linux/kernel/time/tick-common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file contains the base functions to manage periodic tick
   4 * related events.
   5 *
   6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
   9 */
  10#include <linux/cpu.h>
  11#include <linux/err.h>
  12#include <linux/hrtimer.h>
  13#include <linux/interrupt.h>
  14#include <linux/nmi.h>
  15#include <linux/percpu.h>
  16#include <linux/profile.h>
  17#include <linux/sched.h>
  18#include <linux/module.h>
  19#include <trace/events/power.h>
  20
  21#include <asm/irq_regs.h>
  22
  23#include "tick-internal.h"
  24
  25/*
  26 * Tick devices
  27 */
  28DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
  29/*
  30 * Tick next event: keeps track of the tick time. It's updated by the
  31 * CPU which handles the tick and protected by jiffies_lock. There is
  32 * no requirement to write hold the jiffies seqcount for it.
  33 */
  34ktime_t tick_next_period;
  35
  36/*
  37 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
  38 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
  39 * variable has two functions:
  40 *
  41 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
  42 *    timekeeping lock all at once. Only the CPU which is assigned to do the
  43 *    update is handling it.
  44 *
  45 * 2) Hand off the duty in the NOHZ idle case by setting the value to
  46 *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
  47 *    at it will take over and keep the time keeping alive.  The handover
  48 *    procedure also covers cpu hotplug.
  49 */
  50int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
  51#ifdef CONFIG_NO_HZ_FULL
  52/*
  53 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
  54 * tick_do_timer_cpu and it should be taken over by an eligible secondary
  55 * when one comes online.
  56 */
  57static int tick_do_timer_boot_cpu __read_mostly = -1;
  58#endif
  59
  60/*
  61 * Debugging: see timer_list.c
  62 */
  63struct tick_device *tick_get_device(int cpu)
  64{
  65        return &per_cpu(tick_cpu_device, cpu);
  66}
  67
  68/**
  69 * tick_is_oneshot_available - check for a oneshot capable event device
  70 */
  71int tick_is_oneshot_available(void)
  72{
  73        struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
  74
  75        if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
  76                return 0;
  77        if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
  78                return 1;
  79        return tick_broadcast_oneshot_available();
  80}
  81
  82/*
  83 * Periodic tick
  84 */
  85static void tick_periodic(int cpu)
  86{
  87        if (tick_do_timer_cpu == cpu) {
  88                raw_spin_lock(&jiffies_lock);
  89                write_seqcount_begin(&jiffies_seq);
  90
  91                /* Keep track of the next tick event */
  92                tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
  93
  94                do_timer(1);
  95                write_seqcount_end(&jiffies_seq);
  96                raw_spin_unlock(&jiffies_lock);
  97                update_wall_time();
  98        }
  99
 100        update_process_times(user_mode(get_irq_regs()));
 101        profile_tick(CPU_PROFILING);
 102}
 103
 104/*
 105 * Event handler for periodic ticks
 106 */
 107void tick_handle_periodic(struct clock_event_device *dev)
 108{
 109        int cpu = smp_processor_id();
 110        ktime_t next = dev->next_event;
 111
 112        tick_periodic(cpu);
 113
 114#if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
 115        /*
 116         * The cpu might have transitioned to HIGHRES or NOHZ mode via
 117         * update_process_times() -> run_local_timers() ->
 118         * hrtimer_run_queues().
 119         */
 120        if (dev->event_handler != tick_handle_periodic)
 121                return;
 122#endif
 123
 124        if (!clockevent_state_oneshot(dev))
 125                return;
 126        for (;;) {
 127                /*
 128                 * Setup the next period for devices, which do not have
 129                 * periodic mode:
 130                 */
 131                next = ktime_add_ns(next, TICK_NSEC);
 132
 133                if (!clockevents_program_event(dev, next, false))
 134                        return;
 135                /*
 136                 * Have to be careful here. If we're in oneshot mode,
 137                 * before we call tick_periodic() in a loop, we need
 138                 * to be sure we're using a real hardware clocksource.
 139                 * Otherwise we could get trapped in an infinite
 140                 * loop, as the tick_periodic() increments jiffies,
 141                 * which then will increment time, possibly causing
 142                 * the loop to trigger again and again.
 143                 */
 144                if (timekeeping_valid_for_hres())
 145                        tick_periodic(cpu);
 146        }
 147}
 148
 149/*
 150 * Setup the device for a periodic tick
 151 */
 152void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
 153{
 154        tick_set_periodic_handler(dev, broadcast);
 155
 156        /* Broadcast setup ? */
 157        if (!tick_device_is_functional(dev))
 158                return;
 159
 160        if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
 161            !tick_broadcast_oneshot_active()) {
 162                clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
 163        } else {
 164                unsigned int seq;
 165                ktime_t next;
 166
 167                do {
 168                        seq = read_seqcount_begin(&jiffies_seq);
 169                        next = tick_next_period;
 170                } while (read_seqcount_retry(&jiffies_seq, seq));
 171
 172                clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
 173
 174                for (;;) {
 175                        if (!clockevents_program_event(dev, next, false))
 176                                return;
 177                        next = ktime_add_ns(next, TICK_NSEC);
 178                }
 179        }
 180}
 181
 182#ifdef CONFIG_NO_HZ_FULL
 183static void giveup_do_timer(void *info)
 184{
 185        int cpu = *(unsigned int *)info;
 186
 187        WARN_ON(tick_do_timer_cpu != smp_processor_id());
 188
 189        tick_do_timer_cpu = cpu;
 190}
 191
 192static void tick_take_do_timer_from_boot(void)
 193{
 194        int cpu = smp_processor_id();
 195        int from = tick_do_timer_boot_cpu;
 196
 197        if (from >= 0 && from != cpu)
 198                smp_call_function_single(from, giveup_do_timer, &cpu, 1);
 199}
 200#endif
 201
 202/*
 203 * Setup the tick device
 204 */
 205static void tick_setup_device(struct tick_device *td,
 206                              struct clock_event_device *newdev, int cpu,
 207                              const struct cpumask *cpumask)
 208{
 209        void (*handler)(struct clock_event_device *) = NULL;
 210        ktime_t next_event = 0;
 211
 212        /*
 213         * First device setup ?
 214         */
 215        if (!td->evtdev) {
 216                /*
 217                 * If no cpu took the do_timer update, assign it to
 218                 * this cpu:
 219                 */
 220                if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
 221                        tick_do_timer_cpu = cpu;
 222
 223                        tick_next_period = ktime_get();
 224#ifdef CONFIG_NO_HZ_FULL
 225                        /*
 226                         * The boot CPU may be nohz_full, in which case set
 227                         * tick_do_timer_boot_cpu so the first housekeeping
 228                         * secondary that comes up will take do_timer from
 229                         * us.
 230                         */
 231                        if (tick_nohz_full_cpu(cpu))
 232                                tick_do_timer_boot_cpu = cpu;
 233
 234                } else if (tick_do_timer_boot_cpu != -1 &&
 235                                                !tick_nohz_full_cpu(cpu)) {
 236                        tick_take_do_timer_from_boot();
 237                        tick_do_timer_boot_cpu = -1;
 238                        WARN_ON(tick_do_timer_cpu != cpu);
 239#endif
 240                }
 241
 242                /*
 243                 * Startup in periodic mode first.
 244                 */
 245                td->mode = TICKDEV_MODE_PERIODIC;
 246        } else {
 247                handler = td->evtdev->event_handler;
 248                next_event = td->evtdev->next_event;
 249                td->evtdev->event_handler = clockevents_handle_noop;
 250        }
 251
 252        td->evtdev = newdev;
 253
 254        /*
 255         * When the device is not per cpu, pin the interrupt to the
 256         * current cpu:
 257         */
 258        if (!cpumask_equal(newdev->cpumask, cpumask))
 259                irq_set_affinity(newdev->irq, cpumask);
 260
 261        /*
 262         * When global broadcasting is active, check if the current
 263         * device is registered as a placeholder for broadcast mode.
 264         * This allows us to handle this x86 misfeature in a generic
 265         * way. This function also returns !=0 when we keep the
 266         * current active broadcast state for this CPU.
 267         */
 268        if (tick_device_uses_broadcast(newdev, cpu))
 269                return;
 270
 271        if (td->mode == TICKDEV_MODE_PERIODIC)
 272                tick_setup_periodic(newdev, 0);
 273        else
 274                tick_setup_oneshot(newdev, handler, next_event);
 275}
 276
 277void tick_install_replacement(struct clock_event_device *newdev)
 278{
 279        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 280        int cpu = smp_processor_id();
 281
 282        clockevents_exchange_device(td->evtdev, newdev);
 283        tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
 284        if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
 285                tick_oneshot_notify();
 286}
 287
 288static bool tick_check_percpu(struct clock_event_device *curdev,
 289                              struct clock_event_device *newdev, int cpu)
 290{
 291        if (!cpumask_test_cpu(cpu, newdev->cpumask))
 292                return false;
 293        if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
 294                return true;
 295        /* Check if irq affinity can be set */
 296        if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
 297                return false;
 298        /* Prefer an existing cpu local device */
 299        if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
 300                return false;
 301        return true;
 302}
 303
 304static bool tick_check_preferred(struct clock_event_device *curdev,
 305                                 struct clock_event_device *newdev)
 306{
 307        /* Prefer oneshot capable device */
 308        if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
 309                if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
 310                        return false;
 311                if (tick_oneshot_mode_active())
 312                        return false;
 313        }
 314
 315        /*
 316         * Use the higher rated one, but prefer a CPU local device with a lower
 317         * rating than a non-CPU local device
 318         */
 319        return !curdev ||
 320                newdev->rating > curdev->rating ||
 321               !cpumask_equal(curdev->cpumask, newdev->cpumask);
 322}
 323
 324/*
 325 * Check whether the new device is a better fit than curdev. curdev
 326 * can be NULL !
 327 */
 328bool tick_check_replacement(struct clock_event_device *curdev,
 329                            struct clock_event_device *newdev)
 330{
 331        if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
 332                return false;
 333
 334        return tick_check_preferred(curdev, newdev);
 335}
 336
 337/*
 338 * Check, if the new registered device should be used. Called with
 339 * clockevents_lock held and interrupts disabled.
 340 */
 341void tick_check_new_device(struct clock_event_device *newdev)
 342{
 343        struct clock_event_device *curdev;
 344        struct tick_device *td;
 345        int cpu;
 346
 347        cpu = smp_processor_id();
 348        td = &per_cpu(tick_cpu_device, cpu);
 349        curdev = td->evtdev;
 350
 351        if (!tick_check_replacement(curdev, newdev))
 352                goto out_bc;
 353
 354        if (!try_module_get(newdev->owner))
 355                return;
 356
 357        /*
 358         * Replace the eventually existing device by the new
 359         * device. If the current device is the broadcast device, do
 360         * not give it back to the clockevents layer !
 361         */
 362        if (tick_is_broadcast_device(curdev)) {
 363                clockevents_shutdown(curdev);
 364                curdev = NULL;
 365        }
 366        clockevents_exchange_device(curdev, newdev);
 367        tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
 368        if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
 369                tick_oneshot_notify();
 370        return;
 371
 372out_bc:
 373        /*
 374         * Can the new device be used as a broadcast device ?
 375         */
 376        tick_install_broadcast_device(newdev, cpu);
 377}
 378
 379/**
 380 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
 381 * @state:      The target state (enter/exit)
 382 *
 383 * The system enters/leaves a state, where affected devices might stop
 384 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
 385 *
 386 * Called with interrupts disabled, so clockevents_lock is not
 387 * required here because the local clock event device cannot go away
 388 * under us.
 389 */
 390int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 391{
 392        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 393
 394        if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
 395                return 0;
 396
 397        return __tick_broadcast_oneshot_control(state);
 398}
 399EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
 400
 401#ifdef CONFIG_HOTPLUG_CPU
 402/*
 403 * Transfer the do_timer job away from a dying cpu.
 404 *
 405 * Called with interrupts disabled. No locking required. If
 406 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
 407 */
 408void tick_handover_do_timer(void)
 409{
 410        if (tick_do_timer_cpu == smp_processor_id())
 411                tick_do_timer_cpu = cpumask_first(cpu_online_mask);
 412}
 413
 414/*
 415 * Shutdown an event device on a given cpu:
 416 *
 417 * This is called on a life CPU, when a CPU is dead. So we cannot
 418 * access the hardware device itself.
 419 * We just set the mode and remove it from the lists.
 420 */
 421void tick_shutdown(unsigned int cpu)
 422{
 423        struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
 424        struct clock_event_device *dev = td->evtdev;
 425
 426        td->mode = TICKDEV_MODE_PERIODIC;
 427        if (dev) {
 428                /*
 429                 * Prevent that the clock events layer tries to call
 430                 * the set mode function!
 431                 */
 432                clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
 433                clockevents_exchange_device(dev, NULL);
 434                dev->event_handler = clockevents_handle_noop;
 435                td->evtdev = NULL;
 436        }
 437}
 438#endif
 439
 440/**
 441 * tick_suspend_local - Suspend the local tick device
 442 *
 443 * Called from the local cpu for freeze with interrupts disabled.
 444 *
 445 * No locks required. Nothing can change the per cpu device.
 446 */
 447void tick_suspend_local(void)
 448{
 449        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 450
 451        clockevents_shutdown(td->evtdev);
 452}
 453
 454/**
 455 * tick_resume_local - Resume the local tick device
 456 *
 457 * Called from the local CPU for unfreeze or XEN resume magic.
 458 *
 459 * No locks required. Nothing can change the per cpu device.
 460 */
 461void tick_resume_local(void)
 462{
 463        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 464        bool broadcast = tick_resume_check_broadcast();
 465
 466        clockevents_tick_resume(td->evtdev);
 467        if (!broadcast) {
 468                if (td->mode == TICKDEV_MODE_PERIODIC)
 469                        tick_setup_periodic(td->evtdev, 0);
 470                else
 471                        tick_resume_oneshot();
 472        }
 473
 474        /*
 475         * Ensure that hrtimers are up to date and the clockevents device
 476         * is reprogrammed correctly when high resolution timers are
 477         * enabled.
 478         */
 479        hrtimers_resume_local();
 480}
 481
 482/**
 483 * tick_suspend - Suspend the tick and the broadcast device
 484 *
 485 * Called from syscore_suspend() via timekeeping_suspend with only one
 486 * CPU online and interrupts disabled or from tick_unfreeze() under
 487 * tick_freeze_lock.
 488 *
 489 * No locks required. Nothing can change the per cpu device.
 490 */
 491void tick_suspend(void)
 492{
 493        tick_suspend_local();
 494        tick_suspend_broadcast();
 495}
 496
 497/**
 498 * tick_resume - Resume the tick and the broadcast device
 499 *
 500 * Called from syscore_resume() via timekeeping_resume with only one
 501 * CPU online and interrupts disabled.
 502 *
 503 * No locks required. Nothing can change the per cpu device.
 504 */
 505void tick_resume(void)
 506{
 507        tick_resume_broadcast();
 508        tick_resume_local();
 509}
 510
 511#ifdef CONFIG_SUSPEND
 512static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
 513static unsigned int tick_freeze_depth;
 514
 515/**
 516 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
 517 *
 518 * Check if this is the last online CPU executing the function and if so,
 519 * suspend timekeeping.  Otherwise suspend the local tick.
 520 *
 521 * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
 522 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
 523 */
 524void tick_freeze(void)
 525{
 526        raw_spin_lock(&tick_freeze_lock);
 527
 528        tick_freeze_depth++;
 529        if (tick_freeze_depth == num_online_cpus()) {
 530                trace_suspend_resume(TPS("timekeeping_freeze"),
 531                                     smp_processor_id(), true);
 532                system_state = SYSTEM_SUSPEND;
 533                sched_clock_suspend();
 534                timekeeping_suspend();
 535        } else {
 536                tick_suspend_local();
 537        }
 538
 539        raw_spin_unlock(&tick_freeze_lock);
 540}
 541
 542/**
 543 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
 544 *
 545 * Check if this is the first CPU executing the function and if so, resume
 546 * timekeeping.  Otherwise resume the local tick.
 547 *
 548 * Call with interrupts disabled.  Must be balanced with %tick_freeze().
 549 * Interrupts must not be enabled after the preceding %tick_freeze().
 550 */
 551void tick_unfreeze(void)
 552{
 553        raw_spin_lock(&tick_freeze_lock);
 554
 555        if (tick_freeze_depth == num_online_cpus()) {
 556                timekeeping_resume();
 557                sched_clock_resume();
 558                system_state = SYSTEM_RUNNING;
 559                trace_suspend_resume(TPS("timekeeping_freeze"),
 560                                     smp_processor_id(), false);
 561        } else {
 562                touch_softlockup_watchdog();
 563                tick_resume_local();
 564        }
 565
 566        tick_freeze_depth--;
 567
 568        raw_spin_unlock(&tick_freeze_lock);
 569}
 570#endif /* CONFIG_SUSPEND */
 571
 572/**
 573 * tick_init - initialize the tick control
 574 */
 575void __init tick_init(void)
 576{
 577        tick_broadcast_init();
 578        tick_nohz_init();
 579}
 580