linux/lib/crypto/aes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2017-2019 Linaro Ltd <ard.biesheuvel@linaro.org>
   4 */
   5
   6#include <crypto/aes.h>
   7#include <linux/crypto.h>
   8#include <linux/module.h>
   9#include <asm/unaligned.h>
  10
  11/*
  12 * Emit the sbox as volatile const to prevent the compiler from doing
  13 * constant folding on sbox references involving fixed indexes.
  14 */
  15static volatile const u8 __cacheline_aligned aes_sbox[] = {
  16        0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
  17        0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
  18        0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
  19        0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
  20        0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
  21        0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
  22        0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
  23        0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
  24        0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
  25        0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
  26        0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
  27        0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
  28        0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
  29        0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
  30        0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
  31        0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
  32        0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
  33        0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
  34        0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
  35        0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
  36        0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
  37        0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
  38        0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
  39        0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
  40        0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
  41        0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
  42        0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
  43        0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
  44        0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
  45        0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
  46        0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
  47        0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,
  48};
  49
  50static volatile const u8 __cacheline_aligned aes_inv_sbox[] = {
  51        0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
  52        0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
  53        0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
  54        0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
  55        0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
  56        0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
  57        0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
  58        0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
  59        0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
  60        0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
  61        0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
  62        0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
  63        0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
  64        0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
  65        0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
  66        0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
  67        0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
  68        0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
  69        0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
  70        0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
  71        0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
  72        0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
  73        0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
  74        0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
  75        0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
  76        0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
  77        0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
  78        0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
  79        0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
  80        0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
  81        0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
  82        0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d,
  83};
  84
  85extern const u8 crypto_aes_sbox[256] __alias(aes_sbox);
  86extern const u8 crypto_aes_inv_sbox[256] __alias(aes_inv_sbox);
  87
  88EXPORT_SYMBOL(crypto_aes_sbox);
  89EXPORT_SYMBOL(crypto_aes_inv_sbox);
  90
  91static u32 mul_by_x(u32 w)
  92{
  93        u32 x = w & 0x7f7f7f7f;
  94        u32 y = w & 0x80808080;
  95
  96        /* multiply by polynomial 'x' (0b10) in GF(2^8) */
  97        return (x << 1) ^ (y >> 7) * 0x1b;
  98}
  99
 100static u32 mul_by_x2(u32 w)
 101{
 102        u32 x = w & 0x3f3f3f3f;
 103        u32 y = w & 0x80808080;
 104        u32 z = w & 0x40404040;
 105
 106        /* multiply by polynomial 'x^2' (0b100) in GF(2^8) */
 107        return (x << 2) ^ (y >> 7) * 0x36 ^ (z >> 6) * 0x1b;
 108}
 109
 110static u32 mix_columns(u32 x)
 111{
 112        /*
 113         * Perform the following matrix multiplication in GF(2^8)
 114         *
 115         * | 0x2 0x3 0x1 0x1 |   | x[0] |
 116         * | 0x1 0x2 0x3 0x1 |   | x[1] |
 117         * | 0x1 0x1 0x2 0x3 | x | x[2] |
 118         * | 0x3 0x1 0x1 0x2 |   | x[3] |
 119         */
 120        u32 y = mul_by_x(x) ^ ror32(x, 16);
 121
 122        return y ^ ror32(x ^ y, 8);
 123}
 124
 125static u32 inv_mix_columns(u32 x)
 126{
 127        /*
 128         * Perform the following matrix multiplication in GF(2^8)
 129         *
 130         * | 0xe 0xb 0xd 0x9 |   | x[0] |
 131         * | 0x9 0xe 0xb 0xd |   | x[1] |
 132         * | 0xd 0x9 0xe 0xb | x | x[2] |
 133         * | 0xb 0xd 0x9 0xe |   | x[3] |
 134         *
 135         * which can conveniently be reduced to
 136         *
 137         * | 0x2 0x3 0x1 0x1 |   | 0x5 0x0 0x4 0x0 |   | x[0] |
 138         * | 0x1 0x2 0x3 0x1 |   | 0x0 0x5 0x0 0x4 |   | x[1] |
 139         * | 0x1 0x1 0x2 0x3 | x | 0x4 0x0 0x5 0x0 | x | x[2] |
 140         * | 0x3 0x1 0x1 0x2 |   | 0x0 0x4 0x0 0x5 |   | x[3] |
 141         */
 142        u32 y = mul_by_x2(x);
 143
 144        return mix_columns(x ^ y ^ ror32(y, 16));
 145}
 146
 147static __always_inline u32 subshift(u32 in[], int pos)
 148{
 149        return (aes_sbox[in[pos] & 0xff]) ^
 150               (aes_sbox[(in[(pos + 1) % 4] >>  8) & 0xff] <<  8) ^
 151               (aes_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^
 152               (aes_sbox[(in[(pos + 3) % 4] >> 24) & 0xff] << 24);
 153}
 154
 155static __always_inline u32 inv_subshift(u32 in[], int pos)
 156{
 157        return (aes_inv_sbox[in[pos] & 0xff]) ^
 158               (aes_inv_sbox[(in[(pos + 3) % 4] >>  8) & 0xff] <<  8) ^
 159               (aes_inv_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^
 160               (aes_inv_sbox[(in[(pos + 1) % 4] >> 24) & 0xff] << 24);
 161}
 162
 163static u32 subw(u32 in)
 164{
 165        return (aes_sbox[in & 0xff]) ^
 166               (aes_sbox[(in >>  8) & 0xff] <<  8) ^
 167               (aes_sbox[(in >> 16) & 0xff] << 16) ^
 168               (aes_sbox[(in >> 24) & 0xff] << 24);
 169}
 170
 171/**
 172 * aes_expandkey - Expands the AES key as described in FIPS-197
 173 * @ctx:        The location where the computed key will be stored.
 174 * @in_key:     The supplied key.
 175 * @key_len:    The length of the supplied key.
 176 *
 177 * Returns 0 on success. The function fails only if an invalid key size (or
 178 * pointer) is supplied.
 179 * The expanded key size is 240 bytes (max of 14 rounds with a unique 16 bytes
 180 * key schedule plus a 16 bytes key which is used before the first round).
 181 * The decryption key is prepared for the "Equivalent Inverse Cipher" as
 182 * described in FIPS-197. The first slot (16 bytes) of each key (enc or dec) is
 183 * for the initial combination, the second slot for the first round and so on.
 184 */
 185int aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
 186                  unsigned int key_len)
 187{
 188        u32 kwords = key_len / sizeof(u32);
 189        u32 rc, i, j;
 190        int err;
 191
 192        err = aes_check_keylen(key_len);
 193        if (err)
 194                return err;
 195
 196        ctx->key_length = key_len;
 197
 198        for (i = 0; i < kwords; i++)
 199                ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
 200
 201        for (i = 0, rc = 1; i < 10; i++, rc = mul_by_x(rc)) {
 202                u32 *rki = ctx->key_enc + (i * kwords);
 203                u32 *rko = rki + kwords;
 204
 205                rko[0] = ror32(subw(rki[kwords - 1]), 8) ^ rc ^ rki[0];
 206                rko[1] = rko[0] ^ rki[1];
 207                rko[2] = rko[1] ^ rki[2];
 208                rko[3] = rko[2] ^ rki[3];
 209
 210                if (key_len == AES_KEYSIZE_192) {
 211                        if (i >= 7)
 212                                break;
 213                        rko[4] = rko[3] ^ rki[4];
 214                        rko[5] = rko[4] ^ rki[5];
 215                } else if (key_len == AES_KEYSIZE_256) {
 216                        if (i >= 6)
 217                                break;
 218                        rko[4] = subw(rko[3]) ^ rki[4];
 219                        rko[5] = rko[4] ^ rki[5];
 220                        rko[6] = rko[5] ^ rki[6];
 221                        rko[7] = rko[6] ^ rki[7];
 222                }
 223        }
 224
 225        /*
 226         * Generate the decryption keys for the Equivalent Inverse Cipher.
 227         * This involves reversing the order of the round keys, and applying
 228         * the Inverse Mix Columns transformation to all but the first and
 229         * the last one.
 230         */
 231        ctx->key_dec[0] = ctx->key_enc[key_len + 24];
 232        ctx->key_dec[1] = ctx->key_enc[key_len + 25];
 233        ctx->key_dec[2] = ctx->key_enc[key_len + 26];
 234        ctx->key_dec[3] = ctx->key_enc[key_len + 27];
 235
 236        for (i = 4, j = key_len + 20; j > 0; i += 4, j -= 4) {
 237                ctx->key_dec[i]     = inv_mix_columns(ctx->key_enc[j]);
 238                ctx->key_dec[i + 1] = inv_mix_columns(ctx->key_enc[j + 1]);
 239                ctx->key_dec[i + 2] = inv_mix_columns(ctx->key_enc[j + 2]);
 240                ctx->key_dec[i + 3] = inv_mix_columns(ctx->key_enc[j + 3]);
 241        }
 242
 243        ctx->key_dec[i]     = ctx->key_enc[0];
 244        ctx->key_dec[i + 1] = ctx->key_enc[1];
 245        ctx->key_dec[i + 2] = ctx->key_enc[2];
 246        ctx->key_dec[i + 3] = ctx->key_enc[3];
 247
 248        return 0;
 249}
 250EXPORT_SYMBOL(aes_expandkey);
 251
 252/**
 253 * aes_encrypt - Encrypt a single AES block
 254 * @ctx:        Context struct containing the key schedule
 255 * @out:        Buffer to store the ciphertext
 256 * @in:         Buffer containing the plaintext
 257 */
 258void aes_encrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in)
 259{
 260        const u32 *rkp = ctx->key_enc + 4;
 261        int rounds = 6 + ctx->key_length / 4;
 262        u32 st0[4], st1[4];
 263        int round;
 264
 265        st0[0] = ctx->key_enc[0] ^ get_unaligned_le32(in);
 266        st0[1] = ctx->key_enc[1] ^ get_unaligned_le32(in + 4);
 267        st0[2] = ctx->key_enc[2] ^ get_unaligned_le32(in + 8);
 268        st0[3] = ctx->key_enc[3] ^ get_unaligned_le32(in + 12);
 269
 270        /*
 271         * Force the compiler to emit data independent Sbox references,
 272         * by xoring the input with Sbox values that are known to add up
 273         * to zero. This pulls the entire Sbox into the D-cache before any
 274         * data dependent lookups are done.
 275         */
 276        st0[0] ^= aes_sbox[ 0] ^ aes_sbox[ 64] ^ aes_sbox[134] ^ aes_sbox[195];
 277        st0[1] ^= aes_sbox[16] ^ aes_sbox[ 82] ^ aes_sbox[158] ^ aes_sbox[221];
 278        st0[2] ^= aes_sbox[32] ^ aes_sbox[ 96] ^ aes_sbox[160] ^ aes_sbox[234];
 279        st0[3] ^= aes_sbox[48] ^ aes_sbox[112] ^ aes_sbox[186] ^ aes_sbox[241];
 280
 281        for (round = 0;; round += 2, rkp += 8) {
 282                st1[0] = mix_columns(subshift(st0, 0)) ^ rkp[0];
 283                st1[1] = mix_columns(subshift(st0, 1)) ^ rkp[1];
 284                st1[2] = mix_columns(subshift(st0, 2)) ^ rkp[2];
 285                st1[3] = mix_columns(subshift(st0, 3)) ^ rkp[3];
 286
 287                if (round == rounds - 2)
 288                        break;
 289
 290                st0[0] = mix_columns(subshift(st1, 0)) ^ rkp[4];
 291                st0[1] = mix_columns(subshift(st1, 1)) ^ rkp[5];
 292                st0[2] = mix_columns(subshift(st1, 2)) ^ rkp[6];
 293                st0[3] = mix_columns(subshift(st1, 3)) ^ rkp[7];
 294        }
 295
 296        put_unaligned_le32(subshift(st1, 0) ^ rkp[4], out);
 297        put_unaligned_le32(subshift(st1, 1) ^ rkp[5], out + 4);
 298        put_unaligned_le32(subshift(st1, 2) ^ rkp[6], out + 8);
 299        put_unaligned_le32(subshift(st1, 3) ^ rkp[7], out + 12);
 300}
 301EXPORT_SYMBOL(aes_encrypt);
 302
 303/**
 304 * aes_decrypt - Decrypt a single AES block
 305 * @ctx:        Context struct containing the key schedule
 306 * @out:        Buffer to store the plaintext
 307 * @in:         Buffer containing the ciphertext
 308 */
 309void aes_decrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in)
 310{
 311        const u32 *rkp = ctx->key_dec + 4;
 312        int rounds = 6 + ctx->key_length / 4;
 313        u32 st0[4], st1[4];
 314        int round;
 315
 316        st0[0] = ctx->key_dec[0] ^ get_unaligned_le32(in);
 317        st0[1] = ctx->key_dec[1] ^ get_unaligned_le32(in + 4);
 318        st0[2] = ctx->key_dec[2] ^ get_unaligned_le32(in + 8);
 319        st0[3] = ctx->key_dec[3] ^ get_unaligned_le32(in + 12);
 320
 321        /*
 322         * Force the compiler to emit data independent Sbox references,
 323         * by xoring the input with Sbox values that are known to add up
 324         * to zero. This pulls the entire Sbox into the D-cache before any
 325         * data dependent lookups are done.
 326         */
 327        st0[0] ^= aes_inv_sbox[ 0] ^ aes_inv_sbox[ 64] ^ aes_inv_sbox[129] ^ aes_inv_sbox[200];
 328        st0[1] ^= aes_inv_sbox[16] ^ aes_inv_sbox[ 83] ^ aes_inv_sbox[150] ^ aes_inv_sbox[212];
 329        st0[2] ^= aes_inv_sbox[32] ^ aes_inv_sbox[ 96] ^ aes_inv_sbox[160] ^ aes_inv_sbox[236];
 330        st0[3] ^= aes_inv_sbox[48] ^ aes_inv_sbox[112] ^ aes_inv_sbox[187] ^ aes_inv_sbox[247];
 331
 332        for (round = 0;; round += 2, rkp += 8) {
 333                st1[0] = inv_mix_columns(inv_subshift(st0, 0)) ^ rkp[0];
 334                st1[1] = inv_mix_columns(inv_subshift(st0, 1)) ^ rkp[1];
 335                st1[2] = inv_mix_columns(inv_subshift(st0, 2)) ^ rkp[2];
 336                st1[3] = inv_mix_columns(inv_subshift(st0, 3)) ^ rkp[3];
 337
 338                if (round == rounds - 2)
 339                        break;
 340
 341                st0[0] = inv_mix_columns(inv_subshift(st1, 0)) ^ rkp[4];
 342                st0[1] = inv_mix_columns(inv_subshift(st1, 1)) ^ rkp[5];
 343                st0[2] = inv_mix_columns(inv_subshift(st1, 2)) ^ rkp[6];
 344                st0[3] = inv_mix_columns(inv_subshift(st1, 3)) ^ rkp[7];
 345        }
 346
 347        put_unaligned_le32(inv_subshift(st1, 0) ^ rkp[4], out);
 348        put_unaligned_le32(inv_subshift(st1, 1) ^ rkp[5], out + 4);
 349        put_unaligned_le32(inv_subshift(st1, 2) ^ rkp[6], out + 8);
 350        put_unaligned_le32(inv_subshift(st1, 3) ^ rkp[7], out + 12);
 351}
 352EXPORT_SYMBOL(aes_decrypt);
 353
 354MODULE_DESCRIPTION("Generic AES library");
 355MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
 356MODULE_LICENSE("GPL v2");
 357