linux/kernel/time/clocksource.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file contains the functions which manage clocksource drivers.
   4 *
   5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/device.h>
  11#include <linux/clocksource.h>
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  15#include <linux/tick.h>
  16#include <linux/kthread.h>
  17#include <linux/prandom.h>
  18#include <linux/cpu.h>
  19
  20#include "tick-internal.h"
  21#include "timekeeping_internal.h"
  22
  23/**
  24 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
  25 * @mult:       pointer to mult variable
  26 * @shift:      pointer to shift variable
  27 * @from:       frequency to convert from
  28 * @to:         frequency to convert to
  29 * @maxsec:     guaranteed runtime conversion range in seconds
  30 *
  31 * The function evaluates the shift/mult pair for the scaled math
  32 * operations of clocksources and clockevents.
  33 *
  34 * @to and @from are frequency values in HZ. For clock sources @to is
  35 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
  36 * event @to is the counter frequency and @from is NSEC_PER_SEC.
  37 *
  38 * The @maxsec conversion range argument controls the time frame in
  39 * seconds which must be covered by the runtime conversion with the
  40 * calculated mult and shift factors. This guarantees that no 64bit
  41 * overflow happens when the input value of the conversion is
  42 * multiplied with the calculated mult factor. Larger ranges may
  43 * reduce the conversion accuracy by choosing smaller mult and shift
  44 * factors.
  45 */
  46void
  47clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
  48{
  49        u64 tmp;
  50        u32 sft, sftacc= 32;
  51
  52        /*
  53         * Calculate the shift factor which is limiting the conversion
  54         * range:
  55         */
  56        tmp = ((u64)maxsec * from) >> 32;
  57        while (tmp) {
  58                tmp >>=1;
  59                sftacc--;
  60        }
  61
  62        /*
  63         * Find the conversion shift/mult pair which has the best
  64         * accuracy and fits the maxsec conversion range:
  65         */
  66        for (sft = 32; sft > 0; sft--) {
  67                tmp = (u64) to << sft;
  68                tmp += from / 2;
  69                do_div(tmp, from);
  70                if ((tmp >> sftacc) == 0)
  71                        break;
  72        }
  73        *mult = tmp;
  74        *shift = sft;
  75}
  76EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
  77
  78/*[Clocksource internal variables]---------
  79 * curr_clocksource:
  80 *      currently selected clocksource.
  81 * suspend_clocksource:
  82 *      used to calculate the suspend time.
  83 * clocksource_list:
  84 *      linked list with the registered clocksources
  85 * clocksource_mutex:
  86 *      protects manipulations to curr_clocksource and the clocksource_list
  87 * override_name:
  88 *      Name of the user-specified clocksource.
  89 */
  90static struct clocksource *curr_clocksource;
  91static struct clocksource *suspend_clocksource;
  92static LIST_HEAD(clocksource_list);
  93static DEFINE_MUTEX(clocksource_mutex);
  94static char override_name[CS_NAME_LEN];
  95static int finished_booting;
  96static u64 suspend_start;
  97
  98/*
  99 * Threshold: 0.0312s, when doubled: 0.0625s.
 100 * Also a default for cs->uncertainty_margin when registering clocks.
 101 */
 102#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
 103
 104/*
 105 * Maximum permissible delay between two readouts of the watchdog
 106 * clocksource surrounding a read of the clocksource being validated.
 107 * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
 108 * a lower bound for cs->uncertainty_margin values when registering clocks.
 109 */
 110#define WATCHDOG_MAX_SKEW (50 * NSEC_PER_USEC)
 111
 112#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
 113static void clocksource_watchdog_work(struct work_struct *work);
 114static void clocksource_select(void);
 115
 116static LIST_HEAD(watchdog_list);
 117static struct clocksource *watchdog;
 118static struct timer_list watchdog_timer;
 119static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 120static DEFINE_SPINLOCK(watchdog_lock);
 121static int watchdog_running;
 122static atomic_t watchdog_reset_pending;
 123
 124static inline void clocksource_watchdog_lock(unsigned long *flags)
 125{
 126        spin_lock_irqsave(&watchdog_lock, *flags);
 127}
 128
 129static inline void clocksource_watchdog_unlock(unsigned long *flags)
 130{
 131        spin_unlock_irqrestore(&watchdog_lock, *flags);
 132}
 133
 134static int clocksource_watchdog_kthread(void *data);
 135static void __clocksource_change_rating(struct clocksource *cs, int rating);
 136
 137/*
 138 * Interval: 0.5sec.
 139 */
 140#define WATCHDOG_INTERVAL (HZ >> 1)
 141
 142static void clocksource_watchdog_work(struct work_struct *work)
 143{
 144        /*
 145         * We cannot directly run clocksource_watchdog_kthread() here, because
 146         * clocksource_select() calls timekeeping_notify() which uses
 147         * stop_machine(). One cannot use stop_machine() from a workqueue() due
 148         * lock inversions wrt CPU hotplug.
 149         *
 150         * Also, we only ever run this work once or twice during the lifetime
 151         * of the kernel, so there is no point in creating a more permanent
 152         * kthread for this.
 153         *
 154         * If kthread_run fails the next watchdog scan over the
 155         * watchdog_list will find the unstable clock again.
 156         */
 157        kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 158}
 159
 160static void __clocksource_unstable(struct clocksource *cs)
 161{
 162        cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 163        cs->flags |= CLOCK_SOURCE_UNSTABLE;
 164
 165        /*
 166         * If the clocksource is registered clocksource_watchdog_kthread() will
 167         * re-rate and re-select.
 168         */
 169        if (list_empty(&cs->list)) {
 170                cs->rating = 0;
 171                return;
 172        }
 173
 174        if (cs->mark_unstable)
 175                cs->mark_unstable(cs);
 176
 177        /* kick clocksource_watchdog_kthread() */
 178        if (finished_booting)
 179                schedule_work(&watchdog_work);
 180}
 181
 182/**
 183 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 184 * @cs:         clocksource to be marked unstable
 185 *
 186 * This function is called by the x86 TSC code to mark clocksources as unstable;
 187 * it defers demotion and re-selection to a kthread.
 188 */
 189void clocksource_mark_unstable(struct clocksource *cs)
 190{
 191        unsigned long flags;
 192
 193        spin_lock_irqsave(&watchdog_lock, flags);
 194        if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 195                if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
 196                        list_add(&cs->wd_list, &watchdog_list);
 197                __clocksource_unstable(cs);
 198        }
 199        spin_unlock_irqrestore(&watchdog_lock, flags);
 200}
 201
 202ulong max_cswd_read_retries = 3;
 203module_param(max_cswd_read_retries, ulong, 0644);
 204EXPORT_SYMBOL_GPL(max_cswd_read_retries);
 205static int verify_n_cpus = 8;
 206module_param(verify_n_cpus, int, 0644);
 207
 208static bool cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
 209{
 210        unsigned int nretries;
 211        u64 wd_end, wd_delta;
 212        int64_t wd_delay;
 213
 214        for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
 215                local_irq_disable();
 216                *wdnow = watchdog->read(watchdog);
 217                *csnow = cs->read(cs);
 218                wd_end = watchdog->read(watchdog);
 219                local_irq_enable();
 220
 221                wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
 222                wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
 223                                              watchdog->shift);
 224                if (wd_delay <= WATCHDOG_MAX_SKEW) {
 225                        if (nretries > 1 || nretries >= max_cswd_read_retries) {
 226                                pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
 227                                        smp_processor_id(), watchdog->name, nretries);
 228                        }
 229                        return true;
 230                }
 231        }
 232
 233        pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
 234                smp_processor_id(), watchdog->name, wd_delay, nretries);
 235        return false;
 236}
 237
 238static u64 csnow_mid;
 239static cpumask_t cpus_ahead;
 240static cpumask_t cpus_behind;
 241static cpumask_t cpus_chosen;
 242
 243static void clocksource_verify_choose_cpus(void)
 244{
 245        int cpu, i, n = verify_n_cpus;
 246
 247        if (n < 0) {
 248                /* Check all of the CPUs. */
 249                cpumask_copy(&cpus_chosen, cpu_online_mask);
 250                cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
 251                return;
 252        }
 253
 254        /* If no checking desired, or no other CPU to check, leave. */
 255        cpumask_clear(&cpus_chosen);
 256        if (n == 0 || num_online_cpus() <= 1)
 257                return;
 258
 259        /* Make sure to select at least one CPU other than the current CPU. */
 260        cpu = cpumask_next(-1, cpu_online_mask);
 261        if (cpu == smp_processor_id())
 262                cpu = cpumask_next(cpu, cpu_online_mask);
 263        if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
 264                return;
 265        cpumask_set_cpu(cpu, &cpus_chosen);
 266
 267        /* Force a sane value for the boot parameter. */
 268        if (n > nr_cpu_ids)
 269                n = nr_cpu_ids;
 270
 271        /*
 272         * Randomly select the specified number of CPUs.  If the same
 273         * CPU is selected multiple times, that CPU is checked only once,
 274         * and no replacement CPU is selected.  This gracefully handles
 275         * situations where verify_n_cpus is greater than the number of
 276         * CPUs that are currently online.
 277         */
 278        for (i = 1; i < n; i++) {
 279                cpu = prandom_u32() % nr_cpu_ids;
 280                cpu = cpumask_next(cpu - 1, cpu_online_mask);
 281                if (cpu >= nr_cpu_ids)
 282                        cpu = cpumask_next(-1, cpu_online_mask);
 283                if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
 284                        cpumask_set_cpu(cpu, &cpus_chosen);
 285        }
 286
 287        /* Don't verify ourselves. */
 288        cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
 289}
 290
 291static void clocksource_verify_one_cpu(void *csin)
 292{
 293        struct clocksource *cs = (struct clocksource *)csin;
 294
 295        csnow_mid = cs->read(cs);
 296}
 297
 298void clocksource_verify_percpu(struct clocksource *cs)
 299{
 300        int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
 301        u64 csnow_begin, csnow_end;
 302        int cpu, testcpu;
 303        s64 delta;
 304
 305        if (verify_n_cpus == 0)
 306                return;
 307        cpumask_clear(&cpus_ahead);
 308        cpumask_clear(&cpus_behind);
 309        cpus_read_lock();
 310        preempt_disable();
 311        clocksource_verify_choose_cpus();
 312        if (cpumask_weight(&cpus_chosen) == 0) {
 313                preempt_enable();
 314                cpus_read_unlock();
 315                pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
 316                return;
 317        }
 318        testcpu = smp_processor_id();
 319        pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
 320        for_each_cpu(cpu, &cpus_chosen) {
 321                if (cpu == testcpu)
 322                        continue;
 323                csnow_begin = cs->read(cs);
 324                smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
 325                csnow_end = cs->read(cs);
 326                delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
 327                if (delta < 0)
 328                        cpumask_set_cpu(cpu, &cpus_behind);
 329                delta = (csnow_end - csnow_mid) & cs->mask;
 330                if (delta < 0)
 331                        cpumask_set_cpu(cpu, &cpus_ahead);
 332                delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
 333                cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
 334                if (cs_nsec > cs_nsec_max)
 335                        cs_nsec_max = cs_nsec;
 336                if (cs_nsec < cs_nsec_min)
 337                        cs_nsec_min = cs_nsec;
 338        }
 339        preempt_enable();
 340        cpus_read_unlock();
 341        if (!cpumask_empty(&cpus_ahead))
 342                pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
 343                        cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
 344        if (!cpumask_empty(&cpus_behind))
 345                pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
 346                        cpumask_pr_args(&cpus_behind), testcpu, cs->name);
 347        if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
 348                pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
 349                        testcpu, cs_nsec_min, cs_nsec_max, cs->name);
 350}
 351EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
 352
 353static void clocksource_watchdog(struct timer_list *unused)
 354{
 355        u64 csnow, wdnow, cslast, wdlast, delta;
 356        int next_cpu, reset_pending;
 357        int64_t wd_nsec, cs_nsec;
 358        struct clocksource *cs;
 359        u32 md;
 360
 361        spin_lock(&watchdog_lock);
 362        if (!watchdog_running)
 363                goto out;
 364
 365        reset_pending = atomic_read(&watchdog_reset_pending);
 366
 367        list_for_each_entry(cs, &watchdog_list, wd_list) {
 368
 369                /* Clocksource already marked unstable? */
 370                if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 371                        if (finished_booting)
 372                                schedule_work(&watchdog_work);
 373                        continue;
 374                }
 375
 376                if (!cs_watchdog_read(cs, &csnow, &wdnow)) {
 377                        /* Clock readout unreliable, so give it up. */
 378                        __clocksource_unstable(cs);
 379                        continue;
 380                }
 381
 382                /* Clocksource initialized ? */
 383                if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
 384                    atomic_read(&watchdog_reset_pending)) {
 385                        cs->flags |= CLOCK_SOURCE_WATCHDOG;
 386                        cs->wd_last = wdnow;
 387                        cs->cs_last = csnow;
 388                        continue;
 389                }
 390
 391                delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
 392                wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
 393                                             watchdog->shift);
 394
 395                delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
 396                cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
 397                wdlast = cs->wd_last; /* save these in case we print them */
 398                cslast = cs->cs_last;
 399                cs->cs_last = csnow;
 400                cs->wd_last = wdnow;
 401
 402                if (atomic_read(&watchdog_reset_pending))
 403                        continue;
 404
 405                /* Check the deviation from the watchdog clocksource. */
 406                md = cs->uncertainty_margin + watchdog->uncertainty_margin;
 407                if (abs(cs_nsec - wd_nsec) > md) {
 408                        pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
 409                                smp_processor_id(), cs->name);
 410                        pr_warn("                      '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
 411                                watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
 412                        pr_warn("                      '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
 413                                cs->name, cs_nsec, csnow, cslast, cs->mask);
 414                        if (curr_clocksource == cs)
 415                                pr_warn("                      '%s' is current clocksource.\n", cs->name);
 416                        else if (curr_clocksource)
 417                                pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
 418                        else
 419                                pr_warn("                      No current clocksource.\n");
 420                        __clocksource_unstable(cs);
 421                        continue;
 422                }
 423
 424                if (cs == curr_clocksource && cs->tick_stable)
 425                        cs->tick_stable(cs);
 426
 427                if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 428                    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 429                    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 430                        /* Mark it valid for high-res. */
 431                        cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 432
 433                        /*
 434                         * clocksource_done_booting() will sort it if
 435                         * finished_booting is not set yet.
 436                         */
 437                        if (!finished_booting)
 438                                continue;
 439
 440                        /*
 441                         * If this is not the current clocksource let
 442                         * the watchdog thread reselect it. Due to the
 443                         * change to high res this clocksource might
 444                         * be preferred now. If it is the current
 445                         * clocksource let the tick code know about
 446                         * that change.
 447                         */
 448                        if (cs != curr_clocksource) {
 449                                cs->flags |= CLOCK_SOURCE_RESELECT;
 450                                schedule_work(&watchdog_work);
 451                        } else {
 452                                tick_clock_notify();
 453                        }
 454                }
 455        }
 456
 457        /*
 458         * We only clear the watchdog_reset_pending, when we did a
 459         * full cycle through all clocksources.
 460         */
 461        if (reset_pending)
 462                atomic_dec(&watchdog_reset_pending);
 463
 464        /*
 465         * Cycle through CPUs to check if the CPUs stay synchronized
 466         * to each other.
 467         */
 468        next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 469        if (next_cpu >= nr_cpu_ids)
 470                next_cpu = cpumask_first(cpu_online_mask);
 471
 472        /*
 473         * Arm timer if not already pending: could race with concurrent
 474         * pair clocksource_stop_watchdog() clocksource_start_watchdog().
 475         */
 476        if (!timer_pending(&watchdog_timer)) {
 477                watchdog_timer.expires += WATCHDOG_INTERVAL;
 478                add_timer_on(&watchdog_timer, next_cpu);
 479        }
 480out:
 481        spin_unlock(&watchdog_lock);
 482}
 483
 484static inline void clocksource_start_watchdog(void)
 485{
 486        if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 487                return;
 488        timer_setup(&watchdog_timer, clocksource_watchdog, 0);
 489        watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 490        add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 491        watchdog_running = 1;
 492}
 493
 494static inline void clocksource_stop_watchdog(void)
 495{
 496        if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 497                return;
 498        del_timer(&watchdog_timer);
 499        watchdog_running = 0;
 500}
 501
 502static inline void clocksource_reset_watchdog(void)
 503{
 504        struct clocksource *cs;
 505
 506        list_for_each_entry(cs, &watchdog_list, wd_list)
 507                cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 508}
 509
 510static void clocksource_resume_watchdog(void)
 511{
 512        atomic_inc(&watchdog_reset_pending);
 513}
 514
 515static void clocksource_enqueue_watchdog(struct clocksource *cs)
 516{
 517        INIT_LIST_HEAD(&cs->wd_list);
 518
 519        if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 520                /* cs is a clocksource to be watched. */
 521                list_add(&cs->wd_list, &watchdog_list);
 522                cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 523        } else {
 524                /* cs is a watchdog. */
 525                if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 526                        cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 527        }
 528}
 529
 530static void clocksource_select_watchdog(bool fallback)
 531{
 532        struct clocksource *cs, *old_wd;
 533        unsigned long flags;
 534
 535        spin_lock_irqsave(&watchdog_lock, flags);
 536        /* save current watchdog */
 537        old_wd = watchdog;
 538        if (fallback)
 539                watchdog = NULL;
 540
 541        list_for_each_entry(cs, &clocksource_list, list) {
 542                /* cs is a clocksource to be watched. */
 543                if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
 544                        continue;
 545
 546                /* Skip current if we were requested for a fallback. */
 547                if (fallback && cs == old_wd)
 548                        continue;
 549
 550                /* Pick the best watchdog. */
 551                if (!watchdog || cs->rating > watchdog->rating)
 552                        watchdog = cs;
 553        }
 554        /* If we failed to find a fallback restore the old one. */
 555        if (!watchdog)
 556                watchdog = old_wd;
 557
 558        /* If we changed the watchdog we need to reset cycles. */
 559        if (watchdog != old_wd)
 560                clocksource_reset_watchdog();
 561
 562        /* Check if the watchdog timer needs to be started. */
 563        clocksource_start_watchdog();
 564        spin_unlock_irqrestore(&watchdog_lock, flags);
 565}
 566
 567static void clocksource_dequeue_watchdog(struct clocksource *cs)
 568{
 569        if (cs != watchdog) {
 570                if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 571                        /* cs is a watched clocksource. */
 572                        list_del_init(&cs->wd_list);
 573                        /* Check if the watchdog timer needs to be stopped. */
 574                        clocksource_stop_watchdog();
 575                }
 576        }
 577}
 578
 579static int __clocksource_watchdog_kthread(void)
 580{
 581        struct clocksource *cs, *tmp;
 582        unsigned long flags;
 583        int select = 0;
 584
 585        /* Do any required per-CPU skew verification. */
 586        if (curr_clocksource &&
 587            curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
 588            curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
 589                clocksource_verify_percpu(curr_clocksource);
 590
 591        spin_lock_irqsave(&watchdog_lock, flags);
 592        list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
 593                if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 594                        list_del_init(&cs->wd_list);
 595                        __clocksource_change_rating(cs, 0);
 596                        select = 1;
 597                }
 598                if (cs->flags & CLOCK_SOURCE_RESELECT) {
 599                        cs->flags &= ~CLOCK_SOURCE_RESELECT;
 600                        select = 1;
 601                }
 602        }
 603        /* Check if the watchdog timer needs to be stopped. */
 604        clocksource_stop_watchdog();
 605        spin_unlock_irqrestore(&watchdog_lock, flags);
 606
 607        return select;
 608}
 609
 610static int clocksource_watchdog_kthread(void *data)
 611{
 612        mutex_lock(&clocksource_mutex);
 613        if (__clocksource_watchdog_kthread())
 614                clocksource_select();
 615        mutex_unlock(&clocksource_mutex);
 616        return 0;
 617}
 618
 619static bool clocksource_is_watchdog(struct clocksource *cs)
 620{
 621        return cs == watchdog;
 622}
 623
 624#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 625
 626static void clocksource_enqueue_watchdog(struct clocksource *cs)
 627{
 628        if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 629                cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 630}
 631
 632static void clocksource_select_watchdog(bool fallback) { }
 633static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 634static inline void clocksource_resume_watchdog(void) { }
 635static inline int __clocksource_watchdog_kthread(void) { return 0; }
 636static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
 637void clocksource_mark_unstable(struct clocksource *cs) { }
 638
 639static inline void clocksource_watchdog_lock(unsigned long *flags) { }
 640static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
 641
 642#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 643
 644static bool clocksource_is_suspend(struct clocksource *cs)
 645{
 646        return cs == suspend_clocksource;
 647}
 648
 649static void __clocksource_suspend_select(struct clocksource *cs)
 650{
 651        /*
 652         * Skip the clocksource which will be stopped in suspend state.
 653         */
 654        if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
 655                return;
 656
 657        /*
 658         * The nonstop clocksource can be selected as the suspend clocksource to
 659         * calculate the suspend time, so it should not supply suspend/resume
 660         * interfaces to suspend the nonstop clocksource when system suspends.
 661         */
 662        if (cs->suspend || cs->resume) {
 663                pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
 664                        cs->name);
 665        }
 666
 667        /* Pick the best rating. */
 668        if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
 669                suspend_clocksource = cs;
 670}
 671
 672/**
 673 * clocksource_suspend_select - Select the best clocksource for suspend timing
 674 * @fallback:   if select a fallback clocksource
 675 */
 676static void clocksource_suspend_select(bool fallback)
 677{
 678        struct clocksource *cs, *old_suspend;
 679
 680        old_suspend = suspend_clocksource;
 681        if (fallback)
 682                suspend_clocksource = NULL;
 683
 684        list_for_each_entry(cs, &clocksource_list, list) {
 685                /* Skip current if we were requested for a fallback. */
 686                if (fallback && cs == old_suspend)
 687                        continue;
 688
 689                __clocksource_suspend_select(cs);
 690        }
 691}
 692
 693/**
 694 * clocksource_start_suspend_timing - Start measuring the suspend timing
 695 * @cs:                 current clocksource from timekeeping
 696 * @start_cycles:       current cycles from timekeeping
 697 *
 698 * This function will save the start cycle values of suspend timer to calculate
 699 * the suspend time when resuming system.
 700 *
 701 * This function is called late in the suspend process from timekeeping_suspend(),
 702 * that means processes are frozen, non-boot cpus and interrupts are disabled
 703 * now. It is therefore possible to start the suspend timer without taking the
 704 * clocksource mutex.
 705 */
 706void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
 707{
 708        if (!suspend_clocksource)
 709                return;
 710
 711        /*
 712         * If current clocksource is the suspend timer, we should use the
 713         * tkr_mono.cycle_last value as suspend_start to avoid same reading
 714         * from suspend timer.
 715         */
 716        if (clocksource_is_suspend(cs)) {
 717                suspend_start = start_cycles;
 718                return;
 719        }
 720
 721        if (suspend_clocksource->enable &&
 722            suspend_clocksource->enable(suspend_clocksource)) {
 723                pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
 724                return;
 725        }
 726
 727        suspend_start = suspend_clocksource->read(suspend_clocksource);
 728}
 729
 730/**
 731 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
 732 * @cs:         current clocksource from timekeeping
 733 * @cycle_now:  current cycles from timekeeping
 734 *
 735 * This function will calculate the suspend time from suspend timer.
 736 *
 737 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
 738 *
 739 * This function is called early in the resume process from timekeeping_resume(),
 740 * that means there is only one cpu, no processes are running and the interrupts
 741 * are disabled. It is therefore possible to stop the suspend timer without
 742 * taking the clocksource mutex.
 743 */
 744u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
 745{
 746        u64 now, delta, nsec = 0;
 747
 748        if (!suspend_clocksource)
 749                return 0;
 750
 751        /*
 752         * If current clocksource is the suspend timer, we should use the
 753         * tkr_mono.cycle_last value from timekeeping as current cycle to
 754         * avoid same reading from suspend timer.
 755         */
 756        if (clocksource_is_suspend(cs))
 757                now = cycle_now;
 758        else
 759                now = suspend_clocksource->read(suspend_clocksource);
 760
 761        if (now > suspend_start) {
 762                delta = clocksource_delta(now, suspend_start,
 763                                          suspend_clocksource->mask);
 764                nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
 765                                       suspend_clocksource->shift);
 766        }
 767
 768        /*
 769         * Disable the suspend timer to save power if current clocksource is
 770         * not the suspend timer.
 771         */
 772        if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
 773                suspend_clocksource->disable(suspend_clocksource);
 774
 775        return nsec;
 776}
 777
 778/**
 779 * clocksource_suspend - suspend the clocksource(s)
 780 */
 781void clocksource_suspend(void)
 782{
 783        struct clocksource *cs;
 784
 785        list_for_each_entry_reverse(cs, &clocksource_list, list)
 786                if (cs->suspend)
 787                        cs->suspend(cs);
 788}
 789
 790/**
 791 * clocksource_resume - resume the clocksource(s)
 792 */
 793void clocksource_resume(void)
 794{
 795        struct clocksource *cs;
 796
 797        list_for_each_entry(cs, &clocksource_list, list)
 798                if (cs->resume)
 799                        cs->resume(cs);
 800
 801        clocksource_resume_watchdog();
 802}
 803
 804/**
 805 * clocksource_touch_watchdog - Update watchdog
 806 *
 807 * Update the watchdog after exception contexts such as kgdb so as not
 808 * to incorrectly trip the watchdog. This might fail when the kernel
 809 * was stopped in code which holds watchdog_lock.
 810 */
 811void clocksource_touch_watchdog(void)
 812{
 813        clocksource_resume_watchdog();
 814}
 815
 816/**
 817 * clocksource_max_adjustment- Returns max adjustment amount
 818 * @cs:         Pointer to clocksource
 819 *
 820 */
 821static u32 clocksource_max_adjustment(struct clocksource *cs)
 822{
 823        u64 ret;
 824        /*
 825         * We won't try to correct for more than 11% adjustments (110,000 ppm),
 826         */
 827        ret = (u64)cs->mult * 11;
 828        do_div(ret,100);
 829        return (u32)ret;
 830}
 831
 832/**
 833 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
 834 * @mult:       cycle to nanosecond multiplier
 835 * @shift:      cycle to nanosecond divisor (power of two)
 836 * @maxadj:     maximum adjustment value to mult (~11%)
 837 * @mask:       bitmask for two's complement subtraction of non 64 bit counters
 838 * @max_cyc:    maximum cycle value before potential overflow (does not include
 839 *              any safety margin)
 840 *
 841 * NOTE: This function includes a safety margin of 50%, in other words, we
 842 * return half the number of nanoseconds the hardware counter can technically
 843 * cover. This is done so that we can potentially detect problems caused by
 844 * delayed timers or bad hardware, which might result in time intervals that
 845 * are larger than what the math used can handle without overflows.
 846 */
 847u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
 848{
 849        u64 max_nsecs, max_cycles;
 850
 851        /*
 852         * Calculate the maximum number of cycles that we can pass to the
 853         * cyc2ns() function without overflowing a 64-bit result.
 854         */
 855        max_cycles = ULLONG_MAX;
 856        do_div(max_cycles, mult+maxadj);
 857
 858        /*
 859         * The actual maximum number of cycles we can defer the clocksource is
 860         * determined by the minimum of max_cycles and mask.
 861         * Note: Here we subtract the maxadj to make sure we don't sleep for
 862         * too long if there's a large negative adjustment.
 863         */
 864        max_cycles = min(max_cycles, mask);
 865        max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
 866
 867        /* return the max_cycles value as well if requested */
 868        if (max_cyc)
 869                *max_cyc = max_cycles;
 870
 871        /* Return 50% of the actual maximum, so we can detect bad values */
 872        max_nsecs >>= 1;
 873
 874        return max_nsecs;
 875}
 876
 877/**
 878 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
 879 * @cs:         Pointer to clocksource to be updated
 880 *
 881 */
 882static inline void clocksource_update_max_deferment(struct clocksource *cs)
 883{
 884        cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
 885                                                cs->maxadj, cs->mask,
 886                                                &cs->max_cycles);
 887}
 888
 889static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
 890{
 891        struct clocksource *cs;
 892
 893        if (!finished_booting || list_empty(&clocksource_list))
 894                return NULL;
 895
 896        /*
 897         * We pick the clocksource with the highest rating. If oneshot
 898         * mode is active, we pick the highres valid clocksource with
 899         * the best rating.
 900         */
 901        list_for_each_entry(cs, &clocksource_list, list) {
 902                if (skipcur && cs == curr_clocksource)
 903                        continue;
 904                if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 905                        continue;
 906                return cs;
 907        }
 908        return NULL;
 909}
 910
 911static void __clocksource_select(bool skipcur)
 912{
 913        bool oneshot = tick_oneshot_mode_active();
 914        struct clocksource *best, *cs;
 915
 916        /* Find the best suitable clocksource */
 917        best = clocksource_find_best(oneshot, skipcur);
 918        if (!best)
 919                return;
 920
 921        if (!strlen(override_name))
 922                goto found;
 923
 924        /* Check for the override clocksource. */
 925        list_for_each_entry(cs, &clocksource_list, list) {
 926                if (skipcur && cs == curr_clocksource)
 927                        continue;
 928                if (strcmp(cs->name, override_name) != 0)
 929                        continue;
 930                /*
 931                 * Check to make sure we don't switch to a non-highres
 932                 * capable clocksource if the tick code is in oneshot
 933                 * mode (highres or nohz)
 934                 */
 935                if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
 936                        /* Override clocksource cannot be used. */
 937                        if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 938                                pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
 939                                        cs->name);
 940                                override_name[0] = 0;
 941                        } else {
 942                                /*
 943                                 * The override cannot be currently verified.
 944                                 * Deferring to let the watchdog check.
 945                                 */
 946                                pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
 947                                        cs->name);
 948                        }
 949                } else
 950                        /* Override clocksource can be used. */
 951                        best = cs;
 952                break;
 953        }
 954
 955found:
 956        if (curr_clocksource != best && !timekeeping_notify(best)) {
 957                pr_info("Switched to clocksource %s\n", best->name);
 958                curr_clocksource = best;
 959        }
 960}
 961
 962/**
 963 * clocksource_select - Select the best clocksource available
 964 *
 965 * Private function. Must hold clocksource_mutex when called.
 966 *
 967 * Select the clocksource with the best rating, or the clocksource,
 968 * which is selected by userspace override.
 969 */
 970static void clocksource_select(void)
 971{
 972        __clocksource_select(false);
 973}
 974
 975static void clocksource_select_fallback(void)
 976{
 977        __clocksource_select(true);
 978}
 979
 980/*
 981 * clocksource_done_booting - Called near the end of core bootup
 982 *
 983 * Hack to avoid lots of clocksource churn at boot time.
 984 * We use fs_initcall because we want this to start before
 985 * device_initcall but after subsys_initcall.
 986 */
 987static int __init clocksource_done_booting(void)
 988{
 989        mutex_lock(&clocksource_mutex);
 990        curr_clocksource = clocksource_default_clock();
 991        finished_booting = 1;
 992        /*
 993         * Run the watchdog first to eliminate unstable clock sources
 994         */
 995        __clocksource_watchdog_kthread();
 996        clocksource_select();
 997        mutex_unlock(&clocksource_mutex);
 998        return 0;
 999}
1000fs_initcall(clocksource_done_booting);
1001
1002/*
1003 * Enqueue the clocksource sorted by rating
1004 */
1005static void clocksource_enqueue(struct clocksource *cs)
1006{
1007        struct list_head *entry = &clocksource_list;
1008        struct clocksource *tmp;
1009
1010        list_for_each_entry(tmp, &clocksource_list, list) {
1011                /* Keep track of the place, where to insert */
1012                if (tmp->rating < cs->rating)
1013                        break;
1014                entry = &tmp->list;
1015        }
1016        list_add(&cs->list, entry);
1017}
1018
1019/**
1020 * __clocksource_update_freq_scale - Used update clocksource with new freq
1021 * @cs:         clocksource to be registered
1022 * @scale:      Scale factor multiplied against freq to get clocksource hz
1023 * @freq:       clocksource frequency (cycles per second) divided by scale
1024 *
1025 * This should only be called from the clocksource->enable() method.
1026 *
1027 * This *SHOULD NOT* be called directly! Please use the
1028 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1029 * functions.
1030 */
1031void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1032{
1033        u64 sec;
1034
1035        /*
1036         * Default clocksources are *special* and self-define their mult/shift.
1037         * But, you're not special, so you should specify a freq value.
1038         */
1039        if (freq) {
1040                /*
1041                 * Calc the maximum number of seconds which we can run before
1042                 * wrapping around. For clocksources which have a mask > 32-bit
1043                 * we need to limit the max sleep time to have a good
1044                 * conversion precision. 10 minutes is still a reasonable
1045                 * amount. That results in a shift value of 24 for a
1046                 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1047                 * ~ 0.06ppm granularity for NTP.
1048                 */
1049                sec = cs->mask;
1050                do_div(sec, freq);
1051                do_div(sec, scale);
1052                if (!sec)
1053                        sec = 1;
1054                else if (sec > 600 && cs->mask > UINT_MAX)
1055                        sec = 600;
1056
1057                clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1058                                       NSEC_PER_SEC / scale, sec * scale);
1059        }
1060
1061        /*
1062         * If the uncertainty margin is not specified, calculate it.
1063         * If both scale and freq are non-zero, calculate the clock
1064         * period, but bound below at 2*WATCHDOG_MAX_SKEW.  However,
1065         * if either of scale or freq is zero, be very conservative and
1066         * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1067         * uncertainty margin.  Allow stupidly small uncertainty margins
1068         * to be specified by the caller for testing purposes, but warn
1069         * to discourage production use of this capability.
1070         */
1071        if (scale && freq && !cs->uncertainty_margin) {
1072                cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1073                if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1074                        cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1075        } else if (!cs->uncertainty_margin) {
1076                cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1077        }
1078        WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1079
1080        /*
1081         * Ensure clocksources that have large 'mult' values don't overflow
1082         * when adjusted.
1083         */
1084        cs->maxadj = clocksource_max_adjustment(cs);
1085        while (freq && ((cs->mult + cs->maxadj < cs->mult)
1086                || (cs->mult - cs->maxadj > cs->mult))) {
1087                cs->mult >>= 1;
1088                cs->shift--;
1089                cs->maxadj = clocksource_max_adjustment(cs);
1090        }
1091
1092        /*
1093         * Only warn for *special* clocksources that self-define
1094         * their mult/shift values and don't specify a freq.
1095         */
1096        WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1097                "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1098                cs->name);
1099
1100        clocksource_update_max_deferment(cs);
1101
1102        pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1103                cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1104}
1105EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1106
1107/**
1108 * __clocksource_register_scale - Used to install new clocksources
1109 * @cs:         clocksource to be registered
1110 * @scale:      Scale factor multiplied against freq to get clocksource hz
1111 * @freq:       clocksource frequency (cycles per second) divided by scale
1112 *
1113 * Returns -EBUSY if registration fails, zero otherwise.
1114 *
1115 * This *SHOULD NOT* be called directly! Please use the
1116 * clocksource_register_hz() or clocksource_register_khz helper functions.
1117 */
1118int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1119{
1120        unsigned long flags;
1121
1122        clocksource_arch_init(cs);
1123
1124        if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1125                cs->id = CSID_GENERIC;
1126        if (cs->vdso_clock_mode < 0 ||
1127            cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1128                pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1129                        cs->name, cs->vdso_clock_mode);
1130                cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1131        }
1132
1133        /* Initialize mult/shift and max_idle_ns */
1134        __clocksource_update_freq_scale(cs, scale, freq);
1135
1136        /* Add clocksource to the clocksource list */
1137        mutex_lock(&clocksource_mutex);
1138
1139        clocksource_watchdog_lock(&flags);
1140        clocksource_enqueue(cs);
1141        clocksource_enqueue_watchdog(cs);
1142        clocksource_watchdog_unlock(&flags);
1143
1144        clocksource_select();
1145        clocksource_select_watchdog(false);
1146        __clocksource_suspend_select(cs);
1147        mutex_unlock(&clocksource_mutex);
1148        return 0;
1149}
1150EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1151
1152static void __clocksource_change_rating(struct clocksource *cs, int rating)
1153{
1154        list_del(&cs->list);
1155        cs->rating = rating;
1156        clocksource_enqueue(cs);
1157}
1158
1159/**
1160 * clocksource_change_rating - Change the rating of a registered clocksource
1161 * @cs:         clocksource to be changed
1162 * @rating:     new rating
1163 */
1164void clocksource_change_rating(struct clocksource *cs, int rating)
1165{
1166        unsigned long flags;
1167
1168        mutex_lock(&clocksource_mutex);
1169        clocksource_watchdog_lock(&flags);
1170        __clocksource_change_rating(cs, rating);
1171        clocksource_watchdog_unlock(&flags);
1172
1173        clocksource_select();
1174        clocksource_select_watchdog(false);
1175        clocksource_suspend_select(false);
1176        mutex_unlock(&clocksource_mutex);
1177}
1178EXPORT_SYMBOL(clocksource_change_rating);
1179
1180/*
1181 * Unbind clocksource @cs. Called with clocksource_mutex held
1182 */
1183static int clocksource_unbind(struct clocksource *cs)
1184{
1185        unsigned long flags;
1186
1187        if (clocksource_is_watchdog(cs)) {
1188                /* Select and try to install a replacement watchdog. */
1189                clocksource_select_watchdog(true);
1190                if (clocksource_is_watchdog(cs))
1191                        return -EBUSY;
1192        }
1193
1194        if (cs == curr_clocksource) {
1195                /* Select and try to install a replacement clock source */
1196                clocksource_select_fallback();
1197                if (curr_clocksource == cs)
1198                        return -EBUSY;
1199        }
1200
1201        if (clocksource_is_suspend(cs)) {
1202                /*
1203                 * Select and try to install a replacement suspend clocksource.
1204                 * If no replacement suspend clocksource, we will just let the
1205                 * clocksource go and have no suspend clocksource.
1206                 */
1207                clocksource_suspend_select(true);
1208        }
1209
1210        clocksource_watchdog_lock(&flags);
1211        clocksource_dequeue_watchdog(cs);
1212        list_del_init(&cs->list);
1213        clocksource_watchdog_unlock(&flags);
1214
1215        return 0;
1216}
1217
1218/**
1219 * clocksource_unregister - remove a registered clocksource
1220 * @cs: clocksource to be unregistered
1221 */
1222int clocksource_unregister(struct clocksource *cs)
1223{
1224        int ret = 0;
1225
1226        mutex_lock(&clocksource_mutex);
1227        if (!list_empty(&cs->list))
1228                ret = clocksource_unbind(cs);
1229        mutex_unlock(&clocksource_mutex);
1230        return ret;
1231}
1232EXPORT_SYMBOL(clocksource_unregister);
1233
1234#ifdef CONFIG_SYSFS
1235/**
1236 * current_clocksource_show - sysfs interface for current clocksource
1237 * @dev:        unused
1238 * @attr:       unused
1239 * @buf:        char buffer to be filled with clocksource list
1240 *
1241 * Provides sysfs interface for listing current clocksource.
1242 */
1243static ssize_t current_clocksource_show(struct device *dev,
1244                                        struct device_attribute *attr,
1245                                        char *buf)
1246{
1247        ssize_t count = 0;
1248
1249        mutex_lock(&clocksource_mutex);
1250        count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1251        mutex_unlock(&clocksource_mutex);
1252
1253        return count;
1254}
1255
1256ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1257{
1258        size_t ret = cnt;
1259
1260        /* strings from sysfs write are not 0 terminated! */
1261        if (!cnt || cnt >= CS_NAME_LEN)
1262                return -EINVAL;
1263
1264        /* strip of \n: */
1265        if (buf[cnt-1] == '\n')
1266                cnt--;
1267        if (cnt > 0)
1268                memcpy(dst, buf, cnt);
1269        dst[cnt] = 0;
1270        return ret;
1271}
1272
1273/**
1274 * current_clocksource_store - interface for manually overriding clocksource
1275 * @dev:        unused
1276 * @attr:       unused
1277 * @buf:        name of override clocksource
1278 * @count:      length of buffer
1279 *
1280 * Takes input from sysfs interface for manually overriding the default
1281 * clocksource selection.
1282 */
1283static ssize_t current_clocksource_store(struct device *dev,
1284                                         struct device_attribute *attr,
1285                                         const char *buf, size_t count)
1286{
1287        ssize_t ret;
1288
1289        mutex_lock(&clocksource_mutex);
1290
1291        ret = sysfs_get_uname(buf, override_name, count);
1292        if (ret >= 0)
1293                clocksource_select();
1294
1295        mutex_unlock(&clocksource_mutex);
1296
1297        return ret;
1298}
1299static DEVICE_ATTR_RW(current_clocksource);
1300
1301/**
1302 * unbind_clocksource_store - interface for manually unbinding clocksource
1303 * @dev:        unused
1304 * @attr:       unused
1305 * @buf:        unused
1306 * @count:      length of buffer
1307 *
1308 * Takes input from sysfs interface for manually unbinding a clocksource.
1309 */
1310static ssize_t unbind_clocksource_store(struct device *dev,
1311                                        struct device_attribute *attr,
1312                                        const char *buf, size_t count)
1313{
1314        struct clocksource *cs;
1315        char name[CS_NAME_LEN];
1316        ssize_t ret;
1317
1318        ret = sysfs_get_uname(buf, name, count);
1319        if (ret < 0)
1320                return ret;
1321
1322        ret = -ENODEV;
1323        mutex_lock(&clocksource_mutex);
1324        list_for_each_entry(cs, &clocksource_list, list) {
1325                if (strcmp(cs->name, name))
1326                        continue;
1327                ret = clocksource_unbind(cs);
1328                break;
1329        }
1330        mutex_unlock(&clocksource_mutex);
1331
1332        return ret ? ret : count;
1333}
1334static DEVICE_ATTR_WO(unbind_clocksource);
1335
1336/**
1337 * available_clocksource_show - sysfs interface for listing clocksource
1338 * @dev:        unused
1339 * @attr:       unused
1340 * @buf:        char buffer to be filled with clocksource list
1341 *
1342 * Provides sysfs interface for listing registered clocksources
1343 */
1344static ssize_t available_clocksource_show(struct device *dev,
1345                                          struct device_attribute *attr,
1346                                          char *buf)
1347{
1348        struct clocksource *src;
1349        ssize_t count = 0;
1350
1351        mutex_lock(&clocksource_mutex);
1352        list_for_each_entry(src, &clocksource_list, list) {
1353                /*
1354                 * Don't show non-HRES clocksource if the tick code is
1355                 * in one shot mode (highres=on or nohz=on)
1356                 */
1357                if (!tick_oneshot_mode_active() ||
1358                    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1359                        count += snprintf(buf + count,
1360                                  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1361                                  "%s ", src->name);
1362        }
1363        mutex_unlock(&clocksource_mutex);
1364
1365        count += snprintf(buf + count,
1366                          max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1367
1368        return count;
1369}
1370static DEVICE_ATTR_RO(available_clocksource);
1371
1372static struct attribute *clocksource_attrs[] = {
1373        &dev_attr_current_clocksource.attr,
1374        &dev_attr_unbind_clocksource.attr,
1375        &dev_attr_available_clocksource.attr,
1376        NULL
1377};
1378ATTRIBUTE_GROUPS(clocksource);
1379
1380static struct bus_type clocksource_subsys = {
1381        .name = "clocksource",
1382        .dev_name = "clocksource",
1383};
1384
1385static struct device device_clocksource = {
1386        .id     = 0,
1387        .bus    = &clocksource_subsys,
1388        .groups = clocksource_groups,
1389};
1390
1391static int __init init_clocksource_sysfs(void)
1392{
1393        int error = subsys_system_register(&clocksource_subsys, NULL);
1394
1395        if (!error)
1396                error = device_register(&device_clocksource);
1397
1398        return error;
1399}
1400
1401device_initcall(init_clocksource_sysfs);
1402#endif /* CONFIG_SYSFS */
1403
1404/**
1405 * boot_override_clocksource - boot clock override
1406 * @str:        override name
1407 *
1408 * Takes a clocksource= boot argument and uses it
1409 * as the clocksource override name.
1410 */
1411static int __init boot_override_clocksource(char* str)
1412{
1413        mutex_lock(&clocksource_mutex);
1414        if (str)
1415                strlcpy(override_name, str, sizeof(override_name));
1416        mutex_unlock(&clocksource_mutex);
1417        return 1;
1418}
1419
1420__setup("clocksource=", boot_override_clocksource);
1421
1422/**
1423 * boot_override_clock - Compatibility layer for deprecated boot option
1424 * @str:        override name
1425 *
1426 * DEPRECATED! Takes a clock= boot argument and uses it
1427 * as the clocksource override name
1428 */
1429static int __init boot_override_clock(char* str)
1430{
1431        if (!strcmp(str, "pmtmr")) {
1432                pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1433                return boot_override_clocksource("acpi_pm");
1434        }
1435        pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1436        return boot_override_clocksource(str);
1437}
1438
1439__setup("clock=", boot_override_clock);
1440