linux/kernel/sched/stats.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2
   3#ifdef CONFIG_SCHEDSTATS
   4
   5/*
   6 * Expects runqueue lock to be held for atomicity of update
   7 */
   8static inline void
   9rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
  10{
  11        if (rq) {
  12                rq->rq_sched_info.run_delay += delta;
  13                rq->rq_sched_info.pcount++;
  14        }
  15}
  16
  17/*
  18 * Expects runqueue lock to be held for atomicity of update
  19 */
  20static inline void
  21rq_sched_info_depart(struct rq *rq, unsigned long long delta)
  22{
  23        if (rq)
  24                rq->rq_cpu_time += delta;
  25}
  26
  27static inline void
  28rq_sched_info_dequeue(struct rq *rq, unsigned long long delta)
  29{
  30        if (rq)
  31                rq->rq_sched_info.run_delay += delta;
  32}
  33#define   schedstat_enabled()           static_branch_unlikely(&sched_schedstats)
  34#define __schedstat_inc(var)            do { var++; } while (0)
  35#define   schedstat_inc(var)            do { if (schedstat_enabled()) { var++; } } while (0)
  36#define __schedstat_add(var, amt)       do { var += (amt); } while (0)
  37#define   schedstat_add(var, amt)       do { if (schedstat_enabled()) { var += (amt); } } while (0)
  38#define __schedstat_set(var, val)       do { var = (val); } while (0)
  39#define   schedstat_set(var, val)       do { if (schedstat_enabled()) { var = (val); } } while (0)
  40#define   schedstat_val(var)            (var)
  41#define   schedstat_val_or_zero(var)    ((schedstat_enabled()) ? (var) : 0)
  42
  43#else /* !CONFIG_SCHEDSTATS: */
  44static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
  45static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { }
  46static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
  47# define   schedstat_enabled()          0
  48# define __schedstat_inc(var)           do { } while (0)
  49# define   schedstat_inc(var)           do { } while (0)
  50# define __schedstat_add(var, amt)      do { } while (0)
  51# define   schedstat_add(var, amt)      do { } while (0)
  52# define __schedstat_set(var, val)      do { } while (0)
  53# define   schedstat_set(var, val)      do { } while (0)
  54# define   schedstat_val(var)           0
  55# define   schedstat_val_or_zero(var)   0
  56#endif /* CONFIG_SCHEDSTATS */
  57
  58#ifdef CONFIG_PSI
  59/*
  60 * PSI tracks state that persists across sleeps, such as iowaits and
  61 * memory stalls. As a result, it has to distinguish between sleeps,
  62 * where a task's runnable state changes, and requeues, where a task
  63 * and its state are being moved between CPUs and runqueues.
  64 */
  65static inline void psi_enqueue(struct task_struct *p, bool wakeup)
  66{
  67        int clear = 0, set = TSK_RUNNING;
  68
  69        if (static_branch_likely(&psi_disabled))
  70                return;
  71
  72        if (!wakeup || p->sched_psi_wake_requeue) {
  73                if (p->in_memstall)
  74                        set |= TSK_MEMSTALL;
  75                if (p->sched_psi_wake_requeue)
  76                        p->sched_psi_wake_requeue = 0;
  77        } else {
  78                if (p->in_iowait)
  79                        clear |= TSK_IOWAIT;
  80        }
  81
  82        psi_task_change(p, clear, set);
  83}
  84
  85static inline void psi_dequeue(struct task_struct *p, bool sleep)
  86{
  87        int clear = TSK_RUNNING;
  88
  89        if (static_branch_likely(&psi_disabled))
  90                return;
  91
  92        /*
  93         * A voluntary sleep is a dequeue followed by a task switch. To
  94         * avoid walking all ancestors twice, psi_task_switch() handles
  95         * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
  96         * Do nothing here.
  97         */
  98        if (sleep)
  99                return;
 100
 101        if (p->in_memstall)
 102                clear |= TSK_MEMSTALL;
 103
 104        psi_task_change(p, clear, 0);
 105}
 106
 107static inline void psi_ttwu_dequeue(struct task_struct *p)
 108{
 109        if (static_branch_likely(&psi_disabled))
 110                return;
 111        /*
 112         * Is the task being migrated during a wakeup? Make sure to
 113         * deregister its sleep-persistent psi states from the old
 114         * queue, and let psi_enqueue() know it has to requeue.
 115         */
 116        if (unlikely(p->in_iowait || p->in_memstall)) {
 117                struct rq_flags rf;
 118                struct rq *rq;
 119                int clear = 0;
 120
 121                if (p->in_iowait)
 122                        clear |= TSK_IOWAIT;
 123                if (p->in_memstall)
 124                        clear |= TSK_MEMSTALL;
 125
 126                rq = __task_rq_lock(p, &rf);
 127                psi_task_change(p, clear, 0);
 128                p->sched_psi_wake_requeue = 1;
 129                __task_rq_unlock(rq, &rf);
 130        }
 131}
 132
 133static inline void psi_sched_switch(struct task_struct *prev,
 134                                    struct task_struct *next,
 135                                    bool sleep)
 136{
 137        if (static_branch_likely(&psi_disabled))
 138                return;
 139
 140        psi_task_switch(prev, next, sleep);
 141}
 142
 143#else /* CONFIG_PSI */
 144static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
 145static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
 146static inline void psi_ttwu_dequeue(struct task_struct *p) {}
 147static inline void psi_sched_switch(struct task_struct *prev,
 148                                    struct task_struct *next,
 149                                    bool sleep) {}
 150#endif /* CONFIG_PSI */
 151
 152#ifdef CONFIG_SCHED_INFO
 153/*
 154 * We are interested in knowing how long it was from the *first* time a
 155 * task was queued to the time that it finally hit a CPU, we call this routine
 156 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
 157 * delta taken on each CPU would annul the skew.
 158 */
 159static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t)
 160{
 161        unsigned long long delta = 0;
 162
 163        if (!t->sched_info.last_queued)
 164                return;
 165
 166        delta = rq_clock(rq) - t->sched_info.last_queued;
 167        t->sched_info.last_queued = 0;
 168        t->sched_info.run_delay += delta;
 169
 170        rq_sched_info_dequeue(rq, delta);
 171}
 172
 173/*
 174 * Called when a task finally hits the CPU.  We can now calculate how
 175 * long it was waiting to run.  We also note when it began so that we
 176 * can keep stats on how long its timeslice is.
 177 */
 178static void sched_info_arrive(struct rq *rq, struct task_struct *t)
 179{
 180        unsigned long long now, delta = 0;
 181
 182        if (!t->sched_info.last_queued)
 183                return;
 184
 185        now = rq_clock(rq);
 186        delta = now - t->sched_info.last_queued;
 187        t->sched_info.last_queued = 0;
 188        t->sched_info.run_delay += delta;
 189        t->sched_info.last_arrival = now;
 190        t->sched_info.pcount++;
 191
 192        rq_sched_info_arrive(rq, delta);
 193}
 194
 195/*
 196 * This function is only called from enqueue_task(), but also only updates
 197 * the timestamp if it is already not set.  It's assumed that
 198 * sched_info_dequeue() will clear that stamp when appropriate.
 199 */
 200static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t)
 201{
 202        if (!t->sched_info.last_queued)
 203                t->sched_info.last_queued = rq_clock(rq);
 204}
 205
 206/*
 207 * Called when a process ceases being the active-running process involuntarily
 208 * due, typically, to expiring its time slice (this may also be called when
 209 * switching to the idle task).  Now we can calculate how long we ran.
 210 * Also, if the process is still in the TASK_RUNNING state, call
 211 * sched_info_enqueue() to mark that it has now again started waiting on
 212 * the runqueue.
 213 */
 214static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
 215{
 216        unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
 217
 218        rq_sched_info_depart(rq, delta);
 219
 220        if (task_is_running(t))
 221                sched_info_enqueue(rq, t);
 222}
 223
 224/*
 225 * Called when tasks are switched involuntarily due, typically, to expiring
 226 * their time slice.  (This may also be called when switching to or from
 227 * the idle task.)  We are only called when prev != next.
 228 */
 229static inline void
 230sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
 231{
 232        /*
 233         * prev now departs the CPU.  It's not interesting to record
 234         * stats about how efficient we were at scheduling the idle
 235         * process, however.
 236         */
 237        if (prev != rq->idle)
 238                sched_info_depart(rq, prev);
 239
 240        if (next != rq->idle)
 241                sched_info_arrive(rq, next);
 242}
 243
 244#else /* !CONFIG_SCHED_INFO: */
 245# define sched_info_enqueue(rq, t)      do { } while (0)
 246# define sched_info_dequeue(rq, t)      do { } while (0)
 247# define sched_info_switch(rq, t, next) do { } while (0)
 248#endif /* CONFIG_SCHED_INFO */
 249