);
11496
11497        /*
11498         * We can't change the weight of the root cgroup.
11499         */
11500        if (!tg->se[0])
11501                return -EINVAL;
11502
11503        shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11504
11505        if (tg->shares == shares)
11506                return 0;
11507
11508        tg->shares = shares;
11509        for_each_possible_cpu(i) {
11510                struct rq *rq = cpu_rq(i);
11511                struct sched_entity *se = tg->se[i];
11512                struct rq_flags rf;
11513
11514                /* Propagate contribution to hierarchy */
11515                rq_lock_irqsave(rq, &rf);
11516                update_rq_clock(rq);
11517                for_each_sched_entity(se) {
11518                        update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11519                        update_cfs_group(se);
11520                }
11521                rq_unlock_irqrestore(rq, &rf);
11522        }
11523
11524        return 0;
11525}
11526
11527int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11528{
11529        int ret;
11530
11531        mutex_lock(&shares_mutex);
11532        if (tg_is_idle(tg))
11533                ret = -EINVAL;
11534        else
11535                ret = __sched_group_set_shares(tg, shares);
11536        mutex_unlock(&shares_mutex);
11537
11538        return ret;
11539}
11540
11541int sched_group_set_idle(struct task_group *tg, long idle)
11542{
11543        int i;
11544
11545        if (tg == &root_task_group)
11546                return -EINVAL;
11547
11548        if (idle < 0 || idle > 1)
11549                return -EINVAL;
11550
11551        mutex_lock(&shares_mutex);
11552
11553        if (tg->idle == idle) {
11554                mutex_unlock(&shares_mutex);
11555                return 0;
11556        }
11557
11558        tg->idle = idle;
11559
11560        for_each_possible_cpu(i) {
11561                struct rq *rq = cpu_rq(i);
11562                struct sched_entity *se = tg->se[i];
11563                struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
11564                bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11565                long idle_task_delta;
11566                struct rq_flags rf;
11567
11568                rq_lock_irqsave(rq, &rf);
11569
11570                grp_cfs_rq->idle = idle;
11571                if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11572                        goto next_cpu;
11573
11574                idle_task_delta = grp_cfs_rq->h_nr_running -
11575                                  grp_cfs_rq->idle_h_nr_running;
11576                if (!cfs_rq_is_idle(grp_cfs_rq))
11577                        idle_task_delta *= -1;
11578
11579                for_each_sched_entity(se) {
11580                        struct cfs_rq *cfs_rq = cfs_rq_of(se);
11581
11582                        if (!se->on_rq)
11583                                break;
11584
11585                        cfs_rq->idle_h_nr_running += idle_task_delta;
11586
11587                        /* Already accounted at parent level and above. */
11588                        if (cfs_rq_is_idle(cfs_rq))
11589                                break;
11590                }
11591
11592next_cpu:
11593                rq_unlock_irqrestore(rq, &rf);
11594        }
11595
11596        /* Idle groups have minimum weight. */
11597        if (tg_is_idle(tg))
11598                __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11599        else
11600                __sched_group_set_shares(tg, NICE_0_LOAD);
11601
11602        mutex_unlock(&shares_mutex);
11603        return 0;
11604}
11605
11606#else /* CONFIG_FAIR_GROUP_SCHED */
11607
11608void free_fair_sched_group(struct task_group *tg) { }
11609
11610int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11611{
11612        return 1;
11613}
11614
11615void online_fair_sched_group(struct task_group *tg) { }
11616
11617void unregister_fair_sched_group(struct task_group *tg) { }
11618
11619#endif /* CONFIG_FAIR_GROUP_SCHED */
11620
11621
11622static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11623{
11624        struct sched_entity *se = &task->se;
11625        unsigned int rr_interval = 0;
11626
11627        /*
11628         * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11629         * idle runqueue:
11630         */
11631        if (rq->cfs.load.weight)
11632                rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11633
11634        return rr_interval;
11635}
11636
11637/*
11638 * All the scheduling class methods:
11639 */
11640DEFINE_SCHED_CLASS(fair) = {
11641
11642        .enqueue_task           = enqueue_task_fair,
11643        .dequeue_task           = dequeue_task_fair,
11644        .yield_task             = yield_task_fair,
11645        .yield_to_task          = yield_to_task_fair,
11646
11647        .check_preempt_curr     = check_preempt_wakeup,
11648
11649        .pick_next_task         = __pick_next_task_fair,
11650        .put_prev_task          = put_prev_task_fair,
11651        .set_next_task          = set_next_task_fair,
11652
11653#ifdef CONFIG_SMP
11654        .balance                = balance_fair,
11655        .pick_task              = pick_task_fair,
11656        .select_task_rq         = select_task_rq_fair,
11657        .migrate_task_rq        = migrate_task_rq_fair,
11658
11659        .rq_online              = rq_online_fair,
11660        .rq_offline             = rq_offline_fair,
11661
11662        .task_dead              = task_dead_fair,
11663        .set_cpus_allowed       = set_cpus_allowed_common,
11664#endif
11665
11666        .task_tick              = task_tick_fair,
11667        .task_fork              = task_fork_fair,
11668
11669        .prio_changed           = prio_changed_fair,
11670        .switched_from          = switched_from_fair,
11671        .switched_to            = switched_to_fair,
11672
11673        .get_rr_interval        = get_rr_interval_fair,
11674
11675        .update_curr            = update_curr_fair,
11676
11677#ifdef CONFIG_FAIR_GROUP_SCHED
11678        .task_change_group      = task_change_group_fair,
11679#endif
11680
11681#ifdef CONFIG_UCLAMP_TASK
11682        .uclamp_enabled         = 1,
11683#endif
11684};
11685
11686#ifdef CONFIG_SCHED_DEBUG
11687void print_cfs_stats(struct seq_file *m, int cpu)
11688{
11689        struct cfs_rq *cfs_rq, *pos;
11690
11691        rcu_read_lock();
11692        for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11693                print_cfs_rq(m, cpu, cfs_rq);
11694        rcu_read_unlock();
11695}
11696
11697#ifdef CONFIG_NUMA_BALANCING
11698void show_numa_stats(struct task_struct *p, struct seq_file *m)
11699{
11700        int node;
11701        unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11702        struct numa_group *ng;
11703
11704        rcu_read_lock();
11705        ng = rcu_dereference(p->numa_group);
11706        for_each_online_node(node) {
11707                if (p->numa_faults) {
11708                        tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11709                        tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11710                }
11711                if (ng) {
11712                        gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11713                        gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11714                }
11715                print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11716        }
11717        rcu_read_unlock();
11718}
11719#endif /* CONFIG_NUMA_BALANCING */
11720#endif /* CONFIG_SCHED_DEBUG */
11721
11722__init void init_sched_fair_class(void)
11723{
11724#ifdef CONFIG_SMP
11725        open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11726
11727#ifdef CONFIG_NO_HZ_COMMON
11728        nohz.next_balance = jiffies;
11729        nohz.next_blocked = jiffies;
11730        zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11731#endif
11732#endif /* SMP */
11733
11734}
11735
11736/*
11737 * Helper functions to facilitate extracting info from tracepoints.
11738 */
11739
11740const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11741{
11742#ifdef CONFIG_SMP
11743        return cfs_rq ? &cfs_rq->avg : NULL;
11744#else
11745        return NULL;
11746#endif
11747}
11748EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11749
11750char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11751{
11752        if (!cfs_rq) {
11753                if (str)
11754                        strlcpy(str, "(null)", len);
11755                else
11756                        return NULL;
11757        }
11758
11759        cfs_rq_tg_path(cfs_rq, str, len);
11760        return str;
11761}
11762EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11763
11764int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11765{
11766        return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11767}
11768EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11769
11770const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11771{
11772#ifdef CONFIG_SMP
11773        return rq ? &rq->avg_rt : NULL;
11774#else
11775        return NULL;
11776#endif
11777}
11778EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11779
11780const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11781{
11782#ifdef CONFIG_SMP
11783        return rq ? &rq->avg_dl : NULL;
11784#else
11785        return NULL;
11786#endif
11787}
11788EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11789
11790const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11791{
11792#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11793        return rq ? &rq->avg_irq : NULL;
11794#else
11795        return NULL;
11796#endif
11797}
11798EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11799
11800int sched_trace_rq_cpu(struct rq *rq)
11801{
11802        return rq ? cpu_of(rq) : -1;
11803}
11804EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11805
11806int sched_trace_rq_cpu_capacity(struct rq *rq)
11807{
11808        return rq ?
11809#ifdef CONFIG_SMP
11810                rq->cpu_capacity
11811#else
11812                SCHED_CAPACITY_SCALE
11813#endif
11814                : -1;
11815}
11816EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11817
11818const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11819{
11820#ifdef CONFIG_SMP
11821        return rd ? rd->span : NULL;
11822#else
11823        return NULL;
11824#endif
11825}
11826EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11827
11828int sched_trace_rq_nr_running(struct rq *rq)
11829{
11830        return rq ? rq->nr_running : -1;
11831}
11832EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11833