linux/kernel/sched/psi.c
<<
>>
Prefs
   1/*
   2 * Pressure stall information for CPU, memory and IO
   3 *
   4 * Copyright (c) 2018 Facebook, Inc.
   5 * Author: Johannes Weiner <hannes@cmpxchg.org>
   6 *
   7 * Polling support by Suren Baghdasaryan <surenb@google.com>
   8 * Copyright (c) 2018 Google, Inc.
   9 *
  10 * When CPU, memory and IO are contended, tasks experience delays that
  11 * reduce throughput and introduce latencies into the workload. Memory
  12 * and IO contention, in addition, can cause a full loss of forward
  13 * progress in which the CPU goes idle.
  14 *
  15 * This code aggregates individual task delays into resource pressure
  16 * metrics that indicate problems with both workload health and
  17 * resource utilization.
  18 *
  19 *                      Model
  20 *
  21 * The time in which a task can execute on a CPU is our baseline for
  22 * productivity. Pressure expresses the amount of time in which this
  23 * potential cannot be realized due to resource contention.
  24 *
  25 * This concept of productivity has two components: the workload and
  26 * the CPU. To measure the impact of pressure on both, we define two
  27 * contention states for a resource: SOME and FULL.
  28 *
  29 * In the SOME state of a given resource, one or more tasks are
  30 * delayed on that resource. This affects the workload's ability to
  31 * perform work, but the CPU may still be executing other tasks.
  32 *
  33 * In the FULL state of a given resource, all non-idle tasks are
  34 * delayed on that resource such that nobody is advancing and the CPU
  35 * goes idle. This leaves both workload and CPU unproductive.
  36 *
  37 * Naturally, the FULL state doesn't exist for the CPU resource at the
  38 * system level, but exist at the cgroup level, means all non-idle tasks
  39 * in a cgroup are delayed on the CPU resource which used by others outside
  40 * of the cgroup or throttled by the cgroup cpu.max configuration.
  41 *
  42 *      SOME = nr_delayed_tasks != 0
  43 *      FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
  44 *
  45 * The percentage of wallclock time spent in those compound stall
  46 * states gives pressure numbers between 0 and 100 for each resource,
  47 * where the SOME percentage indicates workload slowdowns and the FULL
  48 * percentage indicates reduced CPU utilization:
  49 *
  50 *      %SOME = time(SOME) / period
  51 *      %FULL = time(FULL) / period
  52 *
  53 *                      Multiple CPUs
  54 *
  55 * The more tasks and available CPUs there are, the more work can be
  56 * performed concurrently. This means that the potential that can go
  57 * unrealized due to resource contention *also* scales with non-idle
  58 * tasks and CPUs.
  59 *
  60 * Consider a scenario where 257 number crunching tasks are trying to
  61 * run concurrently on 256 CPUs. If we simply aggregated the task
  62 * states, we would have to conclude a CPU SOME pressure number of
  63 * 100%, since *somebody* is waiting on a runqueue at all
  64 * times. However, that is clearly not the amount of contention the
  65 * workload is experiencing: only one out of 256 possible execution
  66 * threads will be contended at any given time, or about 0.4%.
  67 *
  68 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
  69 * given time *one* of the tasks is delayed due to a lack of memory.
  70 * Again, looking purely at the task state would yield a memory FULL
  71 * pressure number of 0%, since *somebody* is always making forward
  72 * progress. But again this wouldn't capture the amount of execution
  73 * potential lost, which is 1 out of 4 CPUs, or 25%.
  74 *
  75 * To calculate wasted potential (pressure) with multiple processors,
  76 * we have to base our calculation on the number of non-idle tasks in
  77 * conjunction with the number of available CPUs, which is the number
  78 * of potential execution threads. SOME becomes then the proportion of
  79 * delayed tasks to possible threads, and FULL is the share of possible
  80 * threads that are unproductive due to delays:
  81 *
  82 *      threads = min(nr_nonidle_tasks, nr_cpus)
  83 *         SOME = min(nr_delayed_tasks / threads, 1)
  84 *         FULL = (threads - min(nr_running_tasks, threads)) / threads
  85 *
  86 * For the 257 number crunchers on 256 CPUs, this yields:
  87 *
  88 *      threads = min(257, 256)
  89 *         SOME = min(1 / 256, 1)             = 0.4%
  90 *         FULL = (256 - min(257, 256)) / 256 = 0%
  91 *
  92 * For the 1 out of 4 memory-delayed tasks, this yields:
  93 *
  94 *      threads = min(4, 4)
  95 *         SOME = min(1 / 4, 1)               = 25%
  96 *         FULL = (4 - min(3, 4)) / 4         = 25%
  97 *
  98 * [ Substitute nr_cpus with 1, and you can see that it's a natural
  99 *   extension of the single-CPU model. ]
 100 *
 101 *                      Implementation
 102 *
 103 * To assess the precise time spent in each such state, we would have
 104 * to freeze the system on task changes and start/stop the state
 105 * clocks accordingly. Obviously that doesn't scale in practice.
 106 *
 107 * Because the scheduler aims to distribute the compute load evenly
 108 * among the available CPUs, we can track task state locally to each
 109 * CPU and, at much lower frequency, extrapolate the global state for
 110 * the cumulative stall times and the running averages.
 111 *
 112 * For each runqueue, we track:
 113 *
 114 *         tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
 115 *         tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
 116 *      tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
 117 *
 118 * and then periodically aggregate:
 119 *
 120 *      tNONIDLE = sum(tNONIDLE[i])
 121 *
 122 *         tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
 123 *         tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
 124 *
 125 *         %SOME = tSOME / period
 126 *         %FULL = tFULL / period
 127 *
 128 * This gives us an approximation of pressure that is practical
 129 * cost-wise, yet way more sensitive and accurate than periodic
 130 * sampling of the aggregate task states would be.
 131 */
 132
 133#include "../workqueue_internal.h"
 134#include <linux/sched/loadavg.h>
 135#include <linux/seq_file.h>
 136#include <linux/proc_fs.h>
 137#include <linux/seqlock.h>
 138#include <linux/uaccess.h>
 139#include <linux/cgroup.h>
 140#include <linux/module.h>
 141#include <linux/sched.h>
 142#include <linux/ctype.h>
 143#include <linux/file.h>
 144#include <linux/poll.h>
 145#include <linux/psi.h>
 146#include "sched.h"
 147
 148static int psi_bug __read_mostly;
 149
 150DEFINE_STATIC_KEY_FALSE(psi_disabled);
 151DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
 152
 153#ifdef CONFIG_PSI_DEFAULT_DISABLED
 154static bool psi_enable;
 155#else
 156static bool psi_enable = true;
 157#endif
 158static int __init setup_psi(char *str)
 159{
 160        return kstrtobool(str, &psi_enable) == 0;
 161}
 162__setup("psi=", setup_psi);
 163
 164/* Running averages - we need to be higher-res than loadavg */
 165#define PSI_FREQ        (2*HZ+1)        /* 2 sec intervals */
 166#define EXP_10s         1677            /* 1/exp(2s/10s) as fixed-point */
 167#define EXP_60s         1981            /* 1/exp(2s/60s) */
 168#define EXP_300s        2034            /* 1/exp(2s/300s) */
 169
 170/* PSI trigger definitions */
 171#define WINDOW_MIN_US 500000    /* Min window size is 500ms */
 172#define WINDOW_MAX_US 10000000  /* Max window size is 10s */
 173#define UPDATES_PER_WINDOW 10   /* 10 updates per window */
 174
 175/* Sampling frequency in nanoseconds */
 176static u64 psi_period __read_mostly;
 177
 178/* System-level pressure and stall tracking */
 179static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
 180struct psi_group psi_system = {
 181        .pcpu = &system_group_pcpu,
 182};
 183
 184static void psi_avgs_work(struct work_struct *work);
 185
 186static void poll_timer_fn(struct timer_list *t);
 187
 188static void group_init(struct psi_group *group)
 189{
 190        int cpu;
 191
 192        for_each_possible_cpu(cpu)
 193                seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
 194        group->avg_last_update = sched_clock();
 195        group->avg_next_update = group->avg_last_update + psi_period;
 196        INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
 197        mutex_init(&group->avgs_lock);
 198        /* Init trigger-related members */
 199        mutex_init(&group->trigger_lock);
 200        INIT_LIST_HEAD(&group->triggers);
 201        memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
 202        group->poll_states = 0;
 203        group->poll_min_period = U32_MAX;
 204        memset(group->polling_total, 0, sizeof(group->polling_total));
 205        group->polling_next_update = ULLONG_MAX;
 206        group->polling_until = 0;
 207        init_waitqueue_head(&group->poll_wait);
 208        timer_setup(&group->poll_timer, poll_timer_fn, 0);
 209        rcu_assign_pointer(group->poll_task, NULL);
 210}
 211
 212void __init psi_init(void)
 213{
 214        if (!psi_enable) {
 215                static_branch_enable(&psi_disabled);
 216                return;
 217        }
 218
 219        if (!cgroup_psi_enabled())
 220                static_branch_disable(&psi_cgroups_enabled);
 221
 222        psi_period = jiffies_to_nsecs(PSI_FREQ);
 223        group_init(&psi_system);
 224}
 225
 226static bool test_state(unsigned int *tasks, enum psi_states state)
 227{
 228        switch (state) {
 229        case PSI_IO_SOME:
 230                return unlikely(tasks[NR_IOWAIT]);
 231        case PSI_IO_FULL:
 232                return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
 233        case PSI_MEM_SOME:
 234                return unlikely(tasks[NR_MEMSTALL]);
 235        case PSI_MEM_FULL:
 236                return unlikely(tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]);
 237        case PSI_CPU_SOME:
 238                return unlikely(tasks[NR_RUNNING] > tasks[NR_ONCPU]);
 239        case PSI_CPU_FULL:
 240                return unlikely(tasks[NR_RUNNING] && !tasks[NR_ONCPU]);
 241        case PSI_NONIDLE:
 242                return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
 243                        tasks[NR_RUNNING];
 244        default:
 245                return false;
 246        }
 247}
 248
 249static void get_recent_times(struct psi_group *group, int cpu,
 250                             enum psi_aggregators aggregator, u32 *times,
 251                             u32 *pchanged_states)
 252{
 253        struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
 254        u64 now, state_start;
 255        enum psi_states s;
 256        unsigned int seq;
 257        u32 state_mask;
 258
 259        *pchanged_states = 0;
 260
 261        /* Snapshot a coherent view of the CPU state */
 262        do {
 263                seq = read_seqcount_begin(&groupc->seq);
 264                now = cpu_clock(cpu);
 265                memcpy(times, groupc->times, sizeof(groupc->times));
 266                state_mask = groupc->state_mask;
 267                state_start = groupc->state_start;
 268        } while (read_seqcount_retry(&groupc->seq, seq));
 269
 270        /* Calculate state time deltas against the previous snapshot */
 271        for (s = 0; s < NR_PSI_STATES; s++) {
 272                u32 delta;
 273                /*
 274                 * In addition to already concluded states, we also
 275                 * incorporate currently active states on the CPU,
 276                 * since states may last for many sampling periods.
 277                 *
 278                 * This way we keep our delta sampling buckets small
 279                 * (u32) and our reported pressure close to what's
 280                 * actually happening.
 281                 */
 282                if (state_mask & (1 << s))
 283                        times[s] += now - state_start;
 284
 285                delta = times[s] - groupc->times_prev[aggregator][s];
 286                groupc->times_prev[aggregator][s] = times[s];
 287
 288                times[s] = delta;
 289                if (delta)
 290                        *pchanged_states |= (1 << s);
 291        }
 292}
 293
 294static void calc_avgs(unsigned long avg[3], int missed_periods,
 295                      u64 time, u64 period)
 296{
 297        unsigned long pct;
 298
 299        /* Fill in zeroes for periods of no activity */
 300        if (missed_periods) {
 301                avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
 302                avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
 303                avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
 304        }
 305
 306        /* Sample the most recent active period */
 307        pct = div_u64(time * 100, period);
 308        pct *= FIXED_1;
 309        avg[0] = calc_load(avg[0], EXP_10s, pct);
 310        avg[1] = calc_load(avg[1], EXP_60s, pct);
 311        avg[2] = calc_load(avg[2], EXP_300s, pct);
 312}
 313
 314static void collect_percpu_times(struct psi_group *group,
 315                                 enum psi_aggregators aggregator,
 316                                 u32 *pchanged_states)
 317{
 318        u64 deltas[NR_PSI_STATES - 1] = { 0, };
 319        unsigned long nonidle_total = 0;
 320        u32 changed_states = 0;
 321        int cpu;
 322        int s;
 323
 324        /*
 325         * Collect the per-cpu time buckets and average them into a
 326         * single time sample that is normalized to wallclock time.
 327         *
 328         * For averaging, each CPU is weighted by its non-idle time in
 329         * the sampling period. This eliminates artifacts from uneven
 330         * loading, or even entirely idle CPUs.
 331         */
 332        for_each_possible_cpu(cpu) {
 333                u32 times[NR_PSI_STATES];
 334                u32 nonidle;
 335                u32 cpu_changed_states;
 336
 337                get_recent_times(group, cpu, aggregator, times,
 338                                &cpu_changed_states);
 339                changed_states |= cpu_changed_states;
 340
 341                nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
 342                nonidle_total += nonidle;
 343
 344                for (s = 0; s < PSI_NONIDLE; s++)
 345                        deltas[s] += (u64)times[s] * nonidle;
 346        }
 347
 348        /*
 349         * Integrate the sample into the running statistics that are
 350         * reported to userspace: the cumulative stall times and the
 351         * decaying averages.
 352         *
 353         * Pressure percentages are sampled at PSI_FREQ. We might be
 354         * called more often when the user polls more frequently than
 355         * that; we might be called less often when there is no task
 356         * activity, thus no data, and clock ticks are sporadic. The
 357         * below handles both.
 358         */
 359
 360        /* total= */
 361        for (s = 0; s < NR_PSI_STATES - 1; s++)
 362                group->total[aggregator][s] +=
 363                                div_u64(deltas[s], max(nonidle_total, 1UL));
 364
 365        if (pchanged_states)
 366                *pchanged_states = changed_states;
 367}
 368
 369static u64 update_averages(struct psi_group *group, u64 now)
 370{
 371        unsigned long missed_periods = 0;
 372        u64 expires, period;
 373        u64 avg_next_update;
 374        int s;
 375
 376        /* avgX= */
 377        expires = group->avg_next_update;
 378        if (now - expires >= psi_period)
 379                missed_periods = div_u64(now - expires, psi_period);
 380
 381        /*
 382         * The periodic clock tick can get delayed for various
 383         * reasons, especially on loaded systems. To avoid clock
 384         * drift, we schedule the clock in fixed psi_period intervals.
 385         * But the deltas we sample out of the per-cpu buckets above
 386         * are based on the actual time elapsing between clock ticks.
 387         */
 388        avg_next_update = expires + ((1 + missed_periods) * psi_period);
 389        period = now - (group->avg_last_update + (missed_periods * psi_period));
 390        group->avg_last_update = now;
 391
 392        for (s = 0; s < NR_PSI_STATES - 1; s++) {
 393                u32 sample;
 394
 395                sample = group->total[PSI_AVGS][s] - group->avg_total[s];
 396                /*
 397                 * Due to the lockless sampling of the time buckets,
 398                 * recorded time deltas can slip into the next period,
 399                 * which under full pressure can result in samples in
 400                 * excess of the period length.
 401                 *
 402                 * We don't want to report non-sensical pressures in
 403                 * excess of 100%, nor do we want to drop such events
 404                 * on the floor. Instead we punt any overage into the
 405                 * future until pressure subsides. By doing this we
 406                 * don't underreport the occurring pressure curve, we
 407                 * just report it delayed by one period length.
 408                 *
 409                 * The error isn't cumulative. As soon as another
 410                 * delta slips from a period P to P+1, by definition
 411                 * it frees up its time T in P.
 412                 */
 413                if (sample > period)
 414                        sample = period;
 415                group->avg_total[s] += sample;
 416                calc_avgs(group->avg[s], missed_periods, sample, period);
 417        }
 418
 419        return avg_next_update;
 420}
 421
 422static void psi_avgs_work(struct work_struct *work)
 423{
 424        struct delayed_work *dwork;
 425        struct psi_group *group;
 426        u32 changed_states;
 427        bool nonidle;
 428        u64 now;
 429
 430        dwork = to_delayed_work(work);
 431        group = container_of(dwork, struct psi_group, avgs_work);
 432
 433        mutex_lock(&group->avgs_lock);
 434
 435        now = sched_clock();
 436
 437        collect_percpu_times(group, PSI_AVGS, &changed_states);
 438        nonidle = changed_states & (1 << PSI_NONIDLE);
 439        /*
 440         * If there is task activity, periodically fold the per-cpu
 441         * times and feed samples into the running averages. If things
 442         * are idle and there is no data to process, stop the clock.
 443         * Once restarted, we'll catch up the running averages in one
 444         * go - see calc_avgs() and missed_periods.
 445         */
 446        if (now >= group->avg_next_update)
 447                group->avg_next_update = update_averages(group, now);
 448
 449        if (nonidle) {
 450                schedule_delayed_work(dwork, nsecs_to_jiffies(
 451                                group->avg_next_update - now) + 1);
 452        }
 453
 454        mutex_unlock(&group->avgs_lock);
 455}
 456
 457/* Trigger tracking window manipulations */
 458static void window_reset(struct psi_window *win, u64 now, u64 value,
 459                         u64 prev_growth)
 460{
 461        win->start_time = now;
 462        win->start_value = value;
 463        win->prev_growth = prev_growth;
 464}
 465
 466/*
 467 * PSI growth tracking window update and growth calculation routine.
 468 *
 469 * This approximates a sliding tracking window by interpolating
 470 * partially elapsed windows using historical growth data from the
 471 * previous intervals. This minimizes memory requirements (by not storing
 472 * all the intermediate values in the previous window) and simplifies
 473 * the calculations. It works well because PSI signal changes only in
 474 * positive direction and over relatively small window sizes the growth
 475 * is close to linear.
 476 */
 477static u64 window_update(struct psi_window *win, u64 now, u64 value)
 478{
 479        u64 elapsed;
 480        u64 growth;
 481
 482        elapsed = now - win->start_time;
 483        growth = value - win->start_value;
 484        /*
 485         * After each tracking window passes win->start_value and
 486         * win->start_time get reset and win->prev_growth stores
 487         * the average per-window growth of the previous window.
 488         * win->prev_growth is then used to interpolate additional
 489         * growth from the previous window assuming it was linear.
 490         */
 491        if (elapsed > win->size)
 492                window_reset(win, now, value, growth);
 493        else {
 494                u32 remaining;
 495
 496                remaining = win->size - elapsed;
 497                growth += div64_u64(win->prev_growth * remaining, win->size);
 498        }
 499
 500        return growth;
 501}
 502
 503static void init_triggers(struct psi_group *group, u64 now)
 504{
 505        struct psi_trigger *t;
 506
 507        list_for_each_entry(t, &group->triggers, node)
 508                window_reset(&t->win, now,
 509                                group->total[PSI_POLL][t->state], 0);
 510        memcpy(group->polling_total, group->total[PSI_POLL],
 511                   sizeof(group->polling_total));
 512        group->polling_next_update = now + group->poll_min_period;
 513}
 514
 515static u64 update_triggers(struct psi_group *group, u64 now)
 516{
 517        struct psi_trigger *t;
 518        bool new_stall = false;
 519        u64 *total = group->total[PSI_POLL];
 520
 521        /*
 522         * On subsequent updates, calculate growth deltas and let
 523         * watchers know when their specified thresholds are exceeded.
 524         */
 525        list_for_each_entry(t, &group->triggers, node) {
 526                u64 growth;
 527
 528                /* Check for stall activity */
 529                if (group->polling_total[t->state] == total[t->state])
 530                        continue;
 531
 532                /*
 533                 * Multiple triggers might be looking at the same state,
 534                 * remember to update group->polling_total[] once we've
 535                 * been through all of them. Also remember to extend the
 536                 * polling time if we see new stall activity.
 537                 */
 538                new_stall = true;
 539
 540                /* Calculate growth since last update */
 541                growth = window_update(&t->win, now, total[t->state]);
 542                if (growth < t->threshold)
 543                        continue;
 544
 545                /* Limit event signaling to once per window */
 546                if (now < t->last_event_time + t->win.size)
 547                        continue;
 548
 549                /* Generate an event */
 550                if (cmpxchg(&t->event, 0, 1) == 0)
 551                        wake_up_interruptible(&t->event_wait);
 552                t->last_event_time = now;
 553        }
 554
 555        if (new_stall)
 556                memcpy(group->polling_total, total,
 557                                sizeof(group->polling_total));
 558
 559        return now + group->poll_min_period;
 560}
 561
 562/* Schedule polling if it's not already scheduled. */
 563static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
 564{
 565        struct task_struct *task;
 566
 567        /*
 568         * Do not reschedule if already scheduled.
 569         * Possible race with a timer scheduled after this check but before
 570         * mod_timer below can be tolerated because group->polling_next_update
 571         * will keep updates on schedule.
 572         */
 573        if (timer_pending(&group->poll_timer))
 574                return;
 575
 576        rcu_read_lock();
 577
 578        task = rcu_dereference(group->poll_task);
 579        /*
 580         * kworker might be NULL in case psi_trigger_destroy races with
 581         * psi_task_change (hotpath) which can't use locks
 582         */
 583        if (likely(task))
 584                mod_timer(&group->poll_timer, jiffies + delay);
 585
 586        rcu_read_unlock();
 587}
 588
 589static void psi_poll_work(struct psi_group *group)
 590{
 591        u32 changed_states;
 592        u64 now;
 593
 594        mutex_lock(&group->trigger_lock);
 595
 596        now = sched_clock();
 597
 598        collect_percpu_times(group, PSI_POLL, &changed_states);
 599
 600        if (changed_states & group->poll_states) {
 601                /* Initialize trigger windows when entering polling mode */
 602                if (now > group->polling_until)
 603                        init_triggers(group, now);
 604
 605                /*
 606                 * Keep the monitor active for at least the duration of the
 607                 * minimum tracking window as long as monitor states are
 608                 * changing.
 609                 */
 610                group->polling_until = now +
 611                        group->poll_min_period * UPDATES_PER_WINDOW;
 612        }
 613
 614        if (now > group->polling_until) {
 615                group->polling_next_update = ULLONG_MAX;
 616                goto out;
 617        }
 618
 619        if (now >= group->polling_next_update)
 620                group->polling_next_update = update_triggers(group, now);
 621
 622        psi_schedule_poll_work(group,
 623                nsecs_to_jiffies(group->polling_next_update - now) + 1);
 624
 625out:
 626        mutex_unlock(&group->trigger_lock);
 627}
 628
 629static int psi_poll_worker(void *data)
 630{
 631        struct psi_group *group = (struct psi_group *)data;
 632
 633        sched_set_fifo_low(current);
 634
 635        while (true) {
 636                wait_event_interruptible(group->poll_wait,
 637                                atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
 638                                kthread_should_stop());
 639                if (kthread_should_stop())
 640                        break;
 641
 642                psi_poll_work(group);
 643        }
 644        return 0;
 645}
 646
 647static void poll_timer_fn(struct timer_list *t)
 648{
 649        struct psi_group *group = from_timer(group, t, poll_timer);
 650
 651        atomic_set(&group->poll_wakeup, 1);
 652        wake_up_interruptible(&group->poll_wait);
 653}
 654
 655static void record_times(struct psi_group_cpu *groupc, u64 now)
 656{
 657        u32 delta;
 658
 659        delta = now - groupc->state_start;
 660        groupc->state_start = now;
 661
 662        if (groupc->state_mask & (1 << PSI_IO_SOME)) {
 663                groupc->times[PSI_IO_SOME] += delta;
 664                if (groupc->state_mask & (1 << PSI_IO_FULL))
 665                        groupc->times[PSI_IO_FULL] += delta;
 666        }
 667
 668        if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
 669                groupc->times[PSI_MEM_SOME] += delta;
 670                if (groupc->state_mask & (1 << PSI_MEM_FULL))
 671                        groupc->times[PSI_MEM_FULL] += delta;
 672        }
 673
 674        if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
 675                groupc->times[PSI_CPU_SOME] += delta;
 676                if (groupc->state_mask & (1 << PSI_CPU_FULL))
 677                        groupc->times[PSI_CPU_FULL] += delta;
 678        }
 679
 680        if (groupc->state_mask & (1 << PSI_NONIDLE))
 681                groupc->times[PSI_NONIDLE] += delta;
 682}
 683
 684static void psi_group_change(struct psi_group *group, int cpu,
 685                             unsigned int clear, unsigned int set, u64 now,
 686                             bool wake_clock)
 687{
 688        struct psi_group_cpu *groupc;
 689        u32 state_mask = 0;
 690        unsigned int t, m;
 691        enum psi_states s;
 692
 693        groupc = per_cpu_ptr(group->pcpu, cpu);
 694
 695        /*
 696         * First we assess the aggregate resource states this CPU's
 697         * tasks have been in since the last change, and account any
 698         * SOME and FULL time these may have resulted in.
 699         *
 700         * Then we update the task counts according to the state
 701         * change requested through the @clear and @set bits.
 702         */
 703        write_seqcount_begin(&groupc->seq);
 704
 705        record_times(groupc, now);
 706
 707        for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
 708                if (!(m & (1 << t)))
 709                        continue;
 710                if (groupc->tasks[t]) {
 711                        groupc->tasks[t]--;
 712                } else if (!psi_bug) {
 713                        printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
 714                                        cpu, t, groupc->tasks[0],
 715                                        groupc->tasks[1], groupc->tasks[2],
 716                                        groupc->tasks[3], clear, set);
 717                        psi_bug = 1;
 718                }
 719        }
 720
 721        for (t = 0; set; set &= ~(1 << t), t++)
 722                if (set & (1 << t))
 723                        groupc->tasks[t]++;
 724
 725        /* Calculate state mask representing active states */
 726        for (s = 0; s < NR_PSI_STATES; s++) {
 727                if (test_state(groupc->tasks, s))
 728                        state_mask |= (1 << s);
 729        }
 730
 731        /*
 732         * Since we care about lost potential, a memstall is FULL
 733         * when there are no other working tasks, but also when
 734         * the CPU is actively reclaiming and nothing productive
 735         * could run even if it were runnable. So when the current
 736         * task in a cgroup is in_memstall, the corresponding groupc
 737         * on that cpu is in PSI_MEM_FULL state.
 738         */
 739        if (unlikely(groupc->tasks[NR_ONCPU] && cpu_curr(cpu)->in_memstall))
 740                state_mask |= (1 << PSI_MEM_FULL);
 741
 742        groupc->state_mask = state_mask;
 743
 744        write_seqcount_end(&groupc->seq);
 745
 746        if (state_mask & group->poll_states)
 747                psi_schedule_poll_work(group, 1);
 748
 749        if (wake_clock && !delayed_work_pending(&group->avgs_work))
 750                schedule_delayed_work(&group->avgs_work, PSI_FREQ);
 751}
 752
 753static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
 754{
 755        if (*iter == &psi_system)
 756                return NULL;
 757
 758#ifdef CONFIG_CGROUPS
 759        if (static_branch_likely(&psi_cgroups_enabled)) {
 760                struct cgroup *cgroup = NULL;
 761
 762                if (!*iter)
 763                        cgroup = task->cgroups->dfl_cgrp;
 764                else
 765                        cgroup = cgroup_parent(*iter);
 766
 767                if (cgroup && cgroup_parent(cgroup)) {
 768                        *iter = cgroup;
 769                        return cgroup_psi(cgroup);
 770                }
 771        }
 772#endif
 773        *iter = &psi_system;
 774        return &psi_system;
 775}
 776
 777static void psi_flags_change(struct task_struct *task, int clear, int set)
 778{
 779        if (((task->psi_flags & set) ||
 780             (task->psi_flags & clear) != clear) &&
 781            !psi_bug) {
 782                printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
 783                                task->pid, task->comm, task_cpu(task),
 784                                task->psi_flags, clear, set);
 785                psi_bug = 1;
 786        }
 787
 788        task->psi_flags &= ~clear;
 789        task->psi_flags |= set;
 790}
 791
 792void psi_task_change(struct task_struct *task, int clear, int set)
 793{
 794        int cpu = task_cpu(task);
 795        struct psi_group *group;
 796        bool wake_clock = true;
 797        void *iter = NULL;
 798        u64 now;
 799
 800        if (!task->pid)
 801                return;
 802
 803        psi_flags_change(task, clear, set);
 804
 805        now = cpu_clock(cpu);
 806        /*
 807         * Periodic aggregation shuts off if there is a period of no
 808         * task changes, so we wake it back up if necessary. However,
 809         * don't do this if the task change is the aggregation worker
 810         * itself going to sleep, or we'll ping-pong forever.
 811         */
 812        if (unlikely((clear & TSK_RUNNING) &&
 813                     (task->flags & PF_WQ_WORKER) &&
 814                     wq_worker_last_func(task) == psi_avgs_work))
 815                wake_clock = false;
 816
 817        while ((group = iterate_groups(task, &iter)))
 818                psi_group_change(group, cpu, clear, set, now, wake_clock);
 819}
 820
 821void psi_task_switch(struct task_struct *prev, struct task_struct *next,
 822                     bool sleep)
 823{
 824        struct psi_group *group, *common = NULL;
 825        int cpu = task_cpu(prev);
 826        void *iter;
 827        u64 now = cpu_clock(cpu);
 828
 829        if (next->pid) {
 830                bool identical_state;
 831
 832                psi_flags_change(next, 0, TSK_ONCPU);
 833                /*
 834                 * When switching between tasks that have an identical
 835                 * runtime state, the cgroup that contains both tasks
 836                 * runtime state, the cgroup that contains both tasks
 837                 * we reach the first common ancestor. Iterate @next's
 838                 * ancestors only until we encounter @prev's ONCPU.
 839                 */
 840                identical_state = prev->psi_flags == next->psi_flags;
 841                iter = NULL;
 842                while ((group = iterate_groups(next, &iter))) {
 843                        if (identical_state &&
 844                            per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
 845                                common = group;
 846                                break;
 847                        }
 848
 849                        psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
 850                }
 851        }
 852
 853        if (prev->pid) {
 854                int clear = TSK_ONCPU, set = 0;
 855
 856                /*
 857                 * When we're going to sleep, psi_dequeue() lets us handle
 858                 * TSK_RUNNING and TSK_IOWAIT here, where we can combine it
 859                 * with TSK_ONCPU and save walking common ancestors twice.
 860                 */
 861                if (sleep) {
 862                        clear |= TSK_RUNNING;
 863                        if (prev->in_iowait)
 864                                set |= TSK_IOWAIT;
 865                }
 866
 867                psi_flags_change(prev, clear, set);
 868
 869                iter = NULL;
 870                while ((group = iterate_groups(prev, &iter)) && group != common)
 871                        psi_group_change(group, cpu, clear, set, now, true);
 872
 873                /*
 874                 * TSK_ONCPU is handled up to the common ancestor. If we're tasked
 875                 * with dequeuing too, finish that for the rest of the hierarchy.
 876                 */
 877                if (sleep) {
 878                        clear &= ~TSK_ONCPU;
 879                        for (; group; group = iterate_groups(prev, &iter))
 880                                psi_group_change(group, cpu, clear, set, now, true);
 881                }
 882        }
 883}
 884
 885/**
 886 * psi_memstall_enter - mark the beginning of a memory stall section
 887 * @flags: flags to handle nested sections
 888 *
 889 * Marks the calling task as being stalled due to a lack of memory,
 890 * such as waiting for a refault or performing reclaim.
 891 */
 892void psi_memstall_enter(unsigned long *flags)
 893{
 894        struct rq_flags rf;
 895        struct rq *rq;
 896
 897        if (static_branch_likely(&psi_disabled))
 898                return;
 899
 900        *flags = current->in_memstall;
 901        if (*flags)
 902                return;
 903        /*
 904         * in_memstall setting & accounting needs to be atomic wrt
 905         * changes to the task's scheduling state, otherwise we can
 906         * race with CPU migration.
 907         */
 908        rq = this_rq_lock_irq(&rf);
 909
 910        current->in_memstall = 1;
 911        psi_task_change(current, 0, TSK_MEMSTALL);
 912
 913        rq_unlock_irq(rq, &rf);
 914}
 915
 916/**
 917 * psi_memstall_leave - mark the end of an memory stall section
 918 * @flags: flags to handle nested memdelay sections
 919 *
 920 * Marks the calling task as no longer stalled due to lack of memory.
 921 */
 922void psi_memstall_leave(unsigned long *flags)
 923{
 924        struct rq_flags rf;
 925        struct rq *rq;
 926
 927        if (static_branch_likely(&psi_disabled))
 928                return;
 929
 930        if (*flags)
 931                return;
 932        /*
 933         * in_memstall clearing & accounting needs to be atomic wrt
 934         * changes to the task's scheduling state, otherwise we could
 935         * race with CPU migration.
 936         */
 937        rq = this_rq_lock_irq(&rf);
 938
 939        current->in_memstall = 0;
 940        psi_task_change(current, TSK_MEMSTALL, 0);
 941
 942        rq_unlock_irq(rq, &rf);
 943}
 944
 945#ifdef CONFIG_CGROUPS
 946int psi_cgroup_alloc(struct cgroup *cgroup)
 947{
 948        if (static_branch_likely(&psi_disabled))
 949                return 0;
 950
 951        cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
 952        if (!cgroup->psi.pcpu)
 953                return -ENOMEM;
 954        group_init(&cgroup->psi);
 955        return 0;
 956}
 957
 958void psi_cgroup_free(struct cgroup *cgroup)
 959{
 960        if (static_branch_likely(&psi_disabled))
 961                return;
 962
 963        cancel_delayed_work_sync(&cgroup->psi.avgs_work);
 964        free_percpu(cgroup->psi.pcpu);
 965        /* All triggers must be removed by now */
 966        WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
 967}
 968
 969/**
 970 * cgroup_move_task - move task to a different cgroup
 971 * @task: the task
 972 * @to: the target css_set
 973 *
 974 * Move task to a new cgroup and safely migrate its associated stall
 975 * state between the different groups.
 976 *
 977 * This function acquires the task's rq lock to lock out concurrent
 978 * changes to the task's scheduling state and - in case the task is
 979 * running - concurrent changes to its stall state.
 980 */
 981void cgroup_move_task(struct task_struct *task, struct css_set *to)
 982{
 983        unsigned int task_flags;
 984        struct rq_flags rf;
 985        struct rq *rq;
 986
 987        if (static_branch_likely(&psi_disabled)) {
 988                /*
 989                 * Lame to do this here, but the scheduler cannot be locked
 990                 * from the outside, so we move cgroups from inside sched/.
 991                 */
 992                rcu_assign_pointer(task->cgroups, to);
 993                return;
 994        }
 995
 996        rq = task_rq_lock(task, &rf);
 997
 998        /*
 999         * We may race with schedule() dropping the rq lock between
1000         * deactivating prev and switching to next. Because the psi
1001         * updates from the deactivation are deferred to the switch
1002         * callback to save cgroup tree updates, the task's scheduling
1003         * state here is not coherent with its psi state:
1004         *
1005         * schedule()                   cgroup_move_task()
1006         *   rq_lock()
1007         *   deactivate_task()
1008         *     p->on_rq = 0
1009         *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1010         *   pick_next_task()
1011         *     rq_unlock()
1012         *                                rq_lock()
1013         *                                psi_task_change() // old cgroup
1014         *                                task->cgroups = to
1015         *                                psi_task_change() // new cgroup
1016         *                                rq_unlock()
1017         *     rq_lock()
1018         *   psi_sched_switch() // does deferred updates in new cgroup
1019         *
1020         * Don't rely on the scheduling state. Use psi_flags instead.
1021         */
1022        task_flags = task->psi_flags;
1023
1024        if (task_flags)
1025                psi_task_change(task, task_flags, 0);
1026
1027        /* See comment above */
1028        rcu_assign_pointer(task->cgroups, to);
1029
1030        if (task_flags)
1031                psi_task_change(task, 0, task_flags);
1032
1033        task_rq_unlock(rq, task, &rf);
1034}
1035#endif /* CONFIG_CGROUPS */
1036
1037int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1038{
1039        int full;
1040        u64 now;
1041
1042        if (static_branch_likely(&psi_disabled))
1043                return -EOPNOTSUPP;
1044
1045        /* Update averages before reporting them */
1046        mutex_lock(&group->avgs_lock);
1047        now = sched_clock();
1048        collect_percpu_times(group, PSI_AVGS, NULL);
1049        if (now >= group->avg_next_update)
1050                group->avg_next_update = update_averages(group, now);
1051        mutex_unlock(&group->avgs_lock);
1052
1053        for (full = 0; full < 2; full++) {
1054                unsigned long avg[3];
1055                u64 total;
1056                int w;
1057
1058                for (w = 0; w < 3; w++)
1059                        avg[w] = group->avg[res * 2 + full][w];
1060                total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1061                                NSEC_PER_USEC);
1062
1063                seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1064                           full ? "full" : "some",
1065                           LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1066                           LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1067                           LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1068                           total);
1069        }
1070
1071        return 0;
1072}
1073
1074static int psi_io_show(struct seq_file *m, void *v)
1075{
1076        return psi_show(m, &psi_system, PSI_IO);
1077}
1078
1079static int psi_memory_show(struct seq_file *m, void *v)
1080{
1081        return psi_show(m, &psi_system, PSI_MEM);
1082}
1083
1084static int psi_cpu_show(struct seq_file *m, void *v)
1085{
1086        return psi_show(m, &psi_system, PSI_CPU);
1087}
1088
1089static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *))
1090{
1091        if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE))
1092                return -EPERM;
1093
1094        return single_open(file, psi_show, NULL);
1095}
1096
1097static int psi_io_open(struct inode *inode, struct file *file)
1098{
1099        return psi_open(file, psi_io_show);
1100}
1101
1102static int psi_memory_open(struct inode *inode, struct file *file)
1103{
1104        return psi_open(file, psi_memory_show);
1105}
1106
1107static int psi_cpu_open(struct inode *inode, struct file *file)
1108{
1109        return psi_open(file, psi_cpu_show);
1110}
1111
1112struct psi_trigger *psi_trigger_create(struct psi_group *group,
1113                        char *buf, size_t nbytes, enum psi_res res)
1114{
1115        struct psi_trigger *t;
1116        enum psi_states state;
1117        u32 threshold_us;
1118        u32 window_us;
1119
1120        if (static_branch_likely(&psi_disabled))
1121                return ERR_PTR(-EOPNOTSUPP);
1122
1123        if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1124                state = PSI_IO_SOME + res * 2;
1125        else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1126                state = PSI_IO_FULL + res * 2;
1127        else
1128                return ERR_PTR(-EINVAL);
1129
1130        if (state >= PSI_NONIDLE)
1131                return ERR_PTR(-EINVAL);
1132
1133        if (window_us < WINDOW_MIN_US ||
1134                window_us > WINDOW_MAX_US)
1135                return ERR_PTR(-EINVAL);
1136
1137        /* Check threshold */
1138        if (threshold_us == 0 || threshold_us > window_us)
1139                return ERR_PTR(-EINVAL);
1140
1141        t = kmalloc(sizeof(*t), GFP_KERNEL);
1142        if (!t)
1143                return ERR_PTR(-ENOMEM);
1144
1145        t->group = group;
1146        t->state = state;
1147        t->threshold = threshold_us * NSEC_PER_USEC;
1148        t->win.size = window_us * NSEC_PER_USEC;
1149        window_reset(&t->win, 0, 0, 0);
1150
1151        t->event = 0;
1152        t->last_event_time = 0;
1153        init_waitqueue_head(&t->event_wait);
1154        kref_init(&t->refcount);
1155
1156        mutex_lock(&group->trigger_lock);
1157
1158        if (!rcu_access_pointer(group->poll_task)) {
1159                struct task_struct *task;
1160
1161                task = kthread_create(psi_poll_worker, group, "psimon");
1162                if (IS_ERR(task)) {
1163                        kfree(t);
1164                        mutex_unlock(&group->trigger_lock);
1165                        return ERR_CAST(task);
1166                }
1167                atomic_set(&group->poll_wakeup, 0);
1168                wake_up_process(task);
1169                rcu_assign_pointer(group->poll_task, task);
1170        }
1171
1172        list_add(&t->node, &group->triggers);
1173        group->poll_min_period = min(group->poll_min_period,
1174                div_u64(t->win.size, UPDATES_PER_WINDOW));
1175        group->nr_triggers[t->state]++;
1176        group->poll_states |= (1 << t->state);
1177
1178        mutex_unlock(&group->trigger_lock);
1179
1180        return t;
1181}
1182
1183static void psi_trigger_destroy(struct kref *ref)
1184{
1185        struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
1186        struct psi_group *group = t->group;
1187        struct task_struct *task_to_destroy = NULL;
1188
1189        if (static_branch_likely(&psi_disabled))
1190                return;
1191
1192        /*
1193         * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1194         * from under a polling process.
1195         */
1196        wake_up_interruptible(&t->event_wait);
1197
1198        mutex_lock(&group->trigger_lock);
1199
1200        if (!list_empty(&t->node)) {
1201                struct psi_trigger *tmp;
1202                u64 period = ULLONG_MAX;
1203
1204                list_del(&t->node);
1205                group->nr_triggers[t->state]--;
1206                if (!group->nr_triggers[t->state])
1207                        group->poll_states &= ~(1 << t->state);
1208                /* reset min update period for the remaining triggers */
1209                list_for_each_entry(tmp, &group->triggers, node)
1210                        period = min(period, div_u64(tmp->win.size,
1211                                        UPDATES_PER_WINDOW));
1212                group->poll_min_period = period;
1213                /* Destroy poll_task when the last trigger is destroyed */
1214                if (group->poll_states == 0) {
1215                        group->polling_until = 0;
1216                        task_to_destroy = rcu_dereference_protected(
1217                                        group->poll_task,
1218                                        lockdep_is_held(&group->trigger_lock));
1219                        rcu_assign_pointer(group->poll_task, NULL);
1220                        del_timer(&group->poll_timer);
1221                }
1222        }
1223
1224        mutex_unlock(&group->trigger_lock);
1225
1226        /*
1227         * Wait for both *trigger_ptr from psi_trigger_replace and
1228         * poll_task RCUs to complete their read-side critical sections
1229         * before destroying the trigger and optionally the poll_task
1230         */
1231        synchronize_rcu();
1232        /*
1233         * Stop kthread 'psimon' after releasing trigger_lock to prevent a
1234         * deadlock while waiting for psi_poll_work to acquire trigger_lock
1235         */
1236        if (task_to_destroy) {
1237                /*
1238                 * After the RCU grace period has expired, the worker
1239                 * can no longer be found through group->poll_task.
1240                 */
1241                kthread_stop(task_to_destroy);
1242        }
1243        kfree(t);
1244}
1245
1246void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
1247{
1248        struct psi_trigger *old = *trigger_ptr;
1249
1250        if (static_branch_likely(&psi_disabled))
1251                return;
1252
1253        rcu_assign_pointer(*trigger_ptr, new);
1254        if (old)
1255                kref_put(&old->refcount, psi_trigger_destroy);
1256}
1257
1258__poll_t psi_trigger_poll(void **trigger_ptr,
1259                                struct file *file, poll_table *wait)
1260{
1261        __poll_t ret = DEFAULT_POLLMASK;
1262        struct psi_trigger *t;
1263
1264        if (static_branch_likely(&psi_disabled))
1265                return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1266
1267        rcu_read_lock();
1268
1269        t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
1270        if (!t) {
1271                rcu_read_unlock();
1272                return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1273        }
1274        kref_get(&t->refcount);
1275
1276        rcu_read_unlock();
1277
1278        poll_wait(file, &t->event_wait, wait);
1279
1280        if (cmpxchg(&t->event, 1, 0) == 1)
1281                ret |= EPOLLPRI;
1282
1283        kref_put(&t->refcount, psi_trigger_destroy);
1284
1285        return ret;
1286}
1287
1288static ssize_t psi_write(struct file *file, const char __user *user_buf,
1289                         size_t nbytes, enum psi_res res)
1290{
1291        char buf[32];
1292        size_t buf_size;
1293        struct seq_file *seq;
1294        struct psi_trigger *new;
1295
1296        if (static_branch_likely(&psi_disabled))
1297                return -EOPNOTSUPP;
1298
1299        if (!nbytes)
1300                return -EINVAL;
1301
1302        buf_size = min(nbytes, sizeof(buf));
1303        if (copy_from_user(buf, user_buf, buf_size))
1304                return -EFAULT;
1305
1306        buf[buf_size - 1] = '\0';
1307
1308        new = psi_trigger_create(&psi_system, buf, nbytes, res);
1309        if (IS_ERR(new))
1310                return PTR_ERR(new);
1311
1312        seq = file->private_data;
1313        /* Take seq->lock to protect seq->private from concurrent writes */
1314        mutex_lock(&seq->lock);
1315        psi_trigger_replace(&seq->private, new);
1316        mutex_unlock(&seq->lock);
1317
1318        return nbytes;
1319}
1320
1321static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1322                            size_t nbytes, loff_t *ppos)
1323{
1324        return psi_write(file, user_buf, nbytes, PSI_IO);
1325}
1326
1327static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1328                                size_t nbytes, loff_t *ppos)
1329{
1330        return psi_write(file, user_buf, nbytes, PSI_MEM);
1331}
1332
1333static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1334                             size_t nbytes, loff_t *ppos)
1335{
1336        return psi_write(file, user_buf, nbytes, PSI_CPU);
1337}
1338
1339static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1340{
1341        struct seq_file *seq = file->private_data;
1342
1343        return psi_trigger_poll(&seq->private, file, wait);
1344}
1345
1346static int psi_fop_release(struct inode *inode, struct file *file)
1347{
1348        struct seq_file *seq = file->private_data;
1349
1350        psi_trigger_replace(&seq->private, NULL);
1351        return single_release(inode, file);
1352}
1353
1354static const struct proc_ops psi_io_proc_ops = {
1355        .proc_open      = psi_io_open,
1356        .proc_read      = seq_read,
1357        .proc_lseek     = seq_lseek,
1358        .proc_write     = psi_io_write,
1359        .proc_poll      = psi_fop_poll,
1360        .proc_release   = psi_fop_release,
1361};
1362
1363static const struct proc_ops psi_memory_proc_ops = {
1364        .proc_open      = psi_memory_open,
1365        .proc_read      = seq_read,
1366        .proc_lseek     = seq_lseek,
1367        .proc_write     = psi_memory_write,
1368        .proc_poll      = psi_fop_poll,
1369        .proc_release   = psi_fop_release,
1370};
1371
1372static const struct proc_ops psi_cpu_proc_ops = {
1373        .proc_open      = psi_cpu_open,
1374        .proc_read      = seq_read,
1375        .proc_lseek     = seq_lseek,
1376        .proc_write     = psi_cpu_write,
1377        .proc_poll      = psi_fop_poll,
1378        .proc_release   = psi_fop_release,
1379};
1380
1381static int __init psi_proc_init(void)
1382{
1383        if (psi_enable) {
1384                proc_mkdir("pressure", NULL);
1385                proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1386                proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1387                proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1388        }
1389        return 0;
1390}
1391module_init(psi_proc_init);
1392