linux/lib/radix-tree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2001 Momchil Velikov
   4 * Portions Copyright (C) 2001 Christoph Hellwig
   5 * Copyright (C) 2005 SGI, Christoph Lameter
   6 * Copyright (C) 2006 Nick Piggin
   7 * Copyright (C) 2012 Konstantin Khlebnikov
   8 * Copyright (C) 2016 Intel, Matthew Wilcox
   9 * Copyright (C) 2016 Intel, Ross Zwisler
  10 */
  11
  12#include <linux/bitmap.h>
  13#include <linux/bitops.h>
  14#include <linux/bug.h>
  15#include <linux/cpu.h>
  16#include <linux/errno.h>
  17#include <linux/export.h>
  18#include <linux/idr.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/kmemleak.h>
  22#include <linux/percpu.h>
  23#include <linux/preempt.h>              /* in_interrupt() */
  24#include <linux/radix-tree.h>
  25#include <linux/rcupdate.h>
  26#include <linux/slab.h>
  27#include <linux/string.h>
  28#include <linux/xarray.h>
  29
  30/*
  31 * Radix tree node cache.
  32 */
  33struct kmem_cache *radix_tree_node_cachep;
  34
  35/*
  36 * The radix tree is variable-height, so an insert operation not only has
  37 * to build the branch to its corresponding item, it also has to build the
  38 * branch to existing items if the size has to be increased (by
  39 * radix_tree_extend).
  40 *
  41 * The worst case is a zero height tree with just a single item at index 0,
  42 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  43 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  44 * Hence:
  45 */
  46#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  47
  48/*
  49 * The IDR does not have to be as high as the radix tree since it uses
  50 * signed integers, not unsigned longs.
  51 */
  52#define IDR_INDEX_BITS          (8 /* CHAR_BIT */ * sizeof(int) - 1)
  53#define IDR_MAX_PATH            (DIV_ROUND_UP(IDR_INDEX_BITS, \
  54                                                RADIX_TREE_MAP_SHIFT))
  55#define IDR_PRELOAD_SIZE        (IDR_MAX_PATH * 2 - 1)
  56
  57/*
  58 * Per-cpu pool of preloaded nodes
  59 */
  60DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = {
  61        .lock = INIT_LOCAL_LOCK(lock),
  62};
  63EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads);
  64
  65static inline struct radix_tree_node *entry_to_node(void *ptr)
  66{
  67        return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  68}
  69
  70static inline void *node_to_entry(void *ptr)
  71{
  72        return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  73}
  74
  75#define RADIX_TREE_RETRY        XA_RETRY_ENTRY
  76
  77static inline unsigned long
  78get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
  79{
  80        return parent ? slot - parent->slots : 0;
  81}
  82
  83static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
  84                        struct radix_tree_node **nodep, unsigned long index)
  85{
  86        unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
  87        void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
  88
  89        *nodep = (void *)entry;
  90        return offset;
  91}
  92
  93static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
  94{
  95        return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
  96}
  97
  98static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
  99                int offset)
 100{
 101        __set_bit(offset, node->tags[tag]);
 102}
 103
 104static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 105                int offset)
 106{
 107        __clear_bit(offset, node->tags[tag]);
 108}
 109
 110static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
 111                int offset)
 112{
 113        return test_bit(offset, node->tags[tag]);
 114}
 115
 116static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
 117{
 118        root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
 119}
 120
 121static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 122{
 123        root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
 124}
 125
 126static inline void root_tag_clear_all(struct radix_tree_root *root)
 127{
 128        root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
 129}
 130
 131static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
 132{
 133        return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
 134}
 135
 136static inline unsigned root_tags_get(const struct radix_tree_root *root)
 137{
 138        return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
 139}
 140
 141static inline bool is_idr(const struct radix_tree_root *root)
 142{
 143        return !!(root->xa_flags & ROOT_IS_IDR);
 144}
 145
 146/*
 147 * Returns 1 if any slot in the node has this tag set.
 148 * Otherwise returns 0.
 149 */
 150static inline int any_tag_set(const struct radix_tree_node *node,
 151                                                        unsigned int tag)
 152{
 153        unsigned idx;
 154        for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 155                if (node->tags[tag][idx])
 156                        return 1;
 157        }
 158        return 0;
 159}
 160
 161static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
 162{
 163        bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
 164}
 165
 166/**
 167 * radix_tree_find_next_bit - find the next set bit in a memory region
 168 *
 169 * @node: where to begin the search
 170 * @tag: the tag index
 171 * @offset: the bitnumber to start searching at
 172 *
 173 * Unrollable variant of find_next_bit() for constant size arrays.
 174 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 175 * Returns next bit offset, or size if nothing found.
 176 */
 177static __always_inline unsigned long
 178radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 179                         unsigned long offset)
 180{
 181        const unsigned long *addr = node->tags[tag];
 182
 183        if (offset < RADIX_TREE_MAP_SIZE) {
 184                unsigned long tmp;
 185
 186                addr += offset / BITS_PER_LONG;
 187                tmp = *addr >> (offset % BITS_PER_LONG);
 188                if (tmp)
 189                        return __ffs(tmp) + offset;
 190                offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 191                while (offset < RADIX_TREE_MAP_SIZE) {
 192                        tmp = *++addr;
 193                        if (tmp)
 194                                return __ffs(tmp) + offset;
 195                        offset += BITS_PER_LONG;
 196                }
 197        }
 198        return RADIX_TREE_MAP_SIZE;
 199}
 200
 201static unsigned int iter_offset(const struct radix_tree_iter *iter)
 202{
 203        return iter->index & RADIX_TREE_MAP_MASK;
 204}
 205
 206/*
 207 * The maximum index which can be stored in a radix tree
 208 */
 209static inline unsigned long shift_maxindex(unsigned int shift)
 210{
 211        return (RADIX_TREE_MAP_SIZE << shift) - 1;
 212}
 213
 214static inline unsigned long node_maxindex(const struct radix_tree_node *node)
 215{
 216        return shift_maxindex(node->shift);
 217}
 218
 219static unsigned long next_index(unsigned long index,
 220                                const struct radix_tree_node *node,
 221                                unsigned long offset)
 222{
 223        return (index & ~node_maxindex(node)) + (offset << node->shift);
 224}
 225
 226/*
 227 * This assumes that the caller has performed appropriate preallocation, and
 228 * that the caller has pinned this thread of control to the current CPU.
 229 */
 230static struct radix_tree_node *
 231radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
 232                        struct radix_tree_root *root,
 233                        unsigned int shift, unsigned int offset,
 234                        unsigned int count, unsigned int nr_values)
 235{
 236        struct radix_tree_node *ret = NULL;
 237
 238        /*
 239         * Preload code isn't irq safe and it doesn't make sense to use
 240         * preloading during an interrupt anyway as all the allocations have
 241         * to be atomic. So just do normal allocation when in interrupt.
 242         */
 243        if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 244                struct radix_tree_preload *rtp;
 245
 246                /*
 247                 * Even if the caller has preloaded, try to allocate from the
 248                 * cache first for the new node to get accounted to the memory
 249                 * cgroup.
 250                 */
 251                ret = kmem_cache_alloc(radix_tree_node_cachep,
 252                                       gfp_mask | __GFP_NOWARN);
 253                if (ret)
 254                        goto out;
 255
 256                /*
 257                 * Provided the caller has preloaded here, we will always
 258                 * succeed in getting a node here (and never reach
 259                 * kmem_cache_alloc)
 260                 */
 261                rtp = this_cpu_ptr(&radix_tree_preloads);
 262                if (rtp->nr) {
 263                        ret = rtp->nodes;
 264                        rtp->nodes = ret->parent;
 265                        rtp->nr--;
 266                }
 267                /*
 268                 * Update the allocation stack trace as this is more useful
 269                 * for debugging.
 270                 */
 271                kmemleak_update_trace(ret);
 272                goto out;
 273        }
 274        ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 275out:
 276        BUG_ON(radix_tree_is_internal_node(ret));
 277        if (ret) {
 278                ret->shift = shift;
 279                ret->offset = offset;
 280                ret->count = count;
 281                ret->nr_values = nr_values;
 282                ret->parent = parent;
 283                ret->array = root;
 284        }
 285        return ret;
 286}
 287
 288void radix_tree_node_rcu_free(struct rcu_head *head)
 289{
 290        struct radix_tree_node *node =
 291                        container_of(head, struct radix_tree_node, rcu_head);
 292
 293        /*
 294         * Must only free zeroed nodes into the slab.  We can be left with
 295         * non-NULL entries by radix_tree_free_nodes, so clear the entries
 296         * and tags here.
 297         */
 298        memset(node->slots, 0, sizeof(node->slots));
 299        memset(node->tags, 0, sizeof(node->tags));
 300        INIT_LIST_HEAD(&node->private_list);
 301
 302        kmem_cache_free(radix_tree_node_cachep, node);
 303}
 304
 305static inline void
 306radix_tree_node_free(struct radix_tree_node *node)
 307{
 308        call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 309}
 310
 311/*
 312 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 313 * ensure that the addition of a single element in the tree cannot fail.  On
 314 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 315 * with preemption not disabled.
 316 *
 317 * To make use of this facility, the radix tree must be initialised without
 318 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 319 */
 320static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 321{
 322        struct radix_tree_preload *rtp;
 323        struct radix_tree_node *node;
 324        int ret = -ENOMEM;
 325
 326        /*
 327         * Nodes preloaded by one cgroup can be used by another cgroup, so
 328         * they should never be accounted to any particular memory cgroup.
 329         */
 330        gfp_mask &= ~__GFP_ACCOUNT;
 331
 332        local_lock(&radix_tree_preloads.lock);
 333        rtp = this_cpu_ptr(&radix_tree_preloads);
 334        while (rtp->nr < nr) {
 335                local_unlock(&radix_tree_preloads.lock);
 336                node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 337                if (node == NULL)
 338                        goto out;
 339                local_lock(&radix_tree_preloads.lock);
 340                rtp = this_cpu_ptr(&radix_tree_preloads);
 341                if (rtp->nr < nr) {
 342                        node->parent = rtp->nodes;
 343                        rtp->nodes = node;
 344                        rtp->nr++;
 345                } else {
 346                        kmem_cache_free(radix_tree_node_cachep, node);
 347                }
 348        }
 349        ret = 0;
 350out:
 351        return ret;
 352}
 353
 354/*
 355 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 356 * ensure that the addition of a single element in the tree cannot fail.  On
 357 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 358 * with preemption not disabled.
 359 *
 360 * To make use of this facility, the radix tree must be initialised without
 361 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 362 */
 363int radix_tree_preload(gfp_t gfp_mask)
 364{
 365        /* Warn on non-sensical use... */
 366        WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 367        return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 368}
 369EXPORT_SYMBOL(radix_tree_preload);
 370
 371/*
 372 * The same as above function, except we don't guarantee preloading happens.
 373 * We do it, if we decide it helps. On success, return zero with preemption
 374 * disabled. On error, return -ENOMEM with preemption not disabled.
 375 */
 376int radix_tree_maybe_preload(gfp_t gfp_mask)
 377{
 378        if (gfpflags_allow_blocking(gfp_mask))
 379                return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 380        /* Preloading doesn't help anything with this gfp mask, skip it */
 381        local_lock(&radix_tree_preloads.lock);
 382        return 0;
 383}
 384EXPORT_SYMBOL(radix_tree_maybe_preload);
 385
 386static unsigned radix_tree_load_root(const struct radix_tree_root *root,
 387                struct radix_tree_node **nodep, unsigned long *maxindex)
 388{
 389        struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 390
 391        *nodep = node;
 392
 393        if (likely(radix_tree_is_internal_node(node))) {
 394                node = entry_to_node(node);
 395                *maxindex = node_maxindex(node);
 396                return node->shift + RADIX_TREE_MAP_SHIFT;
 397        }
 398
 399        *maxindex = 0;
 400        return 0;
 401}
 402
 403/*
 404 *      Extend a radix tree so it can store key @index.
 405 */
 406static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
 407                                unsigned long index, unsigned int shift)
 408{
 409        void *entry;
 410        unsigned int maxshift;
 411        int tag;
 412
 413        /* Figure out what the shift should be.  */
 414        maxshift = shift;
 415        while (index > shift_maxindex(maxshift))
 416                maxshift += RADIX_TREE_MAP_SHIFT;
 417
 418        entry = rcu_dereference_raw(root->xa_head);
 419        if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
 420                goto out;
 421
 422        do {
 423                struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
 424                                                        root, shift, 0, 1, 0);
 425                if (!node)
 426                        return -ENOMEM;
 427
 428                if (is_idr(root)) {
 429                        all_tag_set(node, IDR_FREE);
 430                        if (!root_tag_get(root, IDR_FREE)) {
 431                                tag_clear(node, IDR_FREE, 0);
 432                                root_tag_set(root, IDR_FREE);
 433                        }
 434                } else {
 435                        /* Propagate the aggregated tag info to the new child */
 436                        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 437                                if (root_tag_get(root, tag))
 438                                        tag_set(node, tag, 0);
 439                        }
 440                }
 441
 442                BUG_ON(shift > BITS_PER_LONG);
 443                if (radix_tree_is_internal_node(entry)) {
 444                        entry_to_node(entry)->parent = node;
 445                } else if (xa_is_value(entry)) {
 446                        /* Moving a value entry root->xa_head to a node */
 447                        node->nr_values = 1;
 448                }
 449                /*
 450                 * entry was already in the radix tree, so we do not need
 451                 * rcu_assign_pointer here
 452                 */
 453                node->slots[0] = (void __rcu *)entry;
 454                entry = node_to_entry(node);
 455                rcu_assign_pointer(root->xa_head, entry);
 456                shift += RADIX_TREE_MAP_SHIFT;
 457        } while (shift <= maxshift);
 458out:
 459        return maxshift + RADIX_TREE_MAP_SHIFT;
 460}
 461
 462/**
 463 *      radix_tree_shrink    -    shrink radix tree to minimum height
 464 *      @root:          radix tree root
 465 */
 466static inline bool radix_tree_shrink(struct radix_tree_root *root)
 467{
 468        bool shrunk = false;
 469
 470        for (;;) {
 471                struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 472                struct radix_tree_node *child;
 473
 474                if (!radix_tree_is_internal_node(node))
 475                        break;
 476                node = entry_to_node(node);
 477
 478                /*
 479                 * The candidate node has more than one child, or its child
 480                 * is not at the leftmost slot, we cannot shrink.
 481                 */
 482                if (node->count != 1)
 483                        break;
 484                child = rcu_dereference_raw(node->slots[0]);
 485                if (!child)
 486                        break;
 487
 488                /*
 489                 * For an IDR, we must not shrink entry 0 into the root in
 490                 * case somebody calls idr_replace() with a pointer that
 491                 * appears to be an internal entry
 492                 */
 493                if (!node->shift && is_idr(root))
 494                        break;
 495
 496                if (radix_tree_is_internal_node(child))
 497                        entry_to_node(child)->parent = NULL;
 498
 499                /*
 500                 * We don't need rcu_assign_pointer(), since we are simply
 501                 * moving the node from one part of the tree to another: if it
 502                 * was safe to dereference the old pointer to it
 503                 * (node->slots[0]), it will be safe to dereference the new
 504                 * one (root->xa_head) as far as dependent read barriers go.
 505                 */
 506                root->xa_head = (void __rcu *)child;
 507                if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
 508                        root_tag_clear(root, IDR_FREE);
 509
 510                /*
 511                 * We have a dilemma here. The node's slot[0] must not be
 512                 * NULLed in case there are concurrent lookups expecting to
 513                 * find the item. However if this was a bottom-level node,
 514                 * then it may be subject to the slot pointer being visible
 515                 * to callers dereferencing it. If item corresponding to
 516                 * slot[0] is subsequently deleted, these callers would expect
 517                 * their slot to become empty sooner or later.
 518                 *
 519                 * For example, lockless pagecache will look up a slot, deref
 520                 * the page pointer, and if the page has 0 refcount it means it
 521                 * was concurrently deleted from pagecache so try the deref
 522                 * again. Fortunately there is already a requirement for logic
 523                 * to retry the entire slot lookup -- the indirect pointer
 524                 * problem (replacing direct root node with an indirect pointer
 525                 * also results in a stale slot). So tag the slot as indirect
 526                 * to force callers to retry.
 527                 */
 528                node->count = 0;
 529                if (!radix_tree_is_internal_node(child)) {
 530                        node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
 531                }
 532
 533                WARN_ON_ONCE(!list_empty(&node->private_list));
 534                radix_tree_node_free(node);
 535                shrunk = true;
 536        }
 537
 538        return shrunk;
 539}
 540
 541static bool delete_node(struct radix_tree_root *root,
 542                        struct radix_tree_node *node)
 543{
 544        bool deleted = false;
 545
 546        do {
 547                struct radix_tree_node *parent;
 548
 549                if (node->count) {
 550                        if (node_to_entry(node) ==
 551                                        rcu_dereference_raw(root->xa_head))
 552                                deleted |= radix_tree_shrink(root);
 553                        return deleted;
 554                }
 555
 556                parent = node->parent;
 557                if (parent) {
 558                        parent->slots[node->offset] = NULL;
 559                        parent->count--;
 560                } else {
 561                        /*
 562                         * Shouldn't the tags already have all been cleared
 563                         * by the caller?
 564                         */
 565                        if (!is_idr(root))
 566                                root_tag_clear_all(root);
 567                        root->xa_head = NULL;
 568                }
 569
 570                WARN_ON_ONCE(!list_empty(&node->private_list));
 571                radix_tree_node_free(node);
 572                deleted = true;
 573
 574                node = parent;
 575        } while (node);
 576
 577        return deleted;
 578}
 579
 580/**
 581 *      __radix_tree_create     -       create a slot in a radix tree
 582 *      @root:          radix tree root
 583 *      @index:         index key
 584 *      @nodep:         returns node
 585 *      @slotp:         returns slot
 586 *
 587 *      Create, if necessary, and return the node and slot for an item
 588 *      at position @index in the radix tree @root.
 589 *
 590 *      Until there is more than one item in the tree, no nodes are
 591 *      allocated and @root->xa_head is used as a direct slot instead of
 592 *      pointing to a node, in which case *@nodep will be NULL.
 593 *
 594 *      Returns -ENOMEM, or 0 for success.
 595 */
 596static int __radix_tree_create(struct radix_tree_root *root,
 597                unsigned long index, struct radix_tree_node **nodep,
 598                void __rcu ***slotp)
 599{
 600        struct radix_tree_node *node = NULL, *child;
 601        void __rcu **slot = (void __rcu **)&root->xa_head;
 602        unsigned long maxindex;
 603        unsigned int shift, offset = 0;
 604        unsigned long max = index;
 605        gfp_t gfp = root_gfp_mask(root);
 606
 607        shift = radix_tree_load_root(root, &child, &maxindex);
 608
 609        /* Make sure the tree is high enough.  */
 610        if (max > maxindex) {
 611                int error = radix_tree_extend(root, gfp, max, shift);
 612                if (error < 0)
 613                        return error;
 614                shift = error;
 615                child = rcu_dereference_raw(root->xa_head);
 616        }
 617
 618        while (shift > 0) {
 619                shift -= RADIX_TREE_MAP_SHIFT;
 620                if (child == NULL) {
 621                        /* Have to add a child node.  */
 622                        child = radix_tree_node_alloc(gfp, node, root, shift,
 623                                                        offset, 0, 0);
 624                        if (!child)
 625                                return -ENOMEM;
 626                        rcu_assign_pointer(*slot, node_to_entry(child));
 627                        if (node)
 628                                node->count++;
 629                } else if (!radix_tree_is_internal_node(child))
 630                        break;
 631
 632                /* Go a level down */
 633                node = entry_to_node(child);
 634                offset = radix_tree_descend(node, &child, index);
 635                slot = &node->slots[offset];
 636        }
 637
 638        if (nodep)
 639                *nodep = node;
 640        if (slotp)
 641                *slotp = slot;
 642        return 0;
 643}
 644
 645/*
 646 * Free any nodes below this node.  The tree is presumed to not need
 647 * shrinking, and any user data in the tree is presumed to not need a
 648 * destructor called on it.  If we need to add a destructor, we can
 649 * add that functionality later.  Note that we may not clear tags or
 650 * slots from the tree as an RCU walker may still have a pointer into
 651 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 652 * but we'll still have to clear those in rcu_free.
 653 */
 654static void radix_tree_free_nodes(struct radix_tree_node *node)
 655{
 656        unsigned offset = 0;
 657        struct radix_tree_node *child = entry_to_node(node);
 658
 659        for (;;) {
 660                void *entry = rcu_dereference_raw(child->slots[offset]);
 661                if (xa_is_node(entry) && child->shift) {
 662                        child = entry_to_node(entry);
 663                        offset = 0;
 664                        continue;
 665                }
 666                offset++;
 667                while (offset == RADIX_TREE_MAP_SIZE) {
 668                        struct radix_tree_node *old = child;
 669                        offset = child->offset + 1;
 670                        child = child->parent;
 671                        WARN_ON_ONCE(!list_empty(&old->private_list));
 672                        radix_tree_node_free(old);
 673                        if (old == entry_to_node(node))
 674                                return;
 675                }
 676        }
 677}
 678
 679static inline int insert_entries(struct radix_tree_node *node,
 680                void __rcu **slot, void *item, bool replace)
 681{
 682        if (*slot)
 683                return -EEXIST;
 684        rcu_assign_pointer(*slot, item);
 685        if (node) {
 686                node->count++;
 687                if (xa_is_value(item))
 688                        node->nr_values++;
 689        }
 690        return 1;
 691}
 692
 693/**
 694 *      radix_tree_insert    -    insert into a radix tree
 695 *      @root:          radix tree root
 696 *      @index:         index key
 697 *      @item:          item to insert
 698 *
 699 *      Insert an item into the radix tree at position @index.
 700 */
 701int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 702                        void *item)
 703{
 704        struct radix_tree_node *node;
 705        void __rcu **slot;
 706        int error;
 707
 708        BUG_ON(radix_tree_is_internal_node(item));
 709
 710        error = __radix_tree_create(root, index, &node, &slot);
 711        if (error)
 712                return error;
 713
 714        error = insert_entries(node, slot, item, false);
 715        if (error < 0)
 716                return error;
 717
 718        if (node) {
 719                unsigned offset = get_slot_offset(node, slot);
 720                BUG_ON(tag_get(node, 0, offset));
 721                BUG_ON(tag_get(node, 1, offset));
 722                BUG_ON(tag_get(node, 2, offset));
 723        } else {
 724                BUG_ON(root_tags_get(root));
 725        }
 726
 727        return 0;
 728}
 729EXPORT_SYMBOL(radix_tree_insert);
 730
 731/**
 732 *      __radix_tree_lookup     -       lookup an item in a radix tree
 733 *      @root:          radix tree root
 734 *      @index:         index key
 735 *      @nodep:         returns node
 736 *      @slotp:         returns slot
 737 *
 738 *      Lookup and return the item at position @index in the radix
 739 *      tree @root.
 740 *
 741 *      Until there is more than one item in the tree, no nodes are
 742 *      allocated and @root->xa_head is used as a direct slot instead of
 743 *      pointing to a node, in which case *@nodep will be NULL.
 744 */
 745void *__radix_tree_lookup(const struct radix_tree_root *root,
 746                          unsigned long index, struct radix_tree_node **nodep,
 747                          void __rcu ***slotp)
 748{
 749        struct radix_tree_node *node, *parent;
 750        unsigned long maxindex;
 751        void __rcu **slot;
 752
 753 restart:
 754        parent = NULL;
 755        slot = (void __rcu **)&root->xa_head;
 756        radix_tree_load_root(root, &node, &maxindex);
 757        if (index > maxindex)
 758                return NULL;
 759
 760        while (radix_tree_is_internal_node(node)) {
 761                unsigned offset;
 762
 763                parent = entry_to_node(node);
 764                offset = radix_tree_descend(parent, &node, index);
 765                slot = parent->slots + offset;
 766                if (node == RADIX_TREE_RETRY)
 767                        goto restart;
 768                if (parent->shift == 0)
 769                        break;
 770        }
 771
 772        if (nodep)
 773                *nodep = parent;
 774        if (slotp)
 775                *slotp = slot;
 776        return node;
 777}
 778
 779/**
 780 *      radix_tree_lookup_slot    -    lookup a slot in a radix tree
 781 *      @root:          radix tree root
 782 *      @index:         index key
 783 *
 784 *      Returns:  the slot corresponding to the position @index in the
 785 *      radix tree @root. This is useful for update-if-exists operations.
 786 *
 787 *      This function can be called under rcu_read_lock iff the slot is not
 788 *      modified by radix_tree_replace_slot, otherwise it must be called
 789 *      exclusive from other writers. Any dereference of the slot must be done
 790 *      using radix_tree_deref_slot.
 791 */
 792void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
 793                                unsigned long index)
 794{
 795        void __rcu **slot;
 796
 797        if (!__radix_tree_lookup(root, index, NULL, &slot))
 798                return NULL;
 799        return slot;
 800}
 801EXPORT_SYMBOL(radix_tree_lookup_slot);
 802
 803/**
 804 *      radix_tree_lookup    -    perform lookup operation on a radix tree
 805 *      @root:          radix tree root
 806 *      @index:         index key
 807 *
 808 *      Lookup the item at the position @index in the radix tree @root.
 809 *
 810 *      This function can be called under rcu_read_lock, however the caller
 811 *      must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 812 *      them safely). No RCU barriers are required to access or modify the
 813 *      returned item, however.
 814 */
 815void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
 816{
 817        return __radix_tree_lookup(root, index, NULL, NULL);
 818}
 819EXPORT_SYMBOL(radix_tree_lookup);
 820
 821static void replace_slot(void __rcu **slot, void *item,
 822                struct radix_tree_node *node, int count, int values)
 823{
 824        if (node && (count || values)) {
 825                node->count += count;
 826                node->nr_values += values;
 827        }
 828
 829        rcu_assign_pointer(*slot, item);
 830}
 831
 832static bool node_tag_get(const struct radix_tree_root *root,
 833                                const struct radix_tree_node *node,
 834                                unsigned int tag, unsigned int offset)
 835{
 836        if (node)
 837                return tag_get(node, tag, offset);
 838        return root_tag_get(root, tag);
 839}
 840
 841/*
 842 * IDR users want to be able to store NULL in the tree, so if the slot isn't
 843 * free, don't adjust the count, even if it's transitioning between NULL and
 844 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
 845 * have empty bits, but it only stores NULL in slots when they're being
 846 * deleted.
 847 */
 848static int calculate_count(struct radix_tree_root *root,
 849                                struct radix_tree_node *node, void __rcu **slot,
 850                                void *item, void *old)
 851{
 852        if (is_idr(root)) {
 853                unsigned offset = get_slot_offset(node, slot);
 854                bool free = node_tag_get(root, node, IDR_FREE, offset);
 855                if (!free)
 856                        return 0;
 857                if (!old)
 858                        return 1;
 859        }
 860        return !!item - !!old;
 861}
 862
 863/**
 864 * __radix_tree_replace         - replace item in a slot
 865 * @root:               radix tree root
 866 * @node:               pointer to tree node
 867 * @slot:               pointer to slot in @node
 868 * @item:               new item to store in the slot.
 869 *
 870 * For use with __radix_tree_lookup().  Caller must hold tree write locked
 871 * across slot lookup and replacement.
 872 */
 873void __radix_tree_replace(struct radix_tree_root *root,
 874                          struct radix_tree_node *node,
 875                          void __rcu **slot, void *item)
 876{
 877        void *old = rcu_dereference_raw(*slot);
 878        int values = !!xa_is_value(item) - !!xa_is_value(old);
 879        int count = calculate_count(root, node, slot, item, old);
 880
 881        /*
 882         * This function supports replacing value entries and
 883         * deleting entries, but that needs accounting against the
 884         * node unless the slot is root->xa_head.
 885         */
 886        WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
 887                        (count || values));
 888        replace_slot(slot, item, node, count, values);
 889
 890        if (!node)
 891                return;
 892
 893        delete_node(root, node);
 894}
 895
 896/**
 897 * radix_tree_replace_slot      - replace item in a slot
 898 * @root:       radix tree root
 899 * @slot:       pointer to slot
 900 * @item:       new item to store in the slot.
 901 *
 902 * For use with radix_tree_lookup_slot() and
 903 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
 904 * across slot lookup and replacement.
 905 *
 906 * NOTE: This cannot be used to switch between non-entries (empty slots),
 907 * regular entries, and value entries, as that requires accounting
 908 * inside the radix tree node. When switching from one type of entry or
 909 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
 910 * radix_tree_iter_replace().
 911 */
 912void radix_tree_replace_slot(struct radix_tree_root *root,
 913                             void __rcu **slot, void *item)
 914{
 915        __radix_tree_replace(root, NULL, slot, item);
 916}
 917EXPORT_SYMBOL(radix_tree_replace_slot);
 918
 919/**
 920 * radix_tree_iter_replace - replace item in a slot
 921 * @root:       radix tree root
 922 * @iter:       iterator state
 923 * @slot:       pointer to slot
 924 * @item:       new item to store in the slot.
 925 *
 926 * For use with radix_tree_for_each_slot().
 927 * Caller must hold tree write locked.
 928 */
 929void radix_tree_iter_replace(struct radix_tree_root *root,
 930                                const struct radix_tree_iter *iter,
 931                                void __rcu **slot, void *item)
 932{
 933        __radix_tree_replace(root, iter->node, slot, item);
 934}
 935
 936static void node_tag_set(struct radix_tree_root *root,
 937                                struct radix_tree_node *node,
 938                                unsigned int tag, unsigned int offset)
 939{
 940        while (node) {
 941                if (tag_get(node, tag, offset))
 942                        return;
 943                tag_set(node, tag, offset);
 944                offset = node->offset;
 945                node = node->parent;
 946        }
 947
 948        if (!root_tag_get(root, tag))
 949                root_tag_set(root, tag);
 950}
 951
 952/**
 953 *      radix_tree_tag_set - set a tag on a radix tree node
 954 *      @root:          radix tree root
 955 *      @index:         index key
 956 *      @tag:           tag index
 957 *
 958 *      Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 959 *      corresponding to @index in the radix tree.  From
 960 *      the root all the way down to the leaf node.
 961 *
 962 *      Returns the address of the tagged item.  Setting a tag on a not-present
 963 *      item is a bug.
 964 */
 965void *radix_tree_tag_set(struct radix_tree_root *root,
 966                        unsigned long index, unsigned int tag)
 967{
 968        struct radix_tree_node *node, *parent;
 969        unsigned long maxindex;
 970
 971        radix_tree_load_root(root, &node, &maxindex);
 972        BUG_ON(index > maxindex);
 973
 974        while (radix_tree_is_internal_node(node)) {
 975                unsigned offset;
 976
 977                parent = entry_to_node(node);
 978                offset = radix_tree_descend(parent, &node, index);
 979                BUG_ON(!node);
 980
 981                if (!tag_get(parent, tag, offset))
 982                        tag_set(parent, tag, offset);
 983        }
 984
 985        /* set the root's tag bit */
 986        if (!root_tag_get(root, tag))
 987                root_tag_set(root, tag);
 988
 989        return node;
 990}
 991EXPORT_SYMBOL(radix_tree_tag_set);
 992
 993static void node_tag_clear(struct radix_tree_root *root,
 994                                struct radix_tree_node *node,
 995                                unsigned int tag, unsigned int offset)
 996{
 997        while (node) {
 998                if (!tag_get(node, tag, offset))
 999                        return;
1000                tag_clear(node, tag, offset);
1001                if (any_tag_set(node, tag))
1002                        return;
1003
1004                offset = node->offset;
1005                node = node->parent;
1006        }
1007
1008        /* clear the root's tag bit */
1009        if (root_tag_get(root, tag))
1010                root_tag_clear(root, tag);
1011}
1012
1013/**
1014 *      radix_tree_tag_clear - clear a tag on a radix tree node
1015 *      @root:          radix tree root
1016 *      @index:         index key
1017 *      @tag:           tag index
1018 *
1019 *      Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1020 *      corresponding to @index in the radix tree.  If this causes
1021 *      the leaf node to have no tags set then clear the tag in the
1022 *      next-to-leaf node, etc.
1023 *
1024 *      Returns the address of the tagged item on success, else NULL.  ie:
1025 *      has the same return value and semantics as radix_tree_lookup().
1026 */
1027void *radix_tree_tag_clear(struct radix_tree_root *root,
1028                        unsigned long index, unsigned int tag)
1029{
1030        struct radix_tree_node *node, *parent;
1031        unsigned long maxindex;
1032        int offset;
1033
1034        radix_tree_load_root(root, &node, &maxindex);
1035        if (index > maxindex)
1036                return NULL;
1037
1038        parent = NULL;
1039
1040        while (radix_tree_is_internal_node(node)) {
1041                parent = entry_to_node(node);
1042                offset = radix_tree_descend(parent, &node, index);
1043        }
1044
1045        if (node)
1046                node_tag_clear(root, parent, tag, offset);
1047
1048        return node;
1049}
1050EXPORT_SYMBOL(radix_tree_tag_clear);
1051
1052/**
1053  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1054  * @root: radix tree root
1055  * @iter: iterator state
1056  * @tag: tag to clear
1057  */
1058void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1059                        const struct radix_tree_iter *iter, unsigned int tag)
1060{
1061        node_tag_clear(root, iter->node, tag, iter_offset(iter));
1062}
1063
1064/**
1065 * radix_tree_tag_get - get a tag on a radix tree node
1066 * @root:               radix tree root
1067 * @index:              index key
1068 * @tag:                tag index (< RADIX_TREE_MAX_TAGS)
1069 *
1070 * Return values:
1071 *
1072 *  0: tag not present or not set
1073 *  1: tag set
1074 *
1075 * Note that the return value of this function may not be relied on, even if
1076 * the RCU lock is held, unless tag modification and node deletion are excluded
1077 * from concurrency.
1078 */
1079int radix_tree_tag_get(const struct radix_tree_root *root,
1080                        unsigned long index, unsigned int tag)
1081{
1082        struct radix_tree_node *node, *parent;
1083        unsigned long maxindex;
1084
1085        if (!root_tag_get(root, tag))
1086                return 0;
1087
1088        radix_tree_load_root(root, &node, &maxindex);
1089        if (index > maxindex)
1090                return 0;
1091
1092        while (radix_tree_is_internal_node(node)) {
1093                unsigned offset;
1094
1095                parent = entry_to_node(node);
1096                offset = radix_tree_descend(parent, &node, index);
1097
1098                if (!tag_get(parent, tag, offset))
1099                        return 0;
1100                if (node == RADIX_TREE_RETRY)
1101                        break;
1102        }
1103
1104        return 1;
1105}
1106EXPORT_SYMBOL(radix_tree_tag_get);
1107
1108/* Construct iter->tags bit-mask from node->tags[tag] array */
1109static void set_iter_tags(struct radix_tree_iter *iter,
1110                                struct radix_tree_node *node, unsigned offset,
1111                                unsigned tag)
1112{
1113        unsigned tag_long = offset / BITS_PER_LONG;
1114        unsigned tag_bit  = offset % BITS_PER_LONG;
1115
1116        if (!node) {
1117                iter->tags = 1;
1118                return;
1119        }
1120
1121        iter->tags = node->tags[tag][tag_long] >> tag_bit;
1122
1123        /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1124        if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1125                /* Pick tags from next element */
1126                if (tag_bit)
1127                        iter->tags |= node->tags[tag][tag_long + 1] <<
1128                                                (BITS_PER_LONG - tag_bit);
1129                /* Clip chunk size, here only BITS_PER_LONG tags */
1130                iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1131        }
1132}
1133
1134void __rcu **radix_tree_iter_resume(void __rcu **slot,
1135                                        struct radix_tree_iter *iter)
1136{
1137        slot++;
1138        iter->index = __radix_tree_iter_add(iter, 1);
1139        iter->next_index = iter->index;
1140        iter->tags = 0;
1141        return NULL;
1142}
1143EXPORT_SYMBOL(radix_tree_iter_resume);
1144
1145/**
1146 * radix_tree_next_chunk - find next chunk of slots for iteration
1147 *
1148 * @root:       radix tree root
1149 * @iter:       iterator state
1150 * @flags:      RADIX_TREE_ITER_* flags and tag index
1151 * Returns:     pointer to chunk first slot, or NULL if iteration is over
1152 */
1153void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1154                             struct radix_tree_iter *iter, unsigned flags)
1155{
1156        unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1157        struct radix_tree_node *node, *child;
1158        unsigned long index, offset, maxindex;
1159
1160        if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1161                return NULL;
1162
1163        /*
1164         * Catch next_index overflow after ~0UL. iter->index never overflows
1165         * during iterating; it can be zero only at the beginning.
1166         * And we cannot overflow iter->next_index in a single step,
1167         * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1168         *
1169         * This condition also used by radix_tree_next_slot() to stop
1170         * contiguous iterating, and forbid switching to the next chunk.
1171         */
1172        index = iter->next_index;
1173        if (!index && iter->index)
1174                return NULL;
1175
1176 restart:
1177        radix_tree_load_root(root, &child, &maxindex);
1178        if (index > maxindex)
1179                return NULL;
1180        if (!child)
1181                return NULL;
1182
1183        if (!radix_tree_is_internal_node(child)) {
1184                /* Single-slot tree */
1185                iter->index = index;
1186                iter->next_index = maxindex + 1;
1187                iter->tags = 1;
1188                iter->node = NULL;
1189                return (void __rcu **)&root->xa_head;
1190        }
1191
1192        do {
1193                node = entry_to_node(child);
1194                offset = radix_tree_descend(node, &child, index);
1195
1196                if ((flags & RADIX_TREE_ITER_TAGGED) ?
1197                                !tag_get(node, tag, offset) : !child) {
1198                        /* Hole detected */
1199                        if (flags & RADIX_TREE_ITER_CONTIG)
1200                                return NULL;
1201
1202                        if (flags & RADIX_TREE_ITER_TAGGED)
1203                                offset = radix_tree_find_next_bit(node, tag,
1204                                                offset + 1);
1205                        else
1206                                while (++offset < RADIX_TREE_MAP_SIZE) {
1207                                        void *slot = rcu_dereference_raw(
1208                                                        node->slots[offset]);
1209                                        if (slot)
1210                                                break;
1211                                }
1212                        index &= ~node_maxindex(node);
1213                        index += offset << node->shift;
1214                        /* Overflow after ~0UL */
1215                        if (!index)
1216                                return NULL;
1217                        if (offset == RADIX_TREE_MAP_SIZE)
1218                                goto restart;
1219                        child = rcu_dereference_raw(node->slots[offset]);
1220                }
1221
1222                if (!child)
1223                        goto restart;
1224                if (child == RADIX_TREE_RETRY)
1225                        break;
1226        } while (node->shift && radix_tree_is_internal_node(child));
1227
1228        /* Update the iterator state */
1229        iter->index = (index &~ node_maxindex(node)) | offset;
1230        iter->next_index = (index | node_maxindex(node)) + 1;
1231        iter->node = node;
1232
1233        if (flags & RADIX_TREE_ITER_TAGGED)
1234                set_iter_tags(iter, node, offset, tag);
1235
1236        return node->slots + offset;
1237}
1238EXPORT_SYMBOL(radix_tree_next_chunk);
1239
1240/**
1241 *      radix_tree_gang_lookup - perform multiple lookup on a radix tree
1242 *      @root:          radix tree root
1243 *      @results:       where the results of the lookup are placed
1244 *      @first_index:   start the lookup from this key
1245 *      @max_items:     place up to this many items at *results
1246 *
1247 *      Performs an index-ascending scan of the tree for present items.  Places
1248 *      them at *@results and returns the number of items which were placed at
1249 *      *@results.
1250 *
1251 *      The implementation is naive.
1252 *
1253 *      Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1254 *      rcu_read_lock. In this case, rather than the returned results being
1255 *      an atomic snapshot of the tree at a single point in time, the
1256 *      semantics of an RCU protected gang lookup are as though multiple
1257 *      radix_tree_lookups have been issued in individual locks, and results
1258 *      stored in 'results'.
1259 */
1260unsigned int
1261radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1262                        unsigned long first_index, unsigned int max_items)
1263{
1264        struct radix_tree_iter iter;
1265        void __rcu **slot;
1266        unsigned int ret = 0;
1267
1268        if (unlikely(!max_items))
1269                return 0;
1270
1271        radix_tree_for_each_slot(slot, root, &iter, first_index) {
1272                results[ret] = rcu_dereference_raw(*slot);
1273                if (!results[ret])
1274                        continue;
1275                if (radix_tree_is_internal_node(results[ret])) {
1276                        slot = radix_tree_iter_retry(&iter);
1277                        continue;
1278                }
1279                if (++ret == max_items)
1280                        break;
1281        }
1282
1283        return ret;
1284}
1285EXPORT_SYMBOL(radix_tree_gang_lookup);
1286
1287/**
1288 *      radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1289 *                                   based on a tag
1290 *      @root:          radix tree root
1291 *      @results:       where the results of the lookup are placed
1292 *      @first_index:   start the lookup from this key
1293 *      @max_items:     place up to this many items at *results
1294 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1295 *
1296 *      Performs an index-ascending scan of the tree for present items which
1297 *      have the tag indexed by @tag set.  Places the items at *@results and
1298 *      returns the number of items which were placed at *@results.
1299 */
1300unsigned int
1301radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1302                unsigned long first_index, unsigned int max_items,
1303                unsigned int tag)
1304{
1305        struct radix_tree_iter iter;
1306        void __rcu **slot;
1307        unsigned int ret = 0;
1308
1309        if (unlikely(!max_items))
1310                return 0;
1311
1312        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1313                results[ret] = rcu_dereference_raw(*slot);
1314                if (!results[ret])
1315                        continue;
1316                if (radix_tree_is_internal_node(results[ret])) {
1317                        slot = radix_tree_iter_retry(&iter);
1318                        continue;
1319                }
1320                if (++ret == max_items)
1321                        break;
1322        }
1323
1324        return ret;
1325}
1326EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1327
1328/**
1329 *      radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1330 *                                        radix tree based on a tag
1331 *      @root:          radix tree root
1332 *      @results:       where the results of the lookup are placed
1333 *      @first_index:   start the lookup from this key
1334 *      @max_items:     place up to this many items at *results
1335 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1336 *
1337 *      Performs an index-ascending scan of the tree for present items which
1338 *      have the tag indexed by @tag set.  Places the slots at *@results and
1339 *      returns the number of slots which were placed at *@results.
1340 */
1341unsigned int
1342radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1343                void __rcu ***results, unsigned long first_index,
1344                unsigned int max_items, unsigned int tag)
1345{
1346        struct radix_tree_iter iter;
1347        void __rcu **slot;
1348        unsigned int ret = 0;
1349
1350        if (unlikely(!max_items))
1351                return 0;
1352
1353        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1354                results[ret] = slot;
1355                if (++ret == max_items)
1356                        break;
1357        }
1358
1359        return ret;
1360}
1361EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1362
1363static bool __radix_tree_delete(struct radix_tree_root *root,
1364                                struct radix_tree_node *node, void __rcu **slot)
1365{
1366        void *old = rcu_dereference_raw(*slot);
1367        int values = xa_is_value(old) ? -1 : 0;
1368        unsigned offset = get_slot_offset(node, slot);
1369        int tag;
1370
1371        if (is_idr(root))
1372                node_tag_set(root, node, IDR_FREE, offset);
1373        else
1374                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1375                        node_tag_clear(root, node, tag, offset);
1376
1377        replace_slot(slot, NULL, node, -1, values);
1378        return node && delete_node(root, node);
1379}
1380
1381/**
1382 * radix_tree_iter_delete - delete the entry at this iterator position
1383 * @root: radix tree root
1384 * @iter: iterator state
1385 * @slot: pointer to slot
1386 *
1387 * Delete the entry at the position currently pointed to by the iterator.
1388 * This may result in the current node being freed; if it is, the iterator
1389 * is advanced so that it will not reference the freed memory.  This
1390 * function may be called without any locking if there are no other threads
1391 * which can access this tree.
1392 */
1393void radix_tree_iter_delete(struct radix_tree_root *root,
1394                                struct radix_tree_iter *iter, void __rcu **slot)
1395{
1396        if (__radix_tree_delete(root, iter->node, slot))
1397                iter->index = iter->next_index;
1398}
1399EXPORT_SYMBOL(radix_tree_iter_delete);
1400
1401/**
1402 * radix_tree_delete_item - delete an item from a radix tree
1403 * @root: radix tree root
1404 * @index: index key
1405 * @item: expected item
1406 *
1407 * Remove @item at @index from the radix tree rooted at @root.
1408 *
1409 * Return: the deleted entry, or %NULL if it was not present
1410 * or the entry at the given @index was not @item.
1411 */
1412void *radix_tree_delete_item(struct radix_tree_root *root,
1413                             unsigned long index, void *item)
1414{
1415        struct radix_tree_node *node = NULL;
1416        void __rcu **slot = NULL;
1417        void *entry;
1418
1419        entry = __radix_tree_lookup(root, index, &node, &slot);
1420        if (!slot)
1421                return NULL;
1422        if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1423                                                get_slot_offset(node, slot))))
1424                return NULL;
1425
1426        if (item && entry != item)
1427                return NULL;
1428
1429        __radix_tree_delete(root, node, slot);
1430
1431        return entry;
1432}
1433EXPORT_SYMBOL(radix_tree_delete_item);
1434
1435/**
1436 * radix_tree_delete - delete an entry from a radix tree
1437 * @root: radix tree root
1438 * @index: index key
1439 *
1440 * Remove the entry at @index from the radix tree rooted at @root.
1441 *
1442 * Return: The deleted entry, or %NULL if it was not present.
1443 */
1444void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1445{
1446        return radix_tree_delete_item(root, index, NULL);
1447}
1448EXPORT_SYMBOL(radix_tree_delete);
1449
1450/**
1451 *      radix_tree_tagged - test whether any items in the tree are tagged
1452 *      @root:          radix tree root
1453 *      @tag:           tag to test
1454 */
1455int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1456{
1457        return root_tag_get(root, tag);
1458}
1459EXPORT_SYMBOL(radix_tree_tagged);
1460
1461/**
1462 * idr_preload - preload for idr_alloc()
1463 * @gfp_mask: allocation mask to use for preloading
1464 *
1465 * Preallocate memory to use for the next call to idr_alloc().  This function
1466 * returns with preemption disabled.  It will be enabled by idr_preload_end().
1467 */
1468void idr_preload(gfp_t gfp_mask)
1469{
1470        if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1471                local_lock(&radix_tree_preloads.lock);
1472}
1473EXPORT_SYMBOL(idr_preload);
1474
1475void __rcu **idr_get_free(struct radix_tree_root *root,
1476                              struct radix_tree_iter *iter, gfp_t gfp,
1477                              unsigned long max)
1478{
1479        struct radix_tree_node *node = NULL, *child;
1480        void __rcu **slot = (void __rcu **)&root->xa_head;
1481        unsigned long maxindex, start = iter->next_index;
1482        unsigned int shift, offset = 0;
1483
1484 grow:
1485        shift = radix_tree_load_root(root, &child, &maxindex);
1486        if (!radix_tree_tagged(root, IDR_FREE))
1487                start = max(start, maxindex + 1);
1488        if (start > max)
1489                return ERR_PTR(-ENOSPC);
1490
1491        if (start > maxindex) {
1492                int error = radix_tree_extend(root, gfp, start, shift);
1493                if (error < 0)
1494                        return ERR_PTR(error);
1495                shift = error;
1496                child = rcu_dereference_raw(root->xa_head);
1497        }
1498        if (start == 0 && shift == 0)
1499                shift = RADIX_TREE_MAP_SHIFT;
1500
1501        while (shift) {
1502                shift -= RADIX_TREE_MAP_SHIFT;
1503                if (child == NULL) {
1504                        /* Have to add a child node.  */
1505                        child = radix_tree_node_alloc(gfp, node, root, shift,
1506                                                        offset, 0, 0);
1507                        if (!child)
1508                                return ERR_PTR(-ENOMEM);
1509                        all_tag_set(child, IDR_FREE);
1510                        rcu_assign_pointer(*slot, node_to_entry(child));
1511                        if (node)
1512                                node->count++;
1513                } else if (!radix_tree_is_internal_node(child))
1514                        break;
1515
1516                node = entry_to_node(child);
1517                offset = radix_tree_descend(node, &child, start);
1518                if (!tag_get(node, IDR_FREE, offset)) {
1519                        offset = radix_tree_find_next_bit(node, IDR_FREE,
1520                                                        offset + 1);
1521                        start = next_index(start, node, offset);
1522                        if (start > max || start == 0)
1523                                return ERR_PTR(-ENOSPC);
1524                        while (offset == RADIX_TREE_MAP_SIZE) {
1525                                offset = node->offset + 1;
1526                                node = node->parent;
1527                                if (!node)
1528                                        goto grow;
1529                                shift = node->shift;
1530                        }
1531                        child = rcu_dereference_raw(node->slots[offset]);
1532                }
1533                slot = &node->slots[offset];
1534        }
1535
1536        iter->index = start;
1537        if (node)
1538                iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1539        else
1540                iter->next_index = 1;
1541        iter->node = node;
1542        set_iter_tags(iter, node, offset, IDR_FREE);
1543
1544        return slot;
1545}
1546
1547/**
1548 * idr_destroy - release all internal memory from an IDR
1549 * @idr: idr handle
1550 *
1551 * After this function is called, the IDR is empty, and may be reused or
1552 * the data structure containing it may be freed.
1553 *
1554 * A typical clean-up sequence for objects stored in an idr tree will use
1555 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1556 * free the memory used to keep track of those objects.
1557 */
1558void idr_destroy(struct idr *idr)
1559{
1560        struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
1561        if (radix_tree_is_internal_node(node))
1562                radix_tree_free_nodes(node);
1563        idr->idr_rt.xa_head = NULL;
1564        root_tag_set(&idr->idr_rt, IDR_FREE);
1565}
1566EXPORT_SYMBOL(idr_destroy);
1567
1568static void
1569radix_tree_node_ctor(void *arg)
1570{
1571        struct radix_tree_node *node = arg;
1572
1573        memset(node, 0, sizeof(*node));
1574        INIT_LIST_HEAD(&node->private_list);
1575}
1576
1577static int radix_tree_cpu_dead(unsigned int cpu)
1578{
1579        struct radix_tree_preload *rtp;
1580        struct radix_tree_node *node;
1581
1582        /* Free per-cpu pool of preloaded nodes */
1583        rtp = &per_cpu(radix_tree_preloads, cpu);
1584        while (rtp->nr) {
1585                node = rtp->nodes;
1586                rtp->nodes = node->parent;
1587                kmem_cache_free(radix_tree_node_cachep, node);
1588                rtp->nr--;
1589        }
1590        return 0;
1591}
1592
1593void __init radix_tree_init(void)
1594{
1595        int ret;
1596
1597        BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1598        BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
1599        BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1600        radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1601                        sizeof(struct radix_tree_node), 0,
1602                        SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1603                        radix_tree_node_ctor);
1604        ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1605                                        NULL, radix_tree_cpu_dead);
1606        WARN_ON(ret < 0);
1607}
1608