linux/lib/percpu-refcount.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) "%s: " fmt, __func__
   3
   4#include <linux/kernel.h>
   5#include <linux/sched.h>
   6#include <linux/wait.h>
   7#include <linux/slab.h>
   8#include <linux/mm.h>
   9#include <linux/percpu-refcount.h>
  10
  11/*
  12 * Initially, a percpu refcount is just a set of percpu counters. Initially, we
  13 * don't try to detect the ref hitting 0 - which means that get/put can just
  14 * increment or decrement the local counter. Note that the counter on a
  15 * particular cpu can (and will) wrap - this is fine, when we go to shutdown the
  16 * percpu counters will all sum to the correct value
  17 *
  18 * (More precisely: because modular arithmetic is commutative the sum of all the
  19 * percpu_count vars will be equal to what it would have been if all the gets
  20 * and puts were done to a single integer, even if some of the percpu integers
  21 * overflow or underflow).
  22 *
  23 * The real trick to implementing percpu refcounts is shutdown. We can't detect
  24 * the ref hitting 0 on every put - this would require global synchronization
  25 * and defeat the whole purpose of using percpu refs.
  26 *
  27 * What we do is require the user to keep track of the initial refcount; we know
  28 * the ref can't hit 0 before the user drops the initial ref, so as long as we
  29 * convert to non percpu mode before the initial ref is dropped everything
  30 * works.
  31 *
  32 * Converting to non percpu mode is done with some RCUish stuff in
  33 * percpu_ref_kill. Additionally, we need a bias value so that the
  34 * atomic_long_t can't hit 0 before we've added up all the percpu refs.
  35 */
  36
  37#define PERCPU_COUNT_BIAS       (1LU << (BITS_PER_LONG - 1))
  38
  39static DEFINE_SPINLOCK(percpu_ref_switch_lock);
  40static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq);
  41
  42static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref)
  43{
  44        return (unsigned long __percpu *)
  45                (ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD);
  46}
  47
  48/**
  49 * percpu_ref_init - initialize a percpu refcount
  50 * @ref: percpu_ref to initialize
  51 * @release: function which will be called when refcount hits 0
  52 * @flags: PERCPU_REF_INIT_* flags
  53 * @gfp: allocation mask to use
  54 *
  55 * Initializes @ref.  @ref starts out in percpu mode with a refcount of 1 unless
  56 * @flags contains PERCPU_REF_INIT_ATOMIC or PERCPU_REF_INIT_DEAD.  These flags
  57 * change the start state to atomic with the latter setting the initial refcount
  58 * to 0.  See the definitions of PERCPU_REF_INIT_* flags for flag behaviors.
  59 *
  60 * Note that @release must not sleep - it may potentially be called from RCU
  61 * callback context by percpu_ref_kill().
  62 */
  63int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release,
  64                    unsigned int flags, gfp_t gfp)
  65{
  66        size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS,
  67                             __alignof__(unsigned long));
  68        unsigned long start_count = 0;
  69        struct percpu_ref_data *data;
  70
  71        ref->percpu_count_ptr = (unsigned long)
  72                __alloc_percpu_gfp(sizeof(unsigned long), align, gfp);
  73        if (!ref->percpu_count_ptr)
  74                return -ENOMEM;
  75
  76        data = kzalloc(sizeof(*ref->data), gfp);
  77        if (!data) {
  78                free_percpu((void __percpu *)ref->percpu_count_ptr);
  79                return -ENOMEM;
  80        }
  81
  82        data->force_atomic = flags & PERCPU_REF_INIT_ATOMIC;
  83        data->allow_reinit = flags & PERCPU_REF_ALLOW_REINIT;
  84
  85        if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD)) {
  86                ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
  87                data->allow_reinit = true;
  88        } else {
  89                start_count += PERCPU_COUNT_BIAS;
  90        }
  91
  92        if (flags & PERCPU_REF_INIT_DEAD)
  93                ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
  94        else
  95                start_count++;
  96
  97        atomic_long_set(&data->count, start_count);
  98
  99        data->release = release;
 100        data->confirm_switch = NULL;
 101        data->ref = ref;
 102        ref->data = data;
 103        return 0;
 104}
 105EXPORT_SYMBOL_GPL(percpu_ref_init);
 106
 107static void __percpu_ref_exit(struct percpu_ref *ref)
 108{
 109        unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
 110
 111        if (percpu_count) {
 112                /* non-NULL confirm_switch indicates switching in progress */
 113                WARN_ON_ONCE(ref->data && ref->data->confirm_switch);
 114                free_percpu(percpu_count);
 115                ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD;
 116        }
 117}
 118
 119/**
 120 * percpu_ref_exit - undo percpu_ref_init()
 121 * @ref: percpu_ref to exit
 122 *
 123 * This function exits @ref.  The caller is responsible for ensuring that
 124 * @ref is no longer in active use.  The usual places to invoke this
 125 * function from are the @ref->release() callback or in init failure path
 126 * where percpu_ref_init() succeeded but other parts of the initialization
 127 * of the embedding object failed.
 128 */
 129void percpu_ref_exit(struct percpu_ref *ref)
 130{
 131        struct percpu_ref_data *data = ref->data;
 132        unsigned long flags;
 133
 134        __percpu_ref_exit(ref);
 135
 136        if (!data)
 137                return;
 138
 139        spin_lock_irqsave(&percpu_ref_switch_lock, flags);
 140        ref->percpu_count_ptr |= atomic_long_read(&ref->data->count) <<
 141                __PERCPU_REF_FLAG_BITS;
 142        ref->data = NULL;
 143        spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
 144
 145        kfree(data);
 146}
 147EXPORT_SYMBOL_GPL(percpu_ref_exit);
 148
 149static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu)
 150{
 151        struct percpu_ref_data *data = container_of(rcu,
 152                        struct percpu_ref_data, rcu);
 153        struct percpu_ref *ref = data->ref;
 154
 155        data->confirm_switch(ref);
 156        data->confirm_switch = NULL;
 157        wake_up_all(&percpu_ref_switch_waitq);
 158
 159        if (!data->allow_reinit)
 160                __percpu_ref_exit(ref);
 161
 162        /* drop ref from percpu_ref_switch_to_atomic() */
 163        percpu_ref_put(ref);
 164}
 165
 166static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu)
 167{
 168        struct percpu_ref_data *data = container_of(rcu,
 169                        struct percpu_ref_data, rcu);
 170        struct percpu_ref *ref = data->ref;
 171        unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
 172        static atomic_t underflows;
 173        unsigned long count = 0;
 174        int cpu;
 175
 176        for_each_possible_cpu(cpu)
 177                count += *per_cpu_ptr(percpu_count, cpu);
 178
 179        pr_debug("global %lu percpu %lu\n",
 180                 atomic_long_read(&data->count), count);
 181
 182        /*
 183         * It's crucial that we sum the percpu counters _before_ adding the sum
 184         * to &ref->count; since gets could be happening on one cpu while puts
 185         * happen on another, adding a single cpu's count could cause
 186         * @ref->count to hit 0 before we've got a consistent value - but the
 187         * sum of all the counts will be consistent and correct.
 188         *
 189         * Subtracting the bias value then has to happen _after_ adding count to
 190         * &ref->count; we need the bias value to prevent &ref->count from
 191         * reaching 0 before we add the percpu counts. But doing it at the same
 192         * time is equivalent and saves us atomic operations:
 193         */
 194        atomic_long_add((long)count - PERCPU_COUNT_BIAS, &data->count);
 195
 196        if (WARN_ONCE(atomic_long_read(&data->count) <= 0,
 197                      "percpu ref (%ps) <= 0 (%ld) after switching to atomic",
 198                      data->release, atomic_long_read(&data->count)) &&
 199            atomic_inc_return(&underflows) < 4) {
 200                pr_err("%s(): percpu_ref underflow", __func__);
 201                mem_dump_obj(data);
 202        }
 203
 204        /* @ref is viewed as dead on all CPUs, send out switch confirmation */
 205        percpu_ref_call_confirm_rcu(rcu);
 206}
 207
 208static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref)
 209{
 210}
 211
 212static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref,
 213                                          percpu_ref_func_t *confirm_switch)
 214{
 215        if (ref->percpu_count_ptr & __PERCPU_REF_ATOMIC) {
 216                if (confirm_switch)
 217                        confirm_switch(ref);
 218                return;
 219        }
 220
 221        /* switching from percpu to atomic */
 222        ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
 223
 224        /*
 225         * Non-NULL ->confirm_switch is used to indicate that switching is
 226         * in progress.  Use noop one if unspecified.
 227         */
 228        ref->data->confirm_switch = confirm_switch ?:
 229                percpu_ref_noop_confirm_switch;
 230
 231        percpu_ref_get(ref);    /* put after confirmation */
 232        call_rcu(&ref->data->rcu, percpu_ref_switch_to_atomic_rcu);
 233}
 234
 235static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref)
 236{
 237        unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
 238        int cpu;
 239
 240        BUG_ON(!percpu_count);
 241
 242        if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC))
 243                return;
 244
 245        if (WARN_ON_ONCE(!ref->data->allow_reinit))
 246                return;
 247
 248        atomic_long_add(PERCPU_COUNT_BIAS, &ref->data->count);
 249
 250        /*
 251         * Restore per-cpu operation.  smp_store_release() is paired
 252         * with READ_ONCE() in __ref_is_percpu() and guarantees that the
 253         * zeroing is visible to all percpu accesses which can see the
 254         * following __PERCPU_REF_ATOMIC clearing.
 255         */
 256        for_each_possible_cpu(cpu)
 257                *per_cpu_ptr(percpu_count, cpu) = 0;
 258
 259        smp_store_release(&ref->percpu_count_ptr,
 260                          ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC);
 261}
 262
 263static void __percpu_ref_switch_mode(struct percpu_ref *ref,
 264                                     percpu_ref_func_t *confirm_switch)
 265{
 266        struct percpu_ref_data *data = ref->data;
 267
 268        lockdep_assert_held(&percpu_ref_switch_lock);
 269
 270        /*
 271         * If the previous ATOMIC switching hasn't finished yet, wait for
 272         * its completion.  If the caller ensures that ATOMIC switching
 273         * isn't in progress, this function can be called from any context.
 274         */
 275        wait_event_lock_irq(percpu_ref_switch_waitq, !data->confirm_switch,
 276                            percpu_ref_switch_lock);
 277
 278        if (data->force_atomic || percpu_ref_is_dying(ref))
 279                __percpu_ref_switch_to_atomic(ref, confirm_switch);
 280        else
 281                __percpu_ref_switch_to_percpu(ref);
 282}
 283
 284/**
 285 * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode
 286 * @ref: percpu_ref to switch to atomic mode
 287 * @confirm_switch: optional confirmation callback
 288 *
 289 * There's no reason to use this function for the usual reference counting.
 290 * Use percpu_ref_kill[_and_confirm]().
 291 *
 292 * Schedule switching of @ref to atomic mode.  All its percpu counts will
 293 * be collected to the main atomic counter.  On completion, when all CPUs
 294 * are guaraneed to be in atomic mode, @confirm_switch, which may not
 295 * block, is invoked.  This function may be invoked concurrently with all
 296 * the get/put operations and can safely be mixed with kill and reinit
 297 * operations.  Note that @ref will stay in atomic mode across kill/reinit
 298 * cycles until percpu_ref_switch_to_percpu() is called.
 299 *
 300 * This function may block if @ref is in the process of switching to atomic
 301 * mode.  If the caller ensures that @ref is not in the process of
 302 * switching to atomic mode, this function can be called from any context.
 303 */
 304void percpu_ref_switch_to_atomic(struct percpu_ref *ref,
 305                                 percpu_ref_func_t *confirm_switch)
 306{
 307        unsigned long flags;
 308
 309        spin_lock_irqsave(&percpu_ref_switch_lock, flags);
 310
 311        ref->data->force_atomic = true;
 312        __percpu_ref_switch_mode(ref, confirm_switch);
 313
 314        spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
 315}
 316EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic);
 317
 318/**
 319 * percpu_ref_switch_to_atomic_sync - switch a percpu_ref to atomic mode
 320 * @ref: percpu_ref to switch to atomic mode
 321 *
 322 * Schedule switching the ref to atomic mode, and wait for the
 323 * switch to complete.  Caller must ensure that no other thread
 324 * will switch back to percpu mode.
 325 */
 326void percpu_ref_switch_to_atomic_sync(struct percpu_ref *ref)
 327{
 328        percpu_ref_switch_to_atomic(ref, NULL);
 329        wait_event(percpu_ref_switch_waitq, !ref->data->confirm_switch);
 330}
 331EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic_sync);
 332
 333/**
 334 * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode
 335 * @ref: percpu_ref to switch to percpu mode
 336 *
 337 * There's no reason to use this function for the usual reference counting.
 338 * To re-use an expired ref, use percpu_ref_reinit().
 339 *
 340 * Switch @ref to percpu mode.  This function may be invoked concurrently
 341 * with all the get/put operations and can safely be mixed with kill and
 342 * reinit operations.  This function reverses the sticky atomic state set
 343 * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic().  If @ref is
 344 * dying or dead, the actual switching takes place on the following
 345 * percpu_ref_reinit().
 346 *
 347 * This function may block if @ref is in the process of switching to atomic
 348 * mode.  If the caller ensures that @ref is not in the process of
 349 * switching to atomic mode, this function can be called from any context.
 350 */
 351void percpu_ref_switch_to_percpu(struct percpu_ref *ref)
 352{
 353        unsigned long flags;
 354
 355        spin_lock_irqsave(&percpu_ref_switch_lock, flags);
 356
 357        ref->data->force_atomic = false;
 358        __percpu_ref_switch_mode(ref, NULL);
 359
 360        spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
 361}
 362EXPORT_SYMBOL_GPL(percpu_ref_switch_to_percpu);
 363
 364/**
 365 * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation
 366 * @ref: percpu_ref to kill
 367 * @confirm_kill: optional confirmation callback
 368 *
 369 * Equivalent to percpu_ref_kill() but also schedules kill confirmation if
 370 * @confirm_kill is not NULL.  @confirm_kill, which may not block, will be
 371 * called after @ref is seen as dead from all CPUs at which point all
 372 * further invocations of percpu_ref_tryget_live() will fail.  See
 373 * percpu_ref_tryget_live() for details.
 374 *
 375 * This function normally doesn't block and can be called from any context
 376 * but it may block if @confirm_kill is specified and @ref is in the
 377 * process of switching to atomic mode by percpu_ref_switch_to_atomic().
 378 *
 379 * There are no implied RCU grace periods between kill and release.
 380 */
 381void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
 382                                 percpu_ref_func_t *confirm_kill)
 383{
 384        unsigned long flags;
 385
 386        spin_lock_irqsave(&percpu_ref_switch_lock, flags);
 387
 388        WARN_ONCE(percpu_ref_is_dying(ref),
 389                  "%s called more than once on %ps!", __func__,
 390                  ref->data->release);
 391
 392        ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
 393        __percpu_ref_switch_mode(ref, confirm_kill);
 394        percpu_ref_put(ref);
 395
 396        spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
 397}
 398EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);
 399
 400/**
 401 * percpu_ref_is_zero - test whether a percpu refcount reached zero
 402 * @ref: percpu_ref to test
 403 *
 404 * Returns %true if @ref reached zero.
 405 *
 406 * This function is safe to call as long as @ref is between init and exit.
 407 */
 408bool percpu_ref_is_zero(struct percpu_ref *ref)
 409{
 410        unsigned long __percpu *percpu_count;
 411        unsigned long count, flags;
 412
 413        if (__ref_is_percpu(ref, &percpu_count))
 414                return false;
 415
 416        /* protect us from being destroyed */
 417        spin_lock_irqsave(&percpu_ref_switch_lock, flags);
 418        if (ref->data)
 419                count = atomic_long_read(&ref->data->count);
 420        else
 421                count = ref->percpu_count_ptr >> __PERCPU_REF_FLAG_BITS;
 422        spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
 423
 424        return count == 0;
 425}
 426EXPORT_SYMBOL_GPL(percpu_ref_is_zero);
 427
 428/**
 429 * percpu_ref_reinit - re-initialize a percpu refcount
 430 * @ref: perpcu_ref to re-initialize
 431 *
 432 * Re-initialize @ref so that it's in the same state as when it finished
 433 * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD.  @ref must have been
 434 * initialized successfully and reached 0 but not exited.
 435 *
 436 * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
 437 * this function is in progress.
 438 */
 439void percpu_ref_reinit(struct percpu_ref *ref)
 440{
 441        WARN_ON_ONCE(!percpu_ref_is_zero(ref));
 442
 443        percpu_ref_resurrect(ref);
 444}
 445EXPORT_SYMBOL_GPL(percpu_ref_reinit);
 446
 447/**
 448 * percpu_ref_resurrect - modify a percpu refcount from dead to live
 449 * @ref: perpcu_ref to resurrect
 450 *
 451 * Modify @ref so that it's in the same state as before percpu_ref_kill() was
 452 * called. @ref must be dead but must not yet have exited.
 453 *
 454 * If @ref->release() frees @ref then the caller is responsible for
 455 * guaranteeing that @ref->release() does not get called while this
 456 * function is in progress.
 457 *
 458 * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
 459 * this function is in progress.
 460 */
 461void percpu_ref_resurrect(struct percpu_ref *ref)
 462{
 463        unsigned long __percpu *percpu_count;
 464        unsigned long flags;
 465
 466        spin_lock_irqsave(&percpu_ref_switch_lock, flags);
 467
 468        WARN_ON_ONCE(!percpu_ref_is_dying(ref));
 469        WARN_ON_ONCE(__ref_is_percpu(ref, &percpu_count));
 470
 471        ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD;
 472        percpu_ref_get(ref);
 473        __percpu_ref_switch_mode(ref, NULL);
 474
 475        spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
 476}
 477EXPORT_SYMBOL_GPL(percpu_ref_resurrect);
 478