linux/kernel/time/posix-timers.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * 2002-10-15  Posix Clocks & timers
   4 *                           by George Anzinger george@mvista.com
   5 *                           Copyright (C) 2002 2003 by MontaVista Software.
   6 *
   7 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
   8 *                           Copyright (C) 2004 Boris Hu
   9 *
  10 * These are all the functions necessary to implement POSIX clocks & timers
  11 */
  12#include <linux/mm.h>
  13#include <linux/interrupt.h>
  14#include <linux/slab.h>
  15#include <linux/time.h>
  16#include <linux/mutex.h>
  17#include <linux/sched/task.h>
  18
  19#include <linux/uaccess.h>
  20#include <linux/list.h>
  21#include <linux/init.h>
  22#include <linux/compiler.h>
  23#include <linux/hash.h>
  24#include <linux/posix-clock.h>
  25#include <linux/posix-timers.h>
  26#include <linux/syscalls.h>
  27#include <linux/wait.h>
  28#include <linux/workqueue.h>
  29#include <linux/export.h>
  30#include <linux/hashtable.h>
  31#include <linux/compat.h>
  32#include <linux/nospec.h>
  33#include <linux/time_namespace.h>
  34
  35#include "timekeeping.h"
  36#include "posix-timers.h"
  37
  38/*
  39 * Management arrays for POSIX timers. Timers are now kept in static hash table
  40 * with 512 entries.
  41 * Timer ids are allocated by local routine, which selects proper hash head by
  42 * key, constructed from current->signal address and per signal struct counter.
  43 * This keeps timer ids unique per process, but now they can intersect between
  44 * processes.
  45 */
  46
  47/*
  48 * Lets keep our timers in a slab cache :-)
  49 */
  50static struct kmem_cache *posix_timers_cache;
  51
  52static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
  53static DEFINE_SPINLOCK(hash_lock);
  54
  55static const struct k_clock * const posix_clocks[];
  56static const struct k_clock *clockid_to_kclock(const clockid_t id);
  57static const struct k_clock clock_realtime, clock_monotonic;
  58
  59/*
  60 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  61 * SIGEV values.  Here we put out an error if this assumption fails.
  62 */
  63#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  64                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  65#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  66#endif
  67
  68/*
  69 * The timer ID is turned into a timer address by idr_find().
  70 * Verifying a valid ID consists of:
  71 *
  72 * a) checking that idr_find() returns other than -1.
  73 * b) checking that the timer id matches the one in the timer itself.
  74 * c) that the timer owner is in the callers thread group.
  75 */
  76
  77/*
  78 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
  79 *          to implement others.  This structure defines the various
  80 *          clocks.
  81 *
  82 * RESOLUTION: Clock resolution is used to round up timer and interval
  83 *          times, NOT to report clock times, which are reported with as
  84 *          much resolution as the system can muster.  In some cases this
  85 *          resolution may depend on the underlying clock hardware and
  86 *          may not be quantifiable until run time, and only then is the
  87 *          necessary code is written.  The standard says we should say
  88 *          something about this issue in the documentation...
  89 *
  90 * FUNCTIONS: The CLOCKs structure defines possible functions to
  91 *          handle various clock functions.
  92 *
  93 *          The standard POSIX timer management code assumes the
  94 *          following: 1.) The k_itimer struct (sched.h) is used for
  95 *          the timer.  2.) The list, it_lock, it_clock, it_id and
  96 *          it_pid fields are not modified by timer code.
  97 *
  98 * Permissions: It is assumed that the clock_settime() function defined
  99 *          for each clock will take care of permission checks.  Some
 100 *          clocks may be set able by any user (i.e. local process
 101 *          clocks) others not.  Currently the only set able clock we
 102 *          have is CLOCK_REALTIME and its high res counter part, both of
 103 *          which we beg off on and pass to do_sys_settimeofday().
 104 */
 105static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
 106
 107#define lock_timer(tid, flags)                                             \
 108({      struct k_itimer *__timr;                                           \
 109        __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
 110        __timr;                                                            \
 111})
 112
 113static int hash(struct signal_struct *sig, unsigned int nr)
 114{
 115        return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
 116}
 117
 118static struct k_itimer *__posix_timers_find(struct hlist_head *head,
 119                                            struct signal_struct *sig,
 120                                            timer_t id)
 121{
 122        struct k_itimer *timer;
 123
 124        hlist_for_each_entry_rcu(timer, head, t_hash,
 125                                 lockdep_is_held(&hash_lock)) {
 126                if ((timer->it_signal == sig) && (timer->it_id == id))
 127                        return timer;
 128        }
 129        return NULL;
 130}
 131
 132static struct k_itimer *posix_timer_by_id(timer_t id)
 133{
 134        struct signal_struct *sig = current->signal;
 135        struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
 136
 137        return __posix_timers_find(head, sig, id);
 138}
 139
 140static int posix_timer_add(struct k_itimer *timer)
 141{
 142        struct signal_struct *sig = current->signal;
 143        int first_free_id = sig->posix_timer_id;
 144        struct hlist_head *head;
 145        int ret = -ENOENT;
 146
 147        do {
 148                spin_lock(&hash_lock);
 149                head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
 150                if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
 151                        hlist_add_head_rcu(&timer->t_hash, head);
 152                        ret = sig->posix_timer_id;
 153                }
 154                if (++sig->posix_timer_id < 0)
 155                        sig->posix_timer_id = 0;
 156                if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
 157                        /* Loop over all possible ids completed */
 158                        ret = -EAGAIN;
 159                spin_unlock(&hash_lock);
 160        } while (ret == -ENOENT);
 161        return ret;
 162}
 163
 164static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 165{
 166        spin_unlock_irqrestore(&timr->it_lock, flags);
 167}
 168
 169/* Get clock_realtime */
 170static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
 171{
 172        ktime_get_real_ts64(tp);
 173        return 0;
 174}
 175
 176static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
 177{
 178        return ktime_get_real();
 179}
 180
 181/* Set clock_realtime */
 182static int posix_clock_realtime_set(const clockid_t which_clock,
 183                                    const struct timespec64 *tp)
 184{
 185        return do_sys_settimeofday64(tp, NULL);
 186}
 187
 188static int posix_clock_realtime_adj(const clockid_t which_clock,
 189                                    struct __kernel_timex *t)
 190{
 191        return do_adjtimex(t);
 192}
 193
 194/*
 195 * Get monotonic time for posix timers
 196 */
 197static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
 198{
 199        ktime_get_ts64(tp);
 200        timens_add_monotonic(tp);
 201        return 0;
 202}
 203
 204static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
 205{
 206        return ktime_get();
 207}
 208
 209/*
 210 * Get monotonic-raw time for posix timers
 211 */
 212static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
 213{
 214        ktime_get_raw_ts64(tp);
 215        timens_add_monotonic(tp);
 216        return 0;
 217}
 218
 219
 220static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
 221{
 222        ktime_get_coarse_real_ts64(tp);
 223        return 0;
 224}
 225
 226static int posix_get_monotonic_coarse(clockid_t which_clock,
 227                                                struct timespec64 *tp)
 228{
 229        ktime_get_coarse_ts64(tp);
 230        timens_add_monotonic(tp);
 231        return 0;
 232}
 233
 234static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
 235{
 236        *tp = ktime_to_timespec64(KTIME_LOW_RES);
 237        return 0;
 238}
 239
 240static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
 241{
 242        ktime_get_boottime_ts64(tp);
 243        timens_add_boottime(tp);
 244        return 0;
 245}
 246
 247static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
 248{
 249        return ktime_get_boottime();
 250}
 251
 252static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
 253{
 254        ktime_get_clocktai_ts64(tp);
 255        return 0;
 256}
 257
 258static ktime_t posix_get_tai_ktime(clockid_t which_clock)
 259{
 260        return ktime_get_clocktai();
 261}
 262
 263static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
 264{
 265        tp->tv_sec = 0;
 266        tp->tv_nsec = hrtimer_resolution;
 267        return 0;
 268}
 269
 270/*
 271 * Initialize everything, well, just everything in Posix clocks/timers ;)
 272 */
 273static __init int init_posix_timers(void)
 274{
 275        posix_timers_cache = kmem_cache_create("posix_timers_cache",
 276                                        sizeof(struct k_itimer), 0,
 277                                        SLAB_PANIC | SLAB_ACCOUNT, NULL);
 278        return 0;
 279}
 280__initcall(init_posix_timers);
 281
 282/*
 283 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
 284 * are of type int. Clamp the overrun value to INT_MAX
 285 */
 286static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
 287{
 288        s64 sum = timr->it_overrun_last + (s64)baseval;
 289
 290        return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
 291}
 292
 293static void common_hrtimer_rearm(struct k_itimer *timr)
 294{
 295        struct hrtimer *timer = &timr->it.real.timer;
 296
 297        timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
 298                                            timr->it_interval);
 299        hrtimer_restart(timer);
 300}
 301
 302/*
 303 * This function is exported for use by the signal deliver code.  It is
 304 * called just prior to the info block being released and passes that
 305 * block to us.  It's function is to update the overrun entry AND to
 306 * restart the timer.  It should only be called if the timer is to be
 307 * restarted (i.e. we have flagged this in the sys_private entry of the
 308 * info block).
 309 *
 310 * To protect against the timer going away while the interrupt is queued,
 311 * we require that the it_requeue_pending flag be set.
 312 */
 313void posixtimer_rearm(struct kernel_siginfo *info)
 314{
 315        struct k_itimer *timr;
 316        unsigned long flags;
 317
 318        timr = lock_timer(info->si_tid, &flags);
 319        if (!timr)
 320                return;
 321
 322        if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
 323                timr->kclock->timer_rearm(timr);
 324
 325                timr->it_active = 1;
 326                timr->it_overrun_last = timr->it_overrun;
 327                timr->it_overrun = -1LL;
 328                ++timr->it_requeue_pending;
 329
 330                info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
 331        }
 332
 333        unlock_timer(timr, flags);
 334}
 335
 336int posix_timer_event(struct k_itimer *timr, int si_private)
 337{
 338        enum pid_type type;
 339        int ret;
 340        /*
 341         * FIXME: if ->sigq is queued we can race with
 342         * dequeue_signal()->posixtimer_rearm().
 343         *
 344         * If dequeue_signal() sees the "right" value of
 345         * si_sys_private it calls posixtimer_rearm().
 346         * We re-queue ->sigq and drop ->it_lock().
 347         * posixtimer_rearm() locks the timer
 348         * and re-schedules it while ->sigq is pending.
 349         * Not really bad, but not that we want.
 350         */
 351        timr->sigq->info.si_sys_private = si_private;
 352
 353        type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
 354        ret = send_sigqueue(timr->sigq, timr->it_pid, type);
 355        /* If we failed to send the signal the timer stops. */
 356        return ret > 0;
 357}
 358
 359/*
 360 * This function gets called when a POSIX.1b interval timer expires.  It
 361 * is used as a callback from the kernel internal timer.  The
 362 * run_timer_list code ALWAYS calls with interrupts on.
 363
 364 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 365 */
 366static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 367{
 368        struct k_itimer *timr;
 369        unsigned long flags;
 370        int si_private = 0;
 371        enum hrtimer_restart ret = HRTIMER_NORESTART;
 372
 373        timr = container_of(timer, struct k_itimer, it.real.timer);
 374        spin_lock_irqsave(&timr->it_lock, flags);
 375
 376        timr->it_active = 0;
 377        if (timr->it_interval != 0)
 378                si_private = ++timr->it_requeue_pending;
 379
 380        if (posix_timer_event(timr, si_private)) {
 381                /*
 382                 * signal was not sent because of sig_ignor
 383                 * we will not get a call back to restart it AND
 384                 * it should be restarted.
 385                 */
 386                if (timr->it_interval != 0) {
 387                        ktime_t now = hrtimer_cb_get_time(timer);
 388
 389                        /*
 390                         * FIXME: What we really want, is to stop this
 391                         * timer completely and restart it in case the
 392                         * SIG_IGN is removed. This is a non trivial
 393                         * change which involves sighand locking
 394                         * (sigh !), which we don't want to do late in
 395                         * the release cycle.
 396                         *
 397                         * For now we just let timers with an interval
 398                         * less than a jiffie expire every jiffie to
 399                         * avoid softirq starvation in case of SIG_IGN
 400                         * and a very small interval, which would put
 401                         * the timer right back on the softirq pending
 402                         * list. By moving now ahead of time we trick
 403                         * hrtimer_forward() to expire the timer
 404                         * later, while we still maintain the overrun
 405                         * accuracy, but have some inconsistency in
 406                         * the timer_gettime() case. This is at least
 407                         * better than a starved softirq. A more
 408                         * complex fix which solves also another related
 409                         * inconsistency is already in the pipeline.
 410                         */
 411#ifdef CONFIG_HIGH_RES_TIMERS
 412                        {
 413                                ktime_t kj = NSEC_PER_SEC / HZ;
 414
 415                                if (timr->it_interval < kj)
 416                                        now = ktime_add(now, kj);
 417                        }
 418#endif
 419                        timr->it_overrun += hrtimer_forward(timer, now,
 420                                                            timr->it_interval);
 421                        ret = HRTIMER_RESTART;
 422                        ++timr->it_requeue_pending;
 423                        timr->it_active = 1;
 424                }
 425        }
 426
 427        unlock_timer(timr, flags);
 428        return ret;
 429}
 430
 431static struct pid *good_sigevent(sigevent_t * event)
 432{
 433        struct pid *pid = task_tgid(current);
 434        struct task_struct *rtn;
 435
 436        switch (event->sigev_notify) {
 437        case SIGEV_SIGNAL | SIGEV_THREAD_ID:
 438                pid = find_vpid(event->sigev_notify_thread_id);
 439                rtn = pid_task(pid, PIDTYPE_PID);
 440                if (!rtn || !same_thread_group(rtn, current))
 441                        return NULL;
 442                fallthrough;
 443        case SIGEV_SIGNAL:
 444        case SIGEV_THREAD:
 445                if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
 446                        return NULL;
 447                fallthrough;
 448        case SIGEV_NONE:
 449                return pid;
 450        default:
 451                return NULL;
 452        }
 453}
 454
 455static struct k_itimer * alloc_posix_timer(void)
 456{
 457        struct k_itimer *tmr;
 458        tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 459        if (!tmr)
 460                return tmr;
 461        if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 462                kmem_cache_free(posix_timers_cache, tmr);
 463                return NULL;
 464        }
 465        clear_siginfo(&tmr->sigq->info);
 466        return tmr;
 467}
 468
 469static void k_itimer_rcu_free(struct rcu_head *head)
 470{
 471        struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
 472
 473        kmem_cache_free(posix_timers_cache, tmr);
 474}
 475
 476#define IT_ID_SET       1
 477#define IT_ID_NOT_SET   0
 478static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
 479{
 480        if (it_id_set) {
 481                unsigned long flags;
 482                spin_lock_irqsave(&hash_lock, flags);
 483                hlist_del_rcu(&tmr->t_hash);
 484                spin_unlock_irqrestore(&hash_lock, flags);
 485        }
 486        put_pid(tmr->it_pid);
 487        sigqueue_free(tmr->sigq);
 488        call_rcu(&tmr->rcu, k_itimer_rcu_free);
 489}
 490
 491static int common_timer_create(struct k_itimer *new_timer)
 492{
 493        hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 494        return 0;
 495}
 496
 497/* Create a POSIX.1b interval timer. */
 498static int do_timer_create(clockid_t which_clock, struct sigevent *event,
 499                           timer_t __user *created_timer_id)
 500{
 501        const struct k_clock *kc = clockid_to_kclock(which_clock);
 502        struct k_itimer *new_timer;
 503        int error, new_timer_id;
 504        int it_id_set = IT_ID_NOT_SET;
 505
 506        if (!kc)
 507                return -EINVAL;
 508        if (!kc->timer_create)
 509                return -EOPNOTSUPP;
 510
 511        new_timer = alloc_posix_timer();
 512        if (unlikely(!new_timer))
 513                return -EAGAIN;
 514
 515        spin_lock_init(&new_timer->it_lock);
 516        new_timer_id = posix_timer_add(new_timer);
 517        if (new_timer_id < 0) {
 518                error = new_timer_id;
 519                goto out;
 520        }
 521
 522        it_id_set = IT_ID_SET;
 523        new_timer->it_id = (timer_t) new_timer_id;
 524        new_timer->it_clock = which_clock;
 525        new_timer->kclock = kc;
 526        new_timer->it_overrun = -1LL;
 527
 528        if (event) {
 529                rcu_read_lock();
 530                new_timer->it_pid = get_pid(good_sigevent(event));
 531                rcu_read_unlock();
 532                if (!new_timer->it_pid) {
 533                        error = -EINVAL;
 534                        goto out;
 535                }
 536                new_timer->it_sigev_notify     = event->sigev_notify;
 537                new_timer->sigq->info.si_signo = event->sigev_signo;
 538                new_timer->sigq->info.si_value = event->sigev_value;
 539        } else {
 540                new_timer->it_sigev_notify     = SIGEV_SIGNAL;
 541                new_timer->sigq->info.si_signo = SIGALRM;
 542                memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
 543                new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
 544                new_timer->it_pid = get_pid(task_tgid(current));
 545        }
 546
 547        new_timer->sigq->info.si_tid   = new_timer->it_id;
 548        new_timer->sigq->info.si_code  = SI_TIMER;
 549
 550        if (copy_to_user(created_timer_id,
 551                         &new_timer_id, sizeof (new_timer_id))) {
 552                error = -EFAULT;
 553                goto out;
 554        }
 555
 556        error = kc->timer_create(new_timer);
 557        if (error)
 558                goto out;
 559
 560        spin_lock_irq(&current->sighand->siglock);
 561        new_timer->it_signal = current->signal;
 562        list_add(&new_timer->list, &current->signal->posix_timers);
 563        spin_unlock_irq(&current->sighand->siglock);
 564
 565        return 0;
 566        /*
 567         * In the case of the timer belonging to another task, after
 568         * the task is unlocked, the timer is owned by the other task
 569         * and may cease to exist at any time.  Don't use or modify
 570         * new_timer after the unlock call.
 571         */
 572out:
 573        release_posix_timer(new_timer, it_id_set);
 574        return error;
 575}
 576
 577SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
 578                struct sigevent __user *, timer_event_spec,
 579                timer_t __user *, created_timer_id)
 580{
 581        if (timer_event_spec) {
 582                sigevent_t event;
 583
 584                if (copy_from_user(&event, timer_event_spec, sizeof (event)))
 585                        return -EFAULT;
 586                return do_timer_create(which_clock, &event, created_timer_id);
 587        }
 588        return do_timer_create(which_clock, NULL, created_timer_id);
 589}
 590
 591#ifdef CONFIG_COMPAT
 592COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
 593                       struct compat_sigevent __user *, timer_event_spec,
 594                       timer_t __user *, created_timer_id)
 595{
 596        if (timer_event_spec) {
 597                sigevent_t event;
 598
 599                if (get_compat_sigevent(&event, timer_event_spec))
 600                        return -EFAULT;
 601                return do_timer_create(which_clock, &event, created_timer_id);
 602        }
 603        return do_timer_create(which_clock, NULL, created_timer_id);
 604}
 605#endif
 606
 607/*
 608 * Locking issues: We need to protect the result of the id look up until
 609 * we get the timer locked down so it is not deleted under us.  The
 610 * removal is done under the idr spinlock so we use that here to bridge
 611 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 612 * be release with out holding the timer lock.
 613 */
 614static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
 615{
 616        struct k_itimer *timr;
 617
 618        /*
 619         * timer_t could be any type >= int and we want to make sure any
 620         * @timer_id outside positive int range fails lookup.
 621         */
 622        if ((unsigned long long)timer_id > INT_MAX)
 623                return NULL;
 624
 625        rcu_read_lock();
 626        timr = posix_timer_by_id(timer_id);
 627        if (timr) {
 628                spin_lock_irqsave(&timr->it_lock, *flags);
 629                if (timr->it_signal == current->signal) {
 630                        rcu_read_unlock();
 631                        return timr;
 632                }
 633                spin_unlock_irqrestore(&timr->it_lock, *flags);
 634        }
 635        rcu_read_unlock();
 636
 637        return NULL;
 638}
 639
 640static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
 641{
 642        struct hrtimer *timer = &timr->it.real.timer;
 643
 644        return __hrtimer_expires_remaining_adjusted(timer, now);
 645}
 646
 647static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
 648{
 649        struct hrtimer *timer = &timr->it.real.timer;
 650
 651        return hrtimer_forward(timer, now, timr->it_interval);
 652}
 653
 654/*
 655 * Get the time remaining on a POSIX.1b interval timer.  This function
 656 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 657 * mess with irq.
 658 *
 659 * We have a couple of messes to clean up here.  First there is the case
 660 * of a timer that has a requeue pending.  These timers should appear to
 661 * be in the timer list with an expiry as if we were to requeue them
 662 * now.
 663 *
 664 * The second issue is the SIGEV_NONE timer which may be active but is
 665 * not really ever put in the timer list (to save system resources).
 666 * This timer may be expired, and if so, we will do it here.  Otherwise
 667 * it is the same as a requeue pending timer WRT to what we should
 668 * report.
 669 */
 670void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
 671{
 672        const struct k_clock *kc = timr->kclock;
 673        ktime_t now, remaining, iv;
 674        bool sig_none;
 675
 676        sig_none = timr->it_sigev_notify == SIGEV_NONE;
 677        iv = timr->it_interval;
 678
 679        /* interval timer ? */
 680        if (iv) {
 681                cur_setting->it_interval = ktime_to_timespec64(iv);
 682        } else if (!timr->it_active) {
 683                /*
 684                 * SIGEV_NONE oneshot timers are never queued. Check them
 685                 * below.
 686                 */
 687                if (!sig_none)
 688                        return;
 689        }
 690
 691        now = kc->clock_get_ktime(timr->it_clock);
 692
 693        /*
 694         * When a requeue is pending or this is a SIGEV_NONE timer move the
 695         * expiry time forward by intervals, so expiry is > now.
 696         */
 697        if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
 698                timr->it_overrun += kc->timer_forward(timr, now);
 699
 700        remaining = kc->timer_remaining(timr, now);
 701        /* Return 0 only, when the timer is expired and not pending */
 702        if (remaining <= 0) {
 703                /*
 704                 * A single shot SIGEV_NONE timer must return 0, when
 705                 * it is expired !
 706                 */
 707                if (!sig_none)
 708                        cur_setting->it_value.tv_nsec = 1;
 709        } else {
 710                cur_setting->it_value = ktime_to_timespec64(remaining);
 711        }
 712}
 713
 714/* Get the time remaining on a POSIX.1b interval timer. */
 715static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
 716{
 717        struct k_itimer *timr;
 718        const struct k_clock *kc;
 719        unsigned long flags;
 720        int ret = 0;
 721
 722        timr = lock_timer(timer_id, &flags);
 723        if (!timr)
 724                return -EINVAL;
 725
 726        memset(setting, 0, sizeof(*setting));
 727        kc = timr->kclock;
 728        if (WARN_ON_ONCE(!kc || !kc->timer_get))
 729                ret = -EINVAL;
 730        else
 731                kc->timer_get(timr, setting);
 732
 733        unlock_timer(timr, flags);
 734        return ret;
 735}
 736
 737/* Get the time remaining on a POSIX.1b interval timer. */
 738SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 739                struct __kernel_itimerspec __user *, setting)
 740{
 741        struct itimerspec64 cur_setting;
 742
 743        int ret = do_timer_gettime(timer_id, &cur_setting);
 744        if (!ret) {
 745                if (put_itimerspec64(&cur_setting, setting))
 746                        ret = -EFAULT;
 747        }
 748        return ret;
 749}
 750
 751#ifdef CONFIG_COMPAT_32BIT_TIME
 752
 753SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
 754                struct old_itimerspec32 __user *, setting)
 755{
 756        struct itimerspec64 cur_setting;
 757
 758        int ret = do_timer_gettime(timer_id, &cur_setting);
 759        if (!ret) {
 760                if (put_old_itimerspec32(&cur_setting, setting))
 761                        ret = -EFAULT;
 762        }
 763        return ret;
 764}
 765
 766#endif
 767
 768/*
 769 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 770 * be the overrun of the timer last delivered.  At the same time we are
 771 * accumulating overruns on the next timer.  The overrun is frozen when
 772 * the signal is delivered, either at the notify time (if the info block
 773 * is not queued) or at the actual delivery time (as we are informed by
 774 * the call back to posixtimer_rearm().  So all we need to do is
 775 * to pick up the frozen overrun.
 776 */
 777SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
 778{
 779        struct k_itimer *timr;
 780        int overrun;
 781        unsigned long flags;
 782
 783        timr = lock_timer(timer_id, &flags);
 784        if (!timr)
 785                return -EINVAL;
 786
 787        overrun = timer_overrun_to_int(timr, 0);
 788        unlock_timer(timr, flags);
 789
 790        return overrun;
 791}
 792
 793static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
 794                               bool absolute, bool sigev_none)
 795{
 796        struct hrtimer *timer = &timr->it.real.timer;
 797        enum hrtimer_mode mode;
 798
 799        mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 800        /*
 801         * Posix magic: Relative CLOCK_REALTIME timers are not affected by
 802         * clock modifications, so they become CLOCK_MONOTONIC based under the
 803         * hood. See hrtimer_init(). Update timr->kclock, so the generic
 804         * functions which use timr->kclock->clock_get_*() work.
 805         *
 806         * Note: it_clock stays unmodified, because the next timer_set() might
 807         * use ABSTIME, so it needs to switch back.
 808         */
 809        if (timr->it_clock == CLOCK_REALTIME)
 810                timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
 811
 812        hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 813        timr->it.real.timer.function = posix_timer_fn;
 814
 815        if (!absolute)
 816                expires = ktime_add_safe(expires, timer->base->get_time());
 817        hrtimer_set_expires(timer, expires);
 818
 819        if (!sigev_none)
 820                hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
 821}
 822
 823static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
 824{
 825        return hrtimer_try_to_cancel(&timr->it.real.timer);
 826}
 827
 828static void common_timer_wait_running(struct k_itimer *timer)
 829{
 830        hrtimer_cancel_wait_running(&timer->it.real.timer);
 831}
 832
 833/*
 834 * On PREEMPT_RT this prevent priority inversion against softirq kthread in
 835 * case it gets preempted while executing a timer callback. See comments in
 836 * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a
 837 * cpu_relax().
 838 */
 839static struct k_itimer *timer_wait_running(struct k_itimer *timer,
 840                                           unsigned long *flags)
 841{
 842        const struct k_clock *kc = READ_ONCE(timer->kclock);
 843        timer_t timer_id = READ_ONCE(timer->it_id);
 844
 845        /* Prevent kfree(timer) after dropping the lock */
 846        rcu_read_lock();
 847        unlock_timer(timer, *flags);
 848
 849        if (!WARN_ON_ONCE(!kc->timer_wait_running))
 850                kc->timer_wait_running(timer);
 851
 852        rcu_read_unlock();
 853        /* Relock the timer. It might be not longer hashed. */
 854        return lock_timer(timer_id, flags);
 855}
 856
 857/* Set a POSIX.1b interval timer. */
 858int common_timer_set(struct k_itimer *timr, int flags,
 859                     struct itimerspec64 *new_setting,
 860                     struct itimerspec64 *old_setting)
 861{
 862        const struct k_clock *kc = timr->kclock;
 863        bool sigev_none;
 864        ktime_t expires;
 865
 866        if (old_setting)
 867                common_timer_get(timr, old_setting);
 868
 869        /* Prevent rearming by clearing the interval */
 870        timr->it_interval = 0;
 871        /*
 872         * Careful here. On SMP systems the timer expiry function could be
 873         * active and spinning on timr->it_lock.
 874         */
 875        if (kc->timer_try_to_cancel(timr) < 0)
 876                return TIMER_RETRY;
 877
 878        timr->it_active = 0;
 879        timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
 880                ~REQUEUE_PENDING;
 881        timr->it_overrun_last = 0;
 882
 883        /* Switch off the timer when it_value is zero */
 884        if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 885                return 0;
 886
 887        timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
 888        expires = timespec64_to_ktime(new_setting->it_value);
 889        if (flags & TIMER_ABSTIME)
 890                expires = timens_ktime_to_host(timr->it_clock, expires);
 891        sigev_none = timr->it_sigev_notify == SIGEV_NONE;
 892
 893        kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
 894        timr->it_active = !sigev_none;
 895        return 0;
 896}
 897
 898static int do_timer_settime(timer_t timer_id, int tmr_flags,
 899                            struct itimerspec64 *new_spec64,
 900                            struct itimerspec64 *old_spec64)
 901{
 902        const struct k_clock *kc;
 903        struct k_itimer *timr;
 904        unsigned long flags;
 905        int error = 0;
 906
 907        if (!timespec64_valid(&new_spec64->it_interval) ||
 908            !timespec64_valid(&new_spec64->it_value))
 909                return -EINVAL;
 910
 911        if (old_spec64)
 912                memset(old_spec64, 0, sizeof(*old_spec64));
 913
 914        timr = lock_timer(timer_id, &flags);
 915retry:
 916        if (!timr)
 917                return -EINVAL;
 918
 919        kc = timr->kclock;
 920        if (WARN_ON_ONCE(!kc || !kc->timer_set))
 921                error = -EINVAL;
 922        else
 923                error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
 924
 925        if (error == TIMER_RETRY) {
 926                // We already got the old time...
 927                old_spec64 = NULL;
 928                /* Unlocks and relocks the timer if it still exists */
 929                timr = timer_wait_running(timr, &flags);
 930                goto retry;
 931        }
 932        unlock_timer(timr, flags);
 933
 934        return error;
 935}
 936
 937/* Set a POSIX.1b interval timer */
 938SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 939                const struct __kernel_itimerspec __user *, new_setting,
 940                struct __kernel_itimerspec __user *, old_setting)
 941{
 942        struct itimerspec64 new_spec, old_spec;
 943        struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
 944        int error = 0;
 945
 946        if (!new_setting)
 947                return -EINVAL;
 948
 949        if (get_itimerspec64(&new_spec, new_setting))
 950                return -EFAULT;
 951
 952        error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 953        if (!error && old_setting) {
 954                if (put_itimerspec64(&old_spec, old_setting))
 955                        error = -EFAULT;
 956        }
 957        return error;
 958}
 959
 960#ifdef CONFIG_COMPAT_32BIT_TIME
 961SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
 962                struct old_itimerspec32 __user *, new,
 963                struct old_itimerspec32 __user *, old)
 964{
 965        struct itimerspec64 new_spec, old_spec;
 966        struct itimerspec64 *rtn = old ? &old_spec : NULL;
 967        int error = 0;
 968
 969        if (!new)
 970                return -EINVAL;
 971        if (get_old_itimerspec32(&new_spec, new))
 972                return -EFAULT;
 973
 974        error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 975        if (!error && old) {
 976                if (put_old_itimerspec32(&old_spec, old))
 977                        error = -EFAULT;
 978        }
 979        return error;
 980}
 981#endif
 982
 983int common_timer_del(struct k_itimer *timer)
 984{
 985        const struct k_clock *kc = timer->kclock;
 986
 987        timer->it_interval = 0;
 988        if (kc->timer_try_to_cancel(timer) < 0)
 989                return TIMER_RETRY;
 990        timer->it_active = 0;
 991        return 0;
 992}
 993
 994static inline int timer_delete_hook(struct k_itimer *timer)
 995{
 996        const struct k_clock *kc = timer->kclock;
 997
 998        if (WARN_ON_ONCE(!kc || !kc->timer_del))
 999                return -EINVAL;
1000        return kc->timer_del(timer);
1001}
1002
1003/* Delete a POSIX.1b interval timer. */
1004SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1005{
1006        struct k_itimer *timer;
1007        unsigned long flags;
1008
1009        timer = lock_timer(timer_id, &flags);
1010
1011retry_delete:
1012        if (!timer)
1013                return -EINVAL;
1014
1015        if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
1016                /* Unlocks and relocks the timer if it still exists */
1017                timer = timer_wait_running(timer, &flags);
1018                goto retry_delete;
1019        }
1020
1021        spin_lock(&current->sighand->siglock);
1022        list_del(&timer->list);
1023        spin_unlock(&current->sighand->siglock);
1024        /*
1025         * This keeps any tasks waiting on the spin lock from thinking
1026         * they got something (see the lock code above).
1027         */
1028        timer->it_signal = NULL;
1029
1030        unlock_timer(timer, flags);
1031        release_posix_timer(timer, IT_ID_SET);
1032        return 0;
1033}
1034
1035/*
1036 * return timer owned by the process, used by exit_itimers
1037 */
1038static void itimer_delete(struct k_itimer *timer)
1039{
1040retry_delete:
1041        spin_lock_irq(&timer->it_lock);
1042
1043        if (timer_delete_hook(timer) == TIMER_RETRY) {
1044                spin_unlock_irq(&timer->it_lock);
1045                goto retry_delete;
1046        }
1047        list_del(&timer->list);
1048
1049        spin_unlock_irq(&timer->it_lock);
1050        release_posix_timer(timer, IT_ID_SET);
1051}
1052
1053/*
1054 * This is called by do_exit or de_thread, only when there are no more
1055 * references to the shared signal_struct.
1056 */
1057void exit_itimers(struct signal_struct *sig)
1058{
1059        struct k_itimer *tmr;
1060
1061        while (!list_empty(&sig->posix_timers)) {
1062                tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1063                itimer_delete(tmr);
1064        }
1065}
1066
1067SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1068                const struct __kernel_timespec __user *, tp)
1069{
1070        const struct k_clock *kc = clockid_to_kclock(which_clock);
1071        struct timespec64 new_tp;
1072
1073        if (!kc || !kc->clock_set)
1074                return -EINVAL;
1075
1076        if (get_timespec64(&new_tp, tp))
1077                return -EFAULT;
1078
1079        return kc->clock_set(which_clock, &new_tp);
1080}
1081
1082SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1083                struct __kernel_timespec __user *, tp)
1084{
1085        const struct k_clock *kc = clockid_to_kclock(which_clock);
1086        struct timespec64 kernel_tp;
1087        int error;
1088
1089        if (!kc)
1090                return -EINVAL;
1091
1092        error = kc->clock_get_timespec(which_clock, &kernel_tp);
1093
1094        if (!error && put_timespec64(&kernel_tp, tp))
1095                error = -EFAULT;
1096
1097        return error;
1098}
1099
1100int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
1101{
1102        const struct k_clock *kc = clockid_to_kclock(which_clock);
1103
1104        if (!kc)
1105                return -EINVAL;
1106        if (!kc->clock_adj)
1107                return -EOPNOTSUPP;
1108
1109        return kc->clock_adj(which_clock, ktx);
1110}
1111
1112SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1113                struct __kernel_timex __user *, utx)
1114{
1115        struct __kernel_timex ktx;
1116        int err;
1117
1118        if (copy_from_user(&ktx, utx, sizeof(ktx)))
1119                return -EFAULT;
1120
1121        err = do_clock_adjtime(which_clock, &ktx);
1122
1123        if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1124                return -EFAULT;
1125
1126        return err;
1127}
1128
1129SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1130                struct __kernel_timespec __user *, tp)
1131{
1132        const struct k_clock *kc = clockid_to_kclock(which_clock);
1133        struct timespec64 rtn_tp;
1134        int error;
1135
1136        if (!kc)
1137                return -EINVAL;
1138
1139        error = kc->clock_getres(which_clock, &rtn_tp);
1140
1141        if (!error && tp && put_timespec64(&rtn_tp, tp))
1142                error = -EFAULT;
1143
1144        return error;
1145}
1146
1147#ifdef CONFIG_COMPAT_32BIT_TIME
1148
1149SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1150                struct old_timespec32 __user *, tp)
1151{
1152        const struct k_clock *kc = clockid_to_kclock(which_clock);
1153        struct timespec64 ts;
1154
1155        if (!kc || !kc->clock_set)
1156                return -EINVAL;
1157
1158        if (get_old_timespec32(&ts, tp))
1159                return -EFAULT;
1160
1161        return kc->clock_set(which_clock, &ts);
1162}
1163
1164SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1165                struct old_timespec32 __user *, tp)
1166{
1167        const struct k_clock *kc = clockid_to_kclock(which_clock);
1168        struct timespec64 ts;
1169        int err;
1170
1171        if (!kc)
1172                return -EINVAL;
1173
1174        err = kc->clock_get_timespec(which_clock, &ts);
1175
1176        if (!err && put_old_timespec32(&ts, tp))
1177                err = -EFAULT;
1178
1179        return err;
1180}
1181
1182SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1183                struct old_timex32 __user *, utp)
1184{
1185        struct __kernel_timex ktx;
1186        int err;
1187
1188        err = get_old_timex32(&ktx, utp);
1189        if (err)
1190                return err;
1191
1192        err = do_clock_adjtime(which_clock, &ktx);
1193
1194        if (err >= 0 && put_old_timex32(utp, &ktx))
1195                return -EFAULT;
1196
1197        return err;
1198}
1199
1200SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1201                struct old_timespec32 __user *, tp)
1202{
1203        const struct k_clock *kc = clockid_to_kclock(which_clock);
1204        struct timespec64 ts;
1205        int err;
1206
1207        if (!kc)
1208                return -EINVAL;
1209
1210        err = kc->clock_getres(which_clock, &ts);
1211        if (!err && tp && put_old_timespec32(&ts, tp))
1212                return -EFAULT;
1213
1214        return err;
1215}
1216
1217#endif
1218
1219/*
1220 * nanosleep for monotonic and realtime clocks
1221 */
1222static int common_nsleep(const clockid_t which_clock, int flags,
1223                         const struct timespec64 *rqtp)
1224{
1225        ktime_t texp = timespec64_to_ktime(*rqtp);
1226
1227        return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1228                                 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1229                                 which_clock);
1230}
1231
1232static int common_nsleep_timens(const clockid_t which_clock, int flags,
1233                         const struct timespec64 *rqtp)
1234{
1235        ktime_t texp = timespec64_to_ktime(*rqtp);
1236
1237        if (flags & TIMER_ABSTIME)
1238                texp = timens_ktime_to_host(which_clock, texp);
1239
1240        return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1241                                 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1242                                 which_clock);
1243}
1244
1245SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1246                const struct __kernel_timespec __user *, rqtp,
1247                struct __kernel_timespec __user *, rmtp)
1248{
1249        const struct k_clock *kc = clockid_to_kclock(which_clock);
1250        struct timespec64 t;
1251
1252        if (!kc)
1253                return -EINVAL;
1254        if (!kc->nsleep)
1255                return -EOPNOTSUPP;
1256
1257        if (get_timespec64(&t, rqtp))
1258                return -EFAULT;
1259
1260        if (!timespec64_valid(&t))
1261                return -EINVAL;
1262        if (flags & TIMER_ABSTIME)
1263                rmtp = NULL;
1264        current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1265        current->restart_block.nanosleep.rmtp = rmtp;
1266
1267        return kc->nsleep(which_clock, flags, &t);
1268}
1269
1270#ifdef CONFIG_COMPAT_32BIT_TIME
1271
1272SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1273                struct old_timespec32 __user *, rqtp,
1274                struct old_timespec32 __user *, rmtp)
1275{
1276        const struct k_clock *kc = clockid_to_kclock(which_clock);
1277        struct timespec64 t;
1278
1279        if (!kc)
1280                return -EINVAL;
1281        if (!kc->nsleep)
1282                return -EOPNOTSUPP;
1283
1284        if (get_old_timespec32(&t, rqtp))
1285                return -EFAULT;
1286
1287        if (!timespec64_valid(&t))
1288                return -EINVAL;
1289        if (flags & TIMER_ABSTIME)
1290                rmtp = NULL;
1291        current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1292        current->restart_block.nanosleep.compat_rmtp = rmtp;
1293
1294        return kc->nsleep(which_clock, flags, &t);
1295}
1296
1297#endif
1298
1299static const struct k_clock clock_realtime = {
1300        .clock_getres           = posix_get_hrtimer_res,
1301        .clock_get_timespec     = posix_get_realtime_timespec,
1302        .clock_get_ktime        = posix_get_realtime_ktime,
1303        .clock_set              = posix_clock_realtime_set,
1304        .clock_adj              = posix_clock_realtime_adj,
1305        .nsleep                 = common_nsleep,
1306        .timer_create           = common_timer_create,
1307        .timer_set              = common_timer_set,
1308        .timer_get              = common_timer_get,
1309        .timer_del              = common_timer_del,
1310        .timer_rearm            = common_hrtimer_rearm,
1311        .timer_forward          = common_hrtimer_forward,
1312        .timer_remaining        = common_hrtimer_remaining,
1313        .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1314        .timer_wait_running     = common_timer_wait_running,
1315        .timer_arm              = common_hrtimer_arm,
1316};
1317
1318static const struct k_clock clock_monotonic = {
1319        .clock_getres           = posix_get_hrtimer_res,
1320        .clock_get_timespec     = posix_get_monotonic_timespec,
1321        .clock_get_ktime        = posix_get_monotonic_ktime,
1322        .nsleep                 = common_nsleep_timens,
1323        .timer_create           = common_timer_create,
1324        .timer_set              = common_timer_set,
1325        .timer_get              = common_timer_get,
1326        .timer_del              = common_timer_del,
1327        .timer_rearm            = common_hrtimer_rearm,
1328        .timer_forward          = common_hrtimer_forward,
1329        .timer_remaining        = common_hrtimer_remaining,
1330        .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1331        .timer_wait_running     = common_timer_wait_running,
1332        .timer_arm              = common_hrtimer_arm,
1333};
1334
1335static const struct k_clock clock_monotonic_raw = {
1336        .clock_getres           = posix_get_hrtimer_res,
1337        .clock_get_timespec     = posix_get_monotonic_raw,
1338};
1339
1340static const struct k_clock clock_realtime_coarse = {
1341        .clock_getres           = posix_get_coarse_res,
1342        .clock_get_timespec     = posix_get_realtime_coarse,
1343};
1344
1345static const struct k_clock clock_monotonic_coarse = {
1346        .clock_getres           = posix_get_coarse_res,
1347        .clock_get_timespec     = posix_get_monotonic_coarse,
1348};
1349
1350static const struct k_clock clock_tai = {
1351        .clock_getres           = posix_get_hrtimer_res,
1352        .clock_get_ktime        = posix_get_tai_ktime,
1353        .clock_get_timespec     = posix_get_tai_timespec,
1354        .nsleep                 = common_nsleep,
1355        .timer_create           = common_timer_create,
1356        .timer_set              = common_timer_set,
1357        .timer_get              = common_timer_get,
1358        .timer_del              = common_timer_del,
1359        .timer_rearm            = common_hrtimer_rearm,
1360        .timer_forward          = common_hrtimer_forward,
1361        .timer_remaining        = common_hrtimer_remaining,
1362        .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1363        .timer_wait_running     = common_timer_wait_running,
1364        .timer_arm              = common_hrtimer_arm,
1365};
1366
1367static const struct k_clock clock_boottime = {
1368        .clock_getres           = posix_get_hrtimer_res,
1369        .clock_get_ktime        = posix_get_boottime_ktime,
1370        .clock_get_timespec     = posix_get_boottime_timespec,
1371        .nsleep                 = common_nsleep_timens,
1372        .timer_create           = common_timer_create,
1373        .timer_set              = common_timer_set,
1374        .timer_get              = common_timer_get,
1375        .timer_del              = common_timer_del,
1376        .timer_rearm            = common_hrtimer_rearm,
1377        .timer_forward          = common_hrtimer_forward,
1378        .timer_remaining        = common_hrtimer_remaining,
1379        .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1380        .timer_wait_running     = common_timer_wait_running,
1381        .timer_arm              = common_hrtimer_arm,
1382};
1383
1384static const struct k_clock * const posix_clocks[] = {
1385        [CLOCK_REALTIME]                = &clock_realtime,
1386        [CLOCK_MONOTONIC]               = &clock_monotonic,
1387        [CLOCK_PROCESS_CPUTIME_ID]      = &clock_process,
1388        [CLOCK_THREAD_CPUTIME_ID]       = &clock_thread,
1389        [CLOCK_MONOTONIC_RAW]           = &clock_monotonic_raw,
1390        [CLOCK_REALTIME_COARSE]         = &clock_realtime_coarse,
1391        [CLOCK_MONOTONIC_COARSE]        = &clock_monotonic_coarse,
1392        [CLOCK_BOOTTIME]                = &clock_boottime,
1393        [CLOCK_REALTIME_ALARM]          = &alarm_clock,
1394        [CLOCK_BOOTTIME_ALARM]          = &alarm_clock,
1395        [CLOCK_TAI]                     = &clock_tai,
1396};
1397
1398static const struct k_clock *clockid_to_kclock(const clockid_t id)
1399{
1400        clockid_t idx = id;
1401
1402        if (id < 0) {
1403                return (id & CLOCKFD_MASK) == CLOCKFD ?
1404                        &clock_posix_dynamic : &clock_posix_cpu;
1405        }
1406
1407        if (id >= ARRAY_SIZE(posix_clocks))
1408                return NULL;
1409
1410        return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1411}
1412