linux/kernel/signal.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *              Changes to use preallocated sigqueue structures
  11 *              to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/cgroup.h>
  47#include <linux/audit.h>
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/signal.h>
  51
  52#include <asm/param.h>
  53#include <linux/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/siginfo.h>
  56#include <asm/cacheflush.h>
  57#include <asm/syscall.h>        /* for syscall_get_* */
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69        return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74        /* Is it explicitly or implicitly ignored? */
  75        return handler == SIG_IGN ||
  76               (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81        void __user *handler;
  82
  83        handler = sig_handler(t, sig);
  84
  85        /* SIGKILL and SIGSTOP may not be sent to the global init */
  86        if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87                return true;
  88
  89        if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90            handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91                return true;
  92
  93        /* Only allow kernel generated signals to this kthread */
  94        if (unlikely((t->flags & PF_KTHREAD) &&
  95                     (handler == SIG_KTHREAD_KERNEL) && !force))
  96                return true;
  97
  98        return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103        /*
 104         * Blocked signals are never ignored, since the
 105         * signal handler may change by the time it is
 106         * unblocked.
 107         */
 108        if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109                return false;
 110
 111        /*
 112         * Tracers may want to know about even ignored signal unless it
 113         * is SIGKILL which can't be reported anyway but can be ignored
 114         * by SIGNAL_UNKILLABLE task.
 115         */
 116        if (t->ptrace && sig != SIGKILL)
 117                return false;
 118
 119        return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128        unsigned long ready;
 129        long i;
 130
 131        switch (_NSIG_WORDS) {
 132        default:
 133                for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134                        ready |= signal->sig[i] &~ blocked->sig[i];
 135                break;
 136
 137        case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138                ready |= signal->sig[2] &~ blocked->sig[2];
 139                ready |= signal->sig[1] &~ blocked->sig[1];
 140                ready |= signal->sig[0] &~ blocked->sig[0];
 141                break;
 142
 143        case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144                ready |= signal->sig[0] &~ blocked->sig[0];
 145                break;
 146
 147        case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148        }
 149        return ready != 0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156        if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157            PENDING(&t->pending, &t->blocked) ||
 158            PENDING(&t->signal->shared_pending, &t->blocked) ||
 159            cgroup_task_frozen(t)) {
 160                set_tsk_thread_flag(t, TIF_SIGPENDING);
 161                return true;
 162        }
 163
 164        /*
 165         * We must never clear the flag in another thread, or in current
 166         * when it's possible the current syscall is returning -ERESTART*.
 167         * So we don't clear it here, and only callers who know they should do.
 168         */
 169        return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178        if (recalc_sigpending_tsk(t))
 179                signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184        if (!recalc_sigpending_tsk(current) && !freezing(current))
 185                clear_thread_flag(TIF_SIGPENDING);
 186
 187}
 188EXPORT_SYMBOL(recalc_sigpending);
 189
 190void calculate_sigpending(void)
 191{
 192        /* Have any signals or users of TIF_SIGPENDING been delayed
 193         * until after fork?
 194         */
 195        spin_lock_irq(&current->sighand->siglock);
 196        set_tsk_thread_flag(current, TIF_SIGPENDING);
 197        recalc_sigpending();
 198        spin_unlock_irq(&current->sighand->siglock);
 199}
 200
 201/* Given the mask, find the first available signal that should be serviced. */
 202
 203#define SYNCHRONOUS_MASK \
 204        (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 205         sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 206
 207int next_signal(struct sigpending *pending, sigset_t *mask)
 208{
 209        unsigned long i, *s, *m, x;
 210        int sig = 0;
 211
 212        s = pending->signal.sig;
 213        m = mask->sig;
 214
 215        /*
 216         * Handle the first word specially: it contains the
 217         * synchronous signals that need to be dequeued first.
 218         */
 219        x = *s &~ *m;
 220        if (x) {
 221                if (x & SYNCHRONOUS_MASK)
 222                        x &= SYNCHRONOUS_MASK;
 223                sig = ffz(~x) + 1;
 224                return sig;
 225        }
 226
 227        switch (_NSIG_WORDS) {
 228        default:
 229                for (i = 1; i < _NSIG_WORDS; ++i) {
 230                        x = *++s &~ *++m;
 231                        if (!x)
 232                                continue;
 233                        sig = ffz(~x) + i*_NSIG_BPW + 1;
 234                        break;
 235                }
 236                break;
 237
 238        case 2:
 239                x = s[1] &~ m[1];
 240                if (!x)
 241                        break;
 242                sig = ffz(~x) + _NSIG_BPW + 1;
 243                break;
 244
 245        case 1:
 246                /* Nothing to do */
 247                break;
 248        }
 249
 250        return sig;
 251}
 252
 253static inline void print_dropped_signal(int sig)
 254{
 255        static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 256
 257        if (!print_fatal_signals)
 258                return;
 259
 260        if (!__ratelimit(&ratelimit_state))
 261                return;
 262
 263        pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 264                                current->comm, current->pid, sig);
 265}
 266
 267/**
 268 * task_set_jobctl_pending - set jobctl pending bits
 269 * @task: target task
 270 * @mask: pending bits to set
 271 *
 272 * Clear @mask from @task->jobctl.  @mask must be subset of
 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 274 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 275 * cleared.  If @task is already being killed or exiting, this function
 276 * becomes noop.
 277 *
 278 * CONTEXT:
 279 * Must be called with @task->sighand->siglock held.
 280 *
 281 * RETURNS:
 282 * %true if @mask is set, %false if made noop because @task was dying.
 283 */
 284bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 285{
 286        BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 287                        JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 288        BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 289
 290        if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 291                return false;
 292
 293        if (mask & JOBCTL_STOP_SIGMASK)
 294                task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 295
 296        task->jobctl |= mask;
 297        return true;
 298}
 299
 300/**
 301 * task_clear_jobctl_trapping - clear jobctl trapping bit
 302 * @task: target task
 303 *
 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 305 * Clear it and wake up the ptracer.  Note that we don't need any further
 306 * locking.  @task->siglock guarantees that @task->parent points to the
 307 * ptracer.
 308 *
 309 * CONTEXT:
 310 * Must be called with @task->sighand->siglock held.
 311 */
 312void task_clear_jobctl_trapping(struct task_struct *task)
 313{
 314        if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 315                task->jobctl &= ~JOBCTL_TRAPPING;
 316                smp_mb();       /* advised by wake_up_bit() */
 317                wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 318        }
 319}
 320
 321/**
 322 * task_clear_jobctl_pending - clear jobctl pending bits
 323 * @task: target task
 324 * @mask: pending bits to clear
 325 *
 326 * Clear @mask from @task->jobctl.  @mask must be subset of
 327 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 328 * STOP bits are cleared together.
 329 *
 330 * If clearing of @mask leaves no stop or trap pending, this function calls
 331 * task_clear_jobctl_trapping().
 332 *
 333 * CONTEXT:
 334 * Must be called with @task->sighand->siglock held.
 335 */
 336void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 337{
 338        BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 339
 340        if (mask & JOBCTL_STOP_PENDING)
 341                mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 342
 343        task->jobctl &= ~mask;
 344
 345        if (!(task->jobctl & JOBCTL_PENDING_MASK))
 346                task_clear_jobctl_trapping(task);
 347}
 348
 349/**
 350 * task_participate_group_stop - participate in a group stop
 351 * @task: task participating in a group stop
 352 *
 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 354 * Group stop states are cleared and the group stop count is consumed if
 355 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 356 * stop, the appropriate `SIGNAL_*` flags are set.
 357 *
 358 * CONTEXT:
 359 * Must be called with @task->sighand->siglock held.
 360 *
 361 * RETURNS:
 362 * %true if group stop completion should be notified to the parent, %false
 363 * otherwise.
 364 */
 365static bool task_participate_group_stop(struct task_struct *task)
 366{
 367        struct signal_struct *sig = task->signal;
 368        bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 369
 370        WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 371
 372        task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 373
 374        if (!consume)
 375                return false;
 376
 377        if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 378                sig->group_stop_count--;
 379
 380        /*
 381         * Tell the caller to notify completion iff we are entering into a
 382         * fresh group stop.  Read comment in do_signal_stop() for details.
 383         */
 384        if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 385                signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 386                return true;
 387        }
 388        return false;
 389}
 390
 391void task_join_group_stop(struct task_struct *task)
 392{
 393        unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 394        struct signal_struct *sig = current->signal;
 395
 396        if (sig->group_stop_count) {
 397                sig->group_stop_count++;
 398                mask |= JOBCTL_STOP_CONSUME;
 399        } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 400                return;
 401
 402        /* Have the new thread join an on-going signal group stop */
 403        task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 413                 int override_rlimit, const unsigned int sigqueue_flags)
 414{
 415        struct sigqueue *q = NULL;
 416        struct ucounts *ucounts = NULL;
 417        long sigpending;
 418
 419        /*
 420         * Protect access to @t credentials. This can go away when all
 421         * callers hold rcu read lock.
 422         *
 423         * NOTE! A pending signal will hold on to the user refcount,
 424         * and we get/put the refcount only when the sigpending count
 425         * changes from/to zero.
 426         */
 427        rcu_read_lock();
 428        ucounts = task_ucounts(t);
 429        sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 430        rcu_read_unlock();
 431        if (!sigpending)
 432                return NULL;
 433
 434        if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 435                q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 436        } else {
 437                print_dropped_signal(sig);
 438        }
 439
 440        if (unlikely(q == NULL)) {
 441                dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 442        } else {
 443                INIT_LIST_HEAD(&q->list);
 444                q->flags = sigqueue_flags;
 445                q->ucounts = ucounts;
 446        }
 447        return q;
 448}
 449
 450static void __sigqueue_free(struct sigqueue *q)
 451{
 452        if (q->flags & SIGQUEUE_PREALLOC)
 453                return;
 454        if (q->ucounts) {
 455                dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 456                q->ucounts = NULL;
 457        }
 458        kmem_cache_free(sigqueue_cachep, q);
 459}
 460
 461void flush_sigqueue(struct sigpending *queue)
 462{
 463        struct sigqueue *q;
 464
 465        sigemptyset(&queue->signal);
 466        while (!list_empty(&queue->list)) {
 467                q = list_entry(queue->list.next, struct sigqueue , list);
 468                list_del_init(&q->list);
 469                __sigqueue_free(q);
 470        }
 471}
 472
 473/*
 474 * Flush all pending signals for this kthread.
 475 */
 476void flush_signals(struct task_struct *t)
 477{
 478        unsigned long flags;
 479
 480        spin_lock_irqsave(&t->sighand->siglock, flags);
 481        clear_tsk_thread_flag(t, TIF_SIGPENDING);
 482        flush_sigqueue(&t->pending);
 483        flush_sigqueue(&t->signal->shared_pending);
 484        spin_unlock_irqrestore(&t->sighand->siglock, flags);
 485}
 486EXPORT_SYMBOL(flush_signals);
 487
 488#ifdef CONFIG_POSIX_TIMERS
 489static void __flush_itimer_signals(struct sigpending *pending)
 490{
 491        sigset_t signal, retain;
 492        struct sigqueue *q, *n;
 493
 494        signal = pending->signal;
 495        sigemptyset(&retain);
 496
 497        list_for_each_entry_safe(q, n, &pending->list, list) {
 498                int sig = q->info.si_signo;
 499
 500                if (likely(q->info.si_code != SI_TIMER)) {
 501                        sigaddset(&retain, sig);
 502                } else {
 503                        sigdelset(&signal, sig);
 504                        list_del_init(&q->list);
 505                        __sigqueue_free(q);
 506                }
 507        }
 508
 509        sigorsets(&pending->signal, &signal, &retain);
 510}
 511
 512void flush_itimer_signals(void)
 513{
 514        struct task_struct *tsk = current;
 515        unsigned long flags;
 516
 517        spin_lock_irqsave(&tsk->sighand->siglock, flags);
 518        __flush_itimer_signals(&tsk->pending);
 519        __flush_itimer_signals(&tsk->signal->shared_pending);
 520        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 521}
 522#endif
 523
 524void ignore_signals(struct task_struct *t)
 525{
 526        int i;
 527
 528        for (i = 0; i < _NSIG; ++i)
 529                t->sighand->action[i].sa.sa_handler = SIG_IGN;
 530
 531        flush_signals(t);
 532}
 533
 534/*
 535 * Flush all handlers for a task.
 536 */
 537
 538void
 539flush_signal_handlers(struct task_struct *t, int force_default)
 540{
 541        int i;
 542        struct k_sigaction *ka = &t->sighand->action[0];
 543        for (i = _NSIG ; i != 0 ; i--) {
 544                if (force_default || ka->sa.sa_handler != SIG_IGN)
 545                        ka->sa.sa_handler = SIG_DFL;
 546                ka->sa.sa_flags = 0;
 547#ifdef __ARCH_HAS_SA_RESTORER
 548                ka->sa.sa_restorer = NULL;
 549#endif
 550                sigemptyset(&ka->sa.sa_mask);
 551                ka++;
 552        }
 553}
 554
 555bool unhandled_signal(struct task_struct *tsk, int sig)
 556{
 557        void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 558        if (is_global_init(tsk))
 559                return true;
 560
 561        if (handler != SIG_IGN && handler != SIG_DFL)
 562                return false;
 563
 564        /* if ptraced, let the tracer determine */
 565        return !tsk->ptrace;
 566}
 567
 568static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 569                           bool *resched_timer)
 570{
 571        struct sigqueue *q, *first = NULL;
 572
 573        /*
 574         * Collect the siginfo appropriate to this signal.  Check if
 575         * there is another siginfo for the same signal.
 576        */
 577        list_for_each_entry(q, &list->list, list) {
 578                if (q->info.si_signo == sig) {
 579                        if (first)
 580                                goto still_pending;
 581                        first = q;
 582                }
 583        }
 584
 585        sigdelset(&list->signal, sig);
 586
 587        if (first) {
 588still_pending:
 589                list_del_init(&first->list);
 590                copy_siginfo(info, &first->info);
 591
 592                *resched_timer =
 593                        (first->flags & SIGQUEUE_PREALLOC) &&
 594                        (info->si_code == SI_TIMER) &&
 595                        (info->si_sys_private);
 596
 597                __sigqueue_free(first);
 598        } else {
 599                /*
 600                 * Ok, it wasn't in the queue.  This must be
 601                 * a fast-pathed signal or we must have been
 602                 * out of queue space.  So zero out the info.
 603                 */
 604                clear_siginfo(info);
 605                info->si_signo = sig;
 606                info->si_errno = 0;
 607                info->si_code = SI_USER;
 608                info->si_pid = 0;
 609                info->si_uid = 0;
 610        }
 611}
 612
 613static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 614                        kernel_siginfo_t *info, bool *resched_timer)
 615{
 616        int sig = next_signal(pending, mask);
 617
 618        if (sig)
 619                collect_signal(sig, pending, info, resched_timer);
 620        return sig;
 621}
 622
 623/*
 624 * Dequeue a signal and return the element to the caller, which is
 625 * expected to free it.
 626 *
 627 * All callers have to hold the siglock.
 628 */
 629int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 630{
 631        bool resched_timer = false;
 632        int signr;
 633
 634        /* We only dequeue private signals from ourselves, we don't let
 635         * signalfd steal them
 636         */
 637        signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 638        if (!signr) {
 639                signr = __dequeue_signal(&tsk->signal->shared_pending,
 640                                         mask, info, &resched_timer);
 641#ifdef CONFIG_POSIX_TIMERS
 642                /*
 643                 * itimer signal ?
 644                 *
 645                 * itimers are process shared and we restart periodic
 646                 * itimers in the signal delivery path to prevent DoS
 647                 * attacks in the high resolution timer case. This is
 648                 * compliant with the old way of self-restarting
 649                 * itimers, as the SIGALRM is a legacy signal and only
 650                 * queued once. Changing the restart behaviour to
 651                 * restart the timer in the signal dequeue path is
 652                 * reducing the timer noise on heavy loaded !highres
 653                 * systems too.
 654                 */
 655                if (unlikely(signr == SIGALRM)) {
 656                        struct hrtimer *tmr = &tsk->signal->real_timer;
 657
 658                        if (!hrtimer_is_queued(tmr) &&
 659                            tsk->signal->it_real_incr != 0) {
 660                                hrtimer_forward(tmr, tmr->base->get_time(),
 661                                                tsk->signal->it_real_incr);
 662                                hrtimer_restart(tmr);
 663                        }
 664                }
 665#endif
 666        }
 667
 668        recalc_sigpending();
 669        if (!signr)
 670                return 0;
 671
 672        if (unlikely(sig_kernel_stop(signr))) {
 673                /*
 674                 * Set a marker that we have dequeued a stop signal.  Our
 675                 * caller might release the siglock and then the pending
 676                 * stop signal it is about to process is no longer in the
 677                 * pending bitmasks, but must still be cleared by a SIGCONT
 678                 * (and overruled by a SIGKILL).  So those cases clear this
 679                 * shared flag after we've set it.  Note that this flag may
 680                 * remain set after the signal we return is ignored or
 681                 * handled.  That doesn't matter because its only purpose
 682                 * is to alert stop-signal processing code when another
 683                 * processor has come along and cleared the flag.
 684                 */
 685                current->jobctl |= JOBCTL_STOP_DEQUEUED;
 686        }
 687#ifdef CONFIG_POSIX_TIMERS
 688        if (resched_timer) {
 689                /*
 690                 * Release the siglock to ensure proper locking order
 691                 * of timer locks outside of siglocks.  Note, we leave
 692                 * irqs disabled here, since the posix-timers code is
 693                 * about to disable them again anyway.
 694                 */
 695                spin_unlock(&tsk->sighand->siglock);
 696                posixtimer_rearm(info);
 697                spin_lock(&tsk->sighand->siglock);
 698
 699                /* Don't expose the si_sys_private value to userspace */
 700                info->si_sys_private = 0;
 701        }
 702#endif
 703        return signr;
 704}
 705EXPORT_SYMBOL_GPL(dequeue_signal);
 706
 707static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 708{
 709        struct task_struct *tsk = current;
 710        struct sigpending *pending = &tsk->pending;
 711        struct sigqueue *q, *sync = NULL;
 712
 713        /*
 714         * Might a synchronous signal be in the queue?
 715         */
 716        if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 717                return 0;
 718
 719        /*
 720         * Return the first synchronous signal in the queue.
 721         */
 722        list_for_each_entry(q, &pending->list, list) {
 723                /* Synchronous signals have a positive si_code */
 724                if ((q->info.si_code > SI_USER) &&
 725                    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 726                        sync = q;
 727                        goto next;
 728                }
 729        }
 730        return 0;
 731next:
 732        /*
 733         * Check if there is another siginfo for the same signal.
 734         */
 735        list_for_each_entry_continue(q, &pending->list, list) {
 736                if (q->info.si_signo == sync->info.si_signo)
 737                        goto still_pending;
 738        }
 739
 740        sigdelset(&pending->signal, sync->info.si_signo);
 741        recalc_sigpending();
 742still_pending:
 743        list_del_init(&sync->list);
 744        copy_siginfo(info, &sync->info);
 745        __sigqueue_free(sync);
 746        return info->si_signo;
 747}
 748
 749/*
 750 * Tell a process that it has a new active signal..
 751 *
 752 * NOTE! we rely on the previous spin_lock to
 753 * lock interrupts for us! We can only be called with
 754 * "siglock" held, and the local interrupt must
 755 * have been disabled when that got acquired!
 756 *
 757 * No need to set need_resched since signal event passing
 758 * goes through ->blocked
 759 */
 760void signal_wake_up_state(struct task_struct *t, unsigned int state)
 761{
 762        set_tsk_thread_flag(t, TIF_SIGPENDING);
 763        /*
 764         * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 765         * case. We don't check t->state here because there is a race with it
 766         * executing another processor and just now entering stopped state.
 767         * By using wake_up_state, we ensure the process will wake up and
 768         * handle its death signal.
 769         */
 770        if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 771                kick_process(t);
 772}
 773
 774/*
 775 * Remove signals in mask from the pending set and queue.
 776 * Returns 1 if any signals were found.
 777 *
 778 * All callers must be holding the siglock.
 779 */
 780static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 781{
 782        struct sigqueue *q, *n;
 783        sigset_t m;
 784
 785        sigandsets(&m, mask, &s->signal);
 786        if (sigisemptyset(&m))
 787                return;
 788
 789        sigandnsets(&s->signal, &s->signal, mask);
 790        list_for_each_entry_safe(q, n, &s->list, list) {
 791                if (sigismember(mask, q->info.si_signo)) {
 792                        list_del_init(&q->list);
 793                        __sigqueue_free(q);
 794                }
 795        }
 796}
 797
 798static inline int is_si_special(const struct kernel_siginfo *info)
 799{
 800        return info <= SEND_SIG_PRIV;
 801}
 802
 803static inline bool si_fromuser(const struct kernel_siginfo *info)
 804{
 805        return info == SEND_SIG_NOINFO ||
 806                (!is_si_special(info) && SI_FROMUSER(info));
 807}
 808
 809/*
 810 * called with RCU read lock from check_kill_permission()
 811 */
 812static bool kill_ok_by_cred(struct task_struct *t)
 813{
 814        const struct cred *cred = current_cred();
 815        const struct cred *tcred = __task_cred(t);
 816
 817        return uid_eq(cred->euid, tcred->suid) ||
 818               uid_eq(cred->euid, tcred->uid) ||
 819               uid_eq(cred->uid, tcred->suid) ||
 820               uid_eq(cred->uid, tcred->uid) ||
 821               ns_capable(tcred->user_ns, CAP_KILL);
 822}
 823
 824/*
 825 * Bad permissions for sending the signal
 826 * - the caller must hold the RCU read lock
 827 */
 828static int check_kill_permission(int sig, struct kernel_siginfo *info,
 829                                 struct task_struct *t)
 830{
 831        struct pid *sid;
 832        int error;
 833
 834        if (!valid_signal(sig))
 835                return -EINVAL;
 836
 837        if (!si_fromuser(info))
 838                return 0;
 839
 840        error = audit_signal_info(sig, t); /* Let audit system see the signal */
 841        if (error)
 842                return error;
 843
 844        if (!same_thread_group(current, t) &&
 845            !kill_ok_by_cred(t)) {
 846                switch (sig) {
 847                case SIGCONT:
 848                        sid = task_session(t);
 849                        /*
 850                         * We don't return the error if sid == NULL. The
 851                         * task was unhashed, the caller must notice this.
 852                         */
 853                        if (!sid || sid == task_session(current))
 854                                break;
 855                        fallthrough;
 856                default:
 857                        return -EPERM;
 858                }
 859        }
 860
 861        return security_task_kill(t, info, sig, NULL);
 862}
 863
 864/**
 865 * ptrace_trap_notify - schedule trap to notify ptracer
 866 * @t: tracee wanting to notify tracer
 867 *
 868 * This function schedules sticky ptrace trap which is cleared on the next
 869 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 870 * ptracer.
 871 *
 872 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 873 * ptracer is listening for events, tracee is woken up so that it can
 874 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 875 * eventually taken without returning to userland after the existing traps
 876 * are finished by PTRACE_CONT.
 877 *
 878 * CONTEXT:
 879 * Must be called with @task->sighand->siglock held.
 880 */
 881static void ptrace_trap_notify(struct task_struct *t)
 882{
 883        WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 884        assert_spin_locked(&t->sighand->siglock);
 885
 886        task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 887        ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 888}
 889
 890/*
 891 * Handle magic process-wide effects of stop/continue signals. Unlike
 892 * the signal actions, these happen immediately at signal-generation
 893 * time regardless of blocking, ignoring, or handling.  This does the
 894 * actual continuing for SIGCONT, but not the actual stopping for stop
 895 * signals. The process stop is done as a signal action for SIG_DFL.
 896 *
 897 * Returns true if the signal should be actually delivered, otherwise
 898 * it should be dropped.
 899 */
 900static bool prepare_signal(int sig, struct task_struct *p, bool force)
 901{
 902        struct signal_struct *signal = p->signal;
 903        struct task_struct *t;
 904        sigset_t flush;
 905
 906        if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 907                if (!(signal->flags & SIGNAL_GROUP_EXIT))
 908                        return sig == SIGKILL;
 909                /*
 910                 * The process is in the middle of dying, nothing to do.
 911                 */
 912        } else if (sig_kernel_stop(sig)) {
 913                /*
 914                 * This is a stop signal.  Remove SIGCONT from all queues.
 915                 */
 916                siginitset(&flush, sigmask(SIGCONT));
 917                flush_sigqueue_mask(&flush, &signal->shared_pending);
 918                for_each_thread(p, t)
 919                        flush_sigqueue_mask(&flush, &t->pending);
 920        } else if (sig == SIGCONT) {
 921                unsigned int why;
 922                /*
 923                 * Remove all stop signals from all queues, wake all threads.
 924                 */
 925                siginitset(&flush, SIG_KERNEL_STOP_MASK);
 926                flush_sigqueue_mask(&flush, &signal->shared_pending);
 927                for_each_thread(p, t) {
 928                        flush_sigqueue_mask(&flush, &t->pending);
 929                        task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 930                        if (likely(!(t->ptrace & PT_SEIZED)))
 931                                wake_up_state(t, __TASK_STOPPED);
 932                        else
 933                                ptrace_trap_notify(t);
 934                }
 935
 936                /*
 937                 * Notify the parent with CLD_CONTINUED if we were stopped.
 938                 *
 939                 * If we were in the middle of a group stop, we pretend it
 940                 * was already finished, and then continued. Since SIGCHLD
 941                 * doesn't queue we report only CLD_STOPPED, as if the next
 942                 * CLD_CONTINUED was dropped.
 943                 */
 944                why = 0;
 945                if (signal->flags & SIGNAL_STOP_STOPPED)
 946                        why |= SIGNAL_CLD_CONTINUED;
 947                else if (signal->group_stop_count)
 948                        why |= SIGNAL_CLD_STOPPED;
 949
 950                if (why) {
 951                        /*
 952                         * The first thread which returns from do_signal_stop()
 953                         * will take ->siglock, notice SIGNAL_CLD_MASK, and
 954                         * notify its parent. See get_signal().
 955                         */
 956                        signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 957                        signal->group_stop_count = 0;
 958                        signal->group_exit_code = 0;
 959                }
 960        }
 961
 962        return !sig_ignored(p, sig, force);
 963}
 964
 965/*
 966 * Test if P wants to take SIG.  After we've checked all threads with this,
 967 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 968 * blocking SIG were ruled out because they are not running and already
 969 * have pending signals.  Such threads will dequeue from the shared queue
 970 * as soon as they're available, so putting the signal on the shared queue
 971 * will be equivalent to sending it to one such thread.
 972 */
 973static inline bool wants_signal(int sig, struct task_struct *p)
 974{
 975        if (sigismember(&p->blocked, sig))
 976                return false;
 977
 978        if (p->flags & PF_EXITING)
 979                return false;
 980
 981        if (sig == SIGKILL)
 982                return true;
 983
 984        if (task_is_stopped_or_traced(p))
 985                return false;
 986
 987        return task_curr(p) || !task_sigpending(p);
 988}
 989
 990static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 991{
 992        struct signal_struct *signal = p->signal;
 993        struct task_struct *t;
 994
 995        /*
 996         * Now find a thread we can wake up to take the signal off the queue.
 997         *
 998         * If the main thread wants the signal, it gets first crack.
 999         * Probably the least surprising to the average bear.
1000         */
1001        if (wants_signal(sig, p))
1002                t = p;
1003        else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1004                /*
1005                 * There is just one thread and it does not need to be woken.
1006                 * It will dequeue unblocked signals before it runs again.
1007                 */
1008                return;
1009        else {
1010                /*
1011                 * Otherwise try to find a suitable thread.
1012                 */
1013                t = signal->curr_target;
1014                while (!wants_signal(sig, t)) {
1015                        t = next_thread(t);
1016                        if (t == signal->curr_target)
1017                                /*
1018                                 * No thread needs to be woken.
1019                                 * Any eligible threads will see
1020                                 * the signal in the queue soon.
1021                                 */
1022                                return;
1023                }
1024                signal->curr_target = t;
1025        }
1026
1027        /*
1028         * Found a killable thread.  If the signal will be fatal,
1029         * then start taking the whole group down immediately.
1030         */
1031        if (sig_fatal(p, sig) &&
1032            !(signal->flags & SIGNAL_GROUP_EXIT) &&
1033            !sigismember(&t->real_blocked, sig) &&
1034            (sig == SIGKILL || !p->ptrace)) {
1035                /*
1036                 * This signal will be fatal to the whole group.
1037                 */
1038                if (!sig_kernel_coredump(sig)) {
1039                        /*
1040                         * Start a group exit and wake everybody up.
1041                         * This way we don't have other threads
1042                         * running and doing things after a slower
1043                         * thread has the fatal signal pending.
1044                         */
1045                        signal->flags = SIGNAL_GROUP_EXIT;
1046                        signal->group_exit_code = sig;
1047                        signal->group_stop_count = 0;
1048                        t = p;
1049                        do {
1050                                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1051                                sigaddset(&t->pending.signal, SIGKILL);
1052                                signal_wake_up(t, 1);
1053                        } while_each_thread(p, t);
1054                        return;
1055                }
1056        }
1057
1058        /*
1059         * The signal is already in the shared-pending queue.
1060         * Tell the chosen thread to wake up and dequeue it.
1061         */
1062        signal_wake_up(t, sig == SIGKILL);
1063        return;
1064}
1065
1066static inline bool legacy_queue(struct sigpending *signals, int sig)
1067{
1068        return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1069}
1070
1071static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1072                        enum pid_type type, bool force)
1073{
1074        struct sigpending *pending;
1075        struct sigqueue *q;
1076        int override_rlimit;
1077        int ret = 0, result;
1078
1079        assert_spin_locked(&t->sighand->siglock);
1080
1081        result = TRACE_SIGNAL_IGNORED;
1082        if (!prepare_signal(sig, t, force))
1083                goto ret;
1084
1085        pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1086        /*
1087         * Short-circuit ignored signals and support queuing
1088         * exactly one non-rt signal, so that we can get more
1089         * detailed information about the cause of the signal.
1090         */
1091        result = TRACE_SIGNAL_ALREADY_PENDING;
1092        if (legacy_queue(pending, sig))
1093                goto ret;
1094
1095        result = TRACE_SIGNAL_DELIVERED;
1096        /*
1097         * Skip useless siginfo allocation for SIGKILL and kernel threads.
1098         */
1099        if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1100                goto out_set;
1101
1102        /*
1103         * Real-time signals must be queued if sent by sigqueue, or
1104         * some other real-time mechanism.  It is implementation
1105         * defined whether kill() does so.  We attempt to do so, on
1106         * the principle of least surprise, but since kill is not
1107         * allowed to fail with EAGAIN when low on memory we just
1108         * make sure at least one signal gets delivered and don't
1109         * pass on the info struct.
1110         */
1111        if (sig < SIGRTMIN)
1112                override_rlimit = (is_si_special(info) || info->si_code >= 0);
1113        else
1114                override_rlimit = 0;
1115
1116        q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1117
1118        if (q) {
1119                list_add_tail(&q->list, &pending->list);
1120                switch ((unsigned long) info) {
1121                case (unsigned long) SEND_SIG_NOINFO:
1122                        clear_siginfo(&q->info);
1123                        q->info.si_signo = sig;
1124                        q->info.si_errno = 0;
1125                        q->info.si_code = SI_USER;
1126                        q->info.si_pid = task_tgid_nr_ns(current,
1127                                                        task_active_pid_ns(t));
1128                        rcu_read_lock();
1129                        q->info.si_uid =
1130                                from_kuid_munged(task_cred_xxx(t, user_ns),
1131                                                 current_uid());
1132                        rcu_read_unlock();
1133                        break;
1134                case (unsigned long) SEND_SIG_PRIV:
1135                        clear_siginfo(&q->info);
1136                        q->info.si_signo = sig;
1137                        q->info.si_errno = 0;
1138                        q->info.si_code = SI_KERNEL;
1139                        q->info.si_pid = 0;
1140                        q->info.si_uid = 0;
1141                        break;
1142                default:
1143                        copy_siginfo(&q->info, info);
1144                        break;
1145                }
1146        } else if (!is_si_special(info) &&
1147                   sig >= SIGRTMIN && info->si_code != SI_USER) {
1148                /*
1149                 * Queue overflow, abort.  We may abort if the
1150                 * signal was rt and sent by user using something
1151                 * other than kill().
1152                 */
1153                result = TRACE_SIGNAL_OVERFLOW_FAIL;
1154                ret = -EAGAIN;
1155                goto ret;
1156        } else {
1157                /*
1158                 * This is a silent loss of information.  We still
1159                 * send the signal, but the *info bits are lost.
1160                 */
1161                result = TRACE_SIGNAL_LOSE_INFO;
1162        }
1163
1164out_set:
1165        signalfd_notify(t, sig);
1166        sigaddset(&pending->signal, sig);
1167
1168        /* Let multiprocess signals appear after on-going forks */
1169        if (type > PIDTYPE_TGID) {
1170                struct multiprocess_signals *delayed;
1171                hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1172                        sigset_t *signal = &delayed->signal;
1173                        /* Can't queue both a stop and a continue signal */
1174                        if (sig == SIGCONT)
1175                                sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1176                        else if (sig_kernel_stop(sig))
1177                                sigdelset(signal, SIGCONT);
1178                        sigaddset(signal, sig);
1179                }
1180        }
1181
1182        complete_signal(sig, t, type);
1183ret:
1184        trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1185        return ret;
1186}
1187
1188static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1189{
1190        bool ret = false;
1191        switch (siginfo_layout(info->si_signo, info->si_code)) {
1192        case SIL_KILL:
1193        case SIL_CHLD:
1194        case SIL_RT:
1195                ret = true;
1196                break;
1197        case SIL_TIMER:
1198        case SIL_POLL:
1199        case SIL_FAULT:
1200        case SIL_FAULT_TRAPNO:
1201        case SIL_FAULT_MCEERR:
1202        case SIL_FAULT_BNDERR:
1203        case SIL_FAULT_PKUERR:
1204        case SIL_FAULT_PERF_EVENT:
1205        case SIL_SYS:
1206                ret = false;
1207                break;
1208        }
1209        return ret;
1210}
1211
1212static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1213                        enum pid_type type)
1214{
1215        /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1216        bool force = false;
1217
1218        if (info == SEND_SIG_NOINFO) {
1219                /* Force if sent from an ancestor pid namespace */
1220                force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1221        } else if (info == SEND_SIG_PRIV) {
1222                /* Don't ignore kernel generated signals */
1223                force = true;
1224        } else if (has_si_pid_and_uid(info)) {
1225                /* SIGKILL and SIGSTOP is special or has ids */
1226                struct user_namespace *t_user_ns;
1227
1228                rcu_read_lock();
1229                t_user_ns = task_cred_xxx(t, user_ns);
1230                if (current_user_ns() != t_user_ns) {
1231                        kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1232                        info->si_uid = from_kuid_munged(t_user_ns, uid);
1233                }
1234                rcu_read_unlock();
1235
1236                /* A kernel generated signal? */
1237                force = (info->si_code == SI_KERNEL);
1238
1239                /* From an ancestor pid namespace? */
1240                if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1241                        info->si_pid = 0;
1242                        force = true;
1243                }
1244        }
1245        return __send_signal(sig, info, t, type, force);
1246}
1247
1248static void print_fatal_signal(int signr)
1249{
1250        struct pt_regs *regs = signal_pt_regs();
1251        pr_info("potentially unexpected fatal signal %d.\n", signr);
1252
1253#if defined(__i386__) && !defined(__arch_um__)
1254        pr_info("code at %08lx: ", regs->ip);
1255        {
1256                int i;
1257                for (i = 0; i < 16; i++) {
1258                        unsigned char insn;
1259
1260                        if (get_user(insn, (unsigned char *)(regs->ip + i)))
1261                                break;
1262                        pr_cont("%02x ", insn);
1263                }
1264        }
1265        pr_cont("\n");
1266#endif
1267        preempt_disable();
1268        show_regs(regs);
1269        preempt_enable();
1270}
1271
1272static int __init setup_print_fatal_signals(char *str)
1273{
1274        get_option (&str, &print_fatal_signals);
1275
1276        return 1;
1277}
1278
1279__setup("print-fatal-signals=", setup_print_fatal_signals);
1280
1281int
1282__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1283{
1284        return send_signal(sig, info, p, PIDTYPE_TGID);
1285}
1286
1287int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1288                        enum pid_type type)
1289{
1290        unsigned long flags;
1291        int ret = -ESRCH;
1292
1293        if (lock_task_sighand(p, &flags)) {
1294                ret = send_signal(sig, info, p, type);
1295                unlock_task_sighand(p, &flags);
1296        }
1297
1298        return ret;
1299}
1300
1301/*
1302 * Force a signal that the process can't ignore: if necessary
1303 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1304 *
1305 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1306 * since we do not want to have a signal handler that was blocked
1307 * be invoked when user space had explicitly blocked it.
1308 *
1309 * We don't want to have recursive SIGSEGV's etc, for example,
1310 * that is why we also clear SIGNAL_UNKILLABLE.
1311 */
1312static int
1313force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, bool sigdfl)
1314{
1315        unsigned long int flags;
1316        int ret, blocked, ignored;
1317        struct k_sigaction *action;
1318        int sig = info->si_signo;
1319
1320        spin_lock_irqsave(&t->sighand->siglock, flags);
1321        action = &t->sighand->action[sig-1];
1322        ignored = action->sa.sa_handler == SIG_IGN;
1323        blocked = sigismember(&t->blocked, sig);
1324        if (blocked || ignored || sigdfl) {
1325                action->sa.sa_handler = SIG_DFL;
1326                if (blocked) {
1327                        sigdelset(&t->blocked, sig);
1328                        recalc_sigpending_and_wake(t);
1329                }
1330        }
1331        /*
1332         * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1333         * debugging to leave init killable.
1334         */
1335        if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1336                t->signal->flags &= ~SIGNAL_UNKILLABLE;
1337        ret = send_signal(sig, info, t, PIDTYPE_PID);
1338        spin_unlock_irqrestore(&t->sighand->siglock, flags);
1339
1340        return ret;
1341}
1342
1343int force_sig_info(struct kernel_siginfo *info)
1344{
1345        return force_sig_info_to_task(info, current, false);
1346}
1347
1348/*
1349 * Nuke all other threads in the group.
1350 */
1351int zap_other_threads(struct task_struct *p)
1352{
1353        struct task_struct *t = p;
1354        int count = 0;
1355
1356        p->signal->group_stop_count = 0;
1357
1358        while_each_thread(p, t) {
1359                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1360                count++;
1361
1362                /* Don't bother with already dead threads */
1363                if (t->exit_state)
1364                        continue;
1365                sigaddset(&t->pending.signal, SIGKILL);
1366                signal_wake_up(t, 1);
1367        }
1368
1369        return count;
1370}
1371
1372struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1373                                           unsigned long *flags)
1374{
1375        struct sighand_struct *sighand;
1376
1377        rcu_read_lock();
1378        for (;;) {
1379                sighand = rcu_dereference(tsk->sighand);
1380                if (unlikely(sighand == NULL))
1381                        break;
1382
1383                /*
1384                 * This sighand can be already freed and even reused, but
1385                 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1386                 * initializes ->siglock: this slab can't go away, it has
1387                 * the same object type, ->siglock can't be reinitialized.
1388                 *
1389                 * We need to ensure that tsk->sighand is still the same
1390                 * after we take the lock, we can race with de_thread() or
1391                 * __exit_signal(). In the latter case the next iteration
1392                 * must see ->sighand == NULL.
1393                 */
1394                spin_lock_irqsave(&sighand->siglock, *flags);
1395                if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1396                        break;
1397                spin_unlock_irqrestore(&sighand->siglock, *flags);
1398        }
1399        rcu_read_unlock();
1400
1401        return sighand;
1402}
1403
1404#ifdef CONFIG_LOCKDEP
1405void lockdep_assert_task_sighand_held(struct task_struct *task)
1406{
1407        struct sighand_struct *sighand;
1408
1409        rcu_read_lock();
1410        sighand = rcu_dereference(task->sighand);
1411        if (sighand)
1412                lockdep_assert_held(&sighand->siglock);
1413        else
1414                WARN_ON_ONCE(1);
1415        rcu_read_unlock();
1416}
1417#endif
1418
1419/*
1420 * send signal info to all the members of a group
1421 */
1422int group_send_sig_info(int sig, struct kernel_siginfo *info,
1423                        struct task_struct *p, enum pid_type type)
1424{
1425        int ret;
1426
1427        rcu_read_lock();
1428        ret = check_kill_permission(sig, info, p);
1429        rcu_read_unlock();
1430
1431        if (!ret && sig)
1432                ret = do_send_sig_info(sig, info, p, type);
1433
1434        return ret;
1435}
1436
1437/*
1438 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1439 * control characters do (^C, ^Z etc)
1440 * - the caller must hold at least a readlock on tasklist_lock
1441 */
1442int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1443{
1444        struct task_struct *p = NULL;
1445        int retval, success;
1446
1447        success = 0;
1448        retval = -ESRCH;
1449        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1450                int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1451                success |= !err;
1452                retval = err;
1453        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1454        return success ? 0 : retval;
1455}
1456
1457int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1458{
1459        int error = -ESRCH;
1460        struct task_struct *p;
1461
1462        for (;;) {
1463                rcu_read_lock();
1464                p = pid_task(pid, PIDTYPE_PID);
1465                if (p)
1466                        error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1467                rcu_read_unlock();
1468                if (likely(!p || error != -ESRCH))
1469                        return error;
1470
1471                /*
1472                 * The task was unhashed in between, try again.  If it
1473                 * is dead, pid_task() will return NULL, if we race with
1474                 * de_thread() it will find the new leader.
1475                 */
1476        }
1477}
1478
1479static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1480{
1481        int error;
1482        rcu_read_lock();
1483        error = kill_pid_info(sig, info, find_vpid(pid));
1484        rcu_read_unlock();
1485        return error;
1486}
1487
1488static inline bool kill_as_cred_perm(const struct cred *cred,
1489                                     struct task_struct *target)
1490{
1491        const struct cred *pcred = __task_cred(target);
1492
1493        return uid_eq(cred->euid, pcred->suid) ||
1494               uid_eq(cred->euid, pcred->uid) ||
1495               uid_eq(cred->uid, pcred->suid) ||
1496               uid_eq(cred->uid, pcred->uid);
1497}
1498
1499/*
1500 * The usb asyncio usage of siginfo is wrong.  The glibc support
1501 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1502 * AKA after the generic fields:
1503 *      kernel_pid_t    si_pid;
1504 *      kernel_uid32_t  si_uid;
1505 *      sigval_t        si_value;
1506 *
1507 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1508 * after the generic fields is:
1509 *      void __user     *si_addr;
1510 *
1511 * This is a practical problem when there is a 64bit big endian kernel
1512 * and a 32bit userspace.  As the 32bit address will encoded in the low
1513 * 32bits of the pointer.  Those low 32bits will be stored at higher
1514 * address than appear in a 32 bit pointer.  So userspace will not
1515 * see the address it was expecting for it's completions.
1516 *
1517 * There is nothing in the encoding that can allow
1518 * copy_siginfo_to_user32 to detect this confusion of formats, so
1519 * handle this by requiring the caller of kill_pid_usb_asyncio to
1520 * notice when this situration takes place and to store the 32bit
1521 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1522 * parameter.
1523 */
1524int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1525                         struct pid *pid, const struct cred *cred)
1526{
1527        struct kernel_siginfo info;
1528        struct task_struct *p;
1529        unsigned long flags;
1530        int ret = -EINVAL;
1531
1532        if (!valid_signal(sig))
1533                return ret;
1534
1535        clear_siginfo(&info);
1536        info.si_signo = sig;
1537        info.si_errno = errno;
1538        info.si_code = SI_ASYNCIO;
1539        *((sigval_t *)&info.si_pid) = addr;
1540
1541        rcu_read_lock();
1542        p = pid_task(pid, PIDTYPE_PID);
1543        if (!p) {
1544                ret = -ESRCH;
1545                goto out_unlock;
1546        }
1547        if (!kill_as_cred_perm(cred, p)) {
1548                ret = -EPERM;
1549                goto out_unlock;
1550        }
1551        ret = security_task_kill(p, &info, sig, cred);
1552        if (ret)
1553                goto out_unlock;
1554
1555        if (sig) {
1556                if (lock_task_sighand(p, &flags)) {
1557                        ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1558                        unlock_task_sighand(p, &flags);
1559                } else
1560                        ret = -ESRCH;
1561        }
1562out_unlock:
1563        rcu_read_unlock();
1564        return ret;
1565}
1566EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1567
1568/*
1569 * kill_something_info() interprets pid in interesting ways just like kill(2).
1570 *
1571 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1572 * is probably wrong.  Should make it like BSD or SYSV.
1573 */
1574
1575static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1576{
1577        int ret;
1578
1579        if (pid > 0)
1580                return kill_proc_info(sig, info, pid);
1581
1582        /* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1583        if (pid == INT_MIN)
1584                return -ESRCH;
1585
1586        read_lock(&tasklist_lock);
1587        if (pid != -1) {
1588                ret = __kill_pgrp_info(sig, info,
1589                                pid ? find_vpid(-pid) : task_pgrp(current));
1590        } else {
1591                int retval = 0, count = 0;
1592                struct task_struct * p;
1593
1594                for_each_process(p) {
1595                        if (task_pid_vnr(p) > 1 &&
1596                                        !same_thread_group(p, current)) {
1597                                int err = group_send_sig_info(sig, info, p,
1598                                                              PIDTYPE_MAX);
1599                                ++count;
1600                                if (err != -EPERM)
1601                                        retval = err;
1602                        }
1603                }
1604                ret = count ? retval : -ESRCH;
1605        }
1606        read_unlock(&tasklist_lock);
1607
1608        return ret;
1609}
1610
1611/*
1612 * These are for backward compatibility with the rest of the kernel source.
1613 */
1614
1615int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1616{
1617        /*
1618         * Make sure legacy kernel users don't send in bad values
1619         * (normal paths check this in check_kill_permission).
1620         */
1621        if (!valid_signal(sig))
1622                return -EINVAL;
1623
1624        return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1625}
1626EXPORT_SYMBOL(send_sig_info);
1627
1628#define __si_special(priv) \
1629        ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1630
1631int
1632send_sig(int sig, struct task_struct *p, int priv)
1633{
1634        return send_sig_info(sig, __si_special(priv), p);
1635}
1636EXPORT_SYMBOL(send_sig);
1637
1638void force_sig(int sig)
1639{
1640        struct kernel_siginfo info;
1641
1642        clear_siginfo(&info);
1643        info.si_signo = sig;
1644        info.si_errno = 0;
1645        info.si_code = SI_KERNEL;
1646        info.si_pid = 0;
1647        info.si_uid = 0;
1648        force_sig_info(&info);
1649}
1650EXPORT_SYMBOL(force_sig);
1651
1652/*
1653 * When things go south during signal handling, we
1654 * will force a SIGSEGV. And if the signal that caused
1655 * the problem was already a SIGSEGV, we'll want to
1656 * make sure we don't even try to deliver the signal..
1657 */
1658void force_sigsegv(int sig)
1659{
1660        struct task_struct *p = current;
1661
1662        if (sig == SIGSEGV) {
1663                unsigned long flags;
1664                spin_lock_irqsave(&p->sighand->siglock, flags);
1665                p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1666                spin_unlock_irqrestore(&p->sighand->siglock, flags);
1667        }
1668        force_sig(SIGSEGV);
1669}
1670
1671int force_sig_fault_to_task(int sig, int code, void __user *addr
1672        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1673        , struct task_struct *t)
1674{
1675        struct kernel_siginfo info;
1676
1677        clear_siginfo(&info);
1678        info.si_signo = sig;
1679        info.si_errno = 0;
1680        info.si_code  = code;
1681        info.si_addr  = addr;
1682#ifdef __ia64__
1683        info.si_imm = imm;
1684        info.si_flags = flags;
1685        info.si_isr = isr;
1686#endif
1687        return force_sig_info_to_task(&info, t, false);
1688}
1689
1690int force_sig_fault(int sig, int code, void __user *addr
1691        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1692{
1693        return force_sig_fault_to_task(sig, code, addr
1694                                       ___ARCH_SI_IA64(imm, flags, isr), current);
1695}
1696
1697int send_sig_fault(int sig, int code, void __user *addr
1698        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1699        , struct task_struct *t)
1700{
1701        struct kernel_siginfo info;
1702
1703        clear_siginfo(&info);
1704        info.si_signo = sig;
1705        info.si_errno = 0;
1706        info.si_code  = code;
1707        info.si_addr  = addr;
1708#ifdef __ia64__
1709        info.si_imm = imm;
1710        info.si_flags = flags;
1711        info.si_isr = isr;
1712#endif
1713        return send_sig_info(info.si_signo, &info, t);
1714}
1715
1716int force_sig_mceerr(int code, void __user *addr, short lsb)
1717{
1718        struct kernel_siginfo info;
1719
1720        WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1721        clear_siginfo(&info);
1722        info.si_signo = SIGBUS;
1723        info.si_errno = 0;
1724        info.si_code = code;
1725        info.si_addr = addr;
1726        info.si_addr_lsb = lsb;
1727        return force_sig_info(&info);
1728}
1729
1730int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1731{
1732        struct kernel_siginfo info;
1733
1734        WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1735        clear_siginfo(&info);
1736        info.si_signo = SIGBUS;
1737        info.si_errno = 0;
1738        info.si_code = code;
1739        info.si_addr = addr;
1740        info.si_addr_lsb = lsb;
1741        return send_sig_info(info.si_signo, &info, t);
1742}
1743EXPORT_SYMBOL(send_sig_mceerr);
1744
1745int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1746{
1747        struct kernel_siginfo info;
1748
1749        clear_siginfo(&info);
1750        info.si_signo = SIGSEGV;
1751        info.si_errno = 0;
1752        info.si_code  = SEGV_BNDERR;
1753        info.si_addr  = addr;
1754        info.si_lower = lower;
1755        info.si_upper = upper;
1756        return force_sig_info(&info);
1757}
1758
1759#ifdef SEGV_PKUERR
1760int force_sig_pkuerr(void __user *addr, u32 pkey)
1761{
1762        struct kernel_siginfo info;
1763
1764        clear_siginfo(&info);
1765        info.si_signo = SIGSEGV;
1766        info.si_errno = 0;
1767        info.si_code  = SEGV_PKUERR;
1768        info.si_addr  = addr;
1769        info.si_pkey  = pkey;
1770        return force_sig_info(&info);
1771}
1772#endif
1773
1774int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1775{
1776        struct kernel_siginfo info;
1777
1778        clear_siginfo(&info);
1779        info.si_signo     = SIGTRAP;
1780        info.si_errno     = 0;
1781        info.si_code      = TRAP_PERF;
1782        info.si_addr      = addr;
1783        info.si_perf_data = sig_data;
1784        info.si_perf_type = type;
1785
1786        return force_sig_info(&info);
1787}
1788
1789/**
1790 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1791 * @syscall: syscall number to send to userland
1792 * @reason: filter-supplied reason code to send to userland (via si_errno)
1793 *
1794 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1795 */
1796int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1797{
1798        struct kernel_siginfo info;
1799
1800        clear_siginfo(&info);
1801        info.si_signo = SIGSYS;
1802        info.si_code = SYS_SECCOMP;
1803        info.si_call_addr = (void __user *)KSTK_EIP(current);
1804        info.si_errno = reason;
1805        info.si_arch = syscall_get_arch(current);
1806        info.si_syscall = syscall;
1807        return force_sig_info_to_task(&info, current, force_coredump);
1808}
1809
1810/* For the crazy architectures that include trap information in
1811 * the errno field, instead of an actual errno value.
1812 */
1813int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1814{
1815        struct kernel_siginfo info;
1816
1817        clear_siginfo(&info);
1818        info.si_signo = SIGTRAP;
1819        info.si_errno = errno;
1820        info.si_code  = TRAP_HWBKPT;
1821        info.si_addr  = addr;
1822        return force_sig_info(&info);
1823}
1824
1825/* For the rare architectures that include trap information using
1826 * si_trapno.
1827 */
1828int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1829{
1830        struct kernel_siginfo info;
1831
1832        clear_siginfo(&info);
1833        info.si_signo = sig;
1834        info.si_errno = 0;
1835        info.si_code  = code;
1836        info.si_addr  = addr;
1837        info.si_trapno = trapno;
1838        return force_sig_info(&info);
1839}
1840
1841/* For the rare architectures that include trap information using
1842 * si_trapno.
1843 */
1844int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1845                          struct task_struct *t)
1846{
1847        struct kernel_siginfo info;
1848
1849        clear_siginfo(&info);
1850        info.si_signo = sig;
1851        info.si_errno = 0;
1852        info.si_code  = code;
1853        info.si_addr  = addr;
1854        info.si_trapno = trapno;
1855        return send_sig_info(info.si_signo, &info, t);
1856}
1857
1858int kill_pgrp(struct pid *pid, int sig, int priv)
1859{
1860        int ret;
1861
1862        read_lock(&tasklist_lock);
1863        ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1864        read_unlock(&tasklist_lock);
1865
1866        return ret;
1867}
1868EXPORT_SYMBOL(kill_pgrp);
1869
1870int kill_pid(struct pid *pid, int sig, int priv)
1871{
1872        return kill_pid_info(sig, __si_special(priv), pid);
1873}
1874EXPORT_SYMBOL(kill_pid);
1875
1876/*
1877 * These functions support sending signals using preallocated sigqueue
1878 * structures.  This is needed "because realtime applications cannot
1879 * afford to lose notifications of asynchronous events, like timer
1880 * expirations or I/O completions".  In the case of POSIX Timers
1881 * we allocate the sigqueue structure from the timer_create.  If this
1882 * allocation fails we are able to report the failure to the application
1883 * with an EAGAIN error.
1884 */
1885struct sigqueue *sigqueue_alloc(void)
1886{
1887        return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1888}
1889
1890void sigqueue_free(struct sigqueue *q)
1891{
1892        unsigned long flags;
1893        spinlock_t *lock = &current->sighand->siglock;
1894
1895        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1896        /*
1897         * We must hold ->siglock while testing q->list
1898         * to serialize with collect_signal() or with
1899         * __exit_signal()->flush_sigqueue().
1900         */
1901        spin_lock_irqsave(lock, flags);
1902        q->flags &= ~SIGQUEUE_PREALLOC;
1903        /*
1904         * If it is queued it will be freed when dequeued,
1905         * like the "regular" sigqueue.
1906         */
1907        if (!list_empty(&q->list))
1908                q = NULL;
1909        spin_unlock_irqrestore(lock, flags);
1910
1911        if (q)
1912                __sigqueue_free(q);
1913}
1914
1915int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1916{
1917        int sig = q->info.si_signo;
1918        struct sigpending *pending;
1919        struct task_struct *t;
1920        unsigned long flags;
1921        int ret, result;
1922
1923        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1924
1925        ret = -1;
1926        rcu_read_lock();
1927        t = pid_task(pid, type);
1928        if (!t || !likely(lock_task_sighand(t, &flags)))
1929                goto ret;
1930
1931        ret = 1; /* the signal is ignored */
1932        result = TRACE_SIGNAL_IGNORED;
1933        if (!prepare_signal(sig, t, false))
1934                goto out;
1935
1936        ret = 0;
1937        if (unlikely(!list_empty(&q->list))) {
1938                /*
1939                 * If an SI_TIMER entry is already queue just increment
1940                 * the overrun count.
1941                 */
1942                BUG_ON(q->info.si_code != SI_TIMER);
1943                q->info.si_overrun++;
1944                result = TRACE_SIGNAL_ALREADY_PENDING;
1945                goto out;
1946        }
1947        q->info.si_overrun = 0;
1948
1949        signalfd_notify(t, sig);
1950        pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1951        list_add_tail(&q->list, &pending->list);
1952        sigaddset(&pending->signal, sig);
1953        complete_signal(sig, t, type);
1954        result = TRACE_SIGNAL_DELIVERED;
1955out:
1956        trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1957        unlock_task_sighand(t, &flags);
1958ret:
1959        rcu_read_unlock();
1960        return ret;
1961}
1962
1963static void do_notify_pidfd(struct task_struct *task)
1964{
1965        struct pid *pid;
1966
1967        WARN_ON(task->exit_state == 0);
1968        pid = task_pid(task);
1969        wake_up_all(&pid->wait_pidfd);
1970}
1971
1972/*
1973 * Let a parent know about the death of a child.
1974 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1975 *
1976 * Returns true if our parent ignored us and so we've switched to
1977 * self-reaping.
1978 */
1979bool do_notify_parent(struct task_struct *tsk, int sig)
1980{
1981        struct kernel_siginfo info;
1982        unsigned long flags;
1983        struct sighand_struct *psig;
1984        bool autoreap = false;
1985        u64 utime, stime;
1986
1987        BUG_ON(sig == -1);
1988
1989        /* do_notify_parent_cldstop should have been called instead.  */
1990        BUG_ON(task_is_stopped_or_traced(tsk));
1991
1992        BUG_ON(!tsk->ptrace &&
1993               (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1994
1995        /* Wake up all pidfd waiters */
1996        do_notify_pidfd(tsk);
1997
1998        if (sig != SIGCHLD) {
1999                /*
2000                 * This is only possible if parent == real_parent.
2001                 * Check if it has changed security domain.
2002                 */
2003                if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2004                        sig = SIGCHLD;
2005        }
2006
2007        clear_siginfo(&info);
2008        info.si_signo = sig;
2009        info.si_errno = 0;
2010        /*
2011         * We are under tasklist_lock here so our parent is tied to
2012         * us and cannot change.
2013         *
2014         * task_active_pid_ns will always return the same pid namespace
2015         * until a task passes through release_task.
2016         *
2017         * write_lock() currently calls preempt_disable() which is the
2018         * same as rcu_read_lock(), but according to Oleg, this is not
2019         * correct to rely on this
2020         */
2021        rcu_read_lock();
2022        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2023        info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2024                                       task_uid(tsk));
2025        rcu_read_unlock();
2026
2027        task_cputime(tsk, &utime, &stime);
2028        info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2029        info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2030
2031        info.si_status = tsk->exit_code & 0x7f;
2032        if (tsk->exit_code & 0x80)
2033                info.si_code = CLD_DUMPED;
2034        else if (tsk->exit_code & 0x7f)
2035                info.si_code = CLD_KILLED;
2036        else {
2037                info.si_code = CLD_EXITED;
2038                info.si_status = tsk->exit_code >> 8;
2039        }
2040
2041        psig = tsk->parent->sighand;
2042        spin_lock_irqsave(&psig->siglock, flags);
2043        if (!tsk->ptrace && sig == SIGCHLD &&
2044            (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2045             (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2046                /*
2047                 * We are exiting and our parent doesn't care.  POSIX.1
2048                 * defines special semantics for setting SIGCHLD to SIG_IGN
2049                 * or setting the SA_NOCLDWAIT flag: we should be reaped
2050                 * automatically and not left for our parent's wait4 call.
2051                 * Rather than having the parent do it as a magic kind of
2052                 * signal handler, we just set this to tell do_exit that we
2053                 * can be cleaned up without becoming a zombie.  Note that
2054                 * we still call __wake_up_parent in this case, because a
2055                 * blocked sys_wait4 might now return -ECHILD.
2056                 *
2057                 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2058                 * is implementation-defined: we do (if you don't want
2059                 * it, just use SIG_IGN instead).
2060                 */
2061                autoreap = true;
2062                if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2063                        sig = 0;
2064        }
2065        /*
2066         * Send with __send_signal as si_pid and si_uid are in the
2067         * parent's namespaces.
2068         */
2069        if (valid_signal(sig) && sig)
2070                __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2071        __wake_up_parent(tsk, tsk->parent);
2072        spin_unlock_irqrestore(&psig->siglock, flags);
2073
2074        return autoreap;
2075}
2076
2077/**
2078 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2079 * @tsk: task reporting the state change
2080 * @for_ptracer: the notification is for ptracer
2081 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2082 *
2083 * Notify @tsk's parent that the stopped/continued state has changed.  If
2084 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2085 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2086 *
2087 * CONTEXT:
2088 * Must be called with tasklist_lock at least read locked.
2089 */
2090static void do_notify_parent_cldstop(struct task_struct *tsk,
2091                                     bool for_ptracer, int why)
2092{
2093        struct kernel_siginfo info;
2094        unsigned long flags;
2095        struct task_struct *parent;
2096        struct sighand_struct *sighand;
2097        u64 utime, stime;
2098
2099        if (for_ptracer) {
2100                parent = tsk->parent;
2101        } else {
2102                tsk = tsk->group_leader;
2103                parent = tsk->real_parent;
2104        }
2105
2106        clear_siginfo(&info);
2107        info.si_signo = SIGCHLD;
2108        info.si_errno = 0;
2109        /*
2110         * see comment in do_notify_parent() about the following 4 lines
2111         */
2112        rcu_read_lock();
2113        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2114        info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2115        rcu_read_unlock();
2116
2117        task_cputime(tsk, &utime, &stime);
2118        info.si_utime = nsec_to_clock_t(utime);
2119        info.si_stime = nsec_to_clock_t(stime);
2120
2121        info.si_code = why;
2122        switch (why) {
2123        case CLD_CONTINUED:
2124                info.si_status = SIGCONT;
2125                break;
2126        case CLD_STOPPED:
2127                info.si_status = tsk->signal->group_exit_code & 0x7f;
2128                break;
2129        case CLD_TRAPPED:
2130                info.si_status = tsk->exit_code & 0x7f;
2131                break;
2132        default:
2133                BUG();
2134        }
2135
2136        sighand = parent->sighand;
2137        spin_lock_irqsave(&sighand->siglock, flags);
2138        if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2139            !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2140                __group_send_sig_info(SIGCHLD, &info, parent);
2141        /*
2142         * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2143         */
2144        __wake_up_parent(tsk, parent);
2145        spin_unlock_irqrestore(&sighand->siglock, flags);
2146}
2147
2148static inline bool may_ptrace_stop(void)
2149{
2150        if (!likely(current->ptrace))
2151                return false;
2152        /*
2153         * Are we in the middle of do_coredump?
2154         * If so and our tracer is also part of the coredump stopping
2155         * is a deadlock situation, and pointless because our tracer
2156         * is dead so don't allow us to stop.
2157         * If SIGKILL was already sent before the caller unlocked
2158         * ->siglock we must see ->core_state != NULL. Otherwise it
2159         * is safe to enter schedule().
2160         *
2161         * This is almost outdated, a task with the pending SIGKILL can't
2162         * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2163         * after SIGKILL was already dequeued.
2164         */
2165        if (unlikely(current->mm->core_state) &&
2166            unlikely(current->mm == current->parent->mm))
2167                return false;
2168
2169        return true;
2170}
2171
2172/*
2173 * Return non-zero if there is a SIGKILL that should be waking us up.
2174 * Called with the siglock held.
2175 */
2176static bool sigkill_pending(struct task_struct *tsk)
2177{
2178        return sigismember(&tsk->pending.signal, SIGKILL) ||
2179               sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2180}
2181
2182/*
2183 * This must be called with current->sighand->siglock held.
2184 *
2185 * This should be the path for all ptrace stops.
2186 * We always set current->last_siginfo while stopped here.
2187 * That makes it a way to test a stopped process for
2188 * being ptrace-stopped vs being job-control-stopped.
2189 *
2190 * If we actually decide not to stop at all because the tracer
2191 * is gone, we keep current->exit_code unless clear_code.
2192 */
2193static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2194        __releases(&current->sighand->siglock)
2195        __acquires(&current->sighand->siglock)
2196{
2197        bool gstop_done = false;
2198
2199        if (arch_ptrace_stop_needed(exit_code, info)) {
2200                /*
2201                 * The arch code has something special to do before a
2202                 * ptrace stop.  This is allowed to block, e.g. for faults
2203                 * on user stack pages.  We can't keep the siglock while
2204                 * calling arch_ptrace_stop, so we must release it now.
2205                 * To preserve proper semantics, we must do this before
2206                 * any signal bookkeeping like checking group_stop_count.
2207                 * Meanwhile, a SIGKILL could come in before we retake the
2208                 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2209                 * So after regaining the lock, we must check for SIGKILL.
2210                 */
2211                spin_unlock_irq(&current->sighand->siglock);
2212                arch_ptrace_stop(exit_code, info);
2213                spin_lock_irq(&current->sighand->siglock);
2214                if (sigkill_pending(current))
2215                        return;
2216        }
2217
2218        set_special_state(TASK_TRACED);
2219
2220        /*
2221         * We're committing to trapping.  TRACED should be visible before
2222         * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2223         * Also, transition to TRACED and updates to ->jobctl should be
2224         * atomic with respect to siglock and should be done after the arch
2225         * hook as siglock is released and regrabbed across it.
2226         *
2227         *     TRACER                               TRACEE
2228         *
2229         *     ptrace_attach()
2230         * [L]   wait_on_bit(JOBCTL_TRAPPING)   [S] set_special_state(TRACED)
2231         *     do_wait()
2232         *       set_current_state()                smp_wmb();
2233         *       ptrace_do_wait()
2234         *         wait_task_stopped()
2235         *           task_stopped_code()
2236         * [L]         task_is_traced()         [S] task_clear_jobctl_trapping();
2237         */
2238        smp_wmb();
2239
2240        current->last_siginfo = info;
2241        current->exit_code = exit_code;
2242
2243        /*
2244         * If @why is CLD_STOPPED, we're trapping to participate in a group
2245         * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2246         * across siglock relocks since INTERRUPT was scheduled, PENDING
2247         * could be clear now.  We act as if SIGCONT is received after
2248         * TASK_TRACED is entered - ignore it.
2249         */
2250        if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2251                gstop_done = task_participate_group_stop(current);
2252
2253        /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2254        task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2255        if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2256                task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2257
2258        /* entering a trap, clear TRAPPING */
2259        task_clear_jobctl_trapping(current);
2260
2261        spin_unlock_irq(&current->sighand->siglock);
2262        read_lock(&tasklist_lock);
2263        if (may_ptrace_stop()) {
2264                /*
2265                 * Notify parents of the stop.
2266                 *
2267                 * While ptraced, there are two parents - the ptracer and
2268                 * the real_parent of the group_leader.  The ptracer should
2269                 * know about every stop while the real parent is only
2270                 * interested in the completion of group stop.  The states
2271                 * for the two don't interact with each other.  Notify
2272                 * separately unless they're gonna be duplicates.
2273                 */
2274                do_notify_parent_cldstop(current, true, why);
2275                if (gstop_done && ptrace_reparented(current))
2276                        do_notify_parent_cldstop(current, false, why);
2277
2278                /*
2279                 * Don't want to allow preemption here, because
2280                 * sys_ptrace() needs this task to be inactive.
2281                 *
2282                 * XXX: implement read_unlock_no_resched().
2283                 */
2284                preempt_disable();
2285                read_unlock(&tasklist_lock);
2286                cgroup_enter_frozen();
2287                preempt_enable_no_resched();
2288                freezable_schedule();
2289                cgroup_leave_frozen(true);
2290        } else {
2291                /*
2292                 * By the time we got the lock, our tracer went away.
2293                 * Don't drop the lock yet, another tracer may come.
2294                 *
2295                 * If @gstop_done, the ptracer went away between group stop
2296                 * completion and here.  During detach, it would have set
2297                 * JOBCTL_STOP_PENDING on us and we'll re-enter
2298                 * TASK_STOPPED in do_signal_stop() on return, so notifying
2299                 * the real parent of the group stop completion is enough.
2300                 */
2301                if (gstop_done)
2302                        do_notify_parent_cldstop(current, false, why);
2303
2304                /* tasklist protects us from ptrace_freeze_traced() */
2305                __set_current_state(TASK_RUNNING);
2306                if (clear_code)
2307                        current->exit_code = 0;
2308                read_unlock(&tasklist_lock);
2309        }
2310
2311        /*
2312         * We are back.  Now reacquire the siglock before touching
2313         * last_siginfo, so that we are sure to have synchronized with
2314         * any signal-sending on another CPU that wants to examine it.
2315         */
2316        spin_lock_irq(&current->sighand->siglock);
2317        current->last_siginfo = NULL;
2318
2319        /* LISTENING can be set only during STOP traps, clear it */
2320        current->jobctl &= ~JOBCTL_LISTENING;
2321
2322        /*
2323         * Queued signals ignored us while we were stopped for tracing.
2324         * So check for any that we should take before resuming user mode.
2325         * This sets TIF_SIGPENDING, but never clears it.
2326         */
2327        recalc_sigpending_tsk(current);
2328}
2329
2330static void ptrace_do_notify(int signr, int exit_code, int why)
2331{
2332        kernel_siginfo_t info;
2333
2334        clear_siginfo(&info);
2335        info.si_signo = signr;
2336        info.si_code = exit_code;
2337        info.si_pid = task_pid_vnr(current);
2338        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2339
2340        /* Let the debugger run.  */
2341        ptrace_stop(exit_code, why, 1, &info);
2342}
2343
2344void ptrace_notify(int exit_code)
2345{
2346        BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2347        if (unlikely(current->task_works))
2348                task_work_run();
2349
2350        spin_lock_irq(&current->sighand->siglock);
2351        ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2352        spin_unlock_irq(&current->sighand->siglock);
2353}
2354
2355/**
2356 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2357 * @signr: signr causing group stop if initiating
2358 *
2359 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2360 * and participate in it.  If already set, participate in the existing
2361 * group stop.  If participated in a group stop (and thus slept), %true is
2362 * returned with siglock released.
2363 *
2364 * If ptraced, this function doesn't handle stop itself.  Instead,
2365 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2366 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2367 * places afterwards.
2368 *
2369 * CONTEXT:
2370 * Must be called with @current->sighand->siglock held, which is released
2371 * on %true return.
2372 *
2373 * RETURNS:
2374 * %false if group stop is already cancelled or ptrace trap is scheduled.
2375 * %true if participated in group stop.
2376 */
2377static bool do_signal_stop(int signr)
2378        __releases(&current->sighand->siglock)
2379{
2380        struct signal_struct *sig = current->signal;
2381
2382        if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2383                unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2384                struct task_struct *t;
2385
2386                /* signr will be recorded in task->jobctl for retries */
2387                WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2388
2389                if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2390                    unlikely(signal_group_exit(sig)))
2391                        return false;
2392                /*
2393                 * There is no group stop already in progress.  We must
2394                 * initiate one now.
2395                 *
2396                 * While ptraced, a task may be resumed while group stop is
2397                 * still in effect and then receive a stop signal and
2398                 * initiate another group stop.  This deviates from the
2399                 * usual behavior as two consecutive stop signals can't
2400                 * cause two group stops when !ptraced.  That is why we
2401                 * also check !task_is_stopped(t) below.
2402                 *
2403                 * The condition can be distinguished by testing whether
2404                 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2405                 * group_exit_code in such case.
2406                 *
2407                 * This is not necessary for SIGNAL_STOP_CONTINUED because
2408                 * an intervening stop signal is required to cause two
2409                 * continued events regardless of ptrace.
2410                 */
2411                if (!(sig->flags & SIGNAL_STOP_STOPPED))
2412                        sig->group_exit_code = signr;
2413
2414                sig->group_stop_count = 0;
2415
2416                if (task_set_jobctl_pending(current, signr | gstop))
2417                        sig->group_stop_count++;
2418
2419                t = current;
2420                while_each_thread(current, t) {
2421                        /*
2422                         * Setting state to TASK_STOPPED for a group
2423                         * stop is always done with the siglock held,
2424                         * so this check has no races.
2425                         */
2426                        if (!task_is_stopped(t) &&
2427                            task_set_jobctl_pending(t, signr | gstop)) {
2428                                sig->group_stop_count++;
2429                                if (likely(!(t->ptrace & PT_SEIZED)))
2430                                        signal_wake_up(t, 0);
2431                                else
2432                                        ptrace_trap_notify(t);
2433                        }
2434                }
2435        }
2436
2437        if (likely(!current->ptrace)) {
2438                int notify = 0;
2439
2440                /*
2441                 * If there are no other threads in the group, or if there
2442                 * is a group stop in progress and we are the last to stop,
2443                 * report to the parent.
2444                 */
2445                if (task_participate_group_stop(current))
2446                        notify = CLD_STOPPED;
2447
2448                set_special_state(TASK_STOPPED);
2449                spin_unlock_irq(&current->sighand->siglock);
2450
2451                /*
2452                 * Notify the parent of the group stop completion.  Because
2453                 * we're not holding either the siglock or tasklist_lock
2454                 * here, ptracer may attach inbetween; however, this is for
2455                 * group stop and should always be delivered to the real
2456                 * parent of the group leader.  The new ptracer will get
2457                 * its notification when this task transitions into
2458                 * TASK_TRACED.
2459                 */
2460                if (notify) {
2461                        read_lock(&tasklist_lock);
2462                        do_notify_parent_cldstop(current, false, notify);
2463                        read_unlock(&tasklist_lock);
2464                }
2465
2466                /* Now we don't run again until woken by SIGCONT or SIGKILL */
2467                cgroup_enter_frozen();
2468                freezable_schedule();
2469                return true;
2470        } else {
2471                /*
2472                 * While ptraced, group stop is handled by STOP trap.
2473                 * Schedule it and let the caller deal with it.
2474                 */
2475                task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2476                return false;
2477        }
2478}
2479
2480/**
2481 * do_jobctl_trap - take care of ptrace jobctl traps
2482 *
2483 * When PT_SEIZED, it's used for both group stop and explicit
2484 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2485 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2486 * the stop signal; otherwise, %SIGTRAP.
2487 *
2488 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2489 * number as exit_code and no siginfo.
2490 *
2491 * CONTEXT:
2492 * Must be called with @current->sighand->siglock held, which may be
2493 * released and re-acquired before returning with intervening sleep.
2494 */
2495static void do_jobctl_trap(void)
2496{
2497        struct signal_struct *signal = current->signal;
2498        int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2499
2500        if (current->ptrace & PT_SEIZED) {
2501                if (!signal->group_stop_count &&
2502                    !(signal->flags & SIGNAL_STOP_STOPPED))
2503                        signr = SIGTRAP;
2504                WARN_ON_ONCE(!signr);
2505                ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2506                                 CLD_STOPPED);
2507        } else {
2508                WARN_ON_ONCE(!signr);
2509                ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2510                current->exit_code = 0;
2511        }
2512}
2513
2514/**
2515 * do_freezer_trap - handle the freezer jobctl trap
2516 *
2517 * Puts the task into frozen state, if only the task is not about to quit.
2518 * In this case it drops JOBCTL_TRAP_FREEZE.
2519 *
2520 * CONTEXT:
2521 * Must be called with @current->sighand->siglock held,
2522 * which is always released before returning.
2523 */
2524static void do_freezer_trap(void)
2525        __releases(&current->sighand->siglock)
2526{
2527        /*
2528         * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2529         * let's make another loop to give it a chance to be handled.
2530         * In any case, we'll return back.
2531         */
2532        if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2533             JOBCTL_TRAP_FREEZE) {
2534                spin_unlock_irq(&current->sighand->siglock);
2535                return;
2536        }
2537
2538        /*
2539         * Now we're sure that there is no pending fatal signal and no
2540         * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2541         * immediately (if there is a non-fatal signal pending), and
2542         * put the task into sleep.
2543         */
2544        __set_current_state(TASK_INTERRUPTIBLE);
2545        clear_thread_flag(TIF_SIGPENDING);
2546        spin_unlock_irq(&current->sighand->siglock);
2547        cgroup_enter_frozen();
2548        freezable_schedule();
2549}
2550
2551static int ptrace_signal(int signr, kernel_siginfo_t *info)
2552{
2553        /*
2554         * We do not check sig_kernel_stop(signr) but set this marker
2555         * unconditionally because we do not know whether debugger will
2556         * change signr. This flag has no meaning unless we are going
2557         * to stop after return from ptrace_stop(). In this case it will
2558         * be checked in do_signal_stop(), we should only stop if it was
2559         * not cleared by SIGCONT while we were sleeping. See also the
2560         * comment in dequeue_signal().
2561         */
2562        current->jobctl |= JOBCTL_STOP_DEQUEUED;
2563        ptrace_stop(signr, CLD_TRAPPED, 0, info);
2564
2565        /* We're back.  Did the debugger cancel the sig?  */
2566        signr = current->exit_code;
2567        if (signr == 0)
2568                return signr;
2569
2570        current->exit_code = 0;
2571
2572        /*
2573         * Update the siginfo structure if the signal has
2574         * changed.  If the debugger wanted something
2575         * specific in the siginfo structure then it should
2576         * have updated *info via PTRACE_SETSIGINFO.
2577         */
2578        if (signr != info->si_signo) {
2579                clear_siginfo(info);
2580                info->si_signo = signr;
2581                info->si_errno = 0;
2582                info->si_code = SI_USER;
2583                rcu_read_lock();
2584                info->si_pid = task_pid_vnr(current->parent);
2585                info->si_uid = from_kuid_munged(current_user_ns(),
2586                                                task_uid(current->parent));
2587                rcu_read_unlock();
2588        }
2589
2590        /* If the (new) signal is now blocked, requeue it.  */
2591        if (sigismember(&current->blocked, signr)) {
2592                send_signal(signr, info, current, PIDTYPE_PID);
2593                signr = 0;
2594        }
2595
2596        return signr;
2597}
2598
2599static void hide_si_addr_tag_bits(struct ksignal *ksig)
2600{
2601        switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2602        case SIL_FAULT:
2603        case SIL_FAULT_TRAPNO:
2604        case SIL_FAULT_MCEERR:
2605        case SIL_FAULT_BNDERR:
2606        case SIL_FAULT_PKUERR:
2607        case SIL_FAULT_PERF_EVENT:
2608                ksig->info.si_addr = arch_untagged_si_addr(
2609                        ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2610                break;
2611        case SIL_KILL:
2612        case SIL_TIMER:
2613        case SIL_POLL:
2614        case SIL_CHLD:
2615        case SIL_RT:
2616        case SIL_SYS:
2617                break;
2618        }
2619}
2620
2621bool get_signal(struct ksignal *ksig)
2622{
2623        struct sighand_struct *sighand = current->sighand;
2624        struct signal_struct *signal = current->signal;
2625        int signr;
2626
2627        if (unlikely(current->task_works))
2628                task_work_run();
2629
2630        /*
2631         * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2632         * that the arch handlers don't all have to do it. If we get here
2633         * without TIF_SIGPENDING, just exit after running signal work.
2634         */
2635        if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2636                if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2637                        tracehook_notify_signal();
2638                if (!task_sigpending(current))
2639                        return false;
2640        }
2641
2642        if (unlikely(uprobe_deny_signal()))
2643                return false;
2644
2645        /*
2646         * Do this once, we can't return to user-mode if freezing() == T.
2647         * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2648         * thus do not need another check after return.
2649         */
2650        try_to_freeze();
2651
2652relock:
2653        spin_lock_irq(&sighand->siglock);
2654
2655        /*
2656         * Every stopped thread goes here after wakeup. Check to see if
2657         * we should notify the parent, prepare_signal(SIGCONT) encodes
2658         * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2659         */
2660        if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2661                int why;
2662
2663                if (signal->flags & SIGNAL_CLD_CONTINUED)
2664                        why = CLD_CONTINUED;
2665                else
2666                        why = CLD_STOPPED;
2667
2668                signal->flags &= ~SIGNAL_CLD_MASK;
2669
2670                spin_unlock_irq(&sighand->siglock);
2671
2672                /*
2673                 * Notify the parent that we're continuing.  This event is
2674                 * always per-process and doesn't make whole lot of sense
2675                 * for ptracers, who shouldn't consume the state via
2676                 * wait(2) either, but, for backward compatibility, notify
2677                 * the ptracer of the group leader too unless it's gonna be
2678                 * a duplicate.
2679                 */
2680                read_lock(&tasklist_lock);
2681                do_notify_parent_cldstop(current, false, why);
2682
2683                if (ptrace_reparented(current->group_leader))
2684                        do_notify_parent_cldstop(current->group_leader,
2685                                                true, why);
2686                read_unlock(&tasklist_lock);
2687
2688                goto relock;
2689        }
2690
2691        /* Has this task already been marked for death? */
2692        if (signal_group_exit(signal)) {
2693                ksig->info.si_signo = signr = SIGKILL;
2694                sigdelset(&current->pending.signal, SIGKILL);
2695                trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2696                                &sighand->action[SIGKILL - 1]);
2697                recalc_sigpending();
2698                goto fatal;
2699        }
2700
2701        for (;;) {
2702                struct k_sigaction *ka;
2703
2704                if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2705                    do_signal_stop(0))
2706                        goto relock;
2707
2708                if (unlikely(current->jobctl &
2709                             (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2710                        if (current->jobctl & JOBCTL_TRAP_MASK) {
2711                                do_jobctl_trap();
2712                                spin_unlock_irq(&sighand->siglock);
2713                        } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2714                                do_freezer_trap();
2715
2716                        goto relock;
2717                }
2718
2719                /*
2720                 * If the task is leaving the frozen state, let's update
2721                 * cgroup counters and reset the frozen bit.
2722                 */
2723                if (unlikely(cgroup_task_frozen(current))) {
2724                        spin_unlock_irq(&sighand->siglock);
2725                        cgroup_leave_frozen(false);
2726                        goto relock;
2727                }
2728
2729                /*
2730                 * Signals generated by the execution of an instruction
2731                 * need to be delivered before any other pending signals
2732                 * so that the instruction pointer in the signal stack
2733                 * frame points to the faulting instruction.
2734                 */
2735                signr = dequeue_synchronous_signal(&ksig->info);
2736                if (!signr)
2737                        signr = dequeue_signal(current, &current->blocked, &ksig->info);
2738
2739                if (!signr)
2740                        break; /* will return 0 */
2741
2742                if (unlikely(current->ptrace) && signr != SIGKILL) {
2743                        signr = ptrace_signal(signr, &ksig->info);
2744                        if (!signr)
2745                                continue;
2746                }
2747
2748                ka = &sighand->action[signr-1];
2749
2750                /* Trace actually delivered signals. */
2751                trace_signal_deliver(signr, &ksig->info, ka);
2752
2753                if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2754                        continue;
2755                if (ka->sa.sa_handler != SIG_DFL) {
2756                        /* Run the handler.  */
2757                        ksig->ka = *ka;
2758
2759                        if (ka->sa.sa_flags & SA_ONESHOT)
2760                                ka->sa.sa_handler = SIG_DFL;
2761
2762                        break; /* will return non-zero "signr" value */
2763                }
2764
2765                /*
2766                 * Now we are doing the default action for this signal.
2767                 */
2768                if (sig_kernel_ignore(signr)) /* Default is nothing. */
2769                        continue;
2770
2771                /*
2772                 * Global init gets no signals it doesn't want.
2773                 * Container-init gets no signals it doesn't want from same
2774                 * container.
2775                 *
2776                 * Note that if global/container-init sees a sig_kernel_only()
2777                 * signal here, the signal must have been generated internally
2778                 * or must have come from an ancestor namespace. In either
2779                 * case, the signal cannot be dropped.
2780                 */
2781                if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2782                                !sig_kernel_only(signr))
2783                        continue;
2784
2785                if (sig_kernel_stop(signr)) {
2786                        /*
2787                         * The default action is to stop all threads in
2788                         * the thread group.  The job control signals
2789                         * do nothing in an orphaned pgrp, but SIGSTOP
2790                         * always works.  Note that siglock needs to be
2791                         * dropped during the call to is_orphaned_pgrp()
2792                         * because of lock ordering with tasklist_lock.
2793                         * This allows an intervening SIGCONT to be posted.
2794                         * We need to check for that and bail out if necessary.
2795                         */
2796                        if (signr != SIGSTOP) {
2797                                spin_unlock_irq(&sighand->siglock);
2798
2799                                /* signals can be posted during this window */
2800
2801                                if (is_current_pgrp_orphaned())
2802                                        goto relock;
2803
2804                                spin_lock_irq(&sighand->siglock);
2805                        }
2806
2807                        if (likely(do_signal_stop(ksig->info.si_signo))) {
2808                                /* It released the siglock.  */
2809                                goto relock;
2810                        }
2811
2812                        /*
2813                         * We didn't actually stop, due to a race
2814                         * with SIGCONT or something like that.
2815                         */
2816                        continue;
2817                }
2818
2819        fatal:
2820                spin_unlock_irq(&sighand->siglock);
2821                if (unlikely(cgroup_task_frozen(current)))
2822                        cgroup_leave_frozen(true);
2823
2824                /*
2825                 * Anything else is fatal, maybe with a core dump.
2826                 */
2827                current->flags |= PF_SIGNALED;
2828
2829                if (sig_kernel_coredump(signr)) {
2830                        if (print_fatal_signals)
2831                                print_fatal_signal(ksig->info.si_signo);
2832                        proc_coredump_connector(current);
2833                        /*
2834                         * If it was able to dump core, this kills all
2835                         * other threads in the group and synchronizes with
2836                         * their demise.  If we lost the race with another
2837                         * thread getting here, it set group_exit_code
2838                         * first and our do_group_exit call below will use
2839                         * that value and ignore the one we pass it.
2840                         */
2841                        do_coredump(&ksig->info);
2842                }
2843
2844                /*
2845                 * PF_IO_WORKER threads will catch and exit on fatal signals
2846                 * themselves. They have cleanup that must be performed, so
2847                 * we cannot call do_exit() on their behalf.
2848                 */
2849                if (current->flags & PF_IO_WORKER)
2850                        goto out;
2851
2852                /*
2853                 * Death signals, no core dump.
2854                 */
2855                do_group_exit(ksig->info.si_signo);
2856                /* NOTREACHED */
2857        }
2858        spin_unlock_irq(&sighand->siglock);
2859out:
2860        ksig->sig = signr;
2861
2862        if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2863                hide_si_addr_tag_bits(ksig);
2864
2865        return ksig->sig > 0;
2866}
2867
2868/**
2869 * signal_delivered - 
2870 * @ksig:               kernel signal struct
2871 * @stepping:           nonzero if debugger single-step or block-step in use
2872 *
2873 * This function should be called when a signal has successfully been
2874 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2875 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2876 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2877 */
2878static void signal_delivered(struct ksignal *ksig, int stepping)
2879{
2880        sigset_t blocked;
2881
2882        /* A signal was successfully delivered, and the
2883           saved sigmask was stored on the signal frame,
2884           and will be restored by sigreturn.  So we can
2885           simply clear the restore sigmask flag.  */
2886        clear_restore_sigmask();
2887
2888        sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2889        if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2890                sigaddset(&blocked, ksig->sig);
2891        set_current_blocked(&blocked);
2892        if (current->sas_ss_flags & SS_AUTODISARM)
2893                sas_ss_reset(current);
2894        tracehook_signal_handler(stepping);
2895}
2896
2897void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2898{
2899        if (failed)
2900                force_sigsegv(ksig->sig);
2901        else
2902                signal_delivered(ksig, stepping);
2903}
2904
2905/*
2906 * It could be that complete_signal() picked us to notify about the
2907 * group-wide signal. Other threads should be notified now to take
2908 * the shared signals in @which since we will not.
2909 */
2910static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2911{
2912        sigset_t retarget;
2913        struct task_struct *t;
2914
2915        sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2916        if (sigisemptyset(&retarget))
2917                return;
2918
2919        t = tsk;
2920        while_each_thread(tsk, t) {
2921                if (t->flags & PF_EXITING)
2922                        continue;
2923
2924                if (!has_pending_signals(&retarget, &t->blocked))
2925                        continue;
2926                /* Remove the signals this thread can handle. */
2927                sigandsets(&retarget, &retarget, &t->blocked);
2928
2929                if (!task_sigpending(t))
2930                        signal_wake_up(t, 0);
2931
2932                if (sigisemptyset(&retarget))
2933                        break;
2934        }
2935}
2936
2937void exit_signals(struct task_struct *tsk)
2938{
2939        int group_stop = 0;
2940        sigset_t unblocked;
2941
2942        /*
2943         * @tsk is about to have PF_EXITING set - lock out users which
2944         * expect stable threadgroup.
2945         */
2946        cgroup_threadgroup_change_begin(tsk);
2947
2948        if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2949                tsk->flags |= PF_EXITING;
2950                cgroup_threadgroup_change_end(tsk);
2951                return;
2952        }
2953
2954        spin_lock_irq(&tsk->sighand->siglock);
2955        /*
2956         * From now this task is not visible for group-wide signals,
2957         * see wants_signal(), do_signal_stop().
2958         */
2959        tsk->flags |= PF_EXITING;
2960
2961        cgroup_threadgroup_change_end(tsk);
2962
2963        if (!task_sigpending(tsk))
2964                goto out;
2965
2966        unblocked = tsk->blocked;
2967        signotset(&unblocked);
2968        retarget_shared_pending(tsk, &unblocked);
2969
2970        if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2971            task_participate_group_stop(tsk))
2972                group_stop = CLD_STOPPED;
2973out:
2974        spin_unlock_irq(&tsk->sighand->siglock);
2975
2976        /*
2977         * If group stop has completed, deliver the notification.  This
2978         * should always go to the real parent of the group leader.
2979         */
2980        if (unlikely(group_stop)) {
2981                read_lock(&tasklist_lock);
2982                do_notify_parent_cldstop(tsk, false, group_stop);
2983                read_unlock(&tasklist_lock);
2984        }
2985}
2986
2987/*
2988 * System call entry points.
2989 */
2990
2991/**
2992 *  sys_restart_syscall - restart a system call
2993 */
2994SYSCALL_DEFINE0(restart_syscall)
2995{
2996        struct restart_block *restart = &current->restart_block;
2997        return restart->fn(restart);
2998}
2999
3000long do_no_restart_syscall(struct restart_block *param)
3001{
3002        return -EINTR;
3003}
3004
3005static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3006{
3007        if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3008                sigset_t newblocked;
3009                /* A set of now blocked but previously unblocked signals. */
3010                sigandnsets(&newblocked, newset, &current->blocked);
3011                retarget_shared_pending(tsk, &newblocked);
3012        }
3013        tsk->blocked = *newset;
3014        recalc_sigpending();
3015}
3016
3017/**
3018 * set_current_blocked - change current->blocked mask
3019 * @newset: new mask
3020 *
3021 * It is wrong to change ->blocked directly, this helper should be used
3022 * to ensure the process can't miss a shared signal we are going to block.
3023 */
3024void set_current_blocked(sigset_t *newset)
3025{
3026        sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3027        __set_current_blocked(newset);
3028}
3029
3030void __set_current_blocked(const sigset_t *newset)
3031{
3032        struct task_struct *tsk = current;
3033
3034        /*
3035         * In case the signal mask hasn't changed, there is nothing we need
3036         * to do. The current->blocked shouldn't be modified by other task.
3037         */
3038        if (sigequalsets(&tsk->blocked, newset))
3039                return;
3040
3041        spin_lock_irq(&tsk->sighand->siglock);
3042        __set_task_blocked(tsk, newset);
3043        spin_unlock_irq(&tsk->sighand->siglock);
3044}
3045
3046/*
3047 * This is also useful for kernel threads that want to temporarily
3048 * (or permanently) block certain signals.
3049 *
3050 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3051 * interface happily blocks "unblockable" signals like SIGKILL
3052 * and friends.
3053 */
3054int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3055{
3056        struct task_struct *tsk = current;
3057        sigset_t newset;
3058
3059        /* Lockless, only current can change ->blocked, never from irq */
3060        if (oldset)
3061                *oldset = tsk->blocked;
3062
3063        switch (how) {
3064        case SIG_BLOCK:
3065                sigorsets(&newset, &tsk->blocked, set);
3066                break;
3067        case SIG_UNBLOCK:
3068                sigandnsets(&newset, &tsk->blocked, set);
3069                break;
3070        case SIG_SETMASK:
3071                newset = *set;
3072                break;
3073        default:
3074                return -EINVAL;
3075        }
3076
3077        __set_current_blocked(&newset);
3078        return 0;
3079}
3080EXPORT_SYMBOL(sigprocmask);
3081
3082/*
3083 * The api helps set app-provided sigmasks.
3084 *
3085 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3086 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3087 *
3088 * Note that it does set_restore_sigmask() in advance, so it must be always
3089 * paired with restore_saved_sigmask_unless() before return from syscall.
3090 */
3091int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3092{
3093        sigset_t kmask;
3094
3095        if (!umask)
3096                return 0;
3097        if (sigsetsize != sizeof(sigset_t))
3098                return -EINVAL;
3099        if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3100                return -EFAULT;
3101
3102        set_restore_sigmask();
3103        current->saved_sigmask = current->blocked;
3104        set_current_blocked(&kmask);
3105
3106        return 0;
3107}
3108
3109#ifdef CONFIG_COMPAT
3110int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3111                            size_t sigsetsize)
3112{
3113        sigset_t kmask;
3114
3115        if (!umask)
3116                return 0;
3117        if (sigsetsize != sizeof(compat_sigset_t))
3118                return -EINVAL;
3119        if (get_compat_sigset(&kmask, umask))
3120                return -EFAULT;
3121
3122        set_restore_sigmask();
3123        current->saved_sigmask = current->blocked;
3124        set_current_blocked(&kmask);
3125
3126        return 0;
3127}
3128#endif
3129
3130/**
3131 *  sys_rt_sigprocmask - change the list of currently blocked signals
3132 *  @how: whether to add, remove, or set signals
3133 *  @nset: stores pending signals
3134 *  @oset: previous value of signal mask if non-null
3135 *  @sigsetsize: size of sigset_t type
3136 */
3137SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3138                sigset_t __user *, oset, size_t, sigsetsize)
3139{
3140        sigset_t old_set, new_set;
3141        int error;
3142
3143        /* XXX: Don't preclude handling different sized sigset_t's.  */
3144        if (sigsetsize != sizeof(sigset_t))
3145                return -EINVAL;
3146
3147        old_set = current->blocked;
3148
3149        if (nset) {
3150                if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3151                        return -EFAULT;
3152                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3153
3154                error = sigprocmask(how, &new_set, NULL);
3155                if (error)
3156                        return error;
3157        }
3158
3159        if (oset) {
3160                if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3161                        return -EFAULT;
3162        }
3163
3164        return 0;
3165}
3166
3167#ifdef CONFIG_COMPAT
3168COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3169                compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3170{
3171        sigset_t old_set = current->blocked;
3172
3173        /* XXX: Don't preclude handling different sized sigset_t's.  */
3174        if (sigsetsize != sizeof(sigset_t))
3175                return -EINVAL;
3176
3177        if (nset) {
3178                sigset_t new_set;
3179                int error;
3180                if (get_compat_sigset(&new_set, nset))
3181                        return -EFAULT;
3182                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3183
3184                error = sigprocmask(how, &new_set, NULL);
3185                if (error)
3186                        return error;
3187        }
3188        return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3189}
3190#endif
3191
3192static void do_sigpending(sigset_t *set)
3193{
3194        spin_lock_irq(&current->sighand->siglock);
3195        sigorsets(set, &current->pending.signal,
3196                  &current->signal->shared_pending.signal);
3197        spin_unlock_irq(&current->sighand->siglock);
3198
3199        /* Outside the lock because only this thread touches it.  */
3200        sigandsets(set, &current->blocked, set);
3201}
3202
3203/**
3204 *  sys_rt_sigpending - examine a pending signal that has been raised
3205 *                      while blocked
3206 *  @uset: stores pending signals
3207 *  @sigsetsize: size of sigset_t type or larger
3208 */
3209SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3210{
3211        sigset_t set;
3212
3213        if (sigsetsize > sizeof(*uset))
3214                return -EINVAL;
3215
3216        do_sigpending(&set);
3217
3218        if (copy_to_user(uset, &set, sigsetsize))
3219                return -EFAULT;
3220
3221        return 0;
3222}
3223
3224#ifdef CONFIG_COMPAT
3225COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3226                compat_size_t, sigsetsize)
3227{
3228        sigset_t set;
3229
3230        if (sigsetsize > sizeof(*uset))
3231                return -EINVAL;
3232
3233        do_sigpending(&set);
3234
3235        return put_compat_sigset(uset, &set, sigsetsize);
3236}
3237#endif
3238
3239static const struct {
3240        unsigned char limit, layout;
3241} sig_sicodes[] = {
3242        [SIGILL]  = { NSIGILL,  SIL_FAULT },
3243        [SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3244        [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3245        [SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3246        [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3247#if defined(SIGEMT)
3248        [SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3249#endif
3250        [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3251        [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3252        [SIGSYS]  = { NSIGSYS,  SIL_SYS },
3253};
3254
3255static bool known_siginfo_layout(unsigned sig, int si_code)
3256{
3257        if (si_code == SI_KERNEL)
3258                return true;
3259        else if ((si_code > SI_USER)) {
3260                if (sig_specific_sicodes(sig)) {
3261                        if (si_code <= sig_sicodes[sig].limit)
3262                                return true;
3263                }
3264                else if (si_code <= NSIGPOLL)
3265                        return true;
3266        }
3267        else if (si_code >= SI_DETHREAD)
3268                return true;
3269        else if (si_code == SI_ASYNCNL)
3270                return true;
3271        return false;
3272}
3273
3274enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3275{
3276        enum siginfo_layout layout = SIL_KILL;
3277        if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3278                if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3279                    (si_code <= sig_sicodes[sig].limit)) {
3280                        layout = sig_sicodes[sig].layout;
3281                        /* Handle the exceptions */
3282                        if ((sig == SIGBUS) &&
3283                            (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3284                                layout = SIL_FAULT_MCEERR;
3285                        else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3286                                layout = SIL_FAULT_BNDERR;
3287#ifdef SEGV_PKUERR
3288                        else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3289                                layout = SIL_FAULT_PKUERR;
3290#endif
3291                        else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3292                                layout = SIL_FAULT_PERF_EVENT;
3293                        else if (IS_ENABLED(CONFIG_SPARC) &&
3294                                 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3295                                layout = SIL_FAULT_TRAPNO;
3296                        else if (IS_ENABLED(CONFIG_ALPHA) &&
3297                                 ((sig == SIGFPE) ||
3298                                  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3299                                layout = SIL_FAULT_TRAPNO;
3300                }
3301                else if (si_code <= NSIGPOLL)
3302                        layout = SIL_POLL;
3303        } else {
3304                if (si_code == SI_TIMER)
3305                        layout = SIL_TIMER;
3306                else if (si_code == SI_SIGIO)
3307                        layout = SIL_POLL;
3308                else if (si_code < 0)
3309                        layout = SIL_RT;
3310        }
3311        return layout;
3312}
3313
3314static inline char __user *si_expansion(const siginfo_t __user *info)
3315{
3316        return ((char __user *)info) + sizeof(struct kernel_siginfo);
3317}
3318
3319int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3320{
3321        char __user *expansion = si_expansion(to);
3322        if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3323                return -EFAULT;
3324        if (clear_user(expansion, SI_EXPANSION_SIZE))
3325                return -EFAULT;
3326        return 0;
3327}
3328
3329static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3330                                       const siginfo_t __user *from)
3331{
3332        if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3333                char __user *expansion = si_expansion(from);
3334                char buf[SI_EXPANSION_SIZE];
3335                int i;
3336                /*
3337                 * An unknown si_code might need more than
3338                 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3339                 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3340                 * will return this data to userspace exactly.
3341                 */
3342                if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3343                        return -EFAULT;
3344                for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3345                        if (buf[i] != 0)
3346                                return -E2BIG;
3347                }
3348        }
3349        return 0;
3350}
3351
3352static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3353                                    const siginfo_t __user *from)
3354{
3355        if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3356                return -EFAULT;
3357        to->si_signo = signo;
3358        return post_copy_siginfo_from_user(to, from);
3359}
3360
3361int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3362{
3363        if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3364                return -EFAULT;
3365        return post_copy_siginfo_from_user(to, from);
3366}
3367
3368#ifdef CONFIG_COMPAT
3369/**
3370 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3371 * @to: compat siginfo destination
3372 * @from: kernel siginfo source
3373 *
3374 * Note: This function does not work properly for the SIGCHLD on x32, but
3375 * fortunately it doesn't have to.  The only valid callers for this function are
3376 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3377 * The latter does not care because SIGCHLD will never cause a coredump.
3378 */
3379void copy_siginfo_to_external32(struct compat_siginfo *to,
3380                const struct kernel_siginfo *from)
3381{
3382        memset(to, 0, sizeof(*to));
3383
3384        to->si_signo = from->si_signo;
3385        to->si_errno = from->si_errno;
3386        to->si_code  = from->si_code;
3387        switch(siginfo_layout(from->si_signo, from->si_code)) {
3388        case SIL_KILL:
3389                to->si_pid = from->si_pid;
3390                to->si_uid = from->si_uid;
3391                break;
3392        case SIL_TIMER:
3393                to->si_tid     = from->si_tid;
3394                to->si_overrun = from->si_overrun;
3395                to->si_int     = from->si_int;
3396                break;
3397        case SIL_POLL:
3398                to->si_band = from->si_band;
3399                to->si_fd   = from->si_fd;
3400                break;
3401        case SIL_FAULT:
3402                to->si_addr = ptr_to_compat(from->si_addr);
3403                break;
3404        case SIL_FAULT_TRAPNO:
3405                to->si_addr = ptr_to_compat(from->si_addr);
3406                to->si_trapno = from->si_trapno;
3407                break;
3408        case SIL_FAULT_MCEERR:
3409                to->si_addr = ptr_to_compat(from->si_addr);
3410                to->si_addr_lsb = from->si_addr_lsb;
3411                break;
3412        case SIL_FAULT_BNDERR:
3413                to->si_addr = ptr_to_compat(from->si_addr);
3414                to->si_lower = ptr_to_compat(from->si_lower);
3415                to->si_upper = ptr_to_compat(from->si_upper);
3416                break;
3417        case SIL_FAULT_PKUERR:
3418                to->si_addr = ptr_to_compat(from->si_addr);
3419                to->si_pkey = from->si_pkey;
3420                break;
3421        case SIL_FAULT_PERF_EVENT:
3422                to->si_addr = ptr_to_compat(from->si_addr);
3423                to->si_perf_data = from->si_perf_data;
3424                to->si_perf_type = from->si_perf_type;
3425                break;
3426        case SIL_CHLD:
3427                to->si_pid = from->si_pid;
3428                to->si_uid = from->si_uid;
3429                to->si_status = from->si_status;
3430                to->si_utime = from->si_utime;
3431                to->si_stime = from->si_stime;
3432                break;
3433        case SIL_RT:
3434                to->si_pid = from->si_pid;
3435                to->si_uid = from->si_uid;
3436                to->si_int = from->si_int;
3437                break;
3438        case SIL_SYS:
3439                to->si_call_addr = ptr_to_compat(from->si_call_addr);
3440                to->si_syscall   = from->si_syscall;
3441                to->si_arch      = from->si_arch;
3442                break;
3443        }
3444}
3445
3446int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3447                           const struct kernel_siginfo *from)
3448{
3449        struct compat_siginfo new;
3450
3451        copy_siginfo_to_external32(&new, from);
3452        if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3453                return -EFAULT;
3454        return 0;
3455}
3456
3457static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3458                                         const struct compat_siginfo *from)
3459{
3460        clear_siginfo(to);
3461        to->si_signo = from->si_signo;
3462        to->si_errno = from->si_errno;
3463        to->si_code  = from->si_code;
3464        switch(siginfo_layout(from->si_signo, from->si_code)) {
3465        case SIL_KILL:
3466                to->si_pid = from->si_pid;
3467                to->si_uid = from->si_uid;
3468                break;
3469        case SIL_TIMER:
3470                to->si_tid     = from->si_tid;
3471                to->si_overrun = from->si_overrun;
3472                to->si_int     = from->si_int;
3473                break;
3474        case SIL_POLL:
3475                to->si_band = from->si_band;
3476                to->si_fd   = from->si_fd;
3477                break;
3478        case SIL_FAULT:
3479                to->si_addr = compat_ptr(from->si_addr);
3480                break;
3481        case SIL_FAULT_TRAPNO:
3482                to->si_addr = compat_ptr(from->si_addr);
3483                to->si_trapno = from->si_trapno;
3484                break;
3485        case SIL_FAULT_MCEERR:
3486                to->si_addr = compat_ptr(from->si_addr);
3487                to->si_addr_lsb = from->si_addr_lsb;
3488                break;
3489        case SIL_FAULT_BNDERR:
3490                to->si_addr = compat_ptr(from->si_addr);
3491                to->si_lower = compat_ptr(from->si_lower);
3492                to->si_upper = compat_ptr(from->si_upper);
3493                break;
3494        case SIL_FAULT_PKUERR:
3495                to->si_addr = compat_ptr(from->si_addr);
3496                to->si_pkey = from->si_pkey;
3497                break;
3498        case SIL_FAULT_PERF_EVENT:
3499                to->si_addr = compat_ptr(from->si_addr);
3500                to->si_perf_data = from->si_perf_data;
3501                to->si_perf_type = from->si_perf_type;
3502                break;
3503        case SIL_CHLD:
3504                to->si_pid    = from->si_pid;
3505                to->si_uid    = from->si_uid;
3506                to->si_status = from->si_status;
3507#ifdef CONFIG_X86_X32_ABI
3508                if (in_x32_syscall()) {
3509                        to->si_utime = from->_sifields._sigchld_x32._utime;
3510                        to->si_stime = from->_sifields._sigchld_x32._stime;
3511                } else
3512#endif
3513                {
3514                        to->si_utime = from->si_utime;
3515                        to->si_stime = from->si_stime;
3516                }
3517                break;
3518        case SIL_RT:
3519                to->si_pid = from->si_pid;
3520                to->si_uid = from->si_uid;
3521                to->si_int = from->si_int;
3522                break;
3523        case SIL_SYS:
3524                to->si_call_addr = compat_ptr(from->si_call_addr);
3525                to->si_syscall   = from->si_syscall;
3526                to->si_arch      = from->si_arch;
3527                break;
3528        }
3529        return 0;
3530}
3531
3532static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3533                                      const struct compat_siginfo __user *ufrom)
3534{
3535        struct compat_siginfo from;
3536
3537        if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3538                return -EFAULT;
3539
3540        from.si_signo = signo;
3541        return post_copy_siginfo_from_user32(to, &from);
3542}
3543
3544int copy_siginfo_from_user32(struct kernel_siginfo *to,
3545                             const struct compat_siginfo __user *ufrom)
3546{
3547        struct compat_siginfo from;
3548
3549        if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3550                return -EFAULT;
3551
3552        return post_copy_siginfo_from_user32(to, &from);
3553}
3554#endif /* CONFIG_COMPAT */
3555
3556/**
3557 *  do_sigtimedwait - wait for queued signals specified in @which
3558 *  @which: queued signals to wait for
3559 *  @info: if non-null, the signal's siginfo is returned here
3560 *  @ts: upper bound on process time suspension
3561 */
3562static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3563                    const struct timespec64 *ts)
3564{
3565        ktime_t *to = NULL, timeout = KTIME_MAX;
3566        struct task_struct *tsk = current;
3567        sigset_t mask = *which;
3568        int sig, ret = 0;
3569
3570        if (ts) {
3571                if (!timespec64_valid(ts))
3572                        return -EINVAL;
3573                timeout = timespec64_to_ktime(*ts);
3574                to = &timeout;
3575        }
3576
3577        /*
3578         * Invert the set of allowed signals to get those we want to block.
3579         */
3580        sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3581        signotset(&mask);
3582
3583        spin_lock_irq(&tsk->sighand->siglock);
3584        sig = dequeue_signal(tsk, &mask, info);
3585        if (!sig && timeout) {
3586                /*
3587                 * None ready, temporarily unblock those we're interested
3588                 * while we are sleeping in so that we'll be awakened when
3589                 * they arrive. Unblocking is always fine, we can avoid
3590                 * set_current_blocked().
3591                 */
3592                tsk->real_blocked = tsk->blocked;
3593                sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3594                recalc_sigpending();
3595                spin_unlock_irq(&tsk->sighand->siglock);
3596
3597                __set_current_state(TASK_INTERRUPTIBLE);
3598                ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3599                                                         HRTIMER_MODE_REL);
3600                spin_lock_irq(&tsk->sighand->siglock);
3601                __set_task_blocked(tsk, &tsk->real_blocked);
3602                sigemptyset(&tsk->real_blocked);
3603                sig = dequeue_signal(tsk, &mask, info);
3604        }
3605        spin_unlock_irq(&tsk->sighand->siglock);
3606
3607        if (sig)
3608                return sig;
3609        return ret ? -EINTR : -EAGAIN;
3610}
3611
3612/**
3613 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3614 *                      in @uthese
3615 *  @uthese: queued signals to wait for
3616 *  @uinfo: if non-null, the signal's siginfo is returned here
3617 *  @uts: upper bound on process time suspension
3618 *  @sigsetsize: size of sigset_t type
3619 */
3620SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3621                siginfo_t __user *, uinfo,
3622                const struct __kernel_timespec __user *, uts,
3623                size_t, sigsetsize)
3624{
3625        sigset_t these;
3626        struct timespec64 ts;
3627        kernel_siginfo_t info;
3628        int ret;
3629
3630        /* XXX: Don't preclude handling different sized sigset_t's.  */
3631        if (sigsetsize != sizeof(sigset_t))
3632                return -EINVAL;
3633
3634        if (copy_from_user(&these, uthese, sizeof(these)))
3635                return -EFAULT;
3636
3637        if (uts) {
3638                if (get_timespec64(&ts, uts))
3639                        return -EFAULT;
3640        }
3641
3642        ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3643
3644        if (ret > 0 && uinfo) {
3645                if (copy_siginfo_to_user(uinfo, &info))
3646                        ret = -EFAULT;
3647        }
3648
3649        return ret;
3650}
3651
3652#ifdef CONFIG_COMPAT_32BIT_TIME
3653SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3654                siginfo_t __user *, uinfo,
3655                const struct old_timespec32 __user *, uts,
3656                size_t, sigsetsize)
3657{
3658        sigset_t these;
3659        struct timespec64 ts;
3660        kernel_siginfo_t info;
3661        int ret;
3662
3663        if (sigsetsize != sizeof(sigset_t))
3664                return -EINVAL;
3665
3666        if (copy_from_user(&these, uthese, sizeof(these)))
3667                return -EFAULT;
3668
3669        if (uts) {
3670                if (get_old_timespec32(&ts, uts))
3671                        return -EFAULT;
3672        }
3673
3674        ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3675
3676        if (ret > 0 && uinfo) {
3677                if (copy_siginfo_to_user(uinfo, &info))
3678                        ret = -EFAULT;
3679        }
3680
3681        return ret;
3682}
3683#endif
3684
3685#ifdef CONFIG_COMPAT
3686COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3687                struct compat_siginfo __user *, uinfo,
3688                struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3689{
3690        sigset_t s;
3691        struct timespec64 t;
3692        kernel_siginfo_t info;
3693        long ret;
3694
3695        if (sigsetsize != sizeof(sigset_t))
3696                return -EINVAL;
3697
3698        if (get_compat_sigset(&s, uthese))
3699                return -EFAULT;
3700
3701        if (uts) {
3702                if (get_timespec64(&t, uts))
3703                        return -EFAULT;
3704        }
3705
3706        ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3707
3708        if (ret > 0 && uinfo) {
3709                if (copy_siginfo_to_user32(uinfo, &info))
3710                        ret = -EFAULT;
3711        }
3712
3713        return ret;
3714}
3715
3716#ifdef CONFIG_COMPAT_32BIT_TIME
3717COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3718                struct compat_siginfo __user *, uinfo,
3719                struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3720{
3721        sigset_t s;
3722        struct timespec64 t;
3723        kernel_siginfo_t info;
3724        long ret;
3725
3726        if (sigsetsize != sizeof(sigset_t))
3727                return -EINVAL;
3728
3729        if (get_compat_sigset(&s, uthese))
3730                return -EFAULT;
3731
3732        if (uts) {
3733                if (get_old_timespec32(&t, uts))
3734                        return -EFAULT;
3735        }
3736
3737        ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3738
3739        if (ret > 0 && uinfo) {
3740                if (copy_siginfo_to_user32(uinfo, &info))
3741                        ret = -EFAULT;
3742        }
3743
3744        return ret;
3745}
3746#endif
3747#endif
3748
3749static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3750{
3751        clear_siginfo(info);
3752        info->si_signo = sig;
3753        info->si_errno = 0;
3754        info->si_code = SI_USER;
3755        info->si_pid = task_tgid_vnr(current);
3756        info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3757}
3758
3759/**
3760 *  sys_kill - send a signal to a process
3761 *  @pid: the PID of the process
3762 *  @sig: signal to be sent
3763 */
3764SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3765{
3766        struct kernel_siginfo info;
3767
3768        prepare_kill_siginfo(sig, &info);
3769
3770        return kill_something_info(sig, &info, pid);
3771}
3772
3773/*
3774 * Verify that the signaler and signalee either are in the same pid namespace
3775 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3776 * namespace.
3777 */
3778static bool access_pidfd_pidns(struct pid *pid)
3779{
3780        struct pid_namespace *active = task_active_pid_ns(current);
3781        struct pid_namespace *p = ns_of_pid(pid);
3782
3783        for (;;) {
3784                if (!p)
3785                        return false;
3786                if (p == active)
3787                        break;
3788                p = p->parent;
3789        }
3790
3791        return true;
3792}
3793
3794static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3795                siginfo_t __user *info)
3796{
3797#ifdef CONFIG_COMPAT
3798        /*
3799         * Avoid hooking up compat syscalls and instead handle necessary
3800         * conversions here. Note, this is a stop-gap measure and should not be
3801         * considered a generic solution.
3802         */
3803        if (in_compat_syscall())
3804                return copy_siginfo_from_user32(
3805                        kinfo, (struct compat_siginfo __user *)info);
3806#endif
3807        return copy_siginfo_from_user(kinfo, info);
3808}
3809
3810static struct pid *pidfd_to_pid(const struct file *file)
3811{
3812        struct pid *pid;
3813
3814        pid = pidfd_pid(file);
3815        if (!IS_ERR(pid))
3816                return pid;
3817
3818        return tgid_pidfd_to_pid(file);
3819}
3820
3821/**
3822 * sys_pidfd_send_signal - Signal a process through a pidfd
3823 * @pidfd:  file descriptor of the process
3824 * @sig:    signal to send
3825 * @info:   signal info
3826 * @flags:  future flags
3827 *
3828 * The syscall currently only signals via PIDTYPE_PID which covers
3829 * kill(<positive-pid>, <signal>. It does not signal threads or process
3830 * groups.
3831 * In order to extend the syscall to threads and process groups the @flags
3832 * argument should be used. In essence, the @flags argument will determine
3833 * what is signaled and not the file descriptor itself. Put in other words,
3834 * grouping is a property of the flags argument not a property of the file
3835 * descriptor.
3836 *
3837 * Return: 0 on success, negative errno on failure
3838 */
3839SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3840                siginfo_t __user *, info, unsigned int, flags)
3841{
3842        int ret;
3843        struct fd f;
3844        struct pid *pid;
3845        kernel_siginfo_t kinfo;
3846
3847        /* Enforce flags be set to 0 until we add an extension. */
3848        if (flags)
3849                return -EINVAL;
3850
3851        f = fdget(pidfd);
3852        if (!f.file)
3853                return -EBADF;
3854
3855        /* Is this a pidfd? */
3856        pid = pidfd_to_pid(f.file);
3857        if (IS_ERR(pid)) {
3858                ret = PTR_ERR(pid);
3859                goto err;
3860        }
3861
3862        ret = -EINVAL;
3863        if (!access_pidfd_pidns(pid))
3864                goto err;
3865
3866        if (info) {
3867                ret = copy_siginfo_from_user_any(&kinfo, info);
3868                if (unlikely(ret))
3869                        goto err;
3870
3871                ret = -EINVAL;
3872                if (unlikely(sig != kinfo.si_signo))
3873                        goto err;
3874
3875                /* Only allow sending arbitrary signals to yourself. */
3876                ret = -EPERM;
3877                if ((task_pid(current) != pid) &&
3878                    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3879                        goto err;
3880        } else {
3881                prepare_kill_siginfo(sig, &kinfo);
3882        }
3883
3884        ret = kill_pid_info(sig, &kinfo, pid);
3885
3886err:
3887        fdput(f);
3888        return ret;
3889}
3890
3891static int
3892do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3893{
3894        struct task_struct *p;
3895        int error = -ESRCH;
3896
3897        rcu_read_lock();
3898        p = find_task_by_vpid(pid);
3899        if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3900                error = check_kill_permission(sig, info, p);
3901                /*
3902                 * The null signal is a permissions and process existence
3903                 * probe.  No signal is actually delivered.
3904                 */
3905                if (!error && sig) {
3906                        error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3907                        /*
3908                         * If lock_task_sighand() failed we pretend the task
3909                         * dies after receiving the signal. The window is tiny,
3910                         * and the signal is private anyway.
3911                         */
3912                        if (unlikely(error == -ESRCH))
3913                                error = 0;
3914                }
3915        }
3916        rcu_read_unlock();
3917
3918        return error;
3919}
3920
3921static int do_tkill(pid_t tgid, pid_t pid, int sig)
3922{
3923        struct kernel_siginfo info;
3924
3925        clear_siginfo(&info);
3926        info.si_signo = sig;
3927        info.si_errno = 0;
3928        info.si_code = SI_TKILL;
3929        info.si_pid = task_tgid_vnr(current);
3930        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3931
3932        return do_send_specific(tgid, pid, sig, &info);
3933}
3934
3935/**
3936 *  sys_tgkill - send signal to one specific thread
3937 *  @tgid: the thread group ID of the thread
3938 *  @pid: the PID of the thread
3939 *  @sig: signal to be sent
3940 *
3941 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3942 *  exists but it's not belonging to the target process anymore. This
3943 *  method solves the problem of threads exiting and PIDs getting reused.
3944 */
3945SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3946{
3947        /* This is only valid for single tasks */
3948        if (pid <= 0 || tgid <= 0)
3949                return -EINVAL;
3950
3951        return do_tkill(tgid, pid, sig);
3952}
3953
3954/**
3955 *  sys_tkill - send signal to one specific task
3956 *  @pid: the PID of the task
3957 *  @sig: signal to be sent
3958 *
3959 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3960 */
3961SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3962{
3963        /* This is only valid for single tasks */
3964        if (pid <= 0)
3965                return -EINVAL;
3966
3967        return do_tkill(0, pid, sig);
3968}
3969
3970static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3971{
3972        /* Not even root can pretend to send signals from the kernel.
3973         * Nor can they impersonate a kill()/tgkill(), which adds source info.
3974         */
3975        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3976            (task_pid_vnr(current) != pid))
3977                return -EPERM;
3978
3979        /* POSIX.1b doesn't mention process groups.  */
3980        return kill_proc_info(sig, info, pid);
3981}
3982
3983/**
3984 *  sys_rt_sigqueueinfo - send signal information to a signal
3985 *  @pid: the PID of the thread
3986 *  @sig: signal to be sent
3987 *  @uinfo: signal info to be sent
3988 */
3989SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3990                siginfo_t __user *, uinfo)
3991{
3992        kernel_siginfo_t info;
3993        int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3994        if (unlikely(ret))
3995                return ret;
3996        return do_rt_sigqueueinfo(pid, sig, &info);
3997}
3998
3999#ifdef CONFIG_COMPAT
4000COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4001                        compat_pid_t, pid,
4002                        int, sig,
4003                        struct compat_siginfo __user *, uinfo)
4004{
4005        kernel_siginfo_t info;
4006        int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4007        if (unlikely(ret))
4008                return ret;
4009        return do_rt_sigqueueinfo(pid, sig, &info);
4010}
4011#endif
4012
4013static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4014{
4015        /* This is only valid for single tasks */
4016        if (pid <= 0 || tgid <= 0)
4017                return -EINVAL;
4018
4019        /* Not even root can pretend to send signals from the kernel.
4020         * Nor can they impersonate a kill()/tgkill(), which adds source info.
4021         */
4022        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4023            (task_pid_vnr(current) != pid))
4024                return -EPERM;
4025
4026        return do_send_specific(tgid, pid, sig, info);
4027}
4028
4029SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4030                siginfo_t __user *, uinfo)
4031{
4032        kernel_siginfo_t info;
4033        int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4034        if (unlikely(ret))
4035                return ret;
4036        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4037}
4038
4039#ifdef CONFIG_COMPAT
4040COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4041                        compat_pid_t, tgid,
4042                        compat_pid_t, pid,
4043                        int, sig,
4044                        struct compat_siginfo __user *, uinfo)
4045{
4046        kernel_siginfo_t info;
4047        int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4048        if (unlikely(ret))
4049                return ret;
4050        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4051}
4052#endif
4053
4054/*
4055 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4056 */
4057void kernel_sigaction(int sig, __sighandler_t action)
4058{
4059        spin_lock_irq(&current->sighand->siglock);
4060        current->sighand->action[sig - 1].sa.sa_handler = action;
4061        if (action == SIG_IGN) {
4062                sigset_t mask;
4063
4064                sigemptyset(&mask);
4065                sigaddset(&mask, sig);
4066
4067                flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4068                flush_sigqueue_mask(&mask, &current->pending);
4069                recalc_sigpending();
4070        }
4071        spin_unlock_irq(&current->sighand->siglock);
4072}
4073EXPORT_SYMBOL(kernel_sigaction);
4074
4075void __weak sigaction_compat_abi(struct k_sigaction *act,
4076                struct k_sigaction *oact)
4077{
4078}
4079
4080int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4081{
4082        struct task_struct *p = current, *t;
4083        struct k_sigaction *k;
4084        sigset_t mask;
4085
4086        if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4087                return -EINVAL;
4088
4089        k = &p->sighand->action[sig-1];
4090
4091        spin_lock_irq(&p->sighand->siglock);
4092        if (oact)
4093                *oact = *k;
4094
4095        /*
4096         * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4097         * e.g. by having an architecture use the bit in their uapi.
4098         */
4099        BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4100
4101        /*
4102         * Clear unknown flag bits in order to allow userspace to detect missing
4103         * support for flag bits and to allow the kernel to use non-uapi bits
4104         * internally.
4105         */
4106        if (act)
4107                act->sa.sa_flags &= UAPI_SA_FLAGS;
4108        if (oact)
4109                oact->sa.sa_flags &= UAPI_SA_FLAGS;
4110
4111        sigaction_compat_abi(act, oact);
4112
4113        if (act) {
4114                sigdelsetmask(&act->sa.sa_mask,
4115                              sigmask(SIGKILL) | sigmask(SIGSTOP));
4116                *k = *act;
4117                /*
4118                 * POSIX 3.3.1.3:
4119                 *  "Setting a signal action to SIG_IGN for a signal that is
4120                 *   pending shall cause the pending signal to be discarded,
4121                 *   whether or not it is blocked."
4122                 *
4123                 *  "Setting a signal action to SIG_DFL for a signal that is
4124                 *   pending and whose default action is to ignore the signal
4125                 *   (for example, SIGCHLD), shall cause the pending signal to
4126                 *   be discarded, whether or not it is blocked"
4127                 */
4128                if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4129                        sigemptyset(&mask);
4130                        sigaddset(&mask, sig);
4131                        flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4132                        for_each_thread(p, t)
4133                                flush_sigqueue_mask(&mask, &t->pending);
4134                }
4135        }
4136
4137        spin_unlock_irq(&p->sighand->siglock);
4138        return 0;
4139}
4140
4141static int
4142do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4143                size_t min_ss_size)
4144{
4145        struct task_struct *t = current;
4146
4147        if (oss) {
4148                memset(oss, 0, sizeof(stack_t));
4149                oss->ss_sp = (void __user *) t->sas_ss_sp;
4150                oss->ss_size = t->sas_ss_size;
4151                oss->ss_flags = sas_ss_flags(sp) |
4152                        (current->sas_ss_flags & SS_FLAG_BITS);
4153        }
4154
4155        if (ss) {
4156                void __user *ss_sp = ss->ss_sp;
4157                size_t ss_size = ss->ss_size;
4158                unsigned ss_flags = ss->ss_flags;
4159                int ss_mode;
4160
4161                if (unlikely(on_sig_stack(sp)))
4162                        return -EPERM;
4163
4164                ss_mode = ss_flags & ~SS_FLAG_BITS;
4165                if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4166                                ss_mode != 0))
4167                        return -EINVAL;
4168
4169                if (ss_mode == SS_DISABLE) {
4170                        ss_size = 0;
4171                        ss_sp = NULL;
4172                } else {
4173                        if (unlikely(ss_size < min_ss_size))
4174                                return -ENOMEM;
4175                }
4176
4177                t->sas_ss_sp = (unsigned long) ss_sp;
4178                t->sas_ss_size = ss_size;
4179                t->sas_ss_flags = ss_flags;
4180        }
4181        return 0;
4182}
4183
4184SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4185{
4186        stack_t new, old;
4187        int err;
4188        if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4189                return -EFAULT;
4190        err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4191                              current_user_stack_pointer(),
4192                              MINSIGSTKSZ);
4193        if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4194                err = -EFAULT;
4195        return err;
4196}
4197
4198int restore_altstack(const stack_t __user *uss)
4199{
4200        stack_t new;
4201        if (copy_from_user(&new, uss, sizeof(stack_t)))
4202                return -EFAULT;
4203        (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4204                             MINSIGSTKSZ);
4205        /* squash all but EFAULT for now */
4206        return 0;
4207}
4208
4209int __save_altstack(stack_t __user *uss, unsigned long sp)
4210{
4211        struct task_struct *t = current;
4212        int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4213                __put_user(t->sas_ss_flags, &uss->ss_flags) |
4214                __put_user(t->sas_ss_size, &uss->ss_size);
4215        return err;
4216}
4217
4218#ifdef CONFIG_COMPAT
4219static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4220                                 compat_stack_t __user *uoss_ptr)
4221{
4222        stack_t uss, uoss;
4223        int ret;
4224
4225        if (uss_ptr) {
4226                compat_stack_t uss32;
4227                if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4228                        return -EFAULT;
4229                uss.ss_sp = compat_ptr(uss32.ss_sp);
4230                uss.ss_flags = uss32.ss_flags;
4231                uss.ss_size = uss32.ss_size;
4232        }
4233        ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4234                             compat_user_stack_pointer(),
4235                             COMPAT_MINSIGSTKSZ);
4236        if (ret >= 0 && uoss_ptr)  {
4237                compat_stack_t old;
4238                memset(&old, 0, sizeof(old));
4239                old.ss_sp = ptr_to_compat(uoss.ss_sp);
4240                old.ss_flags = uoss.ss_flags;
4241                old.ss_size = uoss.ss_size;
4242                if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4243                        ret = -EFAULT;
4244        }
4245        return ret;
4246}
4247
4248COMPAT_SYSCALL_DEFINE2(sigaltstack,
4249                        const compat_stack_t __user *, uss_ptr,
4250                        compat_stack_t __user *, uoss_ptr)
4251{
4252        return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4253}
4254
4255int compat_restore_altstack(const compat_stack_t __user *uss)
4256{
4257        int err = do_compat_sigaltstack(uss, NULL);
4258        /* squash all but -EFAULT for now */
4259        return err == -EFAULT ? err : 0;
4260}
4261
4262int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4263{
4264        int err;
4265        struct task_struct *t = current;
4266        err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4267                         &uss->ss_sp) |
4268                __put_user(t->sas_ss_flags, &uss->ss_flags) |
4269                __put_user(t->sas_ss_size, &uss->ss_size);
4270        return err;
4271}
4272#endif
4273
4274#ifdef __ARCH_WANT_SYS_SIGPENDING
4275
4276/**
4277 *  sys_sigpending - examine pending signals
4278 *  @uset: where mask of pending signal is returned
4279 */
4280SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4281{
4282        sigset_t set;
4283
4284        if (sizeof(old_sigset_t) > sizeof(*uset))
4285                return -EINVAL;
4286
4287        do_sigpending(&set);
4288
4289        if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4290                return -EFAULT;
4291
4292        return 0;
4293}
4294
4295#ifdef CONFIG_COMPAT
4296COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4297{
4298        sigset_t set;
4299
4300        do_sigpending(&set);
4301
4302        return put_user(set.sig[0], set32);
4303}
4304#endif
4305
4306#endif
4307
4308#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4309/**
4310 *  sys_sigprocmask - examine and change blocked signals
4311 *  @how: whether to add, remove, or set signals
4312 *  @nset: signals to add or remove (if non-null)
4313 *  @oset: previous value of signal mask if non-null
4314 *
4315 * Some platforms have their own version with special arguments;
4316 * others support only sys_rt_sigprocmask.
4317 */
4318
4319SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4320                old_sigset_t __user *, oset)
4321{
4322        old_sigset_t old_set, new_set;
4323        sigset_t new_blocked;
4324
4325        old_set = current->blocked.sig[0];
4326
4327        if (nset) {
4328                if (copy_from_user(&new_set, nset, sizeof(*nset)))
4329                        return -EFAULT;
4330
4331                new_blocked = current->blocked;
4332
4333                switch (how) {
4334                case SIG_BLOCK:
4335                        sigaddsetmask(&new_blocked, new_set);
4336                        break;
4337                case SIG_UNBLOCK:
4338                        sigdelsetmask(&new_blocked, new_set);
4339                        break;
4340                case SIG_SETMASK:
4341                        new_blocked.sig[0] = new_set;
4342                        break;
4343                default:
4344                        return -EINVAL;
4345                }
4346
4347                set_current_blocked(&new_blocked);
4348        }
4349
4350        if (oset) {
4351                if (copy_to_user(oset, &old_set, sizeof(*oset)))
4352                        return -EFAULT;
4353        }
4354
4355        return 0;
4356}
4357#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4358
4359#ifndef CONFIG_ODD_RT_SIGACTION
4360/**
4361 *  sys_rt_sigaction - alter an action taken by a process
4362 *  @sig: signal to be sent
4363 *  @act: new sigaction
4364 *  @oact: used to save the previous sigaction
4365 *  @sigsetsize: size of sigset_t type
4366 */
4367SYSCALL_DEFINE4(rt_sigaction, int, sig,
4368                const struct sigaction __user *, act,
4369                struct sigaction __user *, oact,
4370                size_t, sigsetsize)
4371{
4372        struct k_sigaction new_sa, old_sa;
4373        int ret;
4374
4375        /* XXX: Don't preclude handling different sized sigset_t's.  */
4376        if (sigsetsize != sizeof(sigset_t))
4377                return -EINVAL;
4378
4379        if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4380                return -EFAULT;
4381
4382        ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4383        if (ret)
4384                return ret;
4385
4386        if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4387                return -EFAULT;
4388
4389        return 0;
4390}
4391#ifdef CONFIG_COMPAT
4392COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4393                const struct compat_sigaction __user *, act,
4394                struct compat_sigaction __user *, oact,
4395                compat_size_t, sigsetsize)
4396{
4397        struct k_sigaction new_ka, old_ka;
4398#ifdef __ARCH_HAS_SA_RESTORER
4399        compat_uptr_t restorer;
4400#endif
4401        int ret;
4402
4403        /* XXX: Don't preclude handling different sized sigset_t's.  */
4404        if (sigsetsize != sizeof(compat_sigset_t))
4405                return -EINVAL;
4406
4407        if (act) {
4408                compat_uptr_t handler;
4409                ret = get_user(handler, &act->sa_handler);
4410                new_ka.sa.sa_handler = compat_ptr(handler);
4411#ifdef __ARCH_HAS_SA_RESTORER
4412                ret |= get_user(restorer, &act->sa_restorer);
4413                new_ka.sa.sa_restorer = compat_ptr(restorer);
4414#endif
4415                ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4416                ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4417                if (ret)
4418                        return -EFAULT;
4419        }
4420
4421        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4422        if (!ret && oact) {
4423                ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4424                               &oact->sa_handler);
4425                ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4426                                         sizeof(oact->sa_mask));
4427                ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4428#ifdef __ARCH_HAS_SA_RESTORER
4429                ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4430                                &oact->sa_restorer);
4431#endif
4432        }
4433        return ret;
4434}
4435#endif
4436#endif /* !CONFIG_ODD_RT_SIGACTION */
4437
4438#ifdef CONFIG_OLD_SIGACTION
4439SYSCALL_DEFINE3(sigaction, int, sig,
4440                const struct old_sigaction __user *, act,
4441                struct old_sigaction __user *, oact)
4442{
4443        struct k_sigaction new_ka, old_ka;
4444        int ret;
4445
4446        if (act) {
4447                old_sigset_t mask;
4448                if (!access_ok(act, sizeof(*act)) ||
4449                    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4450                    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4451                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4452                    __get_user(mask, &act->sa_mask))
4453                        return -EFAULT;
4454#ifdef __ARCH_HAS_KA_RESTORER
4455                new_ka.ka_restorer = NULL;
4456#endif
4457                siginitset(&new_ka.sa.sa_mask, mask);
4458        }
4459
4460        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4461
4462        if (!ret && oact) {
4463                if (!access_ok(oact, sizeof(*oact)) ||
4464                    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4465                    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4466                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4467                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4468                        return -EFAULT;
4469        }
4470
4471        return ret;
4472}
4473#endif
4474#ifdef CONFIG_COMPAT_OLD_SIGACTION
4475COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4476                const struct compat_old_sigaction __user *, act,
4477                struct compat_old_sigaction __user *, oact)
4478{
4479        struct k_sigaction new_ka, old_ka;
4480        int ret;
4481        compat_old_sigset_t mask;
4482        compat_uptr_t handler, restorer;
4483
4484        if (act) {
4485                if (!access_ok(act, sizeof(*act)) ||
4486                    __get_user(handler, &act->sa_handler) ||
4487                    __get_user(restorer, &act->sa_restorer) ||
4488                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4489                    __get_user(mask, &act->sa_mask))
4490                        return -EFAULT;
4491
4492#ifdef __ARCH_HAS_KA_RESTORER
4493                new_ka.ka_restorer = NULL;
4494#endif
4495                new_ka.sa.sa_handler = compat_ptr(handler);
4496                new_ka.sa.sa_restorer = compat_ptr(restorer);
4497                siginitset(&new_ka.sa.sa_mask, mask);
4498        }
4499
4500        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4501
4502        if (!ret && oact) {
4503                if (!access_ok(oact, sizeof(*oact)) ||
4504                    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4505                               &oact->sa_handler) ||
4506                    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4507                               &oact->sa_restorer) ||
4508                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4509                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4510                        return -EFAULT;
4511        }
4512        return ret;
4513}
4514#endif
4515
4516#ifdef CONFIG_SGETMASK_SYSCALL
4517
4518/*
4519 * For backwards compatibility.  Functionality superseded by sigprocmask.
4520 */
4521SYSCALL_DEFINE0(sgetmask)
4522{
4523        /* SMP safe */
4524        return current->blocked.sig[0];
4525}
4526
4527SYSCALL_DEFINE1(ssetmask, int, newmask)
4528{
4529        int old = current->blocked.sig[0];
4530        sigset_t newset;
4531
4532        siginitset(&newset, newmask);
4533        set_current_blocked(&newset);
4534
4535        return old;
4536}
4537#endif /* CONFIG_SGETMASK_SYSCALL */
4538
4539#ifdef __ARCH_WANT_SYS_SIGNAL
4540/*
4541 * For backwards compatibility.  Functionality superseded by sigaction.
4542 */
4543SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4544{
4545        struct k_sigaction new_sa, old_sa;
4546        int ret;
4547
4548        new_sa.sa.sa_handler = handler;
4549        new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4550        sigemptyset(&new_sa.sa.sa_mask);
4551
4552        ret = do_sigaction(sig, &new_sa, &old_sa);
4553
4554        return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4555}
4556#endif /* __ARCH_WANT_SYS_SIGNAL */
4557
4558#ifdef __ARCH_WANT_SYS_PAUSE
4559
4560SYSCALL_DEFINE0(pause)
4561{
4562        while (!signal_pending(current)) {
4563                __set_current_state(TASK_INTERRUPTIBLE);
4564                schedule();
4565        }
4566        return -ERESTARTNOHAND;
4567}
4568
4569#endif
4570
4571static int sigsuspend(sigset_t *set)
4572{
4573        current->saved_sigmask = current->blocked;
4574        set_current_blocked(set);
4575
4576        while (!signal_pending(current)) {
4577                __set_current_state(TASK_INTERRUPTIBLE);
4578                schedule();
4579        }
4580        set_restore_sigmask();
4581        return -ERESTARTNOHAND;
4582}
4583
4584/**
4585 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4586 *      @unewset value until a signal is received
4587 *  @unewset: new signal mask value
4588 *  @sigsetsize: size of sigset_t type
4589 */
4590SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4591{
4592        sigset_t newset;
4593
4594        /* XXX: Don't preclude handling different sized sigset_t's.  */
4595        if (sigsetsize != sizeof(sigset_t))
4596                return -EINVAL;
4597
4598        if (copy_from_user(&newset, unewset, sizeof(newset)))
4599                return -EFAULT;
4600        return sigsuspend(&newset);
4601}
4602 
4603#ifdef CONFIG_COMPAT
4604COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4605{
4606        sigset_t newset;
4607
4608        /* XXX: Don't preclude handling different sized sigset_t's.  */
4609        if (sigsetsize != sizeof(sigset_t))
4610                return -EINVAL;
4611
4612        if (get_compat_sigset(&newset, unewset))
4613                return -EFAULT;
4614        return sigsuspend(&newset);
4615}
4616#endif
4617
4618#ifdef CONFIG_OLD_SIGSUSPEND
4619SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4620{
4621        sigset_t blocked;
4622        siginitset(&blocked, mask);
4623        return sigsuspend(&blocked);
4624}
4625#endif
4626#ifdef CONFIG_OLD_SIGSUSPEND3
4627SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4628{
4629        sigset_t blocked;
4630        siginitset(&blocked, mask);
4631        return sigsuspend(&blocked);
4632}
4633#endif
4634
4635__weak const char *arch_vma_name(struct vm_area_struct *vma)
4636{
4637        return NULL;
4638}
4639
4640static inline void siginfo_buildtime_checks(void)
4641{
4642        BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4643
4644        /* Verify the offsets in the two siginfos match */
4645#define CHECK_OFFSET(field) \
4646        BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4647
4648        /* kill */
4649        CHECK_OFFSET(si_pid);
4650        CHECK_OFFSET(si_uid);
4651
4652        /* timer */
4653        CHECK_OFFSET(si_tid);
4654        CHECK_OFFSET(si_overrun);
4655        CHECK_OFFSET(si_value);
4656
4657        /* rt */
4658        CHECK_OFFSET(si_pid);
4659        CHECK_OFFSET(si_uid);
4660        CHECK_OFFSET(si_value);
4661
4662        /* sigchld */
4663        CHECK_OFFSET(si_pid);
4664        CHECK_OFFSET(si_uid);
4665        CHECK_OFFSET(si_status);
4666        CHECK_OFFSET(si_utime);
4667        CHECK_OFFSET(si_stime);
4668
4669        /* sigfault */
4670        CHECK_OFFSET(si_addr);
4671        CHECK_OFFSET(si_trapno);
4672        CHECK_OFFSET(si_addr_lsb);
4673        CHECK_OFFSET(si_lower);
4674        CHECK_OFFSET(si_upper);
4675        CHECK_OFFSET(si_pkey);
4676        CHECK_OFFSET(si_perf_data);
4677        CHECK_OFFSET(si_perf_type);
4678
4679        /* sigpoll */
4680        CHECK_OFFSET(si_band);
4681        CHECK_OFFSET(si_fd);
4682
4683        /* sigsys */
4684        CHECK_OFFSET(si_call_addr);
4685        CHECK_OFFSET(si_syscall);
4686        CHECK_OFFSET(si_arch);
4687#undef CHECK_OFFSET
4688
4689        /* usb asyncio */
4690        BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4691                     offsetof(struct siginfo, si_addr));
4692        if (sizeof(int) == sizeof(void __user *)) {
4693                BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4694                             sizeof(void __user *));
4695        } else {
4696                BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4697                              sizeof_field(struct siginfo, si_uid)) !=
4698                             sizeof(void __user *));
4699                BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4700                             offsetof(struct siginfo, si_uid));
4701        }
4702#ifdef CONFIG_COMPAT
4703        BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4704                     offsetof(struct compat_siginfo, si_addr));
4705        BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4706                     sizeof(compat_uptr_t));
4707        BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4708                     sizeof_field(struct siginfo, si_pid));
4709#endif
4710}
4711
4712void __init signals_init(void)
4713{
4714        siginfo_buildtime_checks();
4715
4716        sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4717}
4718
4719#ifdef CONFIG_KGDB_KDB
4720#include <linux/kdb.h>
4721/*
4722 * kdb_send_sig - Allows kdb to send signals without exposing
4723 * signal internals.  This function checks if the required locks are
4724 * available before calling the main signal code, to avoid kdb
4725 * deadlocks.
4726 */
4727void kdb_send_sig(struct task_struct *t, int sig)
4728{
4729        static struct task_struct *kdb_prev_t;
4730        int new_t, ret;
4731        if (!spin_trylock(&t->sighand->siglock)) {
4732                kdb_printf("Can't do kill command now.\n"
4733                           "The sigmask lock is held somewhere else in "
4734                           "kernel, try again later\n");
4735                return;
4736        }
4737        new_t = kdb_prev_t != t;
4738        kdb_prev_t = t;
4739        if (!task_is_running(t) && new_t) {
4740                spin_unlock(&t->sighand->siglock);
4741                kdb_printf("Process is not RUNNING, sending a signal from "
4742                           "kdb risks deadlock\n"
4743                           "on the run queue locks. "
4744                           "The signal has _not_ been sent.\n"
4745                           "Reissue the kill command if you want to risk "
4746                           "the deadlock.\n");
4747                return;
4748        }
4749        ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4750        spin_unlock(&t->sighand->siglock);
4751        if (ret)
4752                kdb_printf("Fail to deliver Signal %d to process %d.\n",
4753                           sig, t->pid);
4754        else
4755                kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4756}
4757#endif  /* CONFIG_KGDB_KDB */
4758