linux/kernel/time/ntp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NTP state machine interfaces and logic.
   4 *
   5 * This code was mainly moved from kernel/timer.c and kernel/time.c
   6 * Please see those files for relevant copyright info and historical
   7 * changelogs.
   8 */
   9#include <linux/capability.h>
  10#include <linux/clocksource.h>
  11#include <linux/workqueue.h>
  12#include <linux/hrtimer.h>
  13#include <linux/jiffies.h>
  14#include <linux/math64.h>
  15#include <linux/timex.h>
  16#include <linux/time.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/rtc.h>
  20#include <linux/audit.h>
  21
  22#include "ntp_internal.h"
  23#include "timekeeping_internal.h"
  24
  25
  26/*
  27 * NTP timekeeping variables:
  28 *
  29 * Note: All of the NTP state is protected by the timekeeping locks.
  30 */
  31
  32
  33/* USER_HZ period (usecs): */
  34unsigned long                   tick_usec = USER_TICK_USEC;
  35
  36/* SHIFTED_HZ period (nsecs): */
  37unsigned long                   tick_nsec;
  38
  39static u64                      tick_length;
  40static u64                      tick_length_base;
  41
  42#define SECS_PER_DAY            86400
  43#define MAX_TICKADJ             500LL           /* usecs */
  44#define MAX_TICKADJ_SCALED \
  45        (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
  46#define MAX_TAI_OFFSET          100000
  47
  48/*
  49 * phase-lock loop variables
  50 */
  51
  52/*
  53 * clock synchronization status
  54 *
  55 * (TIME_ERROR prevents overwriting the CMOS clock)
  56 */
  57static int                      time_state = TIME_OK;
  58
  59/* clock status bits:                                                   */
  60static int                      time_status = STA_UNSYNC;
  61
  62/* time adjustment (nsecs):                                             */
  63static s64                      time_offset;
  64
  65/* pll time constant:                                                   */
  66static long                     time_constant = 2;
  67
  68/* maximum error (usecs):                                               */
  69static long                     time_maxerror = NTP_PHASE_LIMIT;
  70
  71/* estimated error (usecs):                                             */
  72static long                     time_esterror = NTP_PHASE_LIMIT;
  73
  74/* frequency offset (scaled nsecs/secs):                                */
  75static s64                      time_freq;
  76
  77/* time at last adjustment (secs):                                      */
  78static time64_t         time_reftime;
  79
  80static long                     time_adjust;
  81
  82/* constant (boot-param configurable) NTP tick adjustment (upscaled)    */
  83static s64                      ntp_tick_adj;
  84
  85/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
  86static time64_t                 ntp_next_leap_sec = TIME64_MAX;
  87
  88#ifdef CONFIG_NTP_PPS
  89
  90/*
  91 * The following variables are used when a pulse-per-second (PPS) signal
  92 * is available. They establish the engineering parameters of the clock
  93 * discipline loop when controlled by the PPS signal.
  94 */
  95#define PPS_VALID       10      /* PPS signal watchdog max (s) */
  96#define PPS_POPCORN     4       /* popcorn spike threshold (shift) */
  97#define PPS_INTMIN      2       /* min freq interval (s) (shift) */
  98#define PPS_INTMAX      8       /* max freq interval (s) (shift) */
  99#define PPS_INTCOUNT    4       /* number of consecutive good intervals to
 100                                   increase pps_shift or consecutive bad
 101                                   intervals to decrease it */
 102#define PPS_MAXWANDER   100000  /* max PPS freq wander (ns/s) */
 103
 104static int pps_valid;           /* signal watchdog counter */
 105static long pps_tf[3];          /* phase median filter */
 106static long pps_jitter;         /* current jitter (ns) */
 107static struct timespec64 pps_fbase; /* beginning of the last freq interval */
 108static int pps_shift;           /* current interval duration (s) (shift) */
 109static int pps_intcnt;          /* interval counter */
 110static s64 pps_freq;            /* frequency offset (scaled ns/s) */
 111static long pps_stabil;         /* current stability (scaled ns/s) */
 112
 113/*
 114 * PPS signal quality monitors
 115 */
 116static long pps_calcnt;         /* calibration intervals */
 117static long pps_jitcnt;         /* jitter limit exceeded */
 118static long pps_stbcnt;         /* stability limit exceeded */
 119static long pps_errcnt;         /* calibration errors */
 120
 121
 122/* PPS kernel consumer compensates the whole phase error immediately.
 123 * Otherwise, reduce the offset by a fixed factor times the time constant.
 124 */
 125static inline s64 ntp_offset_chunk(s64 offset)
 126{
 127        if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
 128                return offset;
 129        else
 130                return shift_right(offset, SHIFT_PLL + time_constant);
 131}
 132
 133static inline void pps_reset_freq_interval(void)
 134{
 135        /* the PPS calibration interval may end
 136           surprisingly early */
 137        pps_shift = PPS_INTMIN;
 138        pps_intcnt = 0;
 139}
 140
 141/**
 142 * pps_clear - Clears the PPS state variables
 143 */
 144static inline void pps_clear(void)
 145{
 146        pps_reset_freq_interval();
 147        pps_tf[0] = 0;
 148        pps_tf[1] = 0;
 149        pps_tf[2] = 0;
 150        pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
 151        pps_freq = 0;
 152}
 153
 154/* Decrease pps_valid to indicate that another second has passed since
 155 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 156 * missing.
 157 */
 158static inline void pps_dec_valid(void)
 159{
 160        if (pps_valid > 0)
 161                pps_valid--;
 162        else {
 163                time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
 164                                 STA_PPSWANDER | STA_PPSERROR);
 165                pps_clear();
 166        }
 167}
 168
 169static inline void pps_set_freq(s64 freq)
 170{
 171        pps_freq = freq;
 172}
 173
 174static inline int is_error_status(int status)
 175{
 176        return (status & (STA_UNSYNC|STA_CLOCKERR))
 177                /* PPS signal lost when either PPS time or
 178                 * PPS frequency synchronization requested
 179                 */
 180                || ((status & (STA_PPSFREQ|STA_PPSTIME))
 181                        && !(status & STA_PPSSIGNAL))
 182                /* PPS jitter exceeded when
 183                 * PPS time synchronization requested */
 184                || ((status & (STA_PPSTIME|STA_PPSJITTER))
 185                        == (STA_PPSTIME|STA_PPSJITTER))
 186                /* PPS wander exceeded or calibration error when
 187                 * PPS frequency synchronization requested
 188                 */
 189                || ((status & STA_PPSFREQ)
 190                        && (status & (STA_PPSWANDER|STA_PPSERROR)));
 191}
 192
 193static inline void pps_fill_timex(struct __kernel_timex *txc)
 194{
 195        txc->ppsfreq       = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
 196                                         PPM_SCALE_INV, NTP_SCALE_SHIFT);
 197        txc->jitter        = pps_jitter;
 198        if (!(time_status & STA_NANO))
 199                txc->jitter = pps_jitter / NSEC_PER_USEC;
 200        txc->shift         = pps_shift;
 201        txc->stabil        = pps_stabil;
 202        txc->jitcnt        = pps_jitcnt;
 203        txc->calcnt        = pps_calcnt;
 204        txc->errcnt        = pps_errcnt;
 205        txc->stbcnt        = pps_stbcnt;
 206}
 207
 208#else /* !CONFIG_NTP_PPS */
 209
 210static inline s64 ntp_offset_chunk(s64 offset)
 211{
 212        return shift_right(offset, SHIFT_PLL + time_constant);
 213}
 214
 215static inline void pps_reset_freq_interval(void) {}
 216static inline void pps_clear(void) {}
 217static inline void pps_dec_valid(void) {}
 218static inline void pps_set_freq(s64 freq) {}
 219
 220static inline int is_error_status(int status)
 221{
 222        return status & (STA_UNSYNC|STA_CLOCKERR);
 223}
 224
 225static inline void pps_fill_timex(struct __kernel_timex *txc)
 226{
 227        /* PPS is not implemented, so these are zero */
 228        txc->ppsfreq       = 0;
 229        txc->jitter        = 0;
 230        txc->shift         = 0;
 231        txc->stabil        = 0;
 232        txc->jitcnt        = 0;
 233        txc->calcnt        = 0;
 234        txc->errcnt        = 0;
 235        txc->stbcnt        = 0;
 236}
 237
 238#endif /* CONFIG_NTP_PPS */
 239
 240
 241/**
 242 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 243 *
 244 */
 245static inline int ntp_synced(void)
 246{
 247        return !(time_status & STA_UNSYNC);
 248}
 249
 250
 251/*
 252 * NTP methods:
 253 */
 254
 255/*
 256 * Update (tick_length, tick_length_base, tick_nsec), based
 257 * on (tick_usec, ntp_tick_adj, time_freq):
 258 */
 259static void ntp_update_frequency(void)
 260{
 261        u64 second_length;
 262        u64 new_base;
 263
 264        second_length            = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
 265                                                << NTP_SCALE_SHIFT;
 266
 267        second_length           += ntp_tick_adj;
 268        second_length           += time_freq;
 269
 270        tick_nsec                = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
 271        new_base                 = div_u64(second_length, NTP_INTERVAL_FREQ);
 272
 273        /*
 274         * Don't wait for the next second_overflow, apply
 275         * the change to the tick length immediately:
 276         */
 277        tick_length             += new_base - tick_length_base;
 278        tick_length_base         = new_base;
 279}
 280
 281static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
 282{
 283        time_status &= ~STA_MODE;
 284
 285        if (secs < MINSEC)
 286                return 0;
 287
 288        if (!(time_status & STA_FLL) && (secs <= MAXSEC))
 289                return 0;
 290
 291        time_status |= STA_MODE;
 292
 293        return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
 294}
 295
 296static void ntp_update_offset(long offset)
 297{
 298        s64 freq_adj;
 299        s64 offset64;
 300        long secs;
 301
 302        if (!(time_status & STA_PLL))
 303                return;
 304
 305        if (!(time_status & STA_NANO)) {
 306                /* Make sure the multiplication below won't overflow */
 307                offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
 308                offset *= NSEC_PER_USEC;
 309        }
 310
 311        /*
 312         * Scale the phase adjustment and
 313         * clamp to the operating range.
 314         */
 315        offset = clamp(offset, -MAXPHASE, MAXPHASE);
 316
 317        /*
 318         * Select how the frequency is to be controlled
 319         * and in which mode (PLL or FLL).
 320         */
 321        secs = (long)(__ktime_get_real_seconds() - time_reftime);
 322        if (unlikely(time_status & STA_FREQHOLD))
 323                secs = 0;
 324
 325        time_reftime = __ktime_get_real_seconds();
 326
 327        offset64    = offset;
 328        freq_adj    = ntp_update_offset_fll(offset64, secs);
 329
 330        /*
 331         * Clamp update interval to reduce PLL gain with low
 332         * sampling rate (e.g. intermittent network connection)
 333         * to avoid instability.
 334         */
 335        if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
 336                secs = 1 << (SHIFT_PLL + 1 + time_constant);
 337
 338        freq_adj    += (offset64 * secs) <<
 339                        (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
 340
 341        freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
 342
 343        time_freq   = max(freq_adj, -MAXFREQ_SCALED);
 344
 345        time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
 346}
 347
 348/**
 349 * ntp_clear - Clears the NTP state variables
 350 */
 351void ntp_clear(void)
 352{
 353        time_adjust     = 0;            /* stop active adjtime() */
 354        time_status     |= STA_UNSYNC;
 355        time_maxerror   = NTP_PHASE_LIMIT;
 356        time_esterror   = NTP_PHASE_LIMIT;
 357
 358        ntp_update_frequency();
 359
 360        tick_length     = tick_length_base;
 361        time_offset     = 0;
 362
 363        ntp_next_leap_sec = TIME64_MAX;
 364        /* Clear PPS state variables */
 365        pps_clear();
 366}
 367
 368
 369u64 ntp_tick_length(void)
 370{
 371        return tick_length;
 372}
 373
 374/**
 375 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
 376 *
 377 * Provides the time of the next leapsecond against CLOCK_REALTIME in
 378 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
 379 */
 380ktime_t ntp_get_next_leap(void)
 381{
 382        ktime_t ret;
 383
 384        if ((time_state == TIME_INS) && (time_status & STA_INS))
 385                return ktime_set(ntp_next_leap_sec, 0);
 386        ret = KTIME_MAX;
 387        return ret;
 388}
 389
 390/*
 391 * this routine handles the overflow of the microsecond field
 392 *
 393 * The tricky bits of code to handle the accurate clock support
 394 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 395 * They were originally developed for SUN and DEC kernels.
 396 * All the kudos should go to Dave for this stuff.
 397 *
 398 * Also handles leap second processing, and returns leap offset
 399 */
 400int second_overflow(time64_t secs)
 401{
 402        s64 delta;
 403        int leap = 0;
 404        s32 rem;
 405
 406        /*
 407         * Leap second processing. If in leap-insert state at the end of the
 408         * day, the system clock is set back one second; if in leap-delete
 409         * state, the system clock is set ahead one second.
 410         */
 411        switch (time_state) {
 412        case TIME_OK:
 413                if (time_status & STA_INS) {
 414                        time_state = TIME_INS;
 415                        div_s64_rem(secs, SECS_PER_DAY, &rem);
 416                        ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 417                } else if (time_status & STA_DEL) {
 418                        time_state = TIME_DEL;
 419                        div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
 420                        ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 421                }
 422                break;
 423        case TIME_INS:
 424                if (!(time_status & STA_INS)) {
 425                        ntp_next_leap_sec = TIME64_MAX;
 426                        time_state = TIME_OK;
 427                } else if (secs == ntp_next_leap_sec) {
 428                        leap = -1;
 429                        time_state = TIME_OOP;
 430                        printk(KERN_NOTICE
 431                                "Clock: inserting leap second 23:59:60 UTC\n");
 432                }
 433                break;
 434        case TIME_DEL:
 435                if (!(time_status & STA_DEL)) {
 436                        ntp_next_leap_sec = TIME64_MAX;
 437                        time_state = TIME_OK;
 438                } else if (secs == ntp_next_leap_sec) {
 439                        leap = 1;
 440                        ntp_next_leap_sec = TIME64_MAX;
 441                        time_state = TIME_WAIT;
 442                        printk(KERN_NOTICE
 443                                "Clock: deleting leap second 23:59:59 UTC\n");
 444                }
 445                break;
 446        case TIME_OOP:
 447                ntp_next_leap_sec = TIME64_MAX;
 448                time_state = TIME_WAIT;
 449                break;
 450        case TIME_WAIT:
 451                if (!(time_status & (STA_INS | STA_DEL)))
 452                        time_state = TIME_OK;
 453                break;
 454        }
 455
 456
 457        /* Bump the maxerror field */
 458        time_maxerror += MAXFREQ / NSEC_PER_USEC;
 459        if (time_maxerror > NTP_PHASE_LIMIT) {
 460                time_maxerror = NTP_PHASE_LIMIT;
 461                time_status |= STA_UNSYNC;
 462        }
 463
 464        /* Compute the phase adjustment for the next second */
 465        tick_length      = tick_length_base;
 466
 467        delta            = ntp_offset_chunk(time_offset);
 468        time_offset     -= delta;
 469        tick_length     += delta;
 470
 471        /* Check PPS signal */
 472        pps_dec_valid();
 473
 474        if (!time_adjust)
 475                goto out;
 476
 477        if (time_adjust > MAX_TICKADJ) {
 478                time_adjust -= MAX_TICKADJ;
 479                tick_length += MAX_TICKADJ_SCALED;
 480                goto out;
 481        }
 482
 483        if (time_adjust < -MAX_TICKADJ) {
 484                time_adjust += MAX_TICKADJ;
 485                tick_length -= MAX_TICKADJ_SCALED;
 486                goto out;
 487        }
 488
 489        tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
 490                                                         << NTP_SCALE_SHIFT;
 491        time_adjust = 0;
 492
 493out:
 494        return leap;
 495}
 496
 497#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
 498static void sync_hw_clock(struct work_struct *work);
 499static DECLARE_WORK(sync_work, sync_hw_clock);
 500static struct hrtimer sync_hrtimer;
 501#define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
 502
 503static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
 504{
 505        queue_work(system_freezable_power_efficient_wq, &sync_work);
 506
 507        return HRTIMER_NORESTART;
 508}
 509
 510static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
 511{
 512        ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
 513
 514        if (retry)
 515                exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
 516        else
 517                exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
 518
 519        hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
 520}
 521
 522/*
 523 * Check whether @now is correct versus the required time to update the RTC
 524 * and calculate the value which needs to be written to the RTC so that the
 525 * next seconds increment of the RTC after the write is aligned with the next
 526 * seconds increment of clock REALTIME.
 527 *
 528 * tsched     t1 write(t2.tv_sec - 1sec))       t2 RTC increments seconds
 529 *
 530 * t2.tv_nsec == 0
 531 * tsched = t2 - set_offset_nsec
 532 * newval = t2 - NSEC_PER_SEC
 533 *
 534 * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
 535 *
 536 * As the execution of this code is not guaranteed to happen exactly at
 537 * tsched this allows it to happen within a fuzzy region:
 538 *
 539 *      abs(now - tsched) < FUZZ
 540 *
 541 * If @now is not inside the allowed window the function returns false.
 542 */
 543static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
 544                                  struct timespec64 *to_set,
 545                                  const struct timespec64 *now)
 546{
 547        /* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
 548        const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
 549        struct timespec64 delay = {.tv_sec = -1,
 550                                   .tv_nsec = set_offset_nsec};
 551
 552        *to_set = timespec64_add(*now, delay);
 553
 554        if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
 555                to_set->tv_nsec = 0;
 556                return true;
 557        }
 558
 559        if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
 560                to_set->tv_sec++;
 561                to_set->tv_nsec = 0;
 562                return true;
 563        }
 564        return false;
 565}
 566
 567#ifdef CONFIG_GENERIC_CMOS_UPDATE
 568int __weak update_persistent_clock64(struct timespec64 now64)
 569{
 570        return -ENODEV;
 571}
 572#else
 573static inline int update_persistent_clock64(struct timespec64 now64)
 574{
 575        return -ENODEV;
 576}
 577#endif
 578
 579#ifdef CONFIG_RTC_SYSTOHC
 580/* Save NTP synchronized time to the RTC */
 581static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
 582{
 583        struct rtc_device *rtc;
 584        struct rtc_time tm;
 585        int err = -ENODEV;
 586
 587        rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
 588        if (!rtc)
 589                return -ENODEV;
 590
 591        if (!rtc->ops || !rtc->ops->set_time)
 592                goto out_close;
 593
 594        /* First call might not have the correct offset */
 595        if (*offset_nsec == rtc->set_offset_nsec) {
 596                rtc_time64_to_tm(to_set->tv_sec, &tm);
 597                err = rtc_set_time(rtc, &tm);
 598        } else {
 599                /* Store the update offset and let the caller try again */
 600                *offset_nsec = rtc->set_offset_nsec;
 601                err = -EAGAIN;
 602        }
 603out_close:
 604        rtc_class_close(rtc);
 605        return err;
 606}
 607#else
 608static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
 609{
 610        return -ENODEV;
 611}
 612#endif
 613
 614/*
 615 * If we have an externally synchronized Linux clock, then update RTC clock
 616 * accordingly every ~11 minutes. Generally RTCs can only store second
 617 * precision, but many RTCs will adjust the phase of their second tick to
 618 * match the moment of update. This infrastructure arranges to call to the RTC
 619 * set at the correct moment to phase synchronize the RTC second tick over
 620 * with the kernel clock.
 621 */
 622static void sync_hw_clock(struct work_struct *work)
 623{
 624        /*
 625         * The default synchronization offset is 500ms for the deprecated
 626         * update_persistent_clock64() under the assumption that it uses
 627         * the infamous CMOS clock (MC146818).
 628         */
 629        static unsigned long offset_nsec = NSEC_PER_SEC / 2;
 630        struct timespec64 now, to_set;
 631        int res = -EAGAIN;
 632
 633        /*
 634         * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
 635         * managed to schedule the work between the timer firing and the
 636         * work being able to rearm the timer. Wait for the timer to expire.
 637         */
 638        if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
 639                return;
 640
 641        ktime_get_real_ts64(&now);
 642        /* If @now is not in the allowed window, try again */
 643        if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
 644                goto rearm;
 645
 646        /* Take timezone adjusted RTCs into account */
 647        if (persistent_clock_is_local)
 648                to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
 649
 650        /* Try the legacy RTC first. */
 651        res = update_persistent_clock64(to_set);
 652        if (res != -ENODEV)
 653                goto rearm;
 654
 655        /* Try the RTC class */
 656        res = update_rtc(&to_set, &offset_nsec);
 657        if (res == -ENODEV)
 658                return;
 659rearm:
 660        sched_sync_hw_clock(offset_nsec, res != 0);
 661}
 662
 663void ntp_notify_cmos_timer(void)
 664{
 665        /*
 666         * When the work is currently executed but has not yet the timer
 667         * rearmed this queues the work immediately again. No big issue,
 668         * just a pointless work scheduled.
 669         */
 670        if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
 671                queue_work(system_freezable_power_efficient_wq, &sync_work);
 672}
 673
 674static void __init ntp_init_cmos_sync(void)
 675{
 676        hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
 677        sync_hrtimer.function = sync_timer_callback;
 678}
 679#else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
 680static inline void __init ntp_init_cmos_sync(void) { }
 681#endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
 682
 683/*
 684 * Propagate a new txc->status value into the NTP state:
 685 */
 686static inline void process_adj_status(const struct __kernel_timex *txc)
 687{
 688        if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
 689                time_state = TIME_OK;
 690                time_status = STA_UNSYNC;
 691                ntp_next_leap_sec = TIME64_MAX;
 692                /* restart PPS frequency calibration */
 693                pps_reset_freq_interval();
 694        }
 695
 696        /*
 697         * If we turn on PLL adjustments then reset the
 698         * reference time to current time.
 699         */
 700        if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
 701                time_reftime = __ktime_get_real_seconds();
 702
 703        /* only set allowed bits */
 704        time_status &= STA_RONLY;
 705        time_status |= txc->status & ~STA_RONLY;
 706}
 707
 708
 709static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
 710                                          s32 *time_tai)
 711{
 712        if (txc->modes & ADJ_STATUS)
 713                process_adj_status(txc);
 714
 715        if (txc->modes & ADJ_NANO)
 716                time_status |= STA_NANO;
 717
 718        if (txc->modes & ADJ_MICRO)
 719                time_status &= ~STA_NANO;
 720
 721        if (txc->modes & ADJ_FREQUENCY) {
 722                time_freq = txc->freq * PPM_SCALE;
 723                time_freq = min(time_freq, MAXFREQ_SCALED);
 724                time_freq = max(time_freq, -MAXFREQ_SCALED);
 725                /* update pps_freq */
 726                pps_set_freq(time_freq);
 727        }
 728
 729        if (txc->modes & ADJ_MAXERROR)
 730                time_maxerror = txc->maxerror;
 731
 732        if (txc->modes & ADJ_ESTERROR)
 733                time_esterror = txc->esterror;
 734
 735        if (txc->modes & ADJ_TIMECONST) {
 736                time_constant = txc->constant;
 737                if (!(time_status & STA_NANO))
 738                        time_constant += 4;
 739                time_constant = min(time_constant, (long)MAXTC);
 740                time_constant = max(time_constant, 0l);
 741        }
 742
 743        if (txc->modes & ADJ_TAI &&
 744                        txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
 745                *time_tai = txc->constant;
 746
 747        if (txc->modes & ADJ_OFFSET)
 748                ntp_update_offset(txc->offset);
 749
 750        if (txc->modes & ADJ_TICK)
 751                tick_usec = txc->tick;
 752
 753        if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
 754                ntp_update_frequency();
 755}
 756
 757
 758/*
 759 * adjtimex mainly allows reading (and writing, if superuser) of
 760 * kernel time-keeping variables. used by xntpd.
 761 */
 762int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
 763                  s32 *time_tai, struct audit_ntp_data *ad)
 764{
 765        int result;
 766
 767        if (txc->modes & ADJ_ADJTIME) {
 768                long save_adjust = time_adjust;
 769
 770                if (!(txc->modes & ADJ_OFFSET_READONLY)) {
 771                        /* adjtime() is independent from ntp_adjtime() */
 772                        time_adjust = txc->offset;
 773                        ntp_update_frequency();
 774
 775                        audit_ntp_set_old(ad, AUDIT_NTP_ADJUST, save_adjust);
 776                        audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, time_adjust);
 777                }
 778                txc->offset = save_adjust;
 779        } else {
 780                /* If there are input parameters, then process them: */
 781                if (txc->modes) {
 782                        audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, time_offset);
 783                        audit_ntp_set_old(ad, AUDIT_NTP_FREQ,   time_freq);
 784                        audit_ntp_set_old(ad, AUDIT_NTP_STATUS, time_status);
 785                        audit_ntp_set_old(ad, AUDIT_NTP_TAI,    *time_tai);
 786                        audit_ntp_set_old(ad, AUDIT_NTP_TICK,   tick_usec);
 787
 788                        process_adjtimex_modes(txc, time_tai);
 789
 790                        audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, time_offset);
 791                        audit_ntp_set_new(ad, AUDIT_NTP_FREQ,   time_freq);
 792                        audit_ntp_set_new(ad, AUDIT_NTP_STATUS, time_status);
 793                        audit_ntp_set_new(ad, AUDIT_NTP_TAI,    *time_tai);
 794                        audit_ntp_set_new(ad, AUDIT_NTP_TICK,   tick_usec);
 795                }
 796
 797                txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
 798                                  NTP_SCALE_SHIFT);
 799                if (!(time_status & STA_NANO))
 800                        txc->offset = (u32)txc->offset / NSEC_PER_USEC;
 801        }
 802
 803        result = time_state;    /* mostly `TIME_OK' */
 804        /* check for errors */
 805        if (is_error_status(time_status))
 806                result = TIME_ERROR;
 807
 808        txc->freq          = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
 809                                         PPM_SCALE_INV, NTP_SCALE_SHIFT);
 810        txc->maxerror      = time_maxerror;
 811        txc->esterror      = time_esterror;
 812        txc->status        = time_status;
 813        txc->constant      = time_constant;
 814        txc->precision     = 1;
 815        txc->tolerance     = MAXFREQ_SCALED / PPM_SCALE;
 816        txc->tick          = tick_usec;
 817        txc->tai           = *time_tai;
 818
 819        /* fill PPS status fields */
 820        pps_fill_timex(txc);
 821
 822        txc->time.tv_sec = ts->tv_sec;
 823        txc->time.tv_usec = ts->tv_nsec;
 824        if (!(time_status & STA_NANO))
 825                txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
 826
 827        /* Handle leapsec adjustments */
 828        if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
 829                if ((time_state == TIME_INS) && (time_status & STA_INS)) {
 830                        result = TIME_OOP;
 831                        txc->tai++;
 832                        txc->time.tv_sec--;
 833                }
 834                if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
 835                        result = TIME_WAIT;
 836                        txc->tai--;
 837                        txc->time.tv_sec++;
 838                }
 839                if ((time_state == TIME_OOP) &&
 840                                        (ts->tv_sec == ntp_next_leap_sec)) {
 841                        result = TIME_WAIT;
 842                }
 843        }
 844
 845        return result;
 846}
 847
 848#ifdef  CONFIG_NTP_PPS
 849
 850/* actually struct pps_normtime is good old struct timespec, but it is
 851 * semantically different (and it is the reason why it was invented):
 852 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 853 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
 854struct pps_normtime {
 855        s64             sec;    /* seconds */
 856        long            nsec;   /* nanoseconds */
 857};
 858
 859/* normalize the timestamp so that nsec is in the
 860   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
 861static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
 862{
 863        struct pps_normtime norm = {
 864                .sec = ts.tv_sec,
 865                .nsec = ts.tv_nsec
 866        };
 867
 868        if (norm.nsec > (NSEC_PER_SEC >> 1)) {
 869                norm.nsec -= NSEC_PER_SEC;
 870                norm.sec++;
 871        }
 872
 873        return norm;
 874}
 875
 876/* get current phase correction and jitter */
 877static inline long pps_phase_filter_get(long *jitter)
 878{
 879        *jitter = pps_tf[0] - pps_tf[1];
 880        if (*jitter < 0)
 881                *jitter = -*jitter;
 882
 883        /* TODO: test various filters */
 884        return pps_tf[0];
 885}
 886
 887/* add the sample to the phase filter */
 888static inline void pps_phase_filter_add(long err)
 889{
 890        pps_tf[2] = pps_tf[1];
 891        pps_tf[1] = pps_tf[0];
 892        pps_tf[0] = err;
 893}
 894
 895/* decrease frequency calibration interval length.
 896 * It is halved after four consecutive unstable intervals.
 897 */
 898static inline void pps_dec_freq_interval(void)
 899{
 900        if (--pps_intcnt <= -PPS_INTCOUNT) {
 901                pps_intcnt = -PPS_INTCOUNT;
 902                if (pps_shift > PPS_INTMIN) {
 903                        pps_shift--;
 904                        pps_intcnt = 0;
 905                }
 906        }
 907}
 908
 909/* increase frequency calibration interval length.
 910 * It is doubled after four consecutive stable intervals.
 911 */
 912static inline void pps_inc_freq_interval(void)
 913{
 914        if (++pps_intcnt >= PPS_INTCOUNT) {
 915                pps_intcnt = PPS_INTCOUNT;
 916                if (pps_shift < PPS_INTMAX) {
 917                        pps_shift++;
 918                        pps_intcnt = 0;
 919                }
 920        }
 921}
 922
 923/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 924 * timestamps
 925 *
 926 * At the end of the calibration interval the difference between the
 927 * first and last MONOTONIC_RAW clock timestamps divided by the length
 928 * of the interval becomes the frequency update. If the interval was
 929 * too long, the data are discarded.
 930 * Returns the difference between old and new frequency values.
 931 */
 932static long hardpps_update_freq(struct pps_normtime freq_norm)
 933{
 934        long delta, delta_mod;
 935        s64 ftemp;
 936
 937        /* check if the frequency interval was too long */
 938        if (freq_norm.sec > (2 << pps_shift)) {
 939                time_status |= STA_PPSERROR;
 940                pps_errcnt++;
 941                pps_dec_freq_interval();
 942                printk_deferred(KERN_ERR
 943                        "hardpps: PPSERROR: interval too long - %lld s\n",
 944                        freq_norm.sec);
 945                return 0;
 946        }
 947
 948        /* here the raw frequency offset and wander (stability) is
 949         * calculated. If the wander is less than the wander threshold
 950         * the interval is increased; otherwise it is decreased.
 951         */
 952        ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
 953                        freq_norm.sec);
 954        delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
 955        pps_freq = ftemp;
 956        if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
 957                printk_deferred(KERN_WARNING
 958                                "hardpps: PPSWANDER: change=%ld\n", delta);
 959                time_status |= STA_PPSWANDER;
 960                pps_stbcnt++;
 961                pps_dec_freq_interval();
 962        } else {        /* good sample */
 963                pps_inc_freq_interval();
 964        }
 965
 966        /* the stability metric is calculated as the average of recent
 967         * frequency changes, but is used only for performance
 968         * monitoring
 969         */
 970        delta_mod = delta;
 971        if (delta_mod < 0)
 972                delta_mod = -delta_mod;
 973        pps_stabil += (div_s64(((s64)delta_mod) <<
 974                                (NTP_SCALE_SHIFT - SHIFT_USEC),
 975                                NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
 976
 977        /* if enabled, the system clock frequency is updated */
 978        if ((time_status & STA_PPSFREQ) != 0 &&
 979            (time_status & STA_FREQHOLD) == 0) {
 980                time_freq = pps_freq;
 981                ntp_update_frequency();
 982        }
 983
 984        return delta;
 985}
 986
 987/* correct REALTIME clock phase error against PPS signal */
 988static void hardpps_update_phase(long error)
 989{
 990        long correction = -error;
 991        long jitter;
 992
 993        /* add the sample to the median filter */
 994        pps_phase_filter_add(correction);
 995        correction = pps_phase_filter_get(&jitter);
 996
 997        /* Nominal jitter is due to PPS signal noise. If it exceeds the
 998         * threshold, the sample is discarded; otherwise, if so enabled,
 999         * the time offset is updated.
1000         */
1001        if (jitter > (pps_jitter << PPS_POPCORN)) {
1002                printk_deferred(KERN_WARNING
1003                                "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
1004                                jitter, (pps_jitter << PPS_POPCORN));
1005                time_status |= STA_PPSJITTER;
1006                pps_jitcnt++;
1007        } else if (time_status & STA_PPSTIME) {
1008                /* correct the time using the phase offset */
1009                time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
1010                                NTP_INTERVAL_FREQ);
1011                /* cancel running adjtime() */
1012                time_adjust = 0;
1013        }
1014        /* update jitter */
1015        pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
1016}
1017
1018/*
1019 * __hardpps() - discipline CPU clock oscillator to external PPS signal
1020 *
1021 * This routine is called at each PPS signal arrival in order to
1022 * discipline the CPU clock oscillator to the PPS signal. It takes two
1023 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
1024 * is used to correct clock phase error and the latter is used to
1025 * correct the frequency.
1026 *
1027 * This code is based on David Mills's reference nanokernel
1028 * implementation. It was mostly rewritten but keeps the same idea.
1029 */
1030void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
1031{
1032        struct pps_normtime pts_norm, freq_norm;
1033
1034        pts_norm = pps_normalize_ts(*phase_ts);
1035
1036        /* clear the error bits, they will be set again if needed */
1037        time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1038
1039        /* indicate signal presence */
1040        time_status |= STA_PPSSIGNAL;
1041        pps_valid = PPS_VALID;
1042
1043        /* when called for the first time,
1044         * just start the frequency interval */
1045        if (unlikely(pps_fbase.tv_sec == 0)) {
1046                pps_fbase = *raw_ts;
1047                return;
1048        }
1049
1050        /* ok, now we have a base for frequency calculation */
1051        freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
1052
1053        /* check that the signal is in the range
1054         * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1055        if ((freq_norm.sec == 0) ||
1056                        (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1057                        (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1058                time_status |= STA_PPSJITTER;
1059                /* restart the frequency calibration interval */
1060                pps_fbase = *raw_ts;
1061                printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1062                return;
1063        }
1064
1065        /* signal is ok */
1066
1067        /* check if the current frequency interval is finished */
1068        if (freq_norm.sec >= (1 << pps_shift)) {
1069                pps_calcnt++;
1070                /* restart the frequency calibration interval */
1071                pps_fbase = *raw_ts;
1072                hardpps_update_freq(freq_norm);
1073        }
1074
1075        hardpps_update_phase(pts_norm.nsec);
1076
1077}
1078#endif  /* CONFIG_NTP_PPS */
1079
1080static int __init ntp_tick_adj_setup(char *str)
1081{
1082        int rc = kstrtos64(str, 0, &ntp_tick_adj);
1083        if (rc)
1084                return rc;
1085
1086        ntp_tick_adj <<= NTP_SCALE_SHIFT;
1087        return 1;
1088}
1089
1090__setup("ntp_tick_adj=", ntp_tick_adj_setup);
1091
1092void __init ntp_init(void)
1093{
1094        ntp_clear();
1095        ntp_init_cmos_sync();
1096}
1097